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Abstract

Weak-to-Strong Generalization (W2SG), where a
weak model supervises a stronger one, serves as
an important analogy for understanding how hu-
mans might guide superhuman intelligence in the
future. Promising empirical results revealed that
a strong model can surpass its weak supervisor.
While recent work has offered theoretical insights
into this phenomenon, a clear understanding of
the interactions between weak and strong models
that drive W2SG remains elusive. We investigate
W2SG through a theoretical lens and show that it
can be characterized using kernels derived from
the principal components of weak and strong mod-
els’ internal representations. These kernels can
be used to define a space that, at a high level, cap-
tures what the weak model is unable to learn but
is learnable by the strong model. The projection
of labels onto this space quantifies how much the
strong model falls short of its full potential due to
weak supervision. This characterization also pro-
vides insights into how certain errors in weak su-
pervision can be corrected by the strong model, re-
gardless of overfitting. Our theory has significant
practical implications, providing a representation-
based metric that predicts W2SG performance
trends without requiring labels, as shown in exper-
iments on molecular predictions with transform-
ers and 5 NLP tasks involving 52 LLMs.

1. Introduction
As AI systems become increasingly capable of performing
complex tasks beyond human comprehension, humans will
inevitably serve as “weak supervisors” in aligning advanced
AI. To investigate this fundamental problem, Burns
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Figure 1: An illustration of our main result (Thm. 3.8). The path
connecting the two highlighted regions represents the overlap b/w
the complement of a scaled span of the weak model’s principal ker-
nel and the scaled span of the strong model’s principal kernel, de-
termining the contribution of the weak model’s errors to PredGap.

et al. (2023) propose an analogy that can be empirically
explored today: can a weak model effectively supervise a
stronger one? This framework, known as Weak-to-Strong
Generalization (W2SG), involves leveraging a weak model,
finetuned on a specific task, to supervise the finetuning
of a stronger model. In this analogy, the finetuning task
represents concepts tied to human values or skills, the
finetuned weak model represents humans—limited in capa-
bility but aligned with human values, and the strong model
represents superhuman intelligence–powerful but initially
unaligned. Promising results from (Burns et al., 2023) show
that the strong model can significantly outperform its weak
supervisor. For instance, a GPT-4 model supervised by a
fine-tuned GPT-2-level model achieves nearly 20% better
performance than the weak supervisor on NLP tasks.

At first glance, this phenomenon seems counterintuitive. Af-
ter all, the strong model is explicitly trained to fit the weak
supervision. Yet, it goes beyond mere imitation and gen-
eralizes better. It is important to understand which intrinsic
properties of the weak and strong models enable W2SG.

Efforts have been made toward a theoretical understanding
of W2SG. Charikar et al. (2024) demonstrates that the
disagreement between finetuned weak and strong models
correlates with performance gains in W2SG. However, their
analysis assumes high-quality representations in the strong
model and does not address the role of the weak model’s
representations. The analysis of (Lang et al., 2024; Shin
et al., 2024) assumes a generalized version of an adversar-
ially robust strong model, where W2SG arises solely from
underfitting weak supervision. This framework excludes im-
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portant scenarios such as benign overfitting, where W2SG
occurs despite overfitting. Wu & Sahai (2024) particularly
studied benign overfitting and examined the impact of
number of weakly labeled data points. However, we still
lack an overarching explanation that captures the interaction
between weak and strong models in enabling W2SG, as
well as how it determines which weak supervision errors are
corrected in general scenarios. The challenge lies in char-
acterizing the abstract concepts including the knowledge
embedded in the weak and strong models, their utilization,
and their respective roles in W2SG. Striving for results that
are general enough to capture a spectrum of behaviors with-
out overly strict assumptions further adds to the complexity.

To address this, we adopt a representation-based perspective,
analyzing finetuning as a process of learning a function on
fixed representations to uncover how the internal structures
of weak and strong models influence W2SG. Under a very
general assumption about the representations, we demon-
strate (illustrated in Fig. 1) that the key quantifiable property
governing W2SG is the overlap between two spaces: one
representing what the weak model’s principal representa-
tions (capturing key knowledge gained during pretraining)
do not cover, and the other representing what the strong
model’s principal representations do cover. Errors in weak
supervision that fall within this overlap hinder the strong
model from reaching its full potential, leading to a predic-
tion gap between the strong model finetuned with weak
supervision and that finetuned with ground truth labels. A
smaller overlap implies that fewer of the weak model’s mis-
takes are replicated, resulting in better W2SG performance.

We then demonstrate an important use case of our main
result: explaining benign overfitting, where the W2S model
overfits the weak model’s mistakes on finetuning data yet
paradoxically generalizes better on the test set. Using our
theoretical framework, we establish a general condition for
benign overfitting and apply it to a toy example to concretely
illustrate the role of representations in error replication:
errors that do not align with the kernel defined by the strong
model’s principal representations are not replicated by the
W2S model, regardless of the extent of overfitting.

Our theory offers a metric that predicts trends in W2SG
performance in practice without having the finetuning task
labels. This metric, which measures the overlap between the
two highlighted regions in Fig. 1, shows a strong correlation
with W2SG performance across various settings. The
extensive experiments across 8 datasets, involving 150 small
transformers and 52 LLMs, not only validate our theoretical
insights but also suggest their potential applications in man-
aging W2SG, providing a deeper understanding of LLM
behavior through their internal representation structures.

2. Related Work
There have been many recent works that theoretically
explore W2SG. Somerstep et al. (2024) adopt a transfer
learning perspective, focusing on improving W2SG through
in-context learning rather than explaining how W2SG
emerges. Lang et al. (2024); Shin et al. (2024) analyze
W2SG by considering a generalized version of adversarially
robust models, showing that certain errors in weak supervi-
sion can be corrected by leveraging the good neighborhood
structure in the data. However, their argument attributes
error correction solely to underfitting—i.e., avoiding fitting
mislabeled finetuning data. This overlooks an important
scenario recently discussed in (Wu & Sahai, 2024), known
as benign overfitting, where the strong model overfits
mislabeled finetuning data but still achieves accurate
test-time predictions. Benign overfitting is particularly
relevant in practice, as large neural networks often have the
capacity to overfit while still generalizing effectively (Zhang
et al., 2021). Closer to our setting, Charikar et al. (2024)
formalized W2SG using a representation-based perspective.
Their work demonstrates that performance gain in W2SG
correlates with the disagreement between the finetuned
weak and strong models, assuming high-quality represen-
tations for the strong model. While insightful, it does not
characterize the role of the weak model’s representations,
leaving the exact conditions for effective W2SG unclear.

Compared to (Lang et al., 2024), we analyze W2SG in a
more realistic setting where error correction can result from
either underfitting or overfitting, allowing for a full spectrum
of behaviors. While benign overfitting is not our primary fo-
cus, we discuss it as a special case in Sec. 4 due to its impor-
tance and offer new insights. Compared to (Charikar et al.,
2024), we explicitly links W2SG performance to the interac-
tion between the weak and strong models’ representations,
providing a more comprehensive view of how the intrinsic
properties of the two models jointly determine W2SG.

3. W2SG from a Representation Perspective
We first formalize finetuning from a representation-based
perspective, then introduce the properties of the represen-
tations considered, and finally present our main theory.

3.1. A representation-based perspective

The knowledge a model acquires through pretraining
enables it to interpret inputs, extract relevant information,
and organize it into meaningful intermediate states. This
can be formalized as a “representation function”, h, which
transforms data into structured representations. Finetuning
leverages this knowledge to produce the desired output,
which we formalize as learning a new function f on
the fixed h. The entire model is thus represented as the
composition f ◦h. For simplicity, we consider the outputs
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of h as vectors, and focus on the case where f is a linear
functions. This is practically relevant because: (1) Training
a linear task head on fixed representations is common with
large foundation models, e.g., using embedding LLMs
(Muennighoff et al., 2022), linear probing on intermediate
activations (Zou et al., 2023; Nanda et al., 2023; Marks &
Tegmark, 2023). (2) fine-tuning of LLMs largely operates
in the NTK regime (Jacot et al., 2018), where training
dynamics are captured by a linear model on representations
derived from model gradients (Malladi et al., 2023). (3) Our
experiments in Sec. 5 show that insights from analyzing
linear functions generalize to the complex non-linear setting
of finetuning entire LLMs from pretrained weights.

3.2. Preliminaries

Notations. We sometimes abbreviate a matrixA ∈ Rl×m
as [Ai,j ]1≤i≤l,1≤j≤m when each element Ai,j can be ex-
pressed as a generic term in terms of its indices. λmin, ̸= 0(A)
denotes the smallest nonzero eigenvalue of matrixA.

Data. Let D denote the distribution of the finetuning task’s
data, defined over the input-label pairs (x, y) ∈ X × Y ,
where Y = R. In W2SG, we have two splits of data sampled
from D. The first subset, D̃ = {(x̃i, ỹi)}ñi=1, consists of ñ
i.i.d. samples and is used for finetuning the weak model.
The second subset, D̂ = {(x̂i, ŷi)}n̂i=1 with n̂ i.i.d. samples
is used for finetuning the strong model. Note that the weak
model’s outputs will be used as labels in place of the actual
ŷi’s. In our notation, quantities associated with the two splits
are marked by the diacritical symbols,˜and ,̂ respectively.

Models. We denote the weak and strong models’ represen-
tation functions as hw and hs, respectively. The finetuned
weak model is represented as fw◦hw, with

fw=arg min
f∈Fw

(
1

ñ

ñ∑
i=1

(f(hw(x̃i))− ỹi)
2+βwR(f)).

where R(·) represents ℓ2 regularization.

The W2S model, which refers to the strong model finetuned
with weak supervision, is represented as fw2s◦hs, with

fw2s=arg min
f∈Fs

(
1

n̂

n̂∑
i=1

(f(hs(x̂i))−fw(hw(x̂i)))
2+βsR(f)).

Additionally, as a reference, we define the strong ceiling
model as the strong model finetuned with the ground truth
labels. It is represented as fsc ◦ hs with

fsc = arg min
f∈Fs

(
1

n̂

n̂∑
i=1

(f(hs(x̂i))− ŷi)
2 +Rs(f)).

Evaluation. At test time, given any labeling function
g : X →Y , we define its test error as the loss on the popu-
lation: Err(g) = E(x,y)∼D[(g(x)−y)2]. We then introduce

the shorthand notations: the weak model’s test error Errw =
Err(fw◦hw), the W2S model’s test error Errw2s = Err(fw2s◦
hs), and the strong ceiling model’s test error Errsc =
Err(fsc ◦ hs). Errw2s measures the performance achieved
through W2SG, while Errsc serves as the upper limit.

We also introduce PredGap, the squared difference between
the predictions of the W2S and strong ceiling models:

PredGap = E(x,y)∼D[(fw2s(hs(x))−fsc(hs(x)))
2].

It captures how much the strong model falls short of its full
potential due to weak supervision. It is also indicative of
Errw2s, the direct measure of W2SG performance, through
these connections: (1) If the strong ceiling model is nearly
perfect, it follows that PredGap ≈ Errw2s as the strong
ceiling’s predictions are almost identical to the ground truth.
This is not unlikely, since the ultimate goal of W2SG is to
operate in cases where the strong model is a superhuman-
level AI (Burns et al., 2023), plausibly capable of achieving
perfect results if provided with ground truth labels. (2) With
small regularization and well-conditioned representations,
Errw2s ≈ PredGap + Errsc (Thm. B.3), analogous to the
Pythagorean theorem. Then, PredGap directly determines
Errw2s for fixed Errsc. (3) For general cases, the upper
bound

√
Errw2s ≤

√
PredGap+

√
Errsc follows from the

triangle inequality. Furthermore, the result obtained from
analyzing PredGap helps predict Errw2s in our experiments
(Sec. 5). Thus, our main analysis focuses on PredGap.

3.3. Setting: representations with a well-concentrated
principal part and a manageable non-principal part

We first define two basic concepts, kernel and covariance,
before introducing a general assumption on representations.

Definition 3.1 (Kernel Matrix). Given h : X → Rd, we
define the kernel matrix on the finetuning dataset D̂ as
K̂(h)=[h(x̂i)

⊤h(x̂j)]1≤i,j≤n̂, a n̂× n̂ matrix where each
element represents the inner product between a pair of
representations. K̃(h) is defined on D̃ in the same manner.

Definition 3.2 (Population/Empirical Covariance Matrices).
Given h :X →Rd, we define the population covariance over
distribution D as Σ(h) := EDx [h(x)h(x)

⊤]. The empirical
version on D̂ is defined as Σ̂(h) := 1

n̂

∑n̂
i=1 h(x̂i)h(x̂i)

⊤.
Σ̃(h) is defined on D̃ in the same manner.

Given a representation function and a reasonable sample
size, certain components in the representations should
concentrate well, meaning they adequately reflect the
population distribution. These components are pivotal to
the model’s generalization. In our analysis, we focus on
cases where the remainder—the less-well-concentrated
components—satisfies certain conditions, ensuring their im-
pact remains theoretically tractable. The decomposition of
representations into these two parts is formalized as follows.
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Definition 3.3 ((δ, γ̂, γ̃)-decomposability). Given D, D̃,
D̂, and a representation function h : X → R, we say
that the representations of h are (δ, γ̂, γ̃)-decomposable
w.r.t. a subspace V (of R), for some δ=O(1), γ̂ =O(1),
and γ̃ = O(1), if there exists a subset of eigenvectors
of Σ(h) corresponding to non-zero eigenvalues such
that the following holds. Let V denote the span of these
eigenvectors, and let V⊥ denote its orthogonal complement.
Let ΠV and ΠV⊥ denote the orthogonal projections onto V
and V⊥, respectively. Define ρ = λmin, ̸= 0(Σ(ΠVh)) and
γ = min(γ̂, γ̃). With high probability of 1− o(1):
(a) Boundedness. A basic condition that ensures
reasonable magnitudes of representations and labels:
∥Σ(h)∥op = O(1), ∥Σ̂(h)∥op = O(1) ∥Σ̃(h)∥op = O(1),
E[y2] = O(1), 1

n̂

∑n̂
i=1 ŷ

2
i =O(1) and 1

ñ

∑ñ
i=1 ỹ

2
i =O(1).

(b) Concentration on V . Representations are well-
concentrated in the subspace V , both in terms of
their covariance and their correlation with labels:
∥Σ̂(ΠVh) − Σ(ΠVh)∥op = o(γ2 + δ2 + ρ2),
∥Σ̃(ΠVh) − Σ(ΠVh)∥op = o(γ2 + δ2 + ρ2),
∥ 1
n̂

∑n̂
i=1 ΠVh(x̂i)ŷi−E[ΠVh(x)y]∥ = o(γ+ δ+ρ) and

∥ 1
ñ

∑ñ
i=1 ΠVh(x̃i)ỹi − E[ΠVh(x)y]∥ = o(γ + δ + ρ).

(c) Kernel-wise δ-isotropy on V⊥ . The kernels con-
structed using only the components in V⊥ exhibit certain
uniformity in all orientations, with the extent of uniformity
controlled by δ: ∥ 1

n̂K̂(ΠV⊥h)−γ̂I∥op=o(γ2 + δ2), and
∥ 1
ñK̃(ΠV⊥h)−γ̃I∥op=o(γ2 + δ2).

(d) Small cross-sample inner-product on V⊥.
∥ 1√

n̂ñ
[(ΠV⊥h(x̂i))

⊤ΠV⊥h(x̃j)]1≤i≤n̂,1≤j≤ñ∥op =

o(γ + δ), which holds when representations on V⊥ are
nearly orthogonal across samples or have small magnitudes.
(e) Diminishing population covariance on V⊥. The
representations on V⊥ have small magnitude in the
population: ∥Σ(ΠV⊥h)∥op = o(γ + δ).

Additional explanation for Kernel-wise δ-isotropy on
V⊥ . To provide a clearer understanding of this condition,
consider the following: If δ is very small (e.g., δ = 0),
the kernel on D̂ is nearly identical to γ̂I , meaning it does
not exhibit any specific patterns that differentiate between
data points. In contrast, with a larger δ (e.g., δ ≫ γ̂), this
requirement is much more relaxed—the kernel no longer
needs to closely resemble γ̂I but instead must simply have
its magnitude bounded by o(δ). Thus, it accommodates
scenarios where the kernel is highly isotropic, very small
in scale, or anywhere in between. This is key to our anal-
ysis, as it ensures the effect of the less well-concentrated
part of the representations remains tractable. We note that
this condition is not only analytically convenient but also
practically relevant in real-world scenarios. For example,
high-dimensional sub-Gaussian noise satisfies this condition
with a small δ—a situation highly relevant to deep neural
networks with large internal dimensions, where vectors tend

to be approximately orthogonal in the high-dimensional
limit. More concrete instances will be presented in Exam-
ples 3.4 and 3.5, as well as in Theorem 3.6, along with
discussions of their significance and relevance.

Additional explanation for Diminishing population
covariance on V⊥. We note that this condition does not
imply negligible impact of representations on V⊥. For
example, when δ is small, the model can in fact leverage
the components in V⊥ to interpolate the training data,
even when such interpolation cannot be achieved by the
components in V (see Example 4.2).

We refer to ΠVh(x), the well-concentrated part of the repre-
sentation, as the principal representation, and the remainder,
ΠV⊥h(x), as the non-principal representation.

Examples of Def. 3.3. Def. 3.3 is highly general,
covering various representation distributions and dimen-
sionalities. One simple case is when all components
are well-concentrated, i.e., the entire representation is
principal. This occurs when the representations exhibit a
certain low-rank structure, which is common in deep neural
networks (Huh et al., 2021). Below is a concrete example.
Example 3.4 (Arbitrarily parameterized; bounded represen-
tations with low intrinsic dimension). Given h : X → Rd,
for any (x, y), ∥h(x)∥2 ≤ B and y2 ≤ C, where C=Θ(1).
Additionally, ∥Σ(h)∥op =Θ(1). The intrinsic dimension
of Σ(h) is defined as intdim(Σ(h)) = Tr(Σ)

∥Σ∥op
, denoted by

q. Let n = min(n̂, ñ) and assume n1−c = ω
(
B log(q)

)
for some constant c < 1. Then, the representations are
(n−0.1c, 0, 0)-decomposable w.r.t. Rd.
Remark. The conditions imply a low intrinsic dimension
relative to the sample size: q log q = o(n1−c) (App. C.1),
but without restricting the actual dimension d, allowing both
under- (d<n) and over-parameterized (d≥n) settings.

The next example is related to the spiked covariance model
originating from PCA and widely used in recent theoretical
studies across various domains (e.g., (Muthukumar et al.,
2021; Nakada et al., 2023)). It is also related to the sparse
coding model, which has its roots in computer vision (Ol-
shausen & Field, 1997), and has been applied to language
modeling (Arora et al., 2018) and deep learning theory (e.g.,
(Allen-Zhu & Li, 2020)). More references are in App. C.2.
We consider representations that follow a sub-Gaussian,
which is a very general class of distributions, including,
e.g., any bounded random variables and Gaussian.
Example 3.5 (Heavily overparameterized; sub-Gaussian
with spiked covariance). Given h :X →Rd and randomly
drawn x, h(x) has independent zero-mean sub-Gaussian
entries. The first k entries have a (sub-Gaussian) parameter
of Θ(1) and variance 1, while the remaining d−k entries
have a parameter of Θ( σ2

d−k ) and variance σ2

d−k . The
scalings satisfy: ñ = Θ(n̂), σ2 = O(n̂), n̂ = ω(k2), and
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d=ω(n̂2). The labels have bounded moment, E[y2]=O(1).
Then, the representations are (0, σ

2

n̂ , σ
2

ñ )-decomposable
w.r.t. the subspace corresponding to the first k coordinates.
Remark. Compared to Example 3.4, this example accom-
modates cases with high intrinsic dimensions. For instance,
if we set σ2 = Θ(n̂), then intdim(Σ(h)) = Θ(n).
More complex examples can be constructed from the fact
that adding high-dimensional sub-Gaussian to (δ, 0, 0)-
decomposable representations preserves decomposability:
Theorem 3.6. Given a representation function h whose
representations h(x) ∈ Rd are (δ, 0, 0)-decomposable
w.r.t. Rd, we construct new representations with α(x) =
Mh(x) +M⊥ξ(x), where M ∈ R(d+m)×d and M⊥ ∈
R(d+m)×m both have orthonormal columns, and their
column spaces are orthogonal to each others. If elements in
ξ(x) ∈ Rm are independent zero-mean sub-Gaussian with
parameter Θ(σ

2

m ) and variance σ2

m , assuming ñ = Θ(n̂),
m= ω(n̂2), and σ2 =O(n̂), then α’s representations are
(δ, σ

2

n̂ , σ
2

ñ )-decomposable w.r.t. the span ofM ’s columns.
Remark. For instance, one could take h from Example 3.4.

We assume both models’ representations satisfy Def. 3.3:

Assumption 3.7. hw’s representations are (δw, γ̂w, γ̃w)-
decomposable w.r.t. Vw, and hs’s representations are
(δs, γ̂s, γ̃s)-decomposable w.r.t. Vs .

3.4. Principal representations shape PredGap

Intuition. One implication of Def. 3.3 is that only what
is learned through the principal representations will be
reflected at test time. Thus, the weak model’s mistakes
primarily stem from its inability to generate certain outputs
using its principal representations. For the same reason,
among these mistakes, only those expressible through the
strong model’s principal representations will affect its test
performance. Therefore, a key concept affecting W2SG per-
formance is “what the weak model is unable to learn but
is learnable by the strong model using their respective
principal representations”, which we seek to quantify.

Formalization. To formalize the above idea, we leverage
K̂(ΠVwhw) and K̂(ΠVshs)–kernels computed using only
the weak and strong models’ principal representations,
referred to as principal kernels. We define the following

Pw :=
1

n̂
K̂(ΠVwhw)

(
1

n̂
K̂(ΠVwhw) + (βw + γ̃w)I

)−1

,

Ps :=
1

n̂
K̂(ΠVshs)

(
1

n̂
K̂(ΠVshs) + (βs + γ̂s)I

)−1

.

Pw and Ps represent scaled projections onto the spans of the
principal kernels. Each captures the space of output patterns
that its respective model can express through its princi-
pal representations (with regularization taken into account).
Then, the earlier intuition can be characterized as follows.

Theorem 3.8 (Main result). Under Assump. 3.7, and as-
suming reasonable regularization: δw≤βw=O(1) and δs≤
βs=O(1), let ŷ = [ŷ1 ŷ2 . . . ŷn̂]

⊤. Then, w.h.p., we have

PredGap = ∥Ps(I − Pw)
1√
n̂
ŷ∥2 ± o(1) (1)

Ps(I−Pw) captures “what the weak model is unable to
learn but is learnable by the strong model using their
respective principal representations”. Therefore, it deter-
mines the mistakes that will be learned by the strong model,
as discussed in the intuition. A more powerful weak model
has a Pw that covers more space, shrinking Ps(I−Pw) and
potentially leading to a smaller PredGap.

Propagation of Errors. The earlier intuition is reflected
in the proof (App. A.7). Given the labeling ŷ, its projection
(I−Pw)ŷ is orthogonal to the scaled weak model’s principal
kernel and thus cannot be effectively learned, contributing
to the weak model’s error (Lem. A.12). The projection of
this error onto the scaled strong model’s principal kernel,
Ps(I−Pw)ŷ, is learned by the strong model and contributes
to PredGap (Lem. A.13).

4. A Case Study on Benign Overfitting
Our theory can be applied to study and provide new insights
into benign overfitting, an intriguing special case of W2SG,
where the W2S model appears to mimic the weak supervi-
sion during finetuning, yet generalizes better at test time.

4.1. A general condition

Benign overfitting has been studied in the general machine
learning context to understand deep neural networks’ gener-
alization (Bartlett et al., 2020; Wang et al., 2021; Frei et al.,
2022; Mallinar et al., 2022). Recently, (Wu & Sahai, 2024)
theoretically characterized benign overfitting in W2SG for
a specific data distribution. Here, we aim to derive broader
insights from a representation perspective. We consider the
scenario where the strong model’s representations are highly
expressive, enabling near-perfect overfitting of arbitrary
labelings on the finetuning data, mirroring the behavior of
very large neural networks in practice (Zhang et al., 2021).
This occurs when δs = o(γ̂s) (Lem. B.4), yielding a highly
isotropic non-principal kernel. Meanwhile, since generaliza-
tion depends solely on the principal representations by Thm.
3.8, a small ∥Ps(I − Pw)

1√
n̂
ŷ∥2 suffices for good W2SG

performance, regardless of the extent of overfitting. In this
way, we connect benign overfitting to the general relation-
ship between the weak and strong models’ representations:

Theorem 4.1 (A general condition for benign overfitting 1 ).
In addition to Assumption 3.7, suppose that (1) δs = o(γ̂s)

1Thm 4.1 can be extended to cases where the strong ceiling is
not perfect, but we omit this for brevity.
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and δs ≤ βs = o(γ̂s), (2) w.h.p., the strong ceiling model
achieves nearly perfect performance, i.e., Errsc = o(1), (3)
w.h.p., ∥Ps(I − Pw)

1√
n̂
ŷ∥2 = Errw −∆ with ∆ = Θ(1).

Then, w.h.p., the W2S model achieves an almost zero (o(1))
training error on D̂, but generalizes better than the weak
model: Errw2s ≤ Errw −∆+ o(1). See proof in App. B.3.1.

Remark. Compared to (Wu & Sahai, 2024), which focuses
on demonstrating that benign overfitting can occur under
specific assumptions—such as a bi-level ensemble structure
and labels depending 1-sparsely on representations—we ex-
tract more general insights into when and how benign over-
fitting arises. Specifically, we identify a single key quantity
driving benign overfitting in W2SG: ∥Ps(I − Pw)

1√
n̂
ŷ∥.

When this quantity is small, the strong model can avoid
repeating the weak model’s mistakes—regardless of the ex-
tent of overfitting—thereby achieving error mitigation. This
precise mechanism was not revealed in prior work.

4.2. Instantiation of Theorem 4.1 on a toy example

We present a concrete example of the scenario in Theorem
4.1 to demonstrate the realizability of the conditions. While
more complex examples could be constructed, we focus on
a simple one to succinctly illustrate the core ideas.

Example 4.2. The label is a Gaussian: y ∼ N (0, 1).
Given (x, y), the weak model’s representation is hw(x) =
[(
√
η y +

√
1− η ζ) ξ⊤w ]⊤, where η ∈ (0, 1) is some con-

stant, ζ∼N (0, 1) and ξw ∼N (0, σ2

d−1I) are both indepen-
dently drawn. The strong model’s representation is hs(x) =

[y ξ⊤s ]⊤, where ξs∼N (0, σ2

d−1I) independently. The scal-
ings satisfy ñ = Θ(n̂) = ω(1), d = ω(n̂2), and σ2 = o(n̂)

but ̸= 0. Additionally, βs = o(σ
2

n̂ ) and βw = o(σ
2

n̂ ).

Here, the weak model’s first coordinate carries a signal about
the label y, but corrupted by noise ζ, with η controlling the
signal strength (i.e., with SNR η

1−η ). The strong model’s
first coordinate carries a perfect signal about y. The remain-
ing coordinates in both models are high-dimensional ran-
dom noise. Both models’ representations are special cases
of Example 3.5 and are therefore (0, σ

2

n̂ , σ
2

ñ ) decomposable.

Corollary 4.3. Benign overfitting occurs in Example 4.2.
Specifically, w.h.p., (1) The weak model’s errors on both D̂
and the population are (1−η)±o(1). (2) The W2S model over-
fits the weak model’s outputs on D̂, achieving a training loss
of o(1). (3) However, compared to the weak model, the W2S
model achieves a smaller test error: Errw2s=(1−η)2±o(1).

For instance, if η = 0.6, then Errw ≈ 0.4, while
Errw2s ≈ 0.16, despite nearly perfect overfitting on D̂.

4.3. A closer look at error propagation

We provide a rough derivation of the W2S error (with details
in App. B.3.2), illustrating which errors are replicated and

which are corrected (overfitted but benignly) by the W2S
model, and how representations determine this.

The principal representations for both models are simply
at their first coordinates. Thus, the spans of their principal
kernels are one-dimensional. Let ζ̂ ∈ Rn̂ denote the
vector collecting the ζ values on D̂, i.e., ζ̂ = [ζ̂1, . . . , ζ̂n̂]

⊤.
Similarly, define ŷ = [ŷ1, . . . , ŷn̂]

⊤. We can approx-
imate the projection matrices as: Pw ≈ 1

n̂ q̂q̂
⊤ and

Ps ≈ 1
n̂ ŷŷ

⊤, where q̂ =
√
ηŷ +

√
1− ηζ̂. Note

that vectors 1√
n̂
ŷ and 1√

n̂
ζ̂ are almost orthogonal as

the corresponding random variables are uncorrelated:
1√
n̂
ŷ⊤ 1√

n̂
ζ̂ = 1

n̂

∑
i ŷiζ̂i ≈ E[yζ] = 0. Let ϵw be the

vector whose i-th element is the weak model’s error on data
point (x̂i, ŷi). By Lemma A.12, we can approximate ϵw as:

ϵw ≈ (I − Pw)ŷ ≈ (1− η)
1√
n̂
ŷ −

√
η(1− η)

1√
n̂
ζ̂

The strong ceiling model’s error Errsc ≈ 0 as its repre-
sentations directly encode y in the first coordinate. Thus,
Errw2s ≈ PredGap. By Thm 3.8, PredGap ≈ Psϵw. Then,

Errw2s ≈
1

n̂
ŷŷ⊤(1− η)

1√
n̂
ŷ︸ ︷︷ ︸

replicated

− 1

n̂
ŷŷ⊤

√
η(1− η)

1√
n̂
ζ̂︸ ︷︷ ︸

avoided; ≈ 0 since ζ̂ ⊥ ŷ almost

The first term of the weak model’s error, (1−η) 1√
n̂
ŷ, aligns

withPs which spans the strong model’s principal kernel, and
is therefore replicated by the W2S model. The second term,
−
√

η(1− η) 1√
n̂
ζ̂, is orthogonal to Ps and thus mitigated.

Notably, −
√
η(1− η) 1√

n̂
ζ̂ aligns with the strong model’s

non-principal kernel, which is highly isotropic (γs = ω(δs)),
causing the corresponding errors to appear mimicked by
the W2S model during finetuning. However, they do not
manifest at test time. In other words, only errors within the
span of the strong model’s principal kernel are overfitted
harmfully, while overfitting elsewhere remains benign.

5. Predicting W2SG Without Labels
Leveraging Thm. 3.8, we derive a representation-based
metric that can predict W2SG performance without labels
in experiments across various settings. Notably, this metric
strongly correlates with W2SG performance even when
we finetune entire LLMs—a scenario significantly more
complex than what we analyze in theory.

5.1. A label-agnostic metric for W2SG

We start with upper-bounding the RHS of Thm. 3.8.

Corollary 5.1 (Upper Bound 1). Define C = 1
n̂

∑n̂
i=1 ŷ

2
i .

Following Theorem 3.8, directly applying the submultiplica-
tive property of the norm yields the following upper bound:

PredGap ≤ C∥Ps(I − Pw)∥2op + o(1),
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Table 1: An overview of the three setups considered in our experiments.

EXP ID Task Strong model Weak models Finetuning
I molecular tasks MolBERT 150 transformers pretrained on GuacaMol task head
II NLP tasks nvidia/NV-Embed-v2 22 other embedding models task head
III NLP tasks Qwen/Qwen-7B 28 smaller LLMs full model

Corollary 5.2 (Upper Bound 2). Following Theorem 3.8, we
can also obtain an upper bound that involves Errsc as long
as |E[y2]− 1

n̂

∑n̂
i=1 ŷ

2
i | = o(1) (see proof in Appendix B.4) :

PredGap ≤
(√

C∥Ps(I − Pw)Ps∥op +
√

Errsc

)2
+ o(1).

In both upper bounds, C represents the variance of the
labels on D̂, which can be treated as a constant given a
fixed dataset. Therefore, PredGap is governed by the
norm ∥Ps(I −Pw)∥op or ∥Ps(I −Pw)Ps∥op. Compar-
ing the two bounds, the one in Corollary 5.2 is tighter
particularly when Errsc is small 2 . This follows from
∥Ps(I−Pw)Ps∥op≤∥Ps(I−Pw)∥op. However, in our exper-
iments, both are similarly indicative of W2SG performance.

Now that PredGap can be bounded in terms of the above
label-agnostic metrics, and PredGap is indicative of the
error Errw2s as discussed at the end of Sec. 3.2, we turn our
focus to examining the following relationship in real models

Errw2s
?∼ ∥Ps(I − Pw)∥op (or ∥Ps(I − Pw)Ps∥op)

to evaluate whether the metrics offer practical insights.
Specifically, we consider the three setups summarized in Ta-
ble 1, with their details discussed in the corresponding sub-
sections. In each setup, we fix the strong model and vary the
weak model to obtain different Errw2s and ∥Ps(I − Pw)∥op
(or ∥Ps(I − Pw)Ps∥op) pairs and study their relationship.

5.2. Empirical measure of Pw and Ps

Before proceeding, let’s address an important question: how
can we compute Pw and Ps for real models? In some cases,
representations are not fixed during fine-tuning, making h
difficult to define. Additionally, determining the principal
representation, ΠVh, is challenging because the exact V
depends on the population, which is unknown in practice. To
tackle this, we design heuristics to approximateP as follows

1

n̂
K̂(Παh)(

1

n̂
K̂(Παh) + βeffI)

−1 (2)

We explain the key components below.

h: extracting representations. We consider two ways of
defining the representations, depending on the setup. (1)
Last layer embeddings. In Exps. I and II, the definition
of representation is self-evident, as finetuning is simply

2One can also observe this in Example 4.2, where the equality
in Corollary 5.2 holds, whereas that in Corollary 5.1 does not.

training a task head on the embeddings produced by the base
model 3. (2) Activation maps. 4 In Exp. III, we finetune
the entire LLM from pretrained weights, so we don’t have
fixed representations as in the theoretical setting. To address
this, we adopt a simple heuristic: we treat the layer-wise nor-
malized vectorized activation maps of the pre-trained LLM,
which encode information about how inputs are represented
within the model, as the representations for computing h(x).
This heuristic serves primarily as a proof of concept, demon-
strating that even straightforward approach like this can
yield meaningful results. More principled definitions of rep-
resentations, e.g., those based on NTK (Malladi et al., 2023)
or representation engineering (Zou et al., 2023), could be
explored in future work. See further discussion in Appx. E.

Πα: approximating principal representations. We
consider two versions of Πα, the operation that extracts
the principal part from the representations, based on the
intuition that principal representations tend to have larger
magnitudes (e.g., Example 3.5). (1) In Exps. I and II,
we apply PCA by projecting the representations onto the
eigenvectors of the covariance Σ̂(h) with eigenvalues
≥ α × (the largest eigenvalue). (2) In Exp. III, we select
the top coordinates with variance exceeding α× (the largest
coordinate-wise variance), a cheaper alternative to PCA for
high-dimensional activation maps, as it avoids the expensive
eigendecomposition. In both cases α is a hyperparameter.

βeff: effective regularization. In Thm. 3.8, (β + γ̂) is
the effective regularization, capturing both the explicit
(β) and implicit (γ̂) (Jacot et al., 2020) regularization. In
practice, regularization can also stem from factors like early
stopping, training algorithms, etc. We summarize these
effects using βeff in Eq. 2 and treat βeff as a hyperparameter.

For each model, computing P introduces two hyperpa-
rameters, α and β. If every model is assigned unique
hyperparameters, the total number of hyperparameters
would be twice the number of models. To simplify this, we
let all weak models share the same two hyperparameters,
αw and βw. For the strong model (only one in each setting),
it is treated separately with its own hyperparameters, αs
and βs. Thus, we only have four parameters in total. More
details are in App. D.2.

3In the analysis, the linear model does not include a bias term,
but it does in our experiments. This is addressed by appending
a constant 1 to the representation when computing the metrics.

4We observed worse results with last-layer embeddings in Exp.
III, likely due to complex cross-layer dynamics during finetuning.

7



Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions

0.980 0.985 0.990 0.995
Ps(I Pw) op

1.1

1.2

1.3

1.4

1.5

Er
r w

2s
SC=0.935

size 256
size 128
size 64

(a) Lipop

0.98 0.99
Ps(I Pw) op

6

8

10

12

14

Er
r w

2s

SC=0.841
size 256
size 128
size 64

(b) FreeSolv

0.98 0.99
Ps(I Pw) op

2

3

4

Er
r w

2s

SC=0.889
size 256
size 128
size 64

(c) ESOL

Figure 2: Results of Exp. I: our metric strongly correlates
with Errw2s and serves as a more fine-grained indicator than
model size.
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Figure 3: A strong correlation between ∥Ps(I − Pw)∥op
and Errw2s is observed in Exp. II where we finetune
embedding models.
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Figure 4: A strong correlation between ∥Ps(I − Pw)∥op
and Errw2s is observed in Exp. III involving general-purpose
LLMs.
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Figure 5: In Exp. III, for models with activation map
dimensions ≤ 8000, both the activation map dimension
(middle) and the dimension of approximated principal rep-
resentations (right) correlate poorly with Errw2s. However,
∥Ps(I−Pw)∥op remains strongly correlated with Errw2s
(left). We only show the results for Cosmos QA and defer
those for other datasets to App. D.4.

5.3. Experimental setups

Exp. I: Molecular prediction. Our first setting follows
(Charikar et al., 2024). We use the GuacaMol (Brown
et al., 2019) dataset for pretraining both the strong
and weak models. For finetuning, we consider three
regression datasets—ESOL, FreeSolv, and Lipop—from
the MoleculeNet (Wu et al., 2018) benchmark, curated by
ChemBench (Charleshen, 2020), which involve predicting
molecular physical properties. The strong model is
MolBERT (Fabian et al., 2020), a BERT (Devlin, 2018)
pretrained for 100 epochs on GuacaMol. We use smaller
transformers pretrained on GuacaMol as weak models.
These weak models have 2 layers and 2 attention heads.
We vary the hidden size across 64, 128, 256, and vary the
number of pretraining epochs from 1 to 50, resulting in
150 weak models. During finetuning, we extract last-layer
embeddings and perform linear regression. MSE loss is
used for both training and measuring Errw2s as the task is
regression. Additional details are in App.D.1.

Exp. II: NLP tasks with embedding models. We use
the “Justice” and “Commonsense” datasets from ETHICS
(Hendrycks et al., 2020), which involve binary classification
based on basic moral concepts. We consider embedding
models—pretrained LLMs that convert text inputs into
vector-based embeddings, with nvidia/NV-Embed-v2
(Lee et al., 2024) (currently ranked first on the MTEB
leaderboard (Muennighoff et al., 2022)) as the strong model,
and 22 other models as weak models (details in Appx. D.1).
For finetuning, we train a linear classifier on the embeddings
with CE loss. Errw2s is measured as classification error.

Exp. III: NLP tasks with end-to-end finetuned LLMs.
We replicate a setup from (Burns et al., 2023) on three
datasets: (1) SciQ (Welbl et al., 2017), containing crowd-
sourced science exam questions; (2) Amazon Polarity
(Zhang et al., 2015), consisting of Amazon reviews;
and (3) Cosmos QA (Huang et al., 2019), involving
commonsense-based reading comprehension. Both data
preprocessing and finetuning strictly follow (Burns et al.,
2023). The entire model is finetuned with the unembedding
layer replaced with a linear head, using CE loss. We use
Qwen/Qwen-7B (Bai et al., 2023) as the strong model
and 28 smaller LLMs as weak models (details in Appx.
D.1). Errw2s is measured in terms of classification error.

5.4. Results

Strong correlation between Errw2s and ∥Ps(I − Pw)∥op
across various settings. For each of the weak models, we
perform the W2SG procedure to obtain the resulting W2S
model. We then measure Errw2s and ∥Ps(I − Pw)∥op and
plot the results in Figures 2, 3 and 4. Across all the setups,
we observe a strong correlation between the two quantities,
with high Spearman’s correlation values displayed at
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the top of the figures. The results are highly similar for
∥Ps(I − Pw)Ps∥op, as shown in Appx. D.3. Therefore, we
only focus on discussing ∥Ps(I−Pw)∥op in the main paper.
Notably, the correlation between Errw2s and ∥Ps(I−Pw)∥op
extends beyond the theoretical setting, covering the fol-
lowing variations: (1) Loss function and evaluation metric.
While Thm. 3.8 is based on linear regression with MSE loss,
Exps. II and III demonstrate that the correlation also holds
for classification tasks using CE finetuning loss, with Errw2s
measured as classification error. (2) The form of finetuning.
Thm. 3.8 assumes that finetuning involves training a
function on fixed representations. However, in Exp. III,
the entire LLM is finetuned. Despite the complex training
dynamics in this scenario, a strong correlation between
Errw2s and ∥Ps(I−Pw)∥op is still observed when activation
maps are heuristically used as representations. These results
underscore the broad applicability of our conclusion.

Capturing W2SG beyond model size. Smaller weak
models can sometimes achieve better Errw2s than larger
ones. For example, in Exp. I, the leftmost yellow point
(size 64) outperforms the rightmost teal point (size 128) in
Fig. 2, likely because these smaller models were pretrained
for more epochs (recall that we have 150 models span
different combinations of sizes and pretraining epochs),
resulting in better representations. Similarly, in Exp. III,
the middle column of Fig. 5 shows a poor correlation
between Errw2s and size for models with dimension ≤ 8000.
Testing another dimension-based metric—the dimension of
approximated principal representations—also reveals weak
correlation with Errw2s (last column of Fig. 5). This un-
derscore the complexity of predicting W2SG performance,
as larger models or higher representation dimensions do
not guarantee better results. Factors such as the pretraining
recipe, the quality and relevance of the pretraining data, etc.,
all contribute to the final outcome. However, even in these
cases, ∥Ps(I − Pw)∥op consistently captures the trend in
Errw2s (Fig. 2 and the first column of Fig. 5), demonstrating
its robustness as a metric that surpasses simple dimensional
measures and provides meaningful insights for W2SG.

6. Conclusion
In this work, we show that W2SG can be characterized
using kernels derived from the principal components of
weak and strong models’ representations. The theory is
applicable to a wide range of representation distributions,
provides insights into how models’ internal structures
influence error correction and the conditions for benign
overfitting. Additionally, it offers a label-free metric
for predicting W2SG performance, validated through
experiments on diverse datasets and LLMs.

Impact Statement
We see positive societal impacts in our work as it advances
the understanding of Weak-to-Strong Generalization, a cru-
cial problem for aligning superhuman AI in the future. Our
results could enhance transparency in AI systems’ behavior
through analysis of their internal structures and contribute
to the broader goal of improving AI safety and reliability.

Acknowledgement
This research was partially supported by the National Sci-
ence Foundation CAREER Award 2146492 and an OpenAI
SuperAlignment Grant.

References
Allen-Zhu, Z. and Li, Y. Towards understanding ensem-

ble, knowledge distillation and self-distillation in deep
learning. arXiv preprint arXiv:2012.09816, 2020.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. Linear
algebraic structure of word senses, with applications to
polysemy. Transactions of the Association for Computa-
tional Linguistics, 6:483–495, 2018.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: benchmarking models for de novo molecular
design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

Burns, C., Izmailov, P., Kirchner, J. H., Baker, B., Gao, L.,
Aschenbrenner, L., Chen, Y., Ecoffet, A., Joglekar, M.,
Leike, J., et al. Weak-to-strong generalization: Eliciting
strong capabilities with weak supervision. arXiv preprint
arXiv:2312.09390, 2023.

Charikar, M., Pabbaraju, C., and Shiragur, K. Quantifying
the gain in weak-to-strong generalization. arXiv preprint
arXiv:2405.15116, 2024.

Charleshen. Chembench: The molecule benchmarks and
molmapnet datasets, September 2020. URL https:
//doi.org/10.5281/zenodo.4054866.

Demmel, J. The componentwise distance to the nearest
singular matrix. SIAM Journal on Matrix Analysis and
Applications, 13(1):10–19, 1992.

9

https://doi.org/10.5281/zenodo.4054866
https://doi.org/10.5281/zenodo.4054866


Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

El Ghaoui, L. Inversion error, condition number, and ap-
proximate inverses of uncertain matrices. Linear algebra
and its applications, 343:171–193, 2002.

Fabian, B., Edlich, T., Gaspar, H., Segler, M., Meyers, J.,
Fiscato, M., and Ahmed, M. Molecular representation
learning with language models and domain-relevant aux-
iliary tasks. arXiv preprint arXiv:2011.13230, 2020.

Foldiak, P. Sparse coding in the primate cortex. The hand-
book of brain theory and neural networks, 2003.

Frei, S., Chatterji, N. S., and Bartlett, P. Benign overfitting
without linearity: Neural network classifiers trained by
gradient descent for noisy linear data. In Conference on
Learning Theory, pp. 2668–2703. PMLR, 2022.

Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song,
D., and Steinhardt, J. Aligning ai with shared human
values. arXiv preprint arXiv:2008.02275, 2020.

Huang, L., Bras, R. L., Bhagavatula, C., and Choi,
Y. Cosmos qa: Machine reading comprehension with
contextual commonsense reasoning. arXiv preprint
arXiv:1909.00277, 2019.

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal,
P., and Isola, P. The low-rank simplicity bias in deep
networks. arXiv preprint arXiv:2103.10427, 2021.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Jacot, A., Simsek, B., Spadaro, F., Hongler, C., and Gabriel,
F. Implicit regularization of random feature models. In
International Conference on Machine Learning, pp. 4631–
4640. PMLR, 2020.

Ji, W., Deng, Z., Nakada, R., Zou, J., and Zhang, L. The
power of contrast for feature learning: A theoretical anal-
ysis. Journal of Machine Learning Research, 24(330):
1–78, 2023.

Johnstone, I. M. On the distribution of the largest eigenvalue
in principal components analysis. The Annals of statistics,
29(2):295–327, 2001.

Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B., Yang,
T., Barak, B., and Zhang, H. Sgd on neural networks
learns functions of increasing complexity. Advances in
neural information processing systems, 32, 2019.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Lang, H., Sontag, D., and Vijayaraghavan, A. Theoretical
analysis of weak-to-strong generalization. arXiv preprint
arXiv:2405.16043, 2024.

Lee, C., Roy, R., Xu, M., Raiman, J., Shoeybi, M., Catan-
zaro, B., and Ping, W. Nv-embed: Improved techniques
for training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428, 2024.

Mairal, J., Bach, F., Ponce, J., et al. Sparse modeling for
image and vision processing. Foundations and Trends®
in Computer Graphics and Vision, 8(2-3):85–283, 2014.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. In In-
ternational Conference on Machine Learning, pp. 23610–
23641. PMLR, 2023.

Mallinar, N., Simon, J., Abedsoltan, A., Pandit, P., Belkin,
M., and Nakkiran, P. Benign, tempered, or catastrophic:
Toward a refined taxonomy of overfitting. Advances in
Neural Information Processing Systems, 35:1182–1195,
2022.

Marks, S. and Tegmark, M. The geometry of truth:
Emergent linear structure in large language model
representations of true/false datasets. arXiv preprint
arXiv:2310.06824, 2023.

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
Mteb: Massive text embedding benchmark. arXiv
preprint arXiv:2210.07316, 2022.

Muthukumar, V., Narang, A., Subramanian, V., Belkin, M.,
Hsu, D., and Sahai, A. Classification vs regression in
overparameterized regimes: Does the loss function mat-
ter? Journal of Machine Learning Research, 22(222):
1–69, 2021.

Nakada, R., Gulluk, H. I., Deng, Z., Ji, W., Zou, J., and
Zhang, L. Understanding multimodal contrastive learn-
ing and incorporating unpaired data. In International
Conference on Artificial Intelligence and Statistics, pp.
4348–4380. PMLR, 2023.

Nanda, N., Lee, A., and Wattenberg, M. Emergent linear rep-
resentations in world models of self-supervised sequence
models. arXiv preprint arXiv:2309.00941, 2023.

Olshausen, B. A. and Field, D. J. Sparse coding with an
overcomplete basis set: A strategy employed by v1? Vi-
sion research, 37(23):3311–3325, 1997.

Olshausen, B. A. and Field, D. J. Sparse coding of sensory
inputs. Current opinion in neurobiology, 14(4):481–487,
2004.

10



Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions

Papyan, V., Romano, Y., and Elad, M. Convolutional neural
networks analyzed via convolutional sparse coding. Jour-
nal of Machine Learning Research, 18(83):1–52, 2017.

Pezeshki, M., Mitra, A., Bengio, Y., and Lajoie, G. Multi-
scale feature learning dynamics: Insights for double de-
scent. In International Conference on Machine Learning,
pp. 17669–17690. PMLR, 2022.

Shen, R., Bubeck, S., and Gunasekar, S. Data augmentation
as feature manipulation. In International conference on
machine learning, pp. 19773–19808. PMLR, 2022.

Shin, C., Cooper, J., and Sala, F. Weak-to-strong gener-
alization through the data-centric lens. arXiv preprint
arXiv:2412.03881, 2024.

Somerstep, S., Polo, F. M., Banerjee, M., Ritov, Y.,
Yurochkin, M., and Sun, Y. A statistical frame-
work for weak-to-strong generalization. arXiv preprint
arXiv:2405.16236, 2024.

Tropp, J. A. et al. An introduction to matrix concentra-
tion inequalities. Foundations and Trends® in Machine
Learning, 8(1-2):1–230, 2015.

Vershynin, R. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge university press, 2018.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wang, K., Muthukumar, V., and Thrampoulidis, C. Benign
overfitting in multiclass classification: All roads lead to
interpolation. Advances in Neural Information Processing
Systems, 34:24164–24179, 2021.

Welbl, J., Liu, N. F., and Gardner, M. Crowdsourc-
ing multiple choice science questions. arXiv preprint
arXiv:1707.06209, 2017.

Wen, Z. and Li, Y. Toward understanding the feature learn-
ing process of self-supervised contrastive learning. In In-
ternational Conference on Machine Learning, pp. 11112–
11122. PMLR, 2021.

Wu, D. X. and Sahai, A. Provable weak-to-strong
generalization via benign overfitting. arXiv preprint
arXiv:2410.04638, 2024.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Xue, Y., Joshi, S., Gan, E., Chen, P.-Y., and Mirzasoleiman,
B. Which features are learnt by contrastive learning? on
the role of simplicity bias in class collapse and feature
suppression. In International Conference on Machine
Learning, pp. 38938–38970. PMLR, 2023.

Yang, J., Yu, K., Gong, Y., and Huang, T. Linear spatial
pyramid matching using sparse coding for image classifi-
cation. In 2009 IEEE Conference on computer vision and
pattern recognition, pp. 1794–1801. IEEE, 2009.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolu-
tional networks for text classification. Advances in neural
information processing systems, 28, 2015.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K., et al.
Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023.

Zou, D., Cao, Y., Li, Y., and Gu, Q. Understanding the
generalization of adam in learning neural networks with
proper regularization. arXiv preprint arXiv:2108.11371,
2021.

11



Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions

A. Main Analysis
In this section, we provide a thorough analysis of the errors associated with the weak model, the W2S model, and the
strong ceiling model. Some of these results are used to prove our main conclusion, Theorem 3.8, while others are applied in
subsequent analyses.

A.1. Notations and additional notes

Symbol definitions. We introduce the following notations. The symbol r represents a representation, i.e., r = h(x). For
the samples in the splits D̃ and D̂, we denote their representations as r̃1, . . . , r̃ñ and r̂1, . . . , r̂n̂, respectively. We define the
sample representation matrices, where each column corresponds to a representation:

R̃ := [r̃1 r̃2 . . . r̃ñ] and R̂ := [r̂1 r̂2 . . . r̂n̂].

We also define y which collects the labels of the samples:

ỹ =


ỹ1
ỹ2
...
ỹñ

 and ŷ =


ŷ1
ŷ2
...
ŷn̂

 .

For the covariance matrices, we use the following shorthand notations to avoid clutter:

Σ = Σ(h), Σ̂ = Σ̂(h), Σ̃ = Σ̃(h),

Σ′ = Σ(ΠVh), Σ̂
′ = Σ̂(ΠVh), Σ̃

′′ = Σ̃(ΠVh), Σ
′′ = Σ(ΠV⊥h), Σ̂′′ = Σ̂(ΠV⊥h), Σ̃′′ = Σ̃(ΠV⊥h).

Use of subscripts. Additionally, we use subscripts ‘w’ and ‘s’ to indicate the model associated with a given quantity. For
example, R̃w and R̂w denote the sample representation matrices generated by the weak model, while R̃s and R̂s denote those
generated by the strong model. Similarly, this convention applies to covariance matrices; for instance, Σ̂′

s = Σ̂(ΠVshs).

Mathematical notations. For convenience, whenever we sayA = B + o(1), whereA andB are matrices or vectors, we
mean that ∥A−B∥op = o(1). We let λi(A), λmin(A), λmin, ̸= 0(A), and λmax(A) represent the i-th, smallest, smallest
nonzero, and largest eigenvalues of the matrix A, respectively. The expression A ≼ B means that the matrix B −A is
positive semidefinite, andA ≽ B means thatA−B is positive semidefinite.

Implied proof techniques. Sometimes, in the proof, we use the triangle inequality and the sub-multiplicativity of norms
without explicitly stating them when they are straightforward, as mentioning them would make the text unnecessarily
verbose.

A.2. Restatement of Definition 3.3

Here, we restate Definition 3.3 with simplified notations for convenience and clarity in the proof.

Definition A.1 ((δ, γ̂, γ̃)-decomposability (restated) ). Given D, D̃, D̂, and a representation function h, we say that the
representations of h are (δ, γ̂, γ̃)-decomposable with respect to a subspace V (of the representation space), for some
δ = O(1), γ̂ = O(1), and γ̃ = O(1), if the following holds. Let UΛU⊤ be the singular value decomposition (SVD)
of Σ. There exists a matrix U ′ consisting of a subset of columns of U , corresponding to the nonzero eigenvalues, such
that the following conditions are satisfied. Let U ′′ denote the matrix that collects the remaining columns of U . Define
diagonal matrices Λ′ and Λ′′ to collect the eigenvalues corresponding to U ′ and U ′′, respectively. Additionally, define:
Σ′ = U ′Λ′U ′⊤ and Σ′′ = U ′′Λ′′U ′′⊤. Let γ = min(γ̂, γ̃), and let V be the span of the columns of U ′. Now, leveraging
the fact that the projection ΠV can be written as U ′U ′⊤, and noting that λmin, ̸= 0(Σ

′) = λmin(Λ
′), we can reformulate the

original Definition 3.3 in terms of U ′: with high probability 1− o(1),

a. Boundedness. ∥Σ∥op = O(1), ∥Σ̂∥op = O(1) and ∥Σ̃∥op = O(1). Additionally, E[y2] = O(1), 1
n̂∥ŷ∥

2 = O(1) and
1
ñ∥ỹ∥

2 = O(1).
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b. Concentration on V . The original statement is ∥Σ̂′ −Σ′∥op = o(1) and ∥Σ̃′ −Σ′∥op = o(1). However, since:

∥U ′⊤Σ̂U ′ −Λ′∥op =∥ 1
n̂
U ′⊤R̂R̂⊤U ′ −Λ′∥op

=∥ 1
n̂
UU ′⊤R̂R̂⊤U ′U⊤ −UU ′⊤ΛU ′U⊤∥op

=∥Σ̂′ −Σ′∥op,

and similarly for Σ̃′, we can restate it as: ∥U ′⊤Σ̂U ′ −Λ′∥op = o(γ2 + δ2 + λmin(Λ
′)2) and ∥U ′⊤Σ̃U ′ −Λ′∥op =

o(γ2 + δ2 + λmin(Λ
′)2). Similarly, by noting that the operator norm is invariant under left multiplication by U ′, we

can restate the statement regarding y as: ∥U ′⊤ 1√
ñ
R̃ỹ − U ′⊤E[ry]∥ = o(γ + δ + λmin(Λ

′)) and ∥U ′⊤ 1√
n̂
R̂ŷ −

U ′⊤E[ry]∥ = o(γ + δ + λmin(Λ
′)).

c. Kernel-wise δ-isotropy on V⊥ . ∥ 1
n̂R̂

⊤U ′′U ′′⊤R̂−γ̂I∥op = o(γ2+δ2) and ∥ 1
ñR̃

⊤U ′′U ′′⊤R̃−γ̃I∥op = o(γ2+δ2).

d. Small cross-sample inner-product on V⊥. ∥ 1√
n̂
R̂⊤U ′′U ′′⊤ 1√

ñ
R̃∥op = o(γ + δ).

e. Diminishing population covariance on V⊥. ∥Σ′′∥op = o(γ + δ).

Use of subscripts. Since in Assumption 3.7 we assume that the representations of both the weak and strong models satisfy
Definition A.1, all the notations in Definition A.1 have corresponding versions for the weak model’s representations and
the strong model’s representations. We follow the previously mentioned convention and use the subscripts w’ and s’ to
distinguish between them. For example, notations such as U ′

w and U ′
s , Λ′

w and Λ′
s, will be used. The meaning of such

notations should be clear from the context in which they appear.

A.3. Lemmas

Below, we introduce some basic lemmas and prove properties that will be used in the later analysis.

Lemma A.2 (Push-through identity). For any matricesA,B, and any scalar a, the identity (aI +AB)−1A = A(aI +
BA)−1 holds as long as (aI +AB)−1 and (aI +BA)−1 are invertible.

Lemma A.3. A classical result on the effect of perturbations on the inverse of a square matrix states that ∥(A+∆)−1 −
A−1∥op ≤ ∥A−1∥2op∥∆∥op, where A is an invertible square matrix. This result can be found, for example, in (Demmel,
1992) or Equation 1.1 of (El Ghaoui, 2002).

Lemma A.4. If condition Kernel-wise δ-isotropy on V⊥ holds, we have that ∥ 1
ñR̃

⊤R̃−
(

1
ñR̃

⊤U ′U ′⊤R̃+ γ̃I
)
∥op =

o(γ2 + δ2), and a similar conclusion holds for R̂ as well.

Proof. By Kernel-wise δ-isotropy on V⊥ ,

∥ 1
ñ
R̃⊤R̃−

(
1

ñ
R̃⊤U ′U ′⊤R̃+ γ̃I

)
∥op

=∥ 1
ñ
R̃⊤(U ′U ′⊤ +U ′′U ′′⊤)R̃−

(
1

ñ
R̃⊤U ′U ′⊤R̃+ γ̃I

)
∥op

=∥ 1
ñ
R̃⊤U ′′U ′′⊤R̃− γ̃I∥op

=o(γ2 + δ2).

Lemma A.5. If condition Kernel-wise δ-isotropy on V⊥ holds, then for any β = O(1) s.t. β ≥ δ, we have that
∥( 1ñR̃

⊤R̃+ βI)−1 − ( 1ñR̃
⊤U ′U ′⊤R̃+ (γ̃ + β)I)−1∥op = o(1), and a similar conclusion holds for R̂ as well.
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Proof. By Kernel-wise δ-isotropy on V⊥ ,

∥ 1
ñ
R̃⊤R̃+ βI −

(
1

ñ
R̃⊤U ′U ′⊤R̃+ (γ̃ + β)I

)
∥op

=∥ 1
ñ
R̃⊤(U ′U ′⊤ +U ′′U ′′⊤)R̃+ βI −

(
1

ñ
R̃⊤U ′U ′⊤R̃+ (γ̃ + β)I

)
∥op

=∥ 1
ñ
R̃⊤U ′′U ′′⊤R̃− γ̃I∥op

=o(γ2 + δ2).

Then, by Lemma A.3, we have

∥( 1
ñ
R̃⊤R̃+ βI)−1 − (

1

ñ
R̃⊤U ′U ′⊤R̃+ (γ̃ + β)I)−1∥op ≤o(γ2 + δ2) ∥( 1

ñ
R̃⊤U ′U ′⊤R̃+ (γ̃ + β)I)−1∥2op

=o(
γ2 + δ2

(γ̃ + β)2
)

=o(1).

Lemma A.6. If condition Concentration on V holds, then for any β = O(1) s.t. β ≥ δ, and γ0 ∈ {γ̂, γ̃} we have

∥(U ′⊤Σ̃U ′ + (γ0 + β)I)−1 − (Λ′ + (γ0 + β)I)−1∥op = o(1),

and a similar conclusion holds for Σ̂ as well.

Proof. By condition Concentration on V , we have

∥U ′⊤Σ̃U ′ −Λ′∥op = o(γ2 + δ2 + λmin(Λ
′)2).

Then, by Lemma A.3, we have

∥(U ′⊤Σ̃U ′ + (γ0 + β)I)−1 − (Λ′ + (γ0 + β)I)−1∥op =≤o(γ2 + δ2 + λmin(Λ
′)2) ∥(Λ′ + (γ0 + β)I)−1∥2op

=o(
γ2 + δ2 + λmin(Λ

′)2

(γ0 + β + λmin(Λ′))2
)

=o(1).

Lemma A.7. If conditions Boundedness and Concentration on V hold, then |λmin(Λ
′)2 − λmin(U

′⊤Σ̂U ′)2| = o(γ2 +
δ + λmin(Λ

′)2). It still holds if we replaceˆwith .̃

Proof. Define t = λmin(Λ
′) − λmin(U

′⊤Σ̂′U ′). By condition Concentration on V and Weyl’s theorem, we have
|t| = o(γ2 + δ2 + λmin(Λ

′)2). Then, we compute:

λmin(U
′⊤Σ̂′U ′)2

=λmin(Λ
′)2 + t2 − 2tλmin(Λ

′)

=λmin(Λ
′)2 ± o(γ2 + δ2 + λmin(Λ

′)2),

where the last step follows because λmin(Λ
′) = O(1) (via condition Boundedness) and |t| = o(γ2 + δ2 +λmin(Λ

′)2).

Corollary A.8. Lemma A.7 further implies that γ2+δ2+λmin(Λ
′)2

γ̂2+δ2+λmin(U ′⊤Σ̂U ′)2
= O(1) when conditions Boundedness and Concen-

tration on V hold. It still holds if we replaceˆwith .̃
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Proof.

γ2 + δ2 + λmin(U
′⊤Σ̂U ′)2

γ̂2 + δ2 + λmin(Λ′)2
=
γ2 + δ2 + λmin(Λ

′)2

γ̂2 + δ2 + λmin(Λ′)2
− λmin(Λ

′)2 − λmin(U
′⊤Σ̂U ′)2

γ̂2 + δ2 + λmin(Λ′)2

≤1± o(γ2 + δ2 + λmin(Λ
′)2)

γ̂2 + δ2 + λmin(Λ′)2

≤1 + o(1).

Therefore, γ2+δ2+λmin(Λ
′)2

γ̂2+δ2+λmin(U ′⊤Σ̂U ′)2
= O(1).

Corollary A.9. If conditions Boundedness and Concentration on V hold, then for any q with ∥q∥ = O(1), we have
∥U ′

√
Λ′(U ′⊤Σ′U ′+(γ̂+β)I)−1q∥2 = ∥ 1√

n̂
R̂⊤U ′( 1n̂U

′⊤R̂R̂⊤U ′+(γ̂+β)I)−1q∥2±o(1). It still holds if we replace
ˆwith .̃

Proof.

∥U ′
√
Λ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q∥2

=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1Λ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q

=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1U ′⊤Σ̂U ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q

± o
(
(γ2 + δ2 + λmin(Λ

′)2)∥(U ′⊤Σ′U ′ + (γ̂ + β)I)−1∥2op
)

by Concentration on V and ∥q∥ = O(1)

=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1U ′⊤Σ̂U ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q ± o

(
γ2 + δ2 + λmin(Λ

′)2

(λmin(U ′⊤Σ′U ′) + γ̂ + β)2

)
=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1U ′⊤Σ̂U ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q ± o

(
γ2 + δ2 + λmin(Λ

′)2

γ̂2 + β2 + λmin(U ′⊤Σ′U ′)2

)
=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1U ′⊤Σ̂U ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q ± o

(
γ2 + δ2 + λmin(Λ

′)2

γ̂2 + δ2 + λmin(U ′⊤Σ′U ′)2

)
=q⊤(U ′⊤Σ′U ′ + (γ̂ + β)I)−1U ′⊤Σ̂U ′(U ′⊤Σ′U ′ + (γ̂ + β)I)−1q ± o(1) by Corollary A.8

=∥ 1√
n̂
R̂⊤U ′(

1

n̂
U ′⊤R̂R̂⊤U ′ + (γ̂ + β)I)−1q∥2 ± o(1)

Corollary A.10. If conditions Boundedness and Concentration on V hold, then for any ψ with ∥ψ∥ = O(1), we have
∥U ′

√
Λ′U ′⊤ 1√

n̂
R̂( 1n̂R̂

⊤U ′U ′⊤R̂ + (γ̂ + β)I)−1ψ∥2 = ∥ 1
n̂R̂

⊤U ′U ′⊤R̂( 1n̂R̂
⊤U ′U ′⊤R̂ + (γ̂ + β)I)−1ψ∥2 ± o(1),

and ∥U ′
√
Λ′U ′⊤ 1√

n̂
R̂( 1n̂R̂

⊤U ′U ′⊤R̂+ (γ̂ + β)I)−1ψ∥ = O(1). It still holds if we replaceˆwith .̃

Proof. First, we have

∥U ′
√
Λ′U ′⊤ 1√

n̂
R̂(

1

n̂
R̂⊤U ′U ′⊤R̂+ (γ̂ + β)I)−1ψ∥2

=∥U ′
√
Λ′(

1

n̂
U ′⊤R̂R̂⊤U ′ + (γ̂ + β)I)−1U ′⊤ 1√

n̂
R̂ψ∥2 by Lemma A.2

=∥ 1√
n̂
R̂⊤U ′(

1

n̂
U ′⊤R̂R̂⊤U ′ + (γ̂ + β)I)−1U ′⊤ 1√

n̂
R̂ψ∥2 ± o(1)

by the fact that ∥U ′⊤ 1√
n̂
R̂ψ∥ = O(1) (via Boundedness) and invoking Corollary A.9

=∥ 1
n̂
R̂⊤U ′U ′⊤R̂(

1

n̂
R̂⊤U ′U ′⊤R̂+ (γ̂ + β)I)−1ψ∥2 ± o(1) by Lemma A.2.

Additionally, since ∥ 1
n̂R̂

⊤U ′U ′⊤R̂( 1n̂R̂
⊤U ′U ′⊤R̂ + (γ̂ + β)I)−1∥op =

∥ 1
n̂ R̂⊤U ′U ′⊤R̂∥op

∥ 1
n̂ R̂⊤U ′U ′⊤R̂∥op+γ̂+β

≤ 1, we also have the

bound ∥U ′
√
Λ′U ′⊤ 1√

n̂
R̂( 1n̂R̂

⊤U ′U ′⊤R̂+ (γ̂ + β)I)−1ψ∥ = O(1).
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Lemma A.11. If condition Kernel-wise δ-isotropy on V⊥ holds, then ∥U ′′⊤ 1√
n̂
R̂∥op ≤

√
o(γ2 + δ2) + γ̂. Similarly,

∥U ′′⊤ 1√
ñ
R̃∥op ≤

√
o(γ2 + δ2) + γ̃.

Proof. By condition Kernel-wise δ-isotropy on V⊥ and triangle inequality, we have

∥ 1
n̂
R̂⊤U ′′U ′′⊤R̂∥op ≤ o(γ2 + δ2) + γ̂

Then,

∥U ′′⊤ 1√
n̂
R̂∥op =

√
∥ 1
n̂
R̂⊤U ′′U ′′⊤R̂∥op ≤

√
o(γ2 + δ2) + γ̂.

A.4. Basic expressions for the model weights and errors

Letww ∈ Rdw ,ww2s ∈ Rds , andws ∈ Rds represent the weights of the linear models fw, fw2s, and fs, respectively. Using
the well-known closed-form solution for the minimizer of the MSE loss with ℓ2 regularization, we derive their formulas:

ww =
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

ww2s =
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
(R̂⊤

www) (3)

ws =
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
ŷ.

Then, we derive the expression of PredGap

PredGap =Ers [(r
⊤
s ws − r⊤s ww2s)

2]

=Ers [(r
⊤
s (ws −ww2s))

2] (4)

=Ers [(ws −ww2s)
⊤rsr

⊤
s (ws −ww2s)]

=(ws −ww2s)
⊤Ers [rsr

⊤
s ](ws −ww2s)

=(ws −ww2s)
⊤Σs(ws −ww2s)

=∥
√
Σs(ws −ww2s)∥2

=∥
√
Σs

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1︸ ︷︷ ︸

a transformation determined by the strong model’s representations

(
1√
n̂
ŷ − 1√

n̂
R̂⊤

www

)
︸ ︷︷ ︸

weak model’s normalized error vector on D̂

∥

=∥
√
Σs

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1︸ ︷︷ ︸

a transformation determined by the strong model’s representations

(
1√
n̂
ŷ − 1√

n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

)
︸ ︷︷ ︸

weak model’s normalized error vector on D̂

∥.

(5)

From the above, we see that PredGap can be broken into two parts: the weak model’s normalized error vector on D̂, and a
transformation applied to this error vector which captures how the weak model’s errors propagate to the strong model. In
Sections A.5 and A.6, we will analyze each part individually.

A.5. The weak model’s error

Lemma A.12 (The weak model’s error on D̂ ). The weak model’s error vector on D̂ can be approximated as follows

∥
(

1√
n̂
ŷ − 1√

n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

)
− (I − Pw)

1√
n̂
ŷ∥ = o(1),

where Pw = 1
n̂R̂

⊤
wU

′
wU

′⊤
w R̂w

(
1
ñR̂

⊤
wU

′
wU

′⊤
w R̂w + (γ̃w + βw)I

)−1

.
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Proof. By condition Boundedness and Lemma A.5, we have

1√
n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

=
1√
n̂
R̂⊤

w
1√
ñ
R̃w

(
1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (γ̃w + βw)I

)−1
1√
ñ
ỹ + o(1)

=

(
1√
n̂
R̂⊤

wU
′
wU

′⊤
w

1√
ñ
R̃w +

1√
n̂
R̂⊤

wU
′′
wU

′′⊤
w

1√
ñ
R̃w

)(
1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (γ̃w + βw)I

)−1
1√
ñ
ỹ + o(1)

By conditions Small cross-sample inner-product on V⊥ and Boundedness, and noting that ∥( 1ñR̃
⊤
wU

′
wU

′⊤
w R̃w + (γ̃w +

βw)I)
−1∥op ≤ 1

γ̃w+βw
, the preceding can be further bounded as

1√
n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

=
1√
n̂
R̂⊤

wU
′
wU

′⊤
w

1√
ñ
R̃w

(
1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (γ̃w + βw)I

)−1
1√
ñ
ỹ + o(1)

=
1√
n̂
R̂⊤

wU
′
w

(
1

ñ
U ′⊤

w R̃wR̃
⊤
wU

′
w + (γ̃w + βw)I

)−1

U ′⊤
w

1

ñ
R̃wỹ + o(1) by Lemma A.2.

By Lemma A.6 and condition Boundedness, the above further leads to

1√
n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

=
1√
n̂
R̂⊤

wU
′
w (Λ′

w + (γ̃w + βw)I)
−1
U ′⊤

w
1

ñ
R̃wỹ + o(1).

Condition Concentration on V implies that ∥U ′⊤
w

1
n̂R̂wŷ − U ′⊤

w
1
n̂R̂wŷ∥op = o(λmin(Λ

′
w) + γw + βw) via the triangle

inequality. Then, by condition Boundedness and that ∥(Λ′
w + (γ̃w + βw)I)

−1∥op = 1
λmin(Λ′

w)+γ̃w+βw
, we further have

1√
n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ

=
1√
n̂
R̂⊤

wU
′
w (Λ′

w + (γ̃w + βw)I)
−1
U ′⊤

w
1

n̂
R̂wŷ + o(1)

=
1√
n̂
R̂⊤

wU
′
w

(
1

n̂
U ′⊤

w R̂wR̂
⊤
wU

′
w + (γ̃w + βw)I

)−1

U ′⊤
w

1

n̂
R̂wŷ + o(1) by Lemma A.6 and condition Boundedness

=
1

n̂
R̂⊤

wU
′
wU

′⊤
w R̂w

(
1

ñ
R̂⊤

wU
′
wU

′⊤
w R̂w + (γ̃w + βw)I

)−1
1√
n̂
ŷ + o(1) by Lemma A.2.

Let us define the shorthand Pw = 1
n̂R̂

⊤
wU

′
wU

′⊤
w R̂w

(
1
ñR̂

⊤
wU

′
wU

′⊤
w R̂w + (γ̃w + βw)I

)−1

. Then, we conclude that

1√
n̂
ŷ − 1√

n̂
R̂⊤

w
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ = (I − Pw)

1√
n̂
ŷ + o(1).

A.6. Propagation of the error to the strong model

Lemma A.13. For any ψ with ∥ψ∥ = O(1), we have ∥
√
Σs

1√
n̂
R̂s(

1
n̂R̂

⊤
s R̂s + βsI)

−1ψ∥2 = ∥Psψ∥2 ± o(1), where

Ps =
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤R̂s + (γ̂s + βs)I)
−1.
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Proof. We first decompose
√
Σs

1√
n̂
R̂s(

1
n̂R̂

⊤
s R̂s + βsI)

−1 as follows

√
Σs

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1

=
√

Σs
1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1 + o(1) by Lemma A.5

=(U ′
s

√
Λ′

sU
′⊤
s +U ′′

s

√
Λ′′

s U
′′⊤
s )

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1 + o(1)

=U ′
s

√
Λ′

sU
′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1

+U ′′
s

√
Λ′′

s U
′′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1 + o(1) (6)

The second term above can be bounded:

∥U ′′
s

√
Λ′′

s U
′′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1∥op

≤
√

λmax(Λ′′
s )

√
o(γ2

s + δ2s ) + γ̂s

γ̂s + βs
by Boundedness and Lemma A.11

≤
√
∥Σ′′

s ∥op
√
o(γ2

s + δ2) + γ̂s

γ̂s + δs

=o

(√
(γs + δs)o(γ2

s + δ2s ) + γ̂s(γs + δs)

(γ̂s + δs)2

)
by Diminishing population covariance on V⊥

≤o

(√
o(γ2

s + δ2s )

γ̂s + δs
+

γ̂s

γ̂s + δs

)
= o(1). (7)

Combining Equations 6 and 7 yields√
Σs

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1ψ = U ′

s

√
Λ′

sU
′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1ψ + o(1).

Finally, we consider the squared norm:

∥
√
Σs

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1ψ∥2

=∥U ′
s

√
Λ′

sU
′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1ψ∥2

± o

(
∥U ′

s

√
Λ′

sU
′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1ψ∥
)
± o(1)

=∥ 1
n̂
R̂⊤

s U
′
sU

′⊤
s R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤R̂s + (γ̂s + βs)I)
−1ψ∥2 ± o(1) by Corollary A.10.

A.7. Proof of Theorem 3.8

Given that ∥ 1√
n̂
ŷ∥ = O(1) by Boundedness, and that ∥I − Pw∥op = βw

λmin(
1
n̂ R̂⊤

w U ′
wU

′⊤
w R̂w)+βw

≤ 1, we have ∥(I −

Pw)
1√
n̂
ŷ∥ = O(1). Then, by Lemma A.12, the weak model’s error on D̂ can be bounded as

∥∥∥(I − Pw)
1√
n̂
ŷ
∥∥∥+o(1) = O(1).

Recalling the expression of PredGap derived in Equation 5 and applying Lemmas A.12 and A.13, we obtain:

PredGap = ∥Ps(I − Pw)
1√
n̂
ŷ∥2 ± o(1).
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B. Additional Analysis
B.1. Additional Lemmas

Lemma B.1. By Diminishing population covariance on V⊥ and Boundedness, we have

E[U ′′U ′′⊤ry] = o(
√
γ + δ).

Proof.

E[U ′′U ′′⊤ry] = lim
n→∞

1

n

n∑
i=1

U ′′U ′′⊤riyi = lim
n→∞

1√
n
U ′′U ′′⊤R

1√
n
y ≤ lim

n→∞
∥ 1√

n
U ′′U ′′⊤R∥op∥

1√
n
y∥

= lim
n→∞

√
∥ 1
n
U ′′U ′′⊤RR⊤U ′′U ′′⊤∥op

√√√√ 1

n

n∑
i=1

y2i =
√

∥Σ′′∥op
√
E[y2] = o(

√
γ + δ).

Lemma B.2. By Boundedness, we have

E[U ′U ′⊤ry] = O(1).

Proof. The proof follows the same approach as that of Lemma B.1. This conclusion can also be derived by bounding
E[U ′U ′⊤ry] in terms of its empirical counterpart using Concentration on V , and then applying Boundedness

B.2. When Errw2s ≈ PredGap + Errsc

Theorem B.3. Suppose that, in addition to Assumption 3.7, the conditions βs + γ̂s = o(λmin, ̸= 0(Σ(ΠVshs)) = Θ(1)) and
λmin, ̸= 0(Σ(ΠVshs)) = Θ(λmax(Σ(ΠVshs)) hold. Then, w.h.p., we have:

Errw2s = PredGap + Errsc ± o(1).

Proof. First, decompose Errw2s as follows

Errw2s =E[(r⊤s ww2s − y)2]

=E[(r⊤s ww2s − r⊤s wsc + r
⊤
s wsc − y)2]

=E[(r⊤s ww2s − r⊤s wsc)
2 + (r⊤s wsc − y)2 + 2(w⊤

w2srs −w⊤
scrs)(r

⊤
s wsc − y)]

=PredGap + Errsc + 2E[(w⊤
w2srs −w⊤

scrs)(r
⊤
s wsc − y)]

=PredGap + Errsc + 2(ww2s −wsc)
⊤(Σswsc − E[rsy]), (8)

Thus, to prove the theorem, it suffices to show |(ww2s − wsc)
⊤(Σswsc − E[rsy])| = o(1). We decompose (ww2s −

wsc)
⊤(Σswsc − E[rsy]):

(ww2s −wsc)
⊤(Σswsc − E[rsy])

=(ww2s −wsc)
⊤(Σ′

swsc +Σ′′
s wsc −U ′

sU
′⊤
s E[rsy]−U ′′

s U
′′⊤
s E[rsy])

=(ww2s −wsc)
⊤(Σ′

swsc −U ′
sU

′⊤
s E[rsy]) + (ww2s −wsc)

⊤Σ′′
s wsc − (ww2s −wsc)

⊤U ′′
s U

′′⊤
s E[rsy] (9)

ww2s −wsc can be approximated as:

ww2s −wsc =
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
(R̂⊤

www)−
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
ŷ

=
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1(

1√
n̂
R̂⊤

www − 1√
n̂
ŷ)

=
1√
n̂
R̂s

(
1

n̂
K̂ ′

s + (γ̂s + βs)I

)−1

(
1√
n̂
R̂⊤

www − 1√
n̂
ŷ) + o(1) by Lemma A.5 and that other terms are O(1)

(10)
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where K̂ ′
s = R̂

⊤
s U

′
sU

′⊤
s R̂s is shorthand for K̂(ΠVshs). Then, by Lemma A.11 and Boundedness, we obtain:

∥(ww2s −wsc)
⊤U ′′

s ∥ =O(

√
o(γ2

s + δ2s ) + γ̂s

γ̂s + βs
). (11)

We also have the following bound:

∥U ′′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
ŷ∥op

=∥U ′′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I)

−1 1√
n̂
ŷ∥op + o(∥U ′′⊤

s
1√
n̂
R̂s∥op) by Boundedness and Lemma A.5

=O(

√
o(γ2

s + δ2s ) + γ̂s

γ̂s + βs
) by Lemma A.11 and Boundedness (12)

Combining Diminishing population covariance on V⊥ and Equations 11 and 12, the second term in Equation 9 can be
bounded as:

|(ww2s −wsc)
⊤Σ′′

s wsc| =|(ww2s −wsc)
⊤U ′′

s Λ
′′
s U

′′⊤
s wsc|

=o

(
(o(γ2

s + δ2s ) + γ̂s)(γs + δs)

(γ̂s + βs)2

)
= o(1). (13)

The third term in Equation 9 can be bounded as:

|(ww2s −wsc)
⊤U ′′

s U
′′⊤
s E[rsy]| ≤∥(ww2s −wsc)

⊤U ′′
s ∥∥U ′′⊤

s E[rsy]∥

=O(

√
o(γ2

s + δ2s ) + γ̂s

γ̂s + βs
)o(
√
γs + δs) by Equation 11 and Lemma B.1

=o(1). (14)

Now, it remains to bound the first term in Equation 9. We start with approximating Σ′
swsc −U ′

sU
′⊤
s E[rsy]:

Σ′
swsc −U ′

sU
′⊤
s E[rsy]

=U ′
sΛ

′
sU

′⊤
s

1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
ŷ −U ′

sU
′⊤
s E[rsy]

=U ′
sΛ

′U ′⊤
s

1√
n̂
R̂s

(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I

)−1
1√
n̂
ŷ −U ′

sU
′⊤
s E[rsy] + o(1)

by Lemma A.5 and Boundedness

=UsU
′⊤
s Σ̂U ′

sU
′⊤
s

1√
n̂
R̂s

(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I

)−1
1√
n̂
ŷ −U ′

sU
′⊤
s E[rsy] + o(1)

by Concentration on V and Boundedness

=UsU
′⊤
s Σ̂U ′

sU
′⊤
s

1√
n̂
R̂s

(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + (γ̂s + βs)I

)−1
1√
n̂
ŷ −UsU

′
s
1

n̂
R̂sŷ + o(1) by Concentration on V.

(15)

Due to the two additional assumptions in the statement of the theorem, along with Concentration on V and Boundedness,
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the RHSs of both equation 10 and equation 15 are O(1). Combining equation 10 and equation 15, we obtain:

(ww2s −wsc)
⊤(Σ′

swsc −UsU
′⊤
s E[rsy])

=(
1√
n̂
R̂⊤

www − 1√
n̂
ŷ)⊤

(
1

n̂
K̂ ′

s + (γ̂s + βs)I

)−1

× 1√
n̂
R̂⊤

s

(
UsU

′⊤
s Σ̂U ′

sU
′⊤
s

(
UsU

′⊤
s Σ̂U ′

sU
′⊤
s + (γ̂s + βs)I

)−1

−U ′
sU

′⊤
s

)
1√
n̂
R̂s

1√
n̂
ŷ + o(1)

=(
1√
n̂
R̂⊤

www − 1√
n̂
ŷ)⊤

(
1

n̂
K̂ ′

s + (γ̂s + βs)I

)−1

×

(
1

n̂
K̂ ′

s

(
1

n̂
K̂ ′

s + (γ̂s + βs)I

)−1
1

n̂
K̂ ′

s −
1

n̂
K̂ ′

s

)
1√
n̂
ŷ + o(1) by Lemma A.2

=(
1√
n̂
R̂⊤

www − 1√
n̂
ŷ)⊤ (PsPs − Ps)

⊤ 1√
n̂
ŷ + o(1). (16)

PsPs − Ps’s eigenvalues are given by: ( λi(
1
n̂ K̂′

s )

λi(
1
n̂ K̂′

s )+(γ̂s+βs)
)2 − λi(

1
n̂ K̂′

s )

λi(
1
n̂ K̂′

s )+(γ̂s+βs)
= −(

λi(
1
n̂ K̂′

s )

λi(
1
n̂ K̂′

s )+(γ̂s+βs)
)( γ̂s+βs

λi(
1
n̂ K̂′

s )+(γ̂s+βs)
).

since 1
n̂K̂

′
s and Σ̂s share non-zero eigenvalues, we analyze the relation between βs + γ̂s and Σ̂′

s’s non-zero eigenvalues. By
Concentration on V and Weyl’s Theorem

|λmin, ̸= 0(Σ̂
′
s)− λmin, ̸= 0(Σ

′
s)| = o(γ2

s + δ2s + λmin, ̸= 0(Σ
′
s))

Combining this with βs + γ̂s = o(λmin, ̸= 0(Σ
′
s)), we conclude:

βs + γ̂s = o(λmin, ̸= 0(Σ̂′
s)). (17)

Using Equation 17, we then obtain ∥PsPs −Ps∥op = o(1). By Lemma A.12, the term ( 1√
n̂
R̂⊤

www − 1√
n̂
ŷ) can be bounded

by
∥∥∥(I − Pw)

1√
n̂
ŷ
∥∥∥ + o(1) = O(1), and ∥ 1√

n̂
ŷ∥ = O(1) by Boundedness. Combining all these results, the RHS of

Equation 16 is o(1). Therefore, |(ww2s −wsc)
⊤(Σswsc − E[rsy])| = o(1), which completes the proof.

B.3. Proof of results in Section 4

B.3.1. PROOF OF THEOREM 4.1

First, we present the following lemma, which provides a sufficient condition under which any labeling can be fitted by the
W2S model.
Lemma B.4 (Condition for overfitting arbitrary labels). As long as δs = o(γ̂s) and δs ≤ βs = o(γ̂s), given any fw ◦
hw s.t. 1

n̂

∑n̂
i=1 fw(hw(x̂i))

2 = O(1), the weak-to-strong model can almost exactly overfit it, as indicated by an almost zero
training error: 1

n̂

∑n̂
i=1 (fw2s(hs(x̂i))− fw(hw(x̂i)))

2
= o(1), with high probability 1− o(1).

Proof. Let T̂ ∈ Rn̂ denote the weak model’s predictions on D̂. The following holds for all T̂ such that 1
n̂ |T̂ |

2 = O(1). The
training loss can be expressed as

1

n̂
∥R̂⊤

s ww2s − T̂ ∥2 =∥ 1√
n̂
R̂⊤

s
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 1√

n̂
T̂ − 1√

n̂
T̂ ∥2 by Equation 3

=∥
(

1√
n̂
R̂⊤

s
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 − I

)
1√
n̂
T̂ ∥2

≤∥ 1√
n̂
R̂⊤

s
1√
n̂
R̂s(

1

n̂
R̂⊤

s R̂s + βsI)
−1 − I∥2op∥

1√
n̂
T̂ ∥2

=

(
βs

λmin(
1
n̂R̂

⊤
s R̂s) + βs

)2

∥ 1√
n̂
T̂ ∥2

=O

( βs

λmin(
1
n̂R̂

⊤
s R̂s) + βs

)2
 because we assume

1

n̂
∥T̂ ∥2 = O(1). (18)
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By Lemma A.4 and Weyl’s Theorem, we have

|λmin(
1

n̂
R̂⊤

s R̂s)− λmin(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + γ̂sI)| ≤

∥∥∥∥ 1n̂R̂⊤
s R̂s −

(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + γ̂sI

)∥∥∥∥
op

= o(γ2
s + δ2s )

=⇒ λmin(
1

ñ
R̂⊤

s R̂s) ≥ λmin(
1

n̂
R̂⊤

s U
′
sU

′⊤
s R̂s + γ̂sI)− o(γ2

s + δ2s ) ≥ γ̂s − o(γ2
s + δ2s ). (19)

Substituding Equation 19 into Equation 18 yields

1

n̂
∥R̂⊤

s ww2s − T̂ ∥2 = O

((
βs

γ̂s − o(γ2
s + δ2s ) + βs

)2
)

= o(1) because we assume βs = o(γ̂s) and δs = o(γ̂s),

which completes the proof.

The first statement in Theorem 4.1 can now be readily proved by invoking the above lemma.

For the second statement in Theorem 4.1, we first apply the triangle inequality, which gives
√

Errw2s ≤
√

PredGap+
√

Errsc.
Given the assumption Errsc = o(1) and the fact that Theorem 3.8 implies PredGap = O(1), we obtain Errw2s ≤
PredGap + o(1). Furthermore, by our assumption combined with Theorem 3.8, we know PredGap = Errw −∆+ o(1).
Substituting this into the previous inequality yields Errw2s ≤ Errw −∆+ o(1).

B.3.2. PROOF OF COROLLARY 4.3

We begin by presenting the following general result regarding the test errors of the weak model and the strong ceiling model.

Lemma B.5 (The weak model’s error on the population). If |E[y2] − 1
n̂

∑n̂
i=1 ŷ

2
i | = o(1) w.h.p., then the weak model’s

error on the population, Errw , can be approximated as follows,

Errw = ∥(I − Pw)
1√
n̂
ŷ∥2 ± o(1).

A similar conclusion holds for the strong ceiling’s error Errsc as well: Errsc = ∥(I − Ps)
1√
n̂
ŷ∥2 ± o(1).

Proof. We decompose the error as follows

Errw =E[(r⊤www − y)2]

=w⊤
w Σwww − 2w⊤

w E[rwy] + E[y2]. (20)

The first term can further be decomposed as:

w⊤
w Σwww =∥

√
ΛwU

⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ∥2

=∥
√
ΛwU

⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2 ± o(1) by Lemma A.4 and Boundedness

=∥
[√

Λ′
wU

′⊤
w√

Λ′′
wU

′′⊤
w

]
1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2 ± o(1)

=∥
√
Λ′

wU
′⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2

+ ∥
√
Λ′′

wU
′′⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2 ± o(1) (21)
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We bound the second term in Equation 21:

∥
√
Λ′′

wU
′′⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2

≤∥Λ′′
w∥op∥U ′′⊤

w
1√
ñ
R̃w∥2op∥(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1∥2op∥
1√
ñ
ỹ∥2

≤o(γw + δw)(o(γ
2
w + δ2w) + γ̃w)

(βw + γ̃w)2
by Diminishing population covariance on V⊥, Lemma A.11 and Boundedness

=o(1). (22)

Then, we approximate the first term in Equation 21:

∥
√
Λ′

wU
′⊤
w

1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ∥2

=∥
√
Λ′

w(
1

ñ
U ′⊤

w R̃wR̃
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w

1√
ñ
R̃w

1√
ñ
ỹ∥2 by Lemma A.2

=∥
√
Λ′

w(Λ
′
w + (βw + γ̃w)I)

−1U ′⊤
w

1√
ñ
R̃w

1√
ñ
ỹ∥2 ± o(1) by Lemma A.6 and Boundedness

=∥
√
Λ′

w(
1

n̂
U ′⊤

w R̂wR̂
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w

1√
ñ
R̃w

1√
ñ
ỹ∥2 ± o(1) by Lemma A.6 and Boundedness

=∥
√
Λ′

w(
1

n̂
U ′⊤

w R̂wR̂
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w

1√
n̂
R̂w

1√
n̂
ŷ∥2 ± o(1) by Concentration on V and Boundedness

=∥
√
Λ′

wU
′⊤
w

1√
n̂
R̂w(

1

n̂
R̂⊤

wU
′
wU

′⊤
w R̂w + (βw + γ̃w)I)

−1 1√
n̂
ŷ∥2 ± o(1) by Lemma A.2

=∥ 1
n̂
R̂⊤

wU
′
wU

′⊤
w R̂w(

1

n̂
R̂⊤

wU
′
wU

′⊤
w R̂w + (βw + γ̃w)I)

−1 1√
n̂
ŷ∥2 ± o(1) by Corollary A.10 and Boundedness

=∥Pw
1√
n̂
ŷ∥2 ± o(1). (23)
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Now, we approximate the second term in Equation 20:

w⊤
w E[rwy]

=(
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ)⊤E[rwy]

=(
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ)⊤U ′

wU
′⊤
w E[rwy] + (

1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ)⊤U ′′

wU
′′⊤
w E[rwy]

=(
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ)⊤U ′

wU
′⊤
w E[rwy]± o(

√
o(γ2

w + δ2w) + γ̃w

γ̃w + βw

√
γw + δw)

by Boundedness, Lemmas A.5, A.11 and B.1

=(
1√
ñ
R̃w(

1

ñ
R̃⊤

w R̃w + βwI)
−1 1√

ñ
ỹ)⊤U ′

wU
′⊤
w E[rwy]± o(1)

=(
1√
ñ
R̃w(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
ỹ)⊤U ′

wU
′⊤
w E[rwy]± o(1)

by Lemma A.5, Boundedness, and Lemma B.2

=
1√
ñ
ỹ⊤(

1

ñ
R̃⊤

wU
′
wU

′⊤
w R̃w + (βw + γ̃w)I)

−1 1√
ñ
R̃⊤

wU
′
wU

′⊤
w E[rwy]± o(1)

=
1√
ñ
ỹ⊤ 1√

ñ
R̃⊤

wU
′
w(

1

ñ
U ′⊤

w R̃wR̃
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w E[rwy]± o(1) by Lemma A.2

=
1√
ñ
ỹ⊤ 1√

ñ
R̃⊤

wU
′
w(

1

ñ
U ′⊤

w R̂wR̂
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w E[rwy]± o(1)

by Lemma A.6, Lemma B.2, and Boundedness

=
1

n̂
ŷ⊤R̂⊤

wU
′
w(

1

ñ
U ′⊤

w R̂wR̂
⊤
wU

′
w + (βw + γ̃w)I)

−1U ′⊤
w

1

n̂
R̂wŷ ± o(1)

by Concentration on V , Boundedness and Lemma B.2

=
1√
n̂
ŷ⊤Pw

1√
n̂
ŷ ± o(1) by Lemma A.2. (24)

Combining Equations 20, 21, 22, 23, 24, and the assumption about E[y2] yields

Errw = ∥(I − Pw)
1√
n̂
ŷ∥2 ± o(1).

The proof of the result concerning Errsc is similar.

We show that the condition regarding E[y2] is satisfied in Example 4.2. Specifically,
∑n̂
i=1 ŷ

2
i follows a χ2(n̂) distribution,

with a mean of n̂E[y2] and a variance of 2n̂. For simplicity, we demonstrate the following result using Chebyshev’s
inequality, while noting that tighter bounds could be achieved with tail bounds for χ2 variables or Lemma C.3. For any
k > 0, we have: Pr

(
|
∑n̂
i=1 ŷ

2
i − n̂E[y2]| ≥ k

√
2n̂
)
≤ 1

k2 . Letting k = n̂1/4, we find that with probability 1−O
(

1√
n̂

)
,∣∣∣ 1n̂∑n̂

i=1 ŷ
2
i − E[y2]

∣∣∣ = O
(

1
n̂1/4

)
. Thus, Lemma B.5 applies to Example 4.2.

Now, based on Lemmas A.12, B.5, and Theorem 3.8, the key to computing the errors of all these models boils down to
simply computing Pw and Ps.

We first compute the kernels. For convenience, we use the shorthand notations K̂w and K̂s to represent K̂(ΠVwhw)

and K̂(ΠVshs), respectively. Since the representations in Example 4.2 are decomposable with respect to the subspace
corresponding to the first coordinate, for both the weak and strong models, the principal kernels are rank one and can
be expressed as K̂w = qq⊤ and K̂s = ŷŷ⊤, where q̂ :=

√
ηŷ +

√
1− ηζ̂. Then, for 1

n̂K̂w, it has a single nonzero
eigenvalue ∥ 1√

n̂
q̂∥2, with the corresponding eigenvector 1

∥ 1√
n̂
q̂∥

1√
n̂
q̂. Similarly, 1

n̂K̂s has a single eigenvalue ∥ 1√
n̂
ŷ∥2, with

the corresponding eigenvector 1
∥ 1√

n̂
ŷ∥

1√
n̂
ŷ.

Next, we present the following Lemma.
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Lemma B.6. We have the following:

∥ 1√
n̂
ŷ∥2 = 1± o(1), ∥ 1√

n̂
ζ̂∥2 = 1± o(1), | 1√

n̂
ζ̂⊤

1√
n̂
ŷ| = o(1), ∥ 1√

n̂
q̂∥2 = 1± o(1)

Proof. The first two statements can be proved by leveraging classical results on the concentration of Gaussian matrices (see
Lemma C.3 for details). The third statement follows as a special case of Lemma C.4. The last statement is implied by the
previous three.

Recall that both the weak and strong models’ representations in Example 4.2 are special cases of Example 3.5. Given that
σ2 = o(n̂) and ñ = Θ(n̂), we have γ̂w, γ̃w, γ̂s, and γ̃s all being o(1), δw = δs = 0, and βw = o(1), βs = o(1). Combining
these with Lemma B.6, we derive:

∥Pw − 1

n̂
q̂q̂⊤∥op = o(1), ∥Ps −

1

n̂
ŷŷ⊤∥op = o(1).

Now, leveraging Lemma B.6, we can derive all the errors using the expressions provided in Lemmas A.12, B.5, and
Theorem 3.8.

B.4. Proof of Corollary 5.2

Following Theorem 3.8, we bound the RHS as follows

PredGap =∥Ps(I − Pw)Ps
1√
n̂
ŷ + Ps(I − Pw)(I − Ps)

1√
n̂
ŷ∥2 ± o(1)

≤
(
∥Ps(I − Pw)Ps∥op∥

1√
n̂
ŷ∥+ ∥Ps(I − Pw)∥op∥(I − Ps)

1√
n̂
ŷ∥
)2

+ o(1) (25)

≤
(
∥Ps(I − Pw)Ps∥op

√
C + ∥(I − Ps)

1√
n̂
ŷ∥
)2

+ o(1)

=
(
∥Ps(I − Pw)Ps∥op

√
C +

√
Errsc + o(1)

)2
+ o(1) by Lemma B.5

=
(
∥Ps(I − Pw)Ps∥op

√
C +

√
Errsc

)2
+ o(1)

C. Proof of Examples in Section 3.3
C.1. Example 3.4

For convenience, let q = intdim(Σ) and τ = ∥Σ∥op.

Firstly, we note that the conditions in the example imply a low intrinsic dimension. Here’s why: since Tr(Σ) = E|r|2 ≤ B,
it follows that

intdim(Σ) =
Tr(Σ)

∥Σ∥op
≤ B

τ
= O(B), (26)

where the last step holds because τ = ∥Σ∥op = Θ(1). Given that n1−c = ω(B log(q)), we then have n1−c = ω(q log(q)),
as mentioned in the remark.

Additionally, since intdim(Σ) ≥ 1, Equation 26 also implies

B ≥ τ and B = Ω(1), (27)

which we will use later.

Next, we introduce the following two lemmas, both of which rely on the matrix Bernstein inequality with intrinsic dimension,
as stated in Theorem 7.3.1 of (Tropp et al., 2015).
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Lemma C.1. With a probability of at least 1− 8q exp( −0.5n̂1−c

Bτ+(B+τ)/3 ) = 1− o(1), the following holds

∥Σ̂−Σ∥op ≤ n̂−0.5c.

The same conclusion applies to Σ̃ as well.

Proof. We prove the result for Σ̂; the result for Σ̃ can be proved in the same way. Define Si = 1
n̂ (r̂ir̂

⊤
i −Σ). The random

matrices Si are independent, identically distributed, and centered. Their norms are bounded as follows

∥Si∥op ≤ 1

n̂
(∥r̂ir̂⊤i ∥op + ∥Σ∥op) ≤

B + τ

n̂
:= L.

Then,

ES2
i =

1

n̂2
E(r̂ir̂⊤i −Σ)2 =

1

n̂2
E(∥r̂i∥2r̂ir̂⊤i − 2Σ2 +Σ2) ≼

1

n̂2
E(Br̂ir̂⊤i −Σ2) ≼

B

n̂2
Σ

Define Z =
∑n̂
i=1 Si. We have

0 ≼ EZ2 =

n̂∑
i=1

ES2
i ≼

B

n̂
Σ := V

V ’s norm can be expressed as follows:

∥V ∥op =
B∥Σ∥op

n̂
=

Bτ

n̂
:= v

Define d = intdim(

[
V 0
0 V

]
), which can be simplified as:

d = 2
Tr(Bn̂Σ)

∥Bn̂Σ∥op
= 2intdim(

B

n̂
Σ) = 2intdim(Σ) = 2q.

Now we are ready to apply Theorem 7.3.1 of (Tropp et al., 2015). It leads to the conclusion that, for any t ≥
√
v + L/3,

P{∥Z∥op ≥ t} ≤4d exp (
−t2/2

v + Lt/3
)

=8q exp(
−t2/2

Bτ
n̂ + B+τ

n̂ t/3
)

=8q exp(
−n̂t2/2

Bτ + (B + τ)t/3
) (28)

By assumption:

n1−c = ω(B log q)

=⇒ n1−c = ω(((τ + 1/3)B + τ/3) log q) because τ = O(1)

=⇒ n̂1−c

(τ + 1/3)B + τ/3
= ω(log q)

=⇒ 0.5
n̂1−c

(τ + 1/3)B + τ/3
= ω(log q)

=⇒ exp

(
0.5n̂1−c

(τ + 1/3)B + τ/3

)
= ω(q)

=⇒ q exp

(
−0.5n̂1−c

(τ + 1/3)B + τ/3

)
= o(1) (29)

26



Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions

Therefore, we set the value of t to n̂−0.5c = o(1) in Equation 28. It is easy to verify that n̂−0.5c ≥
√
v + L/3. Substituting,

we get:

P{∥Z∥op ≥ n̂−0.5c} ≤4d exp (
−t2/2

v + Lt/3
) ≤ 8q exp(

−n̂t2/2

Bτ + (B + τ)t/3
) = 8q exp(

−0.5n̂1−c

Bτ + (B + τ)n̂−0.5c/3
)

≤8q exp(
−0.5n̂1−c

Bτ + (B + τ)/3
) because n̂−0.5c ≤ 1

=o(1) by Equation 29.

Since Z = Σ̂−Σ, restating the above, we have that with a probability of at least 1− 8q exp( −0.5n̂1−c

Bτ+(B+τ)/3 ), the following
holds

∥Σ̂−Σ∥op ≤ n̂−0.5c.

Lemma C.2. With a probability of at least 1− (q + 4) exp( −0.5n̂1−c

4BC+ 2
3

√
BC

) = 1− o(1), the following holds

∥ 1
n̂

n̂∑
i=1

r̂iyi − E[ry]∥ ≤ n̂−0.5c.

The same conclusion applies to 1
ñ

∑ñ
i=1 r̃iyi as well.

Proof. We prove the result for 1
n̂

∑n̂
i=1 r̂iyi; the result for 1

ñ

∑ñ
i=1 r̃iyi can be proved in the same way. Define Si =

1
n̂ (r̂iy − E[ry]). The random matrices (vectors) Si are independent, identically distributed, and centered. Their norms are
bounded as follows

∥Si∥ ≤ 1

n̂
(∥r̂iy∥+ ∥E[ry]∥) ≤ 1

n̂
(∥r̂i∥|y|+ E[∥r∥|y|]) ≤ 2

n̂

√
BC := L. (30)

Define Z =
∑n̂
i=1 Si. We analyze the semidefinite upper bounds for the variances EZZ⊤ and EZ⊤Z:

EZZ⊤ =

n̂∑
i=1

ESiS⊤
i

=
1

n̂2
(Ey2i r̂ir̂⊤i − E[ry]E[ry]⊤)

≼
1

n̂2
Ey2i r̂ir̂⊤i

≼
C

n̂2
Σ := V1.

EZ⊤Z =

n̂∑
i=1

ES⊤
i Si

=n̂E∥Si∥2

≤ 4

n̂
BC := V2 by Equation 30.

Define v = max(∥V1∥op, ∥V2∥op). It can be simplified as follows

v =max(∥C
n̂
Σ∥op,

4

n̂
BC)

=
4

n̂
BC because B ≥ ∥Σ∥op as in Equation 27.
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Define d = intdim(

[
V1 0
0 V2

]
), which can be simplified as

d =intdim(

[
C
n̂Σ 0
0 4

n̂BC

]
)

=
Tr(Cn̂Σ) + 4

n̂BC

max(∥Cn̂Σ∥op, 4
n̂BC)

=
Tr(Cn̂Σ) + 4

n̂BC
4
n̂BC

=
Tr(Cn̂Σ)

4
n̂BC

+ 1

≤q/4 + 1 because B ≥ τ as in Equation 27 and
Tr(Σ)

τ
= q .

Applying Theorem 7.3.1 of (Tropp et al., 2015), we have that for any t ≥
√
v + L/3,

P{∥Z∥ ≥ t} ≤4d exp (
−t2/2

v + Lt/3
)

≤(q + 4) exp(
−t2/2

4
n̂BC + 2

√
BC
n̂ t/3

). (31)

By assumption:

n1−c = ω(B log q)

=⇒ n1−c = ω(B log(q + 4))

=⇒ n1−c = ω((4BC +
2
√
BC

3
) log(q + 4)) because C = Θ(1), and B = Ω(1) as in Equation 27

=⇒ 0.5n1−c

(4BC + 2
√
BC
3 )

= ω(log(q + 4))

=⇒ (q + 4) exp

(
−0.5n1−c

4BC + 2
√
BC
3

)
= o(1).

Therefore, we set the value of t to n̂−0.5c = o(1) in Equation 31. It is easy to verify that n̂−0.5c ≥
√
v + L/3. Substituting,

we get:

P{∥Z∥op ≥ n̂−0.5c} ≤(q + 4) exp(
−0.5n−c

4
n̂BC + 2

√
BC
n̂ n̂−0.5c/3

)

≤(q + 4) exp(
−0.5n−c

4
n̂BC + 2

√
BC
n̂ /3

) because n̂−0.5c ≤ 1

=(q + 4) exp(
−0.5n1−c

4BC + 2
√
BC/3

)

=o(1).

Now, we are ready to show that Example 3.4 satisfies Definition 3.3. We let V be the entire representation space. Then, V⊥

is the zero space 0. In this case, the conditions Kernel-wise δ-isotropy on V⊥ , Small cross-sample inner-product on
V⊥, and Diminishing population covariance on V⊥ trivially hold. Thus, we only need to prove that Boundedness and
Concentration on V hold.
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We let δ = n−0.1c and γ = 0. First, note that δ2 = n−0.2c ≥ n̂−0.2c. Then, by Lemma C.1, we obtain that ∥Σ̂ −
Σ∥op ≤ n̂−0.5c = o(n̂−0.2c) = o(δ2) = o(γ2 + δ2 + ρ) with probability 1 − o(1). Similarly, we can show that
∥Σ̃−Σ∥op = o(γ2 + δ2 + ρ) with probability 1− o(1).

Next, since δ = n−0.1c ≥ n̂−0.1c, applying Lemma C.2 gives us
∣∣∣ 1n̂∑n̂

i=1 r̂iyi − E[ry]
∣∣∣ ≤ n̂−0.5c = o(n̂−0.1c) = o(δ) =

o(γ + δ + ρ) with probability 1− o(1). Similarly, the same conclusion can be shown for 1
ñ r̃iyi.

Note that there are only four events above, so the probability that all of them occur remains 1 − o(1). To now, we have
proved Concentration on V .

Finally, regarding Boundedness, ∥Σ∥op = Θ(1) is directly given in the assumption. Keeping in mind that V is the entire
space, the conditions regarding covariance matrices are readily satisfied through the triangle inequality. For example:
∥Σ̂∥op ≤ ∥Σ̂−Σ∥op + ∥Σ∥op = o(1) + Θ(1) = O(1). The other two conditions are directly implied by the boundedness
of each y.

C.2. Example 3.5

Originating from PCA (Johnstone, 2001), the spiked covariance model has been widely adopted in recent works to
theoretically characterize key aspects across various topics (Ji et al., 2023; Nakada et al., 2023; Muthukumar et al., 2021;
Pezeshki et al., 2022; Wu & Sahai, 2024). Furthermore, Example 3.5 also subsumes the sparse coding model as a special
case, which has its roots in computer vision (Olshausen & Field, 1997; Foldiak, 2003; Olshausen & Field, 2004; Yang et al.,
2009; Mairal et al., 2014; Papyan et al., 2017), has been used to model language data (Arora et al., 2018), and has been
extensively employed in recent theoretical studies (Kalimeris et al., 2019; Allen-Zhu & Li, 2020; Wen & Li, 2021; Zou
et al., 2021; Shen et al., 2022; Xue et al., 2023).

In the following proof, we start with a simple case where the data are Gaussian. We then extend the result to sub-Gaussian
data by replacing the technical lemmas for Gaussian data with appropriate alternatives.

C.2.1. OVER-PARAMETERIZED GAUSSIAN DATA

Suppose that we have R̂ ∈ Rd×n̂, R̃ ∈ Rd×ñ with n̂ = Θ(ñ) and d = ω(n̂2) drawn from a high-dimensional Σ-Gaussian
ensemble with zero mean, where

Σ =

[
Ik 0

0 σ2

d−kId−k

]
=

[
Ik = Λ′ 0

0 0

]
︸ ︷︷ ︸

Σ′

+

[
0 0

0 σ2

d−kId−k = Λ′′

]
︸ ︷︷ ︸

Σ′′

, with σ2 = O(n̂), n̂ = ω(k2). (32)

Here the two data splits have comparable sizes, and the model is heavily over-parameterized. By splitting the matrix

R̂ =

[
F̂

Â

]
, where F̂ ∈ Rk×n̂ corresponds to the k principal features (which form the space V) and Â ∈ R(d−k)×n̂

corresponds to the rest (which form the space V⊥), we can write the sample covariance matrix as

Σ̂ =
1

n̂
R̂R̂⊤ =

1

n̂

[
F̂ F̂⊤ F̂ Â⊤

ÂF̂⊤ ÂÂ⊤

]
.

We note that d − k = ω(n̂2), and the corresponding labels have bounded mean and variance. The same decomposition

applies to R̃. Note that here U ′ =

[
Ik

0(d−k)×k

]
and U ′′ =

[
0k×(d−k)
Id−k

]
allow us to define the projection matrices U ′U ′⊤

and U ′′U ′′⊤ on V and V⊥ respectively.

In this section, we show that our assumptions hold in the above setting with δ = 0 and γ̂ = σ2/n̂, γ̃ = σ2/ñ. We only prove
for R̂ whenever the same proof can be easily applied to R̃.

First, let us introduce the following Lemmas:

Lemma C.3 (Restatement of Example 6.2 in (Wainwright, 2019)). Let X ∈ Rd×n be a random matrix with i.i.d. entries
drawn from N (0, 1) (that is a Σ-Gaussian ensemble with Σ = Id). Then with probability at least 1− 2e−nδ

2/2 for some
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δ > 0, the following inequality holds:

∥ 1
n
XXT − Id∥op ≤ 2

(√
d

n
+ δ

)
+

(√
d

n
+ δ

)2

.

Lemma C.4. Consider two independently sampled Gaussian matrices where A ∈ Rd1×n has columns ai ∼ N (0, σ2
1Id1)

and B ∈ Rd2×n has columns bi ∼ N (0, σ2
2Id2) . Then for some 1

d1d2
> δ > 0 and constant C, with probability at least

1− d1d2δ, we have
1

n
∥AB⊤∥op ≤ σ1σ2

n

√
Cd1d2n log(

2

δ
).

Proof. LetQ = ABT . Then each entry ofQ is an inner productQij = ai · bj , where ai ∈ Rn is the i-th row ofA and
bj ∈ Rn is the j-th row ofB. Since each entry of ai is N (0, σ2

1) and each entry of bj is N (0, σ2
2), by Lemma 4 from (Shen

et al., 2022), with probability at least 1− δ (taking 1
d1d2

> δ > 0), for some constant Cij ,

Q2
ij = (ai · bj)2 ≤ Cijσ

2
1σ

2
2n log(2/δ′).

We define C = max {Cij : 1 ≤ i ≤ d1, 1 ≤ j ≤ d2}. Now we bound the operator norm with

1

n
∥AB⊤∥op ≤ 1

n
∥AB⊤∥F =

1

n
∥Q∥F

=
1

n

√ ∑
1≤i≤d1,1≤j≤d2

Q2
ij

≤ 1

n

√ ∑
1≤i≤d1,1≤j≤d2

Cijσ2
1σ

2
2n log(2/δ)

≤ 1

n

√
Cd1d2σ2

1σ
2
2n log(2/δ) =

σ1σ2

n

√
Cd1d2n log(2/δ)

with probability at least 1− d1d2δ since the inequality has to hold for each entry.

We now prove that the example satisfies the five aspects of the definition:

1. Boundedness:

First, we have ∥Σ∥op = 1 = O(1) from its definition, and

∥Σ̂−Σ∥op ≤

∥∥∥∥∥
[

1
n̂ F̂ F̂

⊤ − Ik 0

0 1
n̂ÂÂ

⊤ − σ2

d−kId−k

]∥∥∥∥∥
op

+
1

n̂

∥∥∥∥[ 0 F̂ Â⊤

ÂF̂⊤ 0

]∥∥∥∥
op

. (33)

By Lemma C.3, we take δ1 = n̂−1/4 and have that with probability at least 1− 2e−n̂δ
2
1/2 = 1− 2e−

√
n̂/2 = 1− o(1),

∥ 1
n̂
F̂ F̂⊤ − Ik∥op ≤ 2

√
k

n̂
+

2

n̂1/4
+

(√
k

n̂
+

1

n̂1/4

)2

= o(1) since n̂ ≫ k.

As Â ∈ R(d−k)×n̂ is sampled from σ2

d−kId−k,
√
d−k
σ Â is sampled from Id−k. With this scaling, similarly, Lemma C.3

implies that∥∥∥∥∥ 1n̂
(√

d− k

σ
Â

)(√
d− k

σ
Â

)⊤

− Id−k

∥∥∥∥∥
op

=

∥∥∥∥d− k

n̂σ2
ÂÂ⊤ − Id−k

∥∥∥∥
op

≤ 2

√
d− k

n̂
+

2

n̂1/4
+

(√
d− k

n̂
+

1

n̂1/4

)2
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⇐⇒
∥∥∥∥ 1n̂ÂÂ⊤ − σ2

d− k
Id−k

∥∥∥∥
op

≤ σ2

d− k

2√d− k

n̂
+

2

n̂1/4
+

(√
d− k

n̂
+

1

n̂1/4

)2
 = O(1) as σ2 = O(n̂).

We have bounded the first term on the right side of Eq. 33 and have that ∥ 1√
n̂
F̂ ∥op and ∥ 1√

n̂
Â∥op are O(1). It follows

that
1

n̂

∥∥∥∥[ 0 F̂ Â⊤

ÂF̂⊤ 0

]∥∥∥∥
op

=
1

n̂
∥F̂ Â⊤∥op = O(1) =⇒ ∥Σ̂−Σ∥op = O(1).

Hence, ∥Σ̂∥op = O(1) directly follows from ∥Σ∥op = O(1).

Now we consider 1
n̂∥ŷ∥

2 = 1
n̂

∑n̂
i=0 ŷ

2
i , where ŷi represents the i-th entry of the vector. Since the label has bounded

population variance O(1), the i.i.d assumption implies

Var(
1

n̂

n̂∑
i=0

ŷ2
i ) =

1

n̂2

n̂∑
i=0

Var(ŷ2
i ) =

1

n̂2

n̂∑
i=0

O(1) = O(
1

n̂
).

Then by Chebyshev’s inequality, for any ϵ > 0 and some constant C1, we let z = 1
n̂∥ŷ∥

2 for simplicity and then have

P (|z − E[z]| > ϵ) ≤ Var(z)

ϵ2
≤ C1

n̂ϵ2
.

We take ϵ = n̂−1/4. Then with probability at least 1− C1√
n̂
= 1− o(1),

| 1
n̂
∥ŷ∥2 −Var(yi)| = o(1) =⇒ 1

n̂
∥ŷ∥2 = O(1) since the variance of the label is bounded.

2. Concentration on V:

With U ′ =

[
Ik

0(d−k)×k

]
preserving only the first k components, we have from above that with probability at

least 1− o(1),

∥U ′⊤Σ̂U ′ −Λ′∥op = ∥ 1
n̂
F̂ F̂⊤ − Ik∥op = o(1).

Now we consider
∥ 1
n̂
U ′⊤R̂ŷ − E[U ′⊤ry]∥ = ∥ 1

n̂
F̂ ŷ − E[fy]∥,

where f = U ′r. We define a new random variable z = fy and its sample mean Ẑ = 1
n̂ F̂ ŷ ∈ Rk. We first show that

the variance of each entry of Ẑ is of magnitude ∼ 1
n̂ :

Var(Ẑi) = Var

 n̂∑
j=1

1

n̂
F̂ij ŷj

 =
1

n̂2
Var

 n̂∑
j=1

F̂ij ŷj

 ∀i = 1, · · · , k.

For each term in the summation,

Var(F̂ij ŷj) = E[(F̂ij ŷj)2]− E[F̂ij ŷj ]2 = O(1)

since F̂ij and ŷj are both bounded. By the i.i.d assumption,

Var(Ẑi) =
1

n̂2

n̂∑
j=1

O(1) = O

(
1

n̂

)
.

By Chebyshev’s inequality, for any ϵ > 0 and some constant C2,

P
(
∥Ẑi − E[zi]∥ > ϵ

)
≤ Var(Ẑi)

ϵ2
≤ C2

n̂ϵ2
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P
(
∥Ẑi − E[zi]∥ > ϵ ∀i = 1, · · · , k

)
≤ kC2

n̂ϵ2

Similarly, by choosing ϵ = n̂−1/4, the probability of large deviation decays rapidly as:

P

(
∥Ẑi − E[zi]∥ >

1

n̂1/4
∀i = 1, · · · , k

)
≤ kC2√

n̂
= o(1) since n̂ = ω(k2).

This statement implies that with probability at least 1− o(1),

∥Ẑ − E[z]∥ = ∥ 1
n̂
U ′⊤R̂ŷ − E[U ′⊤ry]∥ ≤

√
k√
n̂
= o(1) = o(γ + δ + λmin(Λ

′))

as we sum up the k terms. This shows that our setting satisfies the second part of the definition.

3. Kernel-wise δ-isotropy on V⊥ :

We define Z =
√
d−k
σ Â ∈ R(d−k)×n̂, which has standard normal entries. With the scaling, we plug in U ′′,

γ̂ = σ2/n̂ and have

∥ 1
n̂
R̂⊤U ′′U ′′⊤R̂− γ̂I∥op = ∥ 1

n̂
Â⊤Â− σ2

n̂
I∥op =

σ2

n̂
∥ 1

d− k
Z⊤Z − I∥op. (34)

Now we apply Lemma C.3 and have that with probability at least 1− 2e−n̂δ
2
2/2 for some δ2 > 0,

σ2

n̂
∥ 1

d− k
Z⊤Z − I∥op ≤ σ2

n̂

2(√ n̂

d− k
+ δ2

)
+

(√
n̂

d− k
+ δ2

)2
 .

The rest follows similarly by taking δ2 = n̂−1/4.

4. Small cross-sample inner-product on V⊥:

By U ′′ =

[
0k×(d−k)
Id−k

]
and Lemma C.4 with Â⊤ ∈ Rn̂×(d−k) and Ã⊤ ∈ Rñ×(d−k), each having N (0, σ2

d−k )

entries, the target expression becomes

∥ 1√
n̂
R̂⊤U ′′U ′′⊤ 1√

ñ
R̃∥op =

1√
n̂ñ

∥Â⊤Ã∥op (35)

≤ 1√
n̂ñ

√
C4n̂ñ

σ4

(d− k)2
(d− k) log (2/δ3)

=

√
C4

σ4

d− k
log (2/δ3)

= σ2
√

C4 log (2/δ3)

√
1

d− k

for some constant C4 and with probability at least 1− n̂ñδ3 for some 0 < δ3 < 1
n̂ñ . We choose some δ3 = o( 1

n̂ñ ) in
this range and then have that with probability at least 1− o(1), the previous bound can be expressed as:

σ2
√
C4 log (2/δ3)

√
1

d− k
= Θ

(
σ2

√
C4

log(n̂ñ)

d− k

)
= o(

σ2

max{n̂, ñ}
) = o(γ + δ)

since d− k = ω(n̂) = ω(ñ).

5. Diminishing population covariance on V⊥:

By definition, it is trivial to see that

λmax(Λ
′′) =

σ2

d− k
= o(

σ2

max{n̂, ñ}
) = o(γ + δ)

since d− k = ω(n̂) = ω(ñ).
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C.2.2. FURTHER RELAXATION TO SUB-GAUSSIAN DATA

Now, we consider the more general sub-Gaussian setting outlined in Example 3.5. The population covariance is:

Σ =

[
Ik 0

0 σ2

d−kId−k

]
,

where the top left block has a corresponding sub-Gaussian parameter of Θ(1) and the rest has a parameter of Θ( σ2

d−k ).

We adopt the following definitions from Chapter 2 of (Vershynin, 2018) for reference.

Definition C.5. A zero-mean random variable X is sub-Gaussian if there is a positive parameter Kg such that

E[eX
2/K2

g ] ≤ 2.

Definition C.6. A zero-mean random variable X is sub-exponential if there is a positive parameter Ke such that

E[e|X|/Ke ] ≤ 2.

We can also define the following norms that give the sub-Gaussian or sub-exponential parameter:

∥X∥ψ2
= inf{t > 0 : E[eX

2/t2 ] ≤ 2} = Kg

∥X∥ψ1
= inf{t > 0 : E[e|X|/t] ≤ 2} = Ke

Remark. There are many different characterizations for these two definitions, each with a different sub-Gaussian/sub-
exponential parameter. A detailed summary can be found in Chapter 2 of (Vershynin, 2018). Notably, these parameters
differ from each other only by at most a constant factor.

Lemma C.7. (Extension of Lemma 4 (Shen et al., 2022) to sub-Gaussian) Consider high-dimensional independent sub-
Gaussian vectors z1, z2 ∈ Rd, whose i.i.d. entries have variances σ2

1 , σ2
2 and sub-Gaussian parameters Θ(σ1), Θ(σ2)

respectively. Then for δ > 0 such that
√
log(2/δ) >

√
cd for some constant c, there exists a constant C such that with

probability at least 1− δ,
|z1 · z2| ≤ Cσ1σ2

√
d log(2/δ).

Proof. We consider the product z1 · z2 =
∑d
i=1 z1iz2i =

∑d
i=1 ai, where we define ai for simplicity. It is a well-known

result that the product of two sub-Gaussian random variables is sub-exponential. More precisely,

∥ai∥ψ1
≤ ∥z1i∥ψ2

∥z2i∥ψ2
= Cσ1σ2.

By Bernstein’s inequality for sub-exponential functions (see Theorem 3.8.1 (Vershynin, 2018)), this summation can be
bounded as: for some constant c > 0,

P

(∣∣∣∣∣
d∑
i=1

ai

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cmin

{
t2∑d

i=1 ∥ai∥2ψ1

,
t

maxi ∥ai∥ψ1

}]

≤ 2 exp

[
−cmin

{
t2

dC2σ2
1σ

2
2

,
t

Cσ1σ2

}]
Let t = C√

c
σ1σ2

√
d log(2/δ) for some δ that satisfies the condition

√
log(2/δ) >

√
cd (e.g. δ = 1/d2). The probability

statement becomes:

P

(∣∣∣∣∣
d∑
i=1

ai

∣∣∣∣∣ ≥ C√
c
σ1σ2

√
d log(2/δ)

)
≤ 2 exp

[
−cmin

{
log(2/δ)

c
,

√
d log(2/δ)

c

}]
= 2 exp

[
−min

{
log(2/δ),

√
cd log(2/δ)

}]
.
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Since our choice of δ ensures that the first quantity is smaller,

P

(∣∣∣∣∣
d∑
i=1

ai

∣∣∣∣∣ ≥ C√
c
σ1σ2

√
d log(2/δ)

)
≤ δ

In other words, letting C ′ = C/
√
c, we have that with probability at least 1− δ,

|z1 · z2| ≤ C ′σ1σ2

√
d log(2/δ).

Now we are ready to show that our assumptions capture the setting in Section C.2.1 but with sub-Gaussian data. That
is, we now allow the data to have possibly even lighter tail than that of Gaussian. The proof can be easily replicated, as
Chebyshev’s inequality still applies here and Lemmas C.3, C.4 find the following “sub-Gaussian” alternatives, namely
Lemmas C.8, C.9:

Lemma C.8. (Restatement of Theorem 6.5 in (Wainwright, 2019)) Let X ∈ Rd×n be a random sub-Gaussian matrix with
parameter Kg and population covariance Id. Then for all δ ≥ 0, there are universal constants C1, C2, C3 such that

∥ 1
n
XXT − Id∥op ≤ K2

g

[
C1

(√
d

n
+

d

n

)
+ δ

]

with probability at least 1− C2e
−C3nmin{δ,δ2}.

Lemma C.9. Consider two independently sampled row-wise sub-Gaussian matrices A ∈ Rd1×n, B ∈ Rd2×n that have
i.i.d. entries with variances σ2

1 , σ2
2 respectively. Then for some 1

d1d2
> δ > 0 and constant C, with probability at least

1− d1d2δ, we have

1

n
∥AB⊤∥op ≤ σ1σ2

n

√
Cd1d2n log(

2

δ
).

Proof. The proof is the same as Lemma C.4 except that we now use Lemma C.7 to bound the squared value of each entry in
the Frobenius norm.

With these alternative extended results, the proof in Section C.2.1 immediately generalizes to sub-Gaussian data. This
extension potentially allows us to accommodate more realistic scenario and enhances the theoretical robustness of our
assumptions. Sub-Gaussian distributions capture a wider class of data behaviors; for instance, the fact that bounded
random variables are sub-Gaussian makes the theory more applicable to many real-world datasets, which naturally exhibit
sub-Gaussian characteristics. In the following section, we show a general result that even more examples can be constructed.

C.3. Proof of Theorem 3.6

The intuition behind this theorem is that adding high-dimensional sub-Gaussian entries to the given representation preserves
decomposbility while slightly modifying the parameters. Due to the orthogonality ofM andM⊥, we letU =

[
M M⊥]

and then α(x) = U

[
h(x)
ξ(x)

]
; naturally, the column space of M can be regarded as the subspace V , and the column

space of M⊥ is V⊥. Given that h(x)’s representations are (δ, 0, 0)-decomposable w.r.t. Rd, we now prove that the new
representations are (δ, σ

2

n̂ , σ
2

ñ )-decomposable. Again we only present the proof for one data split whenever it can be
replicated for the other.

For notation, we let γ = σ2/max{n̂, ñ}.

1. Boundedness: 1
n̂

∑n̂
i=1 ŷ

2
i = O(1) follows from the previous proof using Chebyshev’s inequality. For the population
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covariance,

∥Σ(α)∥op = ∥EDx [α(x)α(x)
⊤]∥op =

∥∥∥∥EDx

[
h(x)h(x)⊤ h(x)ξ(x)⊤

ξ(x)h(x)⊤ ξ(x)ξ(x)⊤

]∥∥∥∥
op

≤
∥∥∥∥EDx

[
h(x)h(x)⊤ 0

0 ξ(x)ξ(x)⊤

]∥∥∥∥
op

+

∥∥∥∥EDx

[
0 h(x)ξ(x)⊤

ξ(x)h(x)⊤ 0

]∥∥∥∥
op

(36)

We have that ∥EDx [h(x)h(x)
⊤]∥op = ∥Σ(h)∥op = O(1) by the (δ, 0, 0)-decomposibility assumption on h’s represen-

tations. From the proof for sub-Gaussian data in Section C.2.1, ∥EDx [ξ(x)ξ(x)
⊤]∥op = ∥Σ(ξ)∥op = O(1). These

bound the first term on the RHS of Equation 36.

By the definition of operator norm,

∥EDx [h(x)ξ(x)
⊤]∥op = sup

∥u∥=1

sup
∥v∥=1

uTEDx [h(x)ξ(x)
⊤]v = sup

∥u∥=1

sup
∥v∥=1

EDx [(u
Th(x))(vT ξ(x))]. (37)

By Cauchy-Schwartz inequality, we can bound this expectation as:

EDx [(u
Th(x))(vT ξ(x))] ≤

√
EDx [(u

Th(x))2]
√

EDx [(v
T ξ(x))2], where

EDx [(u
Th(x))2] = EDx [u

Th(x)h(x)⊤u] = uTEDx [h(x)h(x)
⊤]u ≤ ∥u∥2∥Σ(h)∥op = O(1),

EDx [(v
T ξ(x))2] = EDx [v

T ξ(x)ξ(x)⊤v] = vTEDx [ξ(x)ξ(x)
⊤]v ≤ ∥v∥2∥Σ(ξ)∥op = O(1).

Combing these results, we have that Equation 37 = ∥EDx [h(x)ξ(x)
⊤]∥op = O(1), bounding the second term in

Equation 36. Hence, ∥Σ(α)∥op = O(1).

Simiarly, we can prove for the empirical covariance:

∥Σ̂(α)∥op = ∥ 1
n̂

n̂∑
i=1

α(x̂i)α(x̂i)
⊤∥op =

∥∥∥∥∥ 1n̂
[∑n̂

i=1 h(x̂i)h(x̂i)
⊤ ∑n̂

i=1 h(x̂i)ξ(x̂i)
⊤∑n̂

i=1 ξ(x̂i)h(x̂i)
⊤ ∑n̂

i=1 ξ(x̂i)ξ(x̂i)
⊤

]∥∥∥∥∥
op

=

∥∥∥∥ 1n̂
[
ĤĤ⊤ ĤΞ̂⊤

Ξ̂Ĥ⊤ Ξ̂Ξ̂⊤

]∥∥∥∥
op

,

where the i-th column of Ξ̂ is ξ(x̂i) and the i-th column ofH is h(x̂i).

The rest is straightforward: the assumption on h and the existing proof for sub-Gaussian data imply ∥ 1
n̂ĤĤ

⊤∥op =

O(1) and ∥ 1
n̂ Ξ̂Ξ̂⊤∥op = O(1). Hence, ∥ 1√

n̂
Ĥ∥op and ∥ 1√

n̂
Ξ̂∥op are O(1), and we have ∥ 1

n̂ĤΞ̂⊤∥op is also O(1).
These together bound the empirical covariance.

2. Concentration on V : Since V corresponds to the representation space of h(x), this condition is automatically satisfied
by the (δ, 0, 0)-decomposibility assumption on h.

3. Kernel-wise δ-isotropy on V⊥: In this setting, since V⊥ corresponds to the column space ofM⊥ (the high-dimensional
sub-Gaussian part), we have

∥ 1
n̂
K̂(ΠV⊥α)− σ2

n̂
I∥op= ∥ 1

n̂
K̂(ξ)− σ2

n̂
I∥op

By definition of the kernel matrix, K̂(ξ) = [ξ(x̂i)
⊤ξ(x̂j)]1≤i,j≤n̂ = Ξ̂⊤Ξ̂ with Ξ̂ defined above. Then the equation

is essentially in the same form of Equation 34, so the previous proof applies here.

4. Small cross-sample inner product on V⊥: Similar to 3, we have

∥ 1√
n̂ñ

[(ΠV⊥α(x̂i))
⊤ΠV⊥α(x̃j)]1≤i≤n̂,1≤j≤ñ∥op= ∥ 1√

n̂ñ
[ξ(x̂i)

⊤ξ(x̃j)]1≤i≤n̂,1≤j≤ñ∥op=
1√
n̂ñ

∥Ξ̂T Ξ̃∥op,

where Ξ̃ is defined in the same manner. Then the proof after Equation 35 for sub-Gaussian data applies.

5. Diminishing population covariance on V⊥: This refers covariance matrix of the sub-Gaussian part, and we simply
have:

∥Σ(ΠV⊥h)∥op = ∥Σ(ξ)∥op = ∥EDx [ξ(x)ξ(x)
⊤]∥op =

σ2

m
= o(δ + γ) as m = ω(n̂) = ω(ñ)
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D. Additional Experimental Details
D.1. Training details

D.1.1. MOLECULAR PREDICTION.

Our experiment is built on the GitHub codebase provided by (Fabian et al., 2020). The strong model, MolBERT, can be
downloaded using the link provided on their GitHub repository. For the weak models, we train small transformers using their
pipeline with a batch size of 256. For finetuning, we use SGD to train a linear model on representations with the following
settings: batch size = 1024, learning rate = 0.001, weight decay = 0.1, and epochs = 2000 when using representations
from the strong model; and batch size = 1024, learning rate = 0.01, weight decay = 0, and epochs = 2000 when using
representations from the weak models.

D.1.2. NLP TASKS WITH EMBEDDING MODELS.

We use nvidia/NV-Embed-v2, ranked first on the leaderboard of the Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2022), as the strong model. We consider the following 22 embedding models as the weak model:

avsolatorio/GIST-Embedding-v0
Alibaba-NLP/gte-base-en-v1.5
jxm/cde-small-v1
thenlper/gte-base
infgrad/stella-base-en-v2
BAAI/bge-base-en-v1.5
thenlper/gte-small
intfloat/e5-base-v2
abhinand/MedEmbed-small-v0.1
nomic-ai/nomic-embed-text-v1
sentence-transformers/facebook-dpr-question encoder-single-nq-base
sentence-transformers/paraphrase-MiniLM-L3-v2
sentence-transformers/average word embeddings glove.840B.300d
sentence-transformers/roberta-base-nli-mean-tokens
sentence-transformers/all-mpnet-base-v1
sentence-transformers/bert-base-wikipedia-sections-mean-tokens
sentence-transformers/sentence-t5-base
Snowflake/snowflake-arctic-embed-s
TaylorAI/gte-tiny
jinaai/jina-embeddings-v2-small-en
sentence-transformers/gtr-t5-base
dumyy/sft-bge-small

During fine-tuning, we train a linear classifier on representations using the Adam optimizer (Kingma, 2014) with the
following settings: batch size = 200, learning rate = 0.01, weight decay = 0.00001, and epochs = 200.

D.1.3. NLP TASKS WITH END-TO-END FINETUEND LLMS.

We largely reuse the GitHub codebase provided by (Burns et al., 2023). We use Qwen/Qwen-7B as the strong model. We
consider the following 28 LLMs as the weak model:

bigscience/bloom-560m
bigscience/bloomz-560m
bigscience/mt0-base
baidu/ernie-code-560m
bigscience/mt0-small
google/umt5-small
google/umt5-base
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Table 2: Average Spearman correlation with hyperparameters selected on half of the models and evaluated on the rest.

Justice Commonsense
0.885±0.16 0.67±0.20

google/mt5-base
facebook/xglm-564M
MBZUAI/LaMini-T5-61M
MBZUAI/LaMini-Flan-T5-77M
MBZUAI/LaMini-GPT-124M
MBZUAI/LaMini-Neo-125M
MBZUAI/LaMini-T5-223M
apple/OpenELM-270M
apple/OpenELM-450M
EleutherAI/pythia-160m
MBZUAI/LaMini-Flan-T5-248M
MBZUAI/LaMini-GPT-774M
cerebras/Cerebras-GPT-111M
google-t5/t5-small
facebook/opt-125m
Qwen/Qwen2.5-0.5B
distilbert/distilgpt2
EleutherAI/gpt-neo-125m
gpt2
google/mt5-small
EleutherAI/pythia-70m

We finetune all the models using the pipeline provided in the codebase, which employs the Adam optimizer with a batch
size of 32 and trains for a single epoch. The learning rate is set to 5e-5 for weak models and 1e-5 for the strong model,
following the default configuration in the codebase, which applies smaller learning rates for larger models.

D.2. Details and discussions on hyperparameters

In Exp. I, we set αw = αs = 0.1 and βw = βs = 0.1 for all datasets. In Exp. II, we set αw = 0.001, αs = 0.05,
λw = 0.0001, and λs = 0.01 for both datasets. In Exp. III, we tune the hyperparameters for each dataset, reporting the best
result. Specifically, we set αw = αs and vary them within the range {0.02, 0.05}, and vary βw and βs independently within
the range {0.2, 0.5, 0.8, 1.0, 2, 4, 8}.

Effect of hyperparameters. We vary the hyperparameters to evaluate their impact on performance. In the setting of Exp.
II, we vary αw and αs within the range 0.001, 0.01, 0.05 and βw and βs within the range 0.0001, 0.001, 0.01. The results
are visualized in Figure 6. In the setting of Exp. III, we vary the hyperparameters while keeping αw = αs as described in
the previous paragraph, with results visualized in Figure 7. Although certain hyperparameter configurations may lead to
lower correlation, a non-trivial positive correlation is observed in most cases. Interestingly, in Exp. III, which is seemingly
the most ‘challenging setting’, the results are highly robust to changes in hyperparameters, with the worst-case correlation
remaining around 0.6 across all three datasets.

Cross-model hyperparameter transfer. We note that, although each model could technically require different hyper-
parameters, in experiments we let all weak models share hyperparameters for simplicity and still achieve strong results,
suggesting that our approach is not very sensitive to hyperparameters. Further, we present a new experiment demonstrating
that hyperparameters selected using one group of models (i.e., as a validation set) generalize to other models. We randomly
split the weak models into two groups, select hyperparameters based on one group, and evaluate them on the other. We
repeat this 20 times and report the results in Table 2. Correlation remains high with low standard deviation, indicating that
hyperparameters selected using a few models can reliably generalize to new ones. Additionally, we note that a small number
of labeled data should suffice for hyperparameters tuning, as they are only used to measure test performance and not to
compute our metric.
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Figure 6: Effect of hyperparameters in Exp. II. Colors indicate Spearman correlation.
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Figure 7: Effect of hyperparameters in Exp. III. Colors indicate Spearman correlation.
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Figure 8: Results for ∥Ps(I − Pw)Ps∥op in Exp. I.

D.3. Results for ∥Ps(I − Pw)Ps∥op

Results for ∥Ps(I − Pw)Ps∥op are presented in Figures 8, 9, and 10. We observe a strong correlation between Errw2s and
∥Ps(I − Pw)Ps∥op across the settings. These correlations are similar to those achieved using ∥Ps(I − Pw)∥op, indicating
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Figure 9: Results for ∥Ps(I − Pw)Ps∥op in Exp. II.
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Figure 10: Results for ∥Ps(I − Pw)Ps∥op in Exp. III.
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Figure 11: The top panel shows results on SciQ for models with sizes ≤ 10000, while the bottom panel shows results on Amazon
Polarity for models with sizes ≤ 8000. The patterns observed here are consistent with those discussed in Figure 5 in the main paper.

that the two metrics are similarly informative for W2SG in practice, despite being theoretically derived in different ways.
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D.4. Comparison with model size and effective dimension

Figure 11 compares our metric with the activation map dimension and the dimension of approximated principal representa-
tions for smaller models on SciQ and Amazon Polarity. The results are consistent with those presented in Figure 5 in the
main paper.

E. Discussion
Using activation maps as representations in Exp. III is a simple heuristic that yields promising results. However, more
principled methods for defining and extracting representations from LLMs, such as those through NTK (Malladi et al., 2023)
or representation engineering (Zou et al., 2023), could be explored. Future research could leverage these approaches to
improve results and uncover new applications. For instance, (Zou et al., 2023) introduces a method for extracting specific
concept directions in representations, such as honesty and power-seeking. This could enable computing our metric based on
topic-specific representations, allowing predictions of W2SG for general tasks within specific topical domains.
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