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Abstract

Due to the recurrent structure of RNN, the long information propagation path
poses limitations in capturing long-term dependencies, gradient explosion/van-
ishing issues, and inefficient sequential execution. Based on this, we propose a
novel paradigm called Parallel Gated Network (PGN) as the new successor to
RNN. PGN directly captures information from previous time steps through the
designed Historical Information Extraction (HIE) layer and leverages gated mech-
anisms to select and fuse it with the current time step information. This reduces
the information propagation path to O(1), effectively addressing the limitations
of RNN. To enhance PGN’s performance in long-range time series forecasting
tasks, we propose a novel temporal modeling framework called Temporal PGN
(TPGN). TPGN incorporates two branches to comprehensively capture the se-
mantic information of time series. One branch utilizes PGN to capture long-term
periodic patterns while preserving their local characteristics. The other branch
employs patches to capture short-term information and aggregate the global rep-
resentation of the series. TPGN achieves a theoretical complexity of O(

√
L),

ensuring efficiency in its operations. Experimental results on five benchmark
datasets demonstrate the state-of-the-art (SOTA) performance and high efficiency
of TPGN, further confirming the effectiveness of PGN as the new successor to
RNN in long-range time series forecasting. The code is available in this repository:
https://github.com/Water2sea/TPGN.

1 Introduction

Under the premise of accurate time series forecasting, long-range forecasting tasks offer an advantage
over short-range forecasting tasks as they provide more comprehensive information for individuals
and organizations to thoroughly assess future changes and make well-informed decisions. Due to its
practical applicability across various fields (i.e., energy [Zhou et al., 2021], climate [Angryk et al.,
2020], traffic [Yin and Shang, 2016], etc), long-range forecasting has attracted significant attention
from researchers in recent years.

Long-range time series forecasting tasks can be broadly classified into two categories. One task is to
utilize abundant inputs to forecast future outputs [Liu et al., 2022a, Jia et al., 2023], while another
task is to predict longer-range futures with fewer historical inputs [Zhou et al., 2021, 2022a, Wang
et al., 2023]. Although existing studies have shown that ample historical inputs can introduce more
information to improve prediction performance [Jia et al., 2023, Liu et al., 2024], considering factors
such as the load capacity of training devices and data collection, the utilization of limited historical
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inputs to predict longer-range futures remains an important research topic. Therefore, this paper sets
the task goal as predicting longer outputs with fewer inputs.

In recent years, deep-learning-based methods have achieved remarkable success in time series
forecasting (for further discussions, please refer to Section 2 and Appendix B). These methods can be
roughly categorized into four based paradigms: Transformers [Zhou et al., 2021, Wu et al., 2021,
Liu et al., 2022a, Zhou et al., 2022a, Nie et al., 2023, Ni et al., 2023, Liu et al., 2024, Dai et al., 2024],
CNNs [Wu et al., 2023, Wang et al., 2023, Luo and Wang, 2024], MLPs and Linears [Zeng et al.,
2023, Xu et al., 2024, Wang et al., 2024], and RNNs [Jia et al., 2023]. It is worth noting that RNNs
have received relatively less attention over an extended period of time. This discrepancy is primarily
attributed to the limitation of RNNs’ recurrent structure, which leads to the persistence of
excessive long pathways for information propagation.

In fact, shorter information propagation paths lead to less information loss [Tishby and Zaslavsky,
2015], better captured dependencies [Liu et al., 2022a], and lower training difficulty [Wang et al.,
2023]. However, RNNs heavily rely on a sequential recurrent structure to transmit information,
making it challenging for them to capture long-term dependencies and suffer from the issue of gradient
vanishing/exploding [Pascanu et al., 2013]. Meanwhile, due to its sequential computation, even though
RNNs have a theoretical complexity that is linear with respect to sequence length L, their actual
running speed can be even slower than the O(L2) complexity of the Vanilla-Transformer [Vaswani
et al., 2017]. Some RNN-based models [Hochreiter and Schmidhuber, 1997, Chung et al., 2014] have
tried to enhance performance by incorporating specialized gated mechanisms. However, compared
to the inherent limitations of the RNN structure, these improvements in information selection and
fusion are merely a drop in the bucket.

Based on this motivation, this paper proposes a novel general paradigm called Parallel Gated Network
(PGN) as the new successor to RNN. PGN introduces a Historical Information Extraction (HIE)
layer to replace the recurrent structure of RNN, and then further selects and fuses information through
gated mechanisms, effectively reducing the information propagation paths to O(1), as shown in
Figure 1 (l). This enables PGN to better capture long-term dependencies in input signals. Additionally,
since computations for each time step can be parallelized, PGN achieves significantly faster execution
speed while maintaining the same theoretical complexity of O(L) as RNN.
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Figure 1: The information propagation illustration of different models.

Despite the advantages of PGN in terms of efficiency and capturing long-term information, it cannot
be directly applied to time series forecasting tasks for optimal performance. This is because, based
on 1D modeling, PGN struggles to capture periodic semantic information [Jia et al., 2023] effectively.
Fortunately, the idea of transforming data from 1D to 2D and modeling it [Wu et al., 2023, Jia
et al., 2023, Dai et al., 2024], proves effective in addressing above limitation. When employing
2D modeling for time series, information captured along rows reflects short-term changes, while
information along columns represents long-term periodic patterns. Due to the distinct characteristics
of these two types of information, it is reasonable to model them separately. Furthermore, considering
that periodicity is present throughout the entire time series, both in the past and in the future, it is
important to prioritize this consideration when modeling.
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Based on these motivations, we propose a novel PGN-based temporal modeling framework called
Temporal Parallel Gated Network (TPGN). TPGN establishes two distinct branches to capture
long-term and short-term information in the 2D input series. To focus on modeling long-term
information, we utilize PGN to model each column of the 2D inputs, preserving their respective local
periodic characteristics. Simultaneously, leveraging the advantages of patch [Nie et al., 2023] in
capturing short-term changes, TPGN initially aggregates the short-term information into patches and
subsequently merges them to obtain global information.

By integrating the information from both branches, TPGN achieves comprehensive semantic infor-
mation capture for accurate predictions. It also should be noted that other methods can substitute
PGN and be used in the long-term information extraction branch of TPGN, undoubtedly enabling
TPGN to be a general framework to model temporal dependencies. Furthermore, TPGN maintains a
efficient computational complexity of O(

√
L). To better illustrate the advantages of TPGN, inspired

by [Jia et al., 2023], we have provided a information propagation comparative diagram in Figure 1
and an analysis table in Table 3.

The main contributions of this paper can be summarized as follows:

• We propose a novel general paradigm called PGN as the new successor to RNN, as shown
in Figure 1 (l). It reduces the information propagation path to O(1), enabling better capture
of long-term dependencies in input signals and addressing the limitations of RNNs.

• We propose TPGN, a novel temporal modeling framework based on PGN, which compre-
hensively captures semantic information through two branches, as shown in Figure 1 (m).
One branch utilizes PGN to capture long-term periodic patterns and preserve their local
characteristics, while the other branch employs patches to capture short-term information
and aggregates them to obtain a global representation of the series. Notably, TPGN can also
accommodate other models, making it be a general temporal modeling framework.

• In terms of efficiency, PGN maintains the same complexity of O(L) as RNN. However, due
to its parallelizable calculations, PGN achieves higher actual efficiency. On the other hand,
TPGN, serving as a general temporal modeling framework, exhibits a favorable complexity
of O(

√
L). For a more detailed comparison of complexities, please refer to Table 3.

• We conducted experiments on five benchmark datasets, and the results indicated that TPGN
achieved an average MSE improvement of 12.35% in various long-range time series fore-
casting tasks compared to the previous best-performing models. Furthermore, in comparison
to the average performance of specific models across all tasks, TPGN achieved an average
MSE improvement ranging from 14.08% to 39.65%. Additionally, experimental evaluations
on computational complexity confirmed the efficiency of TPGN.

2 Related Works

2.1 Modeling Interaction Cross Temporal Dimension

The methods that focus on temporal modeling can be broadly categorized into four paradigms:
RNN-, CNN-, MLP- (Linear-), and Transformer-based. The limitations of RNNs [Hochreiter and
Schmidhuber, 1997, Chung et al., 2014, Salinas et al., 2020] have been discussed in Section 1.
Despite some methods [Chang et al., 2017, Yu and Liu, 2018, Jia et al., 2023] trying to alleviate
these limitations, the recurrent structure still hinders their further development. CNNs [Franceschi
et al., 2019, Sen et al., 2019] offer advantages in efficiency and shorter information propagation paths,
but primarily constrained by limited receptive fields [Wu et al., 2023], resulting in an increase in
the information propagation path as the length of the processed signal increases. Although some
methods [Wang et al., 2023, Luo and Wang, 2024] have increased the receptive field to address these
issues, the 1D modeling approach makes it challenging for them to directly capture periodicity. The
advantages of Linear [Zeng et al., 2023] lie in its simple structure and high operational efficiency.
Some advanced models have further enhanced the performance of MLP or Linear by applying
them in the frequency domain [Xu et al., 2024] or introducing multi scales [Wang et al., 2024],
which could lead to higher execution overhead. Classic Transformer-based methods either struggle
to capture semantic information [Wu et al., 2023, Nie et al., 2023] due to point-wise attention
mechanisms [Vaswani et al., 2017, Zhou et al., 2021, 2022a] or have high complexity [Wu et al., 2021,
Liu et al., 2022a], limiting their ability. Subsequently, this problem was effectively addressed by
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utilizing patches [Nie et al., 2023]. However, they still suffer from the 1D modeling issue mentioned
earlier or the problem of limited receptive fields. More detailed discussion and analysis can be found
in Appendix B.

2.2 Modeling Interaction Cross Variable Dimension

For handling variable dimensions, there are generally four categories: variable fusion processing,
variable independent processing, modeling based on Transformers, and modeling based on Graph
Neural Networks (GNNs). Traditional fusion processing methods, due to the heterogeneity of
multiple variables [Zhou et al., 2021], introduce excessive noise, resulting in worse performance
compared to independent processing of variables [Nie et al., 2023]. However, by applying attention
mechanisms and Graph Neural Networks (GNN) on the variable dimension to replace independent
modeling of variables, it is possible to successfully capture the correlations and differences between
variables, thereby significantly improving the performance of multivariate modeling. Representative
methods for modeling variable relationships based on Transformers include Crossformer [Zhang and
Yan, 2022] and iTransformer [Liu et al., 2024], while GNN-based representative methods include
CrossGNN [Huang et al., 2023] and FourierGNN [Yi et al., 2023]. They provide excellent inspiration
for analyzing and modeling multivariate time series.

3 Methodology

In this section, we first introduce our proposed novel paradigm called Parallel Gated Network
(PGN), and explain how it reduces the information propagation paths, overcomes the limitations of
RNNs, and emerges as the new successor to RNNs. Next, we present our newly designed temporal
modeling framework called Temporal PGN (TPGN), which incorporates two separate branches to
comprehensively capture semantic information. Finally, we provide a comprehensive complexity
analysis to evaluate the computational efficiency of our methods.

3.1 Parallel Gated Network (PGN)

Building upon the previous analysis, the limitation of RNNs lies in the excessively long information
propagation paths of its recurrent structure, which directly leads to a series of issues, such as difficulty
in capturing long-term dependencies (performance), low efficiency in sequential computations
(efficiency), and gradient exploding/vanishing (training difficulty). Indeed, some RNNs leverage
specialized gated mechanisms, such as LSTM [Hochreiter and Schmidhuber, 1997] and GRU [Chung
et al., 2014], which do have advantages in information selection and fusion. However, when faced
with the disastrous limitation of RNNs, their advantages become insignificant.

Based on this, we propose a novel general paradigm called PGN as the new successor to RNNs.
PGN draws the advantages of RNNs while reducing information propagation paths to O(1), thereby
addressing the limitation of RNNs. The information propagation illustration and structure of PGN
are shown in Figure 1 (l) and Figure 2 (a), respectively. On one hand, to enable PGN to capture
information from all preceding time steps within short information propagation paths, we introduce a
linear Historical Information Extraction (HIE) layer to aggregate information from the entire history
at each time step. Importantly, at this stage, the computation of each time step of the signal is
independent of others, allowing for effective parallel processing. On the other hand, PGN leverages
gated mechanisms to inherit the advantages of information selection and fusion. It is important
to emphasize that in PGN, we utilize only a single gate to simultaneously control the information
selection and fusion in a parallel manner across all time steps of the sequence, resulting in reduced
computational overhead. When given an input signal X ∈ RL of length L, the computation process
of PGN can be formalized as follows:

H = HIE(Padding(X)),

G = σ(Wg[X, H] + bg),

Ĥ = tanh(Wt[X, H] + bt),

Out = G⊙H + (1−G)⊙ Ĥ,

(1)

where Padding(·) represents the operation of filling the front of the processed signal along the length
dimension with a zero-filled vector of size R(L−1). HIE(·) is a linear layer with weight matrices
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Wh ∈ Rdm×(L−1) and bias vectors bh ∈ Rdm . It aggregates all relevant historical information
for each time step in parallel by sliding along the sequence length dimension, and H ∈ RL×dm

represents the output of this operation. The weight matrices Wg,Wt ∈ Rdm×(dm+1) and bias vectors
bg, bt ∈ Rdm are utilized in the computations. G and Ĥ are the intermediate variables involved in the
gated mechanism. The symbol ⊙ represents the element-wise product, while σ(·) and tanh(·) denote
the sigmoid and tanh activation functions. Out ∈ RL×dm represents the output of PGN.
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3.2 Temporal Parallel Gated Network (TPGN)

The specific objective of time series forecasting task is to predict the future series of length Lf given
a historical sequence of length Lh. As stated in Section 1, PGN may not be effective in directly
extracting periodic semantic information, which limits its application in time series forecasting tasks.
Inspired by [Wu et al., 2023, Jia et al., 2023, Dai et al., 2024], we transform the input series from 1D
to 2D for modeling. To fully capture the short-term changes and long-term periodic patterns with
different characteristics in the rows and columns of the 2D input, we introduce two branches to model
them separately. The information propagation diagram and overall structure of TPGN are shown in
Figure 1 (m) and Figure 2 (b).

Input Preparation Module To enable TPGN to directly capture periodic semantic information,
inspired by previous works [Wu et al., 2023, Jia et al., 2023, Dai et al., 2024], we reshape the series
from 1D to 2D. Notably, we do not need to introduce multiple scales of periods like in TimesNet [Wu
et al., 2023] and PDF [Dai et al., 2024], as it would result in increased computational overhead.
Instead, we draw inspiration from WITRAN [Jia et al., 2023] and solely reset the sequence based on
the natural scale of the time series. In addition, to minimize the negative impact of data fluctuations
on model training, inspired by [Liu et al., 2022b, 2024], we have introduced a normalization layer
along the temporal dimension. When given an input sequence X1D = {x1, x2, . . . , xLh

} ∈ RLh×C

and temporal external feature TFenc ∈ RLh×Ctime (C and Ctime represent the number of variables
and temporal external features), this module can be mathematically expressed as:

µX =
1

Lh

Lh∑
i=1

xi, σ
2
X =

1

Lh

Lh∑
i=1

(xi − µX)2,

Xnorm
1D =

{
X1D, norm = 0

(X1D − µX)/σX , norm = 1
,

X2D = Reshape([Xnorm
1D , TFenc]).

(2)

Here, Xnorm
1D ∈ RLh×C represent the normalized series, [·] represents the concat operation, and

the hyperparameters norm should be determined based on the characteristics of different datasets.
To combine each variable of the input series with the temporal feature, we need to expand Xnorm

1D

by adding an extra dimension to match the shape of RLh×C×1. Additionally, TFenc needs to
be expanded by adding a dimension and repeated C times to match the shape of RLh×C×Ctime .
Afterwards, we concatenate the results and reshape them according to the natural period P of series
through Reshape(·), and X2D ∈ RR×P×C×(1+Ctime) represents the output of this module. R and P
represent the number of rows and columns in the 2D input, respectively.

TPGN As TPGN focuses on modeling the temporal dimension, which is crucial for any variable
in the time series. In the following discussions, we will focus on an example variable m to provide
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a detailed explanation, where Xm
2D ∈ RR×P×(1+Ctime) represents the input. To better capture long-

and short- term information while preserving their respective characteristics, we have designed two
branches as illustrated in Figure 1 (m) and Figure 2 (b).

In the long-term information extraction branch, we directly capture the information using PGN.
On one hand, it effectively captures the long-term repetitive historical information for each time
step. On the other hand, through the gated mechanism, it selects and fuses the current and historical
information at each time step, thereby preserving the long-term periodic characteristics to the
maximum extent. Specifically, this branch can be formulated as follows:

Xm
long = PGN(Xm

2D), Hm
long = Linearlong(Xm

long), (3)

where PGN(·) represents the input being passed through the PGN paradigm. It is important to
note that PGN operates along the R dimension. The advantage of this approach is it preserves
the individual characteristics of each column, better serving forecasting. The output is denoted as
Xm

long ∈ RR×P×dm . To facilitate the utilization of long-term information for prediction purposes,
we aggregate the information from all rows in each column using a linear layer Linearlong(·). The
output of this branch is denoted as Hm

long ∈ RP×dm .

In the short-term information extraction branch, considering the advantage of patch in aggregation
short-term information, we first utilize a linear layer to aggregate the short-term information into
patches. Then, another linear layer is used to further fuse the patches into the global information of
the series. The specific process can be formulated as follows:

Hm
short = Linearrowshort(X

m
2D), Hm

global = Linearcolshort(H
m
short), (4)

where Linearrowshort(·) operates along the P dimension, and Hm
short ∈ RR×dm is its output. Subse-

quently, Linearcolshort(·) further aggregates the patches Hm
short and obtains the global representation

Hm
global ∈ R1×dm of the sequence. Finally, to facilitate subsequent predictions, we repeat Hm

global

along the first dimension P times to obtain a new representation with the same dimension RP×dm as
the output of the long-term information extraction branch.

Forecasting Module In this module, begin by concatenating the information representations derived
from the two branches of TPGN. The concatenated information encompasses the local long-term
periodic characteristics observed across various columns in the 2D input series, along with the globally
aggregated short-term information. Subsequently, we take the previously aggregated representation
with comprehensive semantic information and pass it through a linear layer to predict future values at
different positions within the period. The formulation of this module is as follows:

Outm = Reshape(Linear([Hm
long, H

m
global])), (5)

where [·] represents the concat operation. The output dimension after Linear(·) is RP×Rf , where Rf

multiplied by P equal forecasting series length Lf . Finally, the above output will be permuted and
reshaped to 1D dimension by Reshape(·) operation, the result Outm ∈ RLf .

3.3 Complexity Analysis

PGN While PGN processes signals in the time dimension in parallel, each step still involves
processing all its historical information. Therefore, the theoretical complexity of this part is still linear
with respect to the length L of the signal being processed. The complexity of the gated mechanism
is independent of the signal length, so the complexity of PGN can be expressed as O(L). Noted
that PGN has the same theoretical complexity as RNN, but due to the parallelized ability of PGN
computations, it has much higher efficiency in practice compared to RNN.

TPGN Since TPGN has two separate branches, it is necessary to analyze them separately.

For the long-term information extraction branch, TPGN applies the PGN paradigm along the number
of R, the complexity of this step is indeed linear with respect to R, denoted as O(R). The aggregation
of all rows of information is accomplished through a linear layer, which still has a complexity
proportional to O(R). Therefore, the complexity of the long-term information extraction branch can
be expressed as O(R).
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For the short-term information extraction branch, TPGN applies two linear layers. The first linear
layer compresses the time dimension from P to 1, while the second linear layer compresses the other
time dimension R to 1, therefore, their complexities are respectively O(P ) and O(R).

Since R multiplied by P equals the input sequence length Lh (L), the complexities O(R) and
O(P ) are both equal to O(

√
L). For the two branches of TPGN, the complexities are both O(

√
L).

Therefore, the complexity of TPGN is also O(
√
L).

4 Experiments

Datasets To validate the performance of TPGN, we followed WITRAN [Jia et al., 2023] and
conducted experiments on five real-world benchmark datasets that span across energy, traffic, and
weather domains. More details about the datasets can be found in Appendix C.

Baselines We conducted a comprehensive comparison of eleven methods in our study. These
methods include one RNN-based method: WITRAN [Jia et al., 2023], SegRNN [Lin et al., 2023],
three CNN-based methods: ModernTCN [Luo and Wang, 2024], TimesNet [Wu et al., 2023],
MICN [Wang et al., 2023], three MLP-based methods: FITS [Xu et al., 2024], TimeMixer [Wang
et al., 2024], DLinear [Zeng et al., 2023], four Transformer-based methods: iTransformer [Liu
et al., 2024], PDF [Dai et al., 2024], Basisformer [Ni et al., 2023], PatchTST [Nie et al., 2023],
and FiLM [Zhou et al., 2022b]. It should be noted that certain earlier methods such as Vanilla-
Transformer [Vaswani et al., 2017], Informer [Zhou et al., 2021], Autoformer [Wu et al., 2021],
Pyraformer [Liu et al., 2022a], and FEDformer [Zhou et al., 2022a] have been extensively surpassed
by the methods we selected. Hence, we did not include these earlier methods as baselines in our
comparison. For further discussion on these methods and details of the experimental setup, please
refer to Appendix B and Appendix D.

4.1 Experimental Results

It is important to emphasize that while there have been numerous works focusing on modeling the
relationships among multiple variables in time series, they still need to effectively capture information
along the temporal dimension to better accommodate multivariate time series. In contrast, our method
primarily concentrates on modeling the temporal dimension. To mitigate any potential negative
impact caused by the heterogeneity of multivariate data, we followed the experimental setup of
WITRAN [Jia et al., 2023], conducted experiments using a single variable. To ensure fairness, we
conducted parameter search for each baseline model, enabling them to achieve their respective optimal
performance across different tasks. For further experiment details, please refer to Appendix D.

Table 1: Long-range forecasting results. A lower MSE or MAE indicates a better prediction. The
best results are highlighted in bold and the second best results are underlined.

Methods TPGN (ours) WITRAN SegRNN ModernTCN TimesNet MICN FITS TimeMixer DLinear iTransformer PDF Basisformer PatchTST FiLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

168-168 0.2107 0.3264 0.2397 0.3519 0.2600 0.3622 0.2473 0.3437 0.2825 0.3797 0.3168 0.3797 0.2598 0.3573 0.2804 0.3792 0.2606 0.3579 0.2479 0.3516 0.2483 0.3491 0.3116 0.4026 0.2980 0.3832 0.2587 0.3557
168-336 0.2276 0.3446 0.2607 0.3721 0.3166 0.4017 0.3110 0.3887 0.3505 0.4253 0.3002 0.4253 0.3072 0.3938 0.3183 0.4029 0.3080 0.3946 0.3128 0.3974 0.3094 0.3902 0.4844 0.4824 0.3446 0.4094 0.3062 0.3922
168-720 0.2303 0.3550 0.2906 0.3965 0.3964 0.4660 0.3624 0.4478 0.4261 0.4686 0.4453 0.4686 0.3504 0.4366 0.3835 0.4560 0.3515 0.4374 0.3660 0.4438 0.3541 0.4423 0.6448 0.5653 0.4324 0.4782 0.3486 0.4349

168-1440 0.2484 0.3775 0.3255 0.4302 0.7574 0.6547 0.5307 0.5573 0.6688 0.6102 0.8784 0.6102 0.5176 0.5591 0.6857 0.6194 0.5300 0.5681 0.7028 0.6348 0.9029 0.6913 0.6368 0.5967 0.7349 0.6464 0.5146 0.5565

Tr
af

fic

168-168 0.1196 0.1857 0.1377 0.2051 0.1901 0.2816 0.1473 0.2212 0.1490 0.2293 0.2418 0.3537 0.1498 0.2134 0.1340 0.2124 0.1519 0.2195 0.1343 0.2083 0.1397 0.2119 0.1634 0.2553 0.1622 0.2320 0.1501 0.2143
168-336 0.1156 0.1868 0.1321 0.2059 0.2227 0.3129 0.1410 0.2214 0.1499 0.2356 0.2420 0.3568 0.1445 0.2148 0.1298 0.2147 0.1468 0.2210 0.1366 0.2221 0.1351 0.2132 0.1544 0.2493 0.1641 0.2364 0.1453 0.2165
168-720 0.1293 0.2057 0.1439 0.2226 0.2674 0.3436 0.1574 0.2389 0.1621 0.2471 0.2488 0.3592 0.1603 0.2330 0.1396 0.2285 0.1629 0.2389 0.1402 0.2265 0.1502 0.2290 0.1538 0.2490 0.1770 0.2548 0.1617 0.2358

168-1440 0.1390 0.2114 0.1611 0.2369 0.3453 0.3929 0.1980 0.2739 0.1691 0.2517 0.2817 0.3818 0.1845 0.2571 0.1547 0.2392 0.1890 0.2640 0.1519 0.2321 0.2074 0.2779 0.1735 0.2654 0.2139 0.2875 0.1861 0.2615

E
T

T
h 1

168-168 0.1061 0.2533 0.1105 0.2589 0.1189 0.2705 0.1210 0.2694 0.1133 0.2612 0.1257 0.2803 0.1089 0.2556 0.1110 0.2587 0.1122 0.2605 0.1112 0.2598 0.1115 0.2579 0.1169 0.2646 0.1212 0.2704 0.1091 0.2558
168-336 0.1110 0.2625 0.1189 0.2714 0.1378 0.2972 0.1342 0.2884 0.1202 0.2732 0.1422 0.3006 0.1162 0.2682 0.1209 0.2716 0.1251 0.2794 0.1203 0.2709 0.1207 0.2725 0.1227 0.2734 0.1287 0.2808 0.1187 0.2708
168-720 0.1346 0.2908 0.1566 0.3150 0.2134 0.3697 0.1676 0.3238 0.1458 0.3059 0.1609 0.3200 0.1544 0.3109 0.1362 0.2927 0.1919 0.3465 0.1423 0.3020 0.1720 0.3278 0.1521 0.3121 0.1727 0.3297 0.1717 0.3266

168-1440 0.1343 0.2941 0.1541 0.3157 0.4033 0.5296 0.2756 0.4247 0.1543 0.3119 0.1444 0.3032 0.2319 0.3863 0.1480 0.3068 0.3606 0.4939 0.1520 0.3107 0.2792 0.4272 0.1664 0.3230 0.3206 0.4561 0.3056 0.4494

E
T

T
h 2

168-168 0.2174 0.3623 0.2389 0.3813 0.2566 0.4013 0.2564 0.3980 0.2655 0.4051 0.2734 0.4162 0.2547 0.3947 0.2507 0.3936 0.2556 0.3944 0.2630 0.4053 0.2606 0.4012 0.2806 0.4138 0.2582 0.3983 0.2546 0.3942
168-336 0.2237 0.3769 0.2277 0.3778 0.3017 0.4398 0.2918 0.4312 0.2725 0.4163 0.3017 0.4429 0.2874 0.4250 0.2642 0.4085 0.2891 0.4256 0.2658 0.4092 0.3064 0.4440 0.2697 0.4132 0.3206 0.4514 0.2894 0.4263
168-720 0.2356 0.3898 0.2718 0.4146 0.3897 0.4988 0.3991 0.5022 0.3186 0.4465 0.4770 0.5602 0.3983 0.5023 0.3259 0.4510 0.4090 0.5090 0.2951 0.4312 0.4546 0.5415 0.3034 0.4372 0.4398 0.5304 0.4039 0.5061

168-1440 0.2514 0.4070 0.3350 0.4624 0.8067 0.7307 0.8537 0.7437 0.3839 0.4933 0.4876 0.5602 0.7852 0.7256 0.3937 0.5040 0.7921 0.7262 0.3806 0.4894 0.8699 0.7651 0.3963 0.4996 0.8339 0.7330 0.7843 0.7210

W
ea

th
er 168-168 0.1877 0.3166 0.2050 0.3338 0.2165 0.3405 0.2692 0.4088 0.2420 0.3608 0.2231 0.3489 0.2423 0.3561 0.2275 0.3466 0.2421 0.3578 0.2636 0.4056 0.2557 0.3989 0.2301 0.3541 0.2469 0.3597 0.2426 0.3544

168-336 0.1978 0.3278 0.2197 0.3470 0.2693 0.3868 0.2916 0.4314 0.2821 0.3885 0.2663 0.3837 0.2977 0.4007 0.2775 0.3836 0.2918 0.3975 0.2658 0.4092 0.3065 0.4440 0.2593 0.3751 0.3040 0.4049 0.2981 0.3988
168-720 0.1925 0.3255 0.2538 0.3796 0.3478 0.4519 0.4279 0.4812 0.2941 0.4013 0.3077 0.4202 0.4044 0.4758 0.2873 0.3931 0.3915 0.4739 0.2754 0.3900 0.3988 0.4673 0.2834 0.3916 0.4023 0.4662 0.4093 0.4737

168-1440 0.1786 0.3184 0.2695 0.3966 0.6456 0.6484 0.7049 0.6351 0.2988 0.4092 0.4306 0.4994 0.7027 0.6555 0.3010 0.4078 0.5837 0.6177 0.3007 0.4113 0.7334 0.6557 0.2959 0.4095 0.7150 0.6336 0.7028 0.6453

Average improvement of TPGN 14.08% 8.12% 39.65% 26.31% 32.92% 20.58% 25.42% 15.23% 36.15% 24.03% 30.30% 17.97% 21.58% 12.89% 32.75% 19.99% 21.40% 13.32% 33.17% 20.92% 28.01% 17.42% 37.44% 22.62% 31.68% 18.81%

Long-range Forecasting Results We conducted four tasks on each dataset for long-range forecast-
ing, and the results are shown in Table 1. For instance, considering the task setting 168-1440 on the
left side of Table 1, it signifies that the input length is 168, and the forecasting length is 1440. It is
worth noting that our proposed TPGN achieves state-of-the-art (SOTA) performance across all tasks,
with an average improvement of MSE by 12.35% and MAE by 7.25% compared to the previous best
methods. In particular, TPGN demonstrates an average reduction in MSE of 17.31% for the ECL
dataset, 9.38% for the Traffic dataset, 3.79% for the ETTh1 dataset, 12.26% for the ETTh2 dataset,
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and 19.09% for the Weather dataset. Furthermore, we calculated the average improvement values of
TPGN compared to each method across all tasks and displayed them in the last row of Table 1. Based
on the aforementioned results, it can be concluded that TPGN is capable of effectively handling
long-range forecasting tasks in various domains. For further experimental results and showcases,
please refer to Appendix E and Appendix I.

Performance of Variations with Different Forecasting Lengths It is important to emphasize
that through Table 1, we observed that as the forecasting task length increased, all models generally
experienced varying degrees of performance decline. However, TPGN appeared to exhibit slower
decline trend. To further validate the performance of TPGN, we expanded our experimental settings
by selecting representative methods from different paradigms in Table 1: WITRAN (RNN-Based),
TimesNet (CNN-Based), TimeMixer (MLP-Based), and iTransformer (Transformer-Based), and
compared them with TPGN. The experimental results on the ECL dataset are depicted in Figure 3,
and more experimental results can be found in Appendix F. It can be observed that as the forecasting
task length gradually increases, TPGN exhibits a stable decline in performance and consistently
outperforms the other comparative methods. This strongly indicates that TPGN effectively captures
the comprehensive information contained in fewer inputs and applies it well to the forecasting tasks.
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Figure 3: Experimental results with different forecasting lengths on the ECL dataset.

For other aspects experiments and analysis of our methods can be found in Appendix G.

4.2 Ablation Study

To validate the roles of the two information extraction branches in TPGN, we conducted tests on
the performance of the model when using only one branch. Additionally, to verify the effectiveness
of PGN, we performed ablation experiments by replacing PGN with GRU and MLP, respectively.
"TPGN-long" represents only using the long-term information extraction branch, while "TPGN-
short" represents only using the short-term. "TPGN-GRU/-LSTM/-MLP/-Attn" respectively represent
replacing PGN in the long-term information extraction branch with GRU, LSTM, MLP and self-
attention. The results of these experiments are presented in Table 2.

Table 2: Results of the ablation study on long-range forecasting tasks. A lower MSE or MAE
indicates a better prediction. The best results are highlighted in bold.

Methods TPGN TPGN-long TPGN-short TPGN-GRU TPGN-LSTM TPGN-MLP TPGN-Attn

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

168-168 0.2107 0.3264 0.2223 0.3399 0.7226 0.6755 0.2363 0.3388 0.2263 0.3344 0.2377 0.3425 0.2279 0.3376
168-336 0.2276 0.3446 0.2422 0.3567 0.7598 0.6901 0.2393 0.3497 0.2591 0.3641 0.2669 0.3636 0.2660 0.3709
168-720 0.2303 0.3550 0.2405 0.3628 0.7841 0.6997 0.2719 0.3774 0.2703 0.3855 0.2967 0.3946 0.3149 0.4115

168-1440 0.2484 0.3775 0.2710 0.3951 0.8323 0.7224 0.3557 0.4550 0.2936 0.4197 0.3456 0.4424 0.3649 0.4589

Tr
af

fic

168-168 0.1196 0.1857 0.1215 0.1871 1.8730 1.1806 0.1269 0.1923 0.1271 0.1920 0.1456 0.2139 0.1391 0.2145
168-336 0.1156 0.1868 0.1166 0.1867 1.8665 1.1790 0.1204 0.1892 0.1195 0.1926 0.1419 0.2174 0.1378 0.2209
168-720 0.1293 0.2057 0.1294 0.2041 1.8548 1.1746 0.1306 0.2063 0.1307 0.2109 0.1565 0.2349 0.1565 0.2436

168-1440 0.1390 0.2114 0.1391 0.2119 1.8589 1.1721 0.1440 0.2168 0.1435 0.2157 0.1838 0.2567 0.1987 0.2838

E
T

T
h 1

168-168 0.1061 0.2533 0.1153 0.2666 0.1101 0.2594 0.1081 0.2548 0.1090 0.2560 0.1079 0.2549 0.1092 0.2569
168-336 0.1110 0.2625 0.1163 0.2698 0.1183 0.2729 0.1117 0.2641 0.1120 0.2652 0.1117 0.2652 0.1134 0.2636
168-720 0.1346 0.2908 0.1399 0.2971 0.1416 0.2994 0.1462 0.3057 0.1464 0.3068 0.1356 0.2930 0.1425 0.2995

168-1440 0.1343 0.2941 0.1352 0.2949 0.1551 0.3115 0.1497 0.3079 0.1502 0.3091 0.1544 0.3112 0.1572 0.3141

E
T

T
h 2

168-168 0.2174 0.3623 0.2402 0.3850 0.3250 0.4531 0.2572 0.3969 0.2567 0.3918 0.2472 0.3906 0.2509 0.3960
168-336 0.2237 0.3769 0.2477 0.3969 0.3312 0.4535 0.2587 0.4014 0.2647 0.4141 0.2550 0.3987 0.2652 0.4072
168-720 0.2356 0.3898 0.2475 0.3995 0.3382 0.4617 0.2619 0.4072 0.2714 0.4101 0.2698 0.4144 0.2744 0.4203

168-1440 0.2514 0.4070 0.2932 0.4341 0.3723 0.4841 0.2611 0.4136 0.2865 0.4225 0.2901 0.4358 0.4226 0.5147

W
ea

th
er 168-168 0.1877 0.3166 0.2035 0.3317 0.2690 0.3864 0.2184 0.3445 0.2024 0.3323 0.2354 0.3555 0.2269 0.3594

168-336 0.1978 0.3278 0.2088 0.3401 0.3138 0.4215 0.2222 0.3540 0.2182 0.3476 0.2790 0.3919 0.2517 0.3820
168-720 0.1925 0.3255 0.2028 0.3351 0.3576 0.4573 0.2139 0.3479 0.2060 0.3392 0.3226 0.4319 0.2796 0.4044

168-1440 0.1786 0.3184 0.1823 0.3218 0.4523 0.5372 0.1969 0.3309 0.1896 0.3244 0.4198 0.5164 0.3417 0.4639

Through the ablation experiments, we can draw the following conclusions: (1) The two branches
designed in TPGN are reasonable as they capture long-term and short-term information respectively,
while preserving their respective characteristics. In most cases, using only one branch leads to subpar
results due to incomplete capture of essential features. (2) The branch capturing long-term information
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in TPGN is more significant. This can be observed by comparing the performance degradation when
using only one branch versus using both branches together. Especially for strongly periodic data
like traffic, in some tasks, using only the long-term information capture branch can achieve good
results. This also aligns with our earlier mention in Section 1 about the significance of prioritizing the
modeling of periodicity. (3) Compared to GRU and LSTM, which have more gates, PGN introduces
only one gate but still achieves better performance. This strongly demonstrates the ability of PGN to
serve as the new successor to RNN. (4) The comparison between "TPGN-GRU/-LSTM/-MLP/-Attn"
and the baseline results demonstrates the strong generality and performance of the TPGN framework.
Despite their inferior performance compared to TPGN, in some tasks, they even surpass the previous
SOTA time series forecasting methods.

4.3 Efficiency of Execution

Although this paper primarily focuses on predicting longer-range future outputs using short-range
historical inputs, we conducted two sets of comparative experiments to comprehensively evaluate
the efficiency of our proposed method. In the first set of experiments, we kept the input length fixed
at 168 and varied the output length to 168/336/720/1440 to study the impact of forecasting length
on the actual runtime efficiency of the model. In the second set of experiments, we fixed the output
length at 1440 while varying the input length to 168/336/720/1440 to investigate the influence of
historical input series length on the actual runtime of the model. The efficiency analysis considered
both time and memory aspects. We selected representative methods from each paradigm based on
the experimental results in Table 1 as the comparative methods. We fixed the batch size at 32, the
model dimension size at 128, and conducted the tests using a single-layer model. The results are
shown in Figure 4. Due to the much higher time and memory overhead of TimesNet compared to the
other comparative models, we have omitted it from Figure 4 to provide a clearer illustration of the
overhead details of the other models. Similarly, FiLM is not included in the time comparison chart.

(a) Time overhead (input length is fixed at 168) (b) Memory overhead (input length is fixed at 168) (c) Time overhead (output length is fixed at 1440) (d) Memory overhead (output length is fixed at 1440)

Figure 4: Time and memory overhead of different models.

From Figure 4, it can be observed that although TPGN does not have the lowest time and memory
overhead, it achieves a decent level of efficiency in both time and space aspects. It is important to
note that TPGN is a model with only one layer, while most of other models require the introduction
of deeper layers, which inevitably leads to higher overhead. This undoubtedly further demonstrates
that our method not only achieves SOTA performance but also delivers satisfactory efficiency.

5 Conclusions

In this paper, we propose a novel general paradigm called Parallel Gated Network (PGN). With
its O(1) information propagation paths and parallel computing capability, PGN achieves faster
runtime speed while maintaining the same theoretical complexity as RNN (O(L)). To enhance
the application of PGN in long-range time series forecasting tasks, we introduce a novel temporal
modeling framework called Temporal PGN (TPGN) with an excellent complexity of O(

√
L). By

employing two branches to separate the modeling of long-term and short-term information, TPGN
effectively capture periodicity and local-global semantic information while preserving their respective
characteristics. The experimental results on five benchmark datasets demonstrate that our PGN-based
framework, TPGN, achieves SOTA performance and high efficiency. These findings further confirm
the effectiveness of PGN as the new successor to RNN in long-range time series forecasting tasks.
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A Limitation and Future Outlook

It is important to acknowledge that our focus in this work was primarily on temporal modeling,
without specifically addressing the modeling of relationships between variables. Nevertheless, we can
draw inspiration from other methods specialized in variable modeling. Incorporating an additional
component to model variable relationships and integrating it into the TPGN framework is a promising
direction for better adaptation to multivariate prediction tasks, which we plan to explore in future
research. Additionally, we will continue to investigate the broader application of the PGN paradigm
as a replacement for RNN in various time series analysis tasks and other research areas.

B More Detailed Discussions of Related Works

Traditional methods such as ARIMA [Box and Jenkins, 1968], Prophet [Taylor and Letham,
2018], and Holt-Winters [Athanasopoulos and Hyndman, 2020] are often constrained by theoretical
assumptions, which limits their applicability in time series forecasting tasks with dynamic data
changes. In recent years, deep neural networks (DNNs) have made significant advancements in
the field of time series analysis. DNNs can be categorized into four main paradigms: RNN-based,
CNN-based, MLP-based, and Transformer-based methods.

RNN-based methods [Hochreiter and Schmidhuber, 1997, Chung et al., 2014, Rangapuram et al.,
2018, Salinas et al., 2020] rely on recurrent structures to capture sequential information, which leads
to long information propagation paths and brings about various limitations, as discussed in Section 1.
In terms of performance, RNN-based methods struggle to capture long-term dependencies effectively.
Moreover, their theoretical complexity scales linearly with the sequence length L, but their practical
efficiency is often low due to sequential computation. Additionally, during training, RNNs are prone
to the issues of gradient exploding/vanishing [Pascanu et al., 2013].

To alleviate these issues, some methods have modified the conventional information propagation
approach. DilatedRNN [Chang et al., 2017] introduces a multi-scale dilated mechanism, which
aggregates information at each time step. Although it can shorten the information propagation path
by selecting the branch with the maximum skipping step, the path remains linearly related to the
sequence length L, which is still relatively long. SlicedRNN [Yu and Liu, 2018] addresses the
efficiency problem of RNNs by dividing the sequence into multiple slices for parallel computation.
However, the length of the information propagation path remains the same as the traditional RNNs.
WITRAN [Jia et al., 2023], as an emerging time series forecasting method, reshapes the sequence
into a 2D dimension and performs simultaneous information propagation in both directions. This
approach improves computational efficiency and reduces the information propagation path to O(

√
L).

However, it is still relatively long for effective information extraction.

Overall, the limitations imposed by the recurrent structures of RNNs have hindered their further
development.

CNN-based methods [Bai et al., 2018, Franceschi et al., 2019, Sen et al., 2019] have a theoretical
complexity of O(L), due to their parallel ability, they often exhibit higher practical efficiency
compared to RNNs. However, CNNs are typically constrained by limited receptive fields, requiring
the stacking of multiple module layers to capture global information from inputs. The number of
modular layers grows superlinearly with the sequence length, leading to an information propagation
path of O(G) in CNN-based methods. Here, G is superlinearly related to the sequence length L. In
the case of the 2D modeling method TimesNet [Wu et al., 2023], where the input lengths in both
directions are O(

√
L), the information propagation path would be O(

√
G). MICN [Wang et al.,

2023] and ModernTCN [Luo and Wang, 2024] effectively reduce the information propagation path by
enlarging the receptive field of the convolutional kernel. However, due to their 1D modeling approach,
they may not perform as well as TimesNet [Wu et al., 2023] in capturing periodic characteristics.

MLP-based methods are highly favored due to their simple structure, resulting in lower computational
complexity and information propagation path. This simplicity makes MLP models easy to implement
and train, contributing to their popularity. Dlinear and NLinear [Zeng et al., 2023] optimize the
original Linear model through the methods of sequence decomposition and re-normalization methods,
enabling direct future prediction based on historical inputs. However, due to their limited ability
to extract deep semantic information, they may not achieve excellent forecasting performance.
TimeMixer [Wang et al., 2024] employs two specialized modules to analyze and predict time series
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data from multiple scales. While this approach can effectively capture periodicity, incorporating
multiple scales in computations inevitably leads to increased computational costs and training
difficulties. FITS [Xu et al., 2024] treats time series prediction as interpolation and transforms the
time series into the frequency domain. It operates on the frequency domain using a specially designed
block LPF (Low-Pass Filter) and a complex-valued linear layer for final forecasting. However, FITS
may still overlook explicit local variations present in the sequence.

Transformer-based methods still dominate the majority of the field. The advantage of methods
based on point-wise attention mechanism, such as Vanilla-Transformer [Vaswani et al., 2017],
Informer [Zhou et al., 2021], and FEDformer [Zhou et al., 2022a], lies in their O(1) information
propagation path. However, previous studies [Wu et al., 2023, Jia et al., 2023] have clearly pointed
out their limitation in capturing semantic information from time steps. On the other hand, other
methods that utilize non-point-wise attention mechanisms still have other limitations. Although
Autoformer [Wu et al., 2021] can capture the periodicity of time series to some extent through
sequence decomposition, it is far less direct compared to methods like TimesNet [Wu et al., 2023].
Additionally, its complexity remains high at O(L log L). Pyraformer [Liu et al., 2022a], through the
special design of its pyramidal structure, is also able to effectively capture the periodic characteristics
of sequences. However, it is still constrained by the limitations of the convolution kernel when
initializing the node of pyramidal structure. Additionally, Pyraformer still maintains a high complexity
of O(L). PatchTST [Nie et al., 2023] captures local semantic information through patches, where
S represents the stride length, and further reduces the complexity to O((L/S)2). However, it still
cannot directly capture the periodic characteristics of series. iTransformer [Liu et al., 2024] primarily
focuses on modeling the relationships between variables, including the relationships between time
series variables and external time features. For the temporal dimension, iTransformer adopts a direct
patch-based approach, which makes it challenging to effectively extract periodic patterns and other
local characteristics. PDF [Dai et al., 2024] also follows the approach of transposing the original 1D
sequence into a 2D representation for modeling. Specifically, it utilizes CNNs to process short-term
information, which is undoubtedly constrained by the limitations of convolution itself. When it comes
to handling long-term periodic information, PDF also adopts a patch-based approach, which may not
fully capture all the periodic characteristics present in the sequence.

To highlight the advantages of our proposed PGN paradigm and TPGN framework compared to
previous methods, we have organized an information propagation diagram as shown in Figure 1.
Based on the above analysis, we further compiled the various strengths, information propagation
paths, and theoretical complexities of different models, which are presented in Table 3.

Table 3: Comparison of strengths, complexities and the maximum information propagation paths of
different models. G is superlinearly related to the sequence length L and S represents the stride.

Methods
Capturing Directly capturing Maximum termporal Complexity of Parallel Computing

non-point-wise periodic information encoder per Capability in the
semantic information semantic information propagation path model layer in Termporal Dimension

RNN ! % O(L) O(L) %

WITRAN ! !(2D) O(
√
L) O(

√
L) !–

CNN ! % O(G) O(L) !

MICN ! !–(Decomposition) O(1) O(L) !

TimesNet ! !(2D) O(
√
G) O(L) !

ModernTCN ! % O(G) O(L/S) !

Transformer % % O(1) O(L2) !

Informer % % O(1) O(L log L) !

Autoformer ! !–(Decomposition) O(1) O(L log L) !

Pyraformer ! !(Pyramidal Structure) O(1) O(L) !

PatchTST ! % O(1) O((L/S)2) !

iTransformer ! % O(1) O(L) !

PDF ! !(2D) O(
√
G) O(L/S) !

PGN (ours) ! % O(1) O(L) !

TPGN (ours) ! !(2D) O(1) O(
√
L) !
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C More Detailed Description of the Datasets

In this section, we will provide a comprehensive overview of the datasets utilized in this paper. (1)
Electricity2 (ECL) contains the hourly electricity consumption of 321 customers from 2012 to 2014.
(2) Traffic3 contains the hourly data the road occupancy rates measured by different sensors on San
Francisco Bay area freeways, collected from California Department of Transportation. (3) ETT4

contains the load and oil temperature data recorded every 15 minutes from electricity transformers
in two different areas, spans from July 2016 to July 2018. (4) Weather5 contains 21 meteorological
indicators (such as air temperature, humidity, etc.) and was recorded every 10 minutes for 2020
whole year.

Due to the varying granularity of data acquisition for each dataset, in order to ensure that they contain
the same semantic information for the same task, we followed [Jia et al., 2023] to aggregate them at
an hourly level for experimentation. The target value for ECL is ’MT_320’, for Traffic is ’Node_862’,
for ETT is ’oil temperature (OT)’, and for Weather is ’wet_bulb’. They are all split into the training
set, validation set and test set by the ratio of 6:2:2 during modeling.

Table 4: MSE and MAE with error bars are measured for all methods in long-range forecasting tasks.
Each experiment is repeated 5 times.

Datasets ECL Traffic ETTh1 ETTh2 Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TPGN (ours)

168-168 0.2107±0.00809 0.3264±0.00583 0.1196±0.00149 0.1857±0.00172 0.1061±0.00091 0.2533±0.00106 0.2174±0.01190 0.3623±0.00876 0.1877±0.00320 0.3166±0.00373
168-336 0.2276±0.00745 0.3446±0.00684 0.1156±0.00102 0.1868±0.00111 0.1110±0.00226 0.2625±0.00312 0.2237±0.00381 0.3769±0.00327 0.1978±0.00279 0.3278±0.00353
168-720 0.2303±0.01145 0.3550±0.01142 0.1293±0.00199 0.2057±0.00219 0.1346±0.00490 0.2908±0.00509 0.2356±0.00598 0.3898±0.00378 0.1925±0.00214 0.3255±0.00319

168-1440 0.2484±0.01098 0.3775±0.01012 0.1390±0.00100 0.2114±0.00144 0.1343±0.00096 0.2941±0.00140 0.2514±0.00339 0.4070±0.00437 0.1786±0.00327 0.3184±0.00209

WITRAN

168-168 0.2397±0.00859 0.3519±0.00601 0.1377±0.00231 0.2051±0.00300 0.1105±0.00082 0.2589±0.00128 0.2389±0.00615 0.3813±0.00566 0.2050±0.00428 0.3338±0.00483
168-336 0.2607±0.00926 0.3721±0.00783 0.1321±0.00327 0.2059±0.00359 0.1189±0.00325 0.2714±0.00439 0.2277±0.00805 0.3778±0.00772 0.2197±0.00629 0.3470±0.00328
168-720 0.2906±0.00921 0.3965±0.00508 0.1439±0.00271 0.2226±0.00266 0.1566±0.00419 0.3150±0.00455 0.2718±0.02666 0.4146±0.01915 0.2538±0.00436 0.3796±0.00405

168-1440 0.3255±0.02833 0.4302±0.02040 0.1611±0.00713 0.2369±0.00601 0.1541±0.01205 0.3157±0.01239 0.3350±0.03795 0.4624±0.02629 0.2695±0.00660 0.3966±0.00417

ModernTCN

168-168 0.2473±0.01112 0.3437±0.00856 0.1473±0.00124 0.2212±0.00154 0.1210±0.00612 0.2694±0.00613 0.2564±0.00293 0.3980±0.00265 0.2692±0.00831 0.4088±0.00653
168-336 0.3110±0.00451 0.3887±0.00474 0.1410±0.00165 0.2214±0.00246 0.1342±0.00262 0.2884±0.00343 0.2918±0.01222 0.4312±0.00844 0.2916±0.01068 0.4314±0.00844
168-720 0.3624±0.01165 0.4478±0.00711 0.1574±0.00220 0.2389±0.00230 0.1676±0.00653 0.3238±0.00738 0.3991±0.01156 0.5022±0.00678 0.4279±0.00790 0.4812±0.00333

168-1440 0.5307±0.01639 0.5573±0.00637 0.1980±0.00169 0.2739±0.00265 0.2756±0.02847 0.4247±0.02444 0.8537±0.09298 0.7437±0.04061 0.7049±0.02628 0.6351±0.00672

TimesNet

168-168 0.2825±0.00960 0.3797±0.00798 0.1490±0.00412 0.2293±0.00686 0.1133±0.00253 0.2612±0.00377 0.2655±0.01248 0.4051±0.01202 0.2420±0.00614 0.3608±0.00466
168-336 0.3505±0.00624 0.4253±0.00428 0.1499±0.00136 0.2356±0.00298 0.1202±0.00237 0.2732±0.00359 0.2725±0.00610 0.4163±0.00564 0.2821±0.01949 0.3885±0.01692
168-720 0.4261±0.02519 0.4686±0.01447 0.1621±0.00715 0.2471±0.00740 0.1458±0.00172 0.3059±0.00189 0.3186±0.03843 0.4465±0.02545 0.2941±0.00468 0.4013±0.00360

168-1440 0.6688±0.11196 0.6102±0.05236 0.1691±0.01544 0.2517±0.01590 0.1543±0.00484 0.3119±0.00482 0.3839±0.05262 0.4933±0.03400 0.2988±0.01396 0.4092±0.00742

MICN

168-168 0.3168±0.01684 0.3797±0.01116 0.2418±0.00578 0.3537±0.00560 0.1257±0.01332 0.2803±0.01514 0.2734±0.01795 0.4162±0.01662 0.2231±0.00219 0.3489±0.00404
168-336 0.3002±0.00979 0.4253±0.00853 0.2420±0.00709 0.3568±0.00685 0.1422±0.02929 0.3006±0.03410 0.3017±0.04440 0.4429±0.03426 0.2663±0.00330 0.3837±0.00602
168-720 0.4453±0.03694 0.4686±0.02169 0.2488±0.00996 0.3592±0.01086 0.1609±0.00770 0.3200±0.00866 0.4770±0.04330 0.5602±0.02730 0.3077±0.00374 0.4202±0.00720

168-1440 0.8784±0.23697 0.6102±0.10350 0.2817±0.01048 0.3818±0.00895 0.1444±0.01543 0.3032±0.01590 0.4876±0.02074 0.5602±0.01464 0.4306±0.02393 0.4994±0.01621

FITS

168-168 0.2598±0.00013 0.3573±0.00012 0.1498±0.00006 0.2134±0.00013 0.1089±0.00013 0.2556±0.00017 0.2547±0.00029 0.3947±0.00033 0.2423±0.00021 0.3561±0.00033
168-336 0.3072±0.00080 0.3938±0.00082 0.1445±0.00007 0.2148±0.00009 0.1162±0.00005 0.2682±0.00004 0.2874±0.00070 0.4250±0.00064 0.2977±0.00033 0.4007±0.00038
168-720 0.3504±0.00030 0.4366±0.00027 0.1603±0.00018 0.2330±0.00025 0.1544±0.00007 0.3109±0.00007 0.3983±0.00034 0.5023±0.00029 0.4044±0.00026 0.4758±0.00036

168-1440 0.5176±0.00089 0.5591±0.00058 0.1845±0.00020 0.2571±0.00014 0.2319±0.00007 0.3863±0.00006 0.7852±0.00109 0.7256±0.00062 0.7027±0.00018 0.6555±0.00027

TimeMixer

168-168 0.2804±0.00607 0.3792±0.00257 0.1340±0.00363 0.2124±0.00380 0.1110±0.00125 0.2587±0.00181 0.2507±0.00774 0.3936±0.00637 0.2275±0.00259 0.3466±0.00248
168-336 0.3183±0.01196 0.4029±0.00794 0.1298±0.00147 0.2147±0.00238 0.1209±0.01122 0.2716±0.00937 0.2642±0.00216 0.4085±0.00210 0.2775±0.00230 0.3836±0.00239
168-720 0.3835±0.01693 0.4560±0.01092 0.1396±0.00265 0.2285±0.00383 0.1362±0.00266 0.2927±0.00232 0.3259±0.02873 0.4510±0.01920 0.2873±0.00559 0.3931±0.00428

168-1440 0.6857±0.07838 0.6194±0.03071 0.1547±0.00199 0.2392±0.00411 0.1480±0.00591 0.3068±0.00645 0.3937±0.01583 0.5040±0.01159 0.3010±0.02115 0.4078±0.01101

DLinear

168-168 0.2606±0.00138 0.3579±0.00117 0.1519±0.00017 0.2195±0.00023 0.1122±0.00081 0.2605±0.00106 0.2556±0.00080 0.3944±0.00091 0.2421±0.00302 0.3578±0.00240
168-336 0.3080±0.00167 0.3946±0.00149 0.1468±0.00012 0.2210±0.00017 0.1251±0.00086 0.2794±0.00101 0.2891±0.00143 0.4256±0.00082 0.2918±0.00149 0.3975±0.00112
168-720 0.3515±0.00175 0.4374±0.00130 0.1629±0.00043 0.2389±0.00045 0.1919±0.00091 0.3465±0.00094 0.4090±0.00341 0.5090±0.00206 0.3915±0.00389 0.4739±0.00195

168-1440 0.5300±0.00062 0.5681±0.00044 0.1890±0.00145 0.2640±0.00130 0.3606±0.00179 0.4939±0.00136 0.7921±0.00292 0.7262±0.00193 0.5837±0.00267 0.6177±0.00134

iTransformer

168-168 0.2479±0.00185 0.3516±0.00149 0.1343±0.00025 0.2083±0.00054 0.1112±0.00116 0.2598±0.00133 0.2630±0.00436 0.4053±0.00398 0.2636±0.00410 0.4056±0.00360
168-336 0.3128±0.00332 0.3974±0.00285 0.1366±0.00060 0.2221±0.00038 0.1203±0.00172 0.2709±0.00093 0.2658±0.00583 0.4092±0.00423 0.2658±0.00583 0.4092±0.00423
168-720 0.3660±0.00690 0.4438±0.00395 0.1402±0.00134 0.2265±0.00188 0.1423±0.00271 0.3020±0.00293 0.2951±0.00618 0.4312±0.00435 0.2754±0.00312 0.3900±0.00371

168-1440 0.7028±0.06470 0.6348±0.03342 0.1519±0.00054 0.2321±0.00135 0.1520±0.00875 0.3107±0.00860 0.3806±0.00889 0.4894±0.00504 0.3007±0.01103 0.4113±0.00881

PDF

168-168 0.2483±0.00301 0.3491±0.00269 0.1397±0.00076 0.2119±0.00138 0.1115±0.00091 0.2579±0.00083 0.2606±0.00287 0.4012±0.00282 0.2557±0.00239 0.3989±0.00238
168-336 0.3094±0.00244 0.3902±0.00311 0.1351±0.00090 0.2132±0.00078 0.1207±0.00298 0.2725±0.00328 0.3064±0.01527 0.4440±0.01142 0.3065±0.01527 0.4440±0.01142
168-720 0.3541±0.00379 0.4423±0.00267 0.1502±0.00058 0.2290±0.00063 0.1720±0.00424 0.3278±0.00418 0.4546±0.03786 0.5415±0.02478 0.3988±0.00271 0.4673±0.00195

168-1440 0.9029±0.06926 0.6913±0.02764 0.2074±0.00210 0.2779±0.00139 0.2792±0.00995 0.4272±0.00842 0.8699±0.05495 0.7651±0.02818 0.7334±0.03396 0.6557±0.01771

Basisformer

168-168 0.3116±0.00515 0.4026±0.00460 0.1634±0.00380 0.2553±0.00749 0.1169±0.00338 0.2646±0.00389 0.2806±0.00869 0.4138±0.00748 0.2301±0.00378 0.3541±0.00413
168-336 0.4844±0.03133 0.4824±0.00985 0.1544±0.00177 0.2493±0.00317 0.1227±0.00393 0.2734±0.00401 0.2697±0.00782 0.4132±0.00701 0.2593±0.00656 0.3751±0.00873
168-720 0.6448±0.13800 0.5653±0.05703 0.1538±0.00771 0.2490±0.00973 0.1521±0.00289 0.3121±0.00305 0.3034±0.01322 0.4372±0.00843 0.2834±0.00726 0.3916±0.00630

168-1440 0.6368±0.07819 0.5967±0.04075 0.1735±0.00437 0.2654±0.00416 0.1664±0.01616 0.3230±0.01100 0.3963±0.02934 0.4996±0.01896 0.2959±0.01179 0.4095±0.00907

PatchTST

168-168 0.2980±0.00339 0.3832±0.00341 0.1622±0.01189 0.2320±0.00878 0.1212±0.00480 0.2704±0.00375 0.2582±0.00722 0.3983±0.00598 0.2469±0.00797 0.3597±0.00569
168-336 0.3446±0.01157 0.4094±0.00653 0.1641±0.01070 0.2364±0.00646 0.1287±0.00488 0.2808±0.00483 0.3206±0.01683 0.4514±0.01199 0.3040±0.00457 0.4049±0.00439
168-720 0.4324±0.01333 0.4782±0.00525 0.1770±0.01043 0.2548±0.00976 0.1727±0.00601 0.3297±0.00505 0.4398±0.03582 0.5304±0.02195 0.4023±0.01475 0.4662±0.00877

168-1440 0.7349±0.08816 0.6464±0.03219 0.2139±0.00967 0.2875±0.00690 0.3206±0.02700 0.4561±0.02092 0.8339±0.02378 0.7330±0.01073 0.7150±0.04967 0.6336±0.02111

FiLM

168-168 0.2587±0.00032 0.3557±0.00029 0.1501±0.00067 0.2143±0.00139 0.1091±0.00007 0.2558±0.00013 0.2546±0.00141 0.3942±0.00161 0.2426±0.00037 0.3544±0.00036
168-336 0.3062±0.00030 0.3922±0.00014 0.1453±0.00033 0.2165±0.00071 0.1187±0.00037 0.2708±0.00048 0.2894±0.00718 0.4263±0.00566 0.2981±0.00036 0.3988±0.00033
168-720 0.3486±0.00088 0.4349±0.00074 0.1617±0.00038 0.2358±0.00052 0.1717±0.00106 0.3266±0.00119 0.4039±0.00555 0.5061±0.00400 0.4093±0.00102 0.4737±0.00092

168-1440 0.5146±0.00127 0.5565±0.00065 0.1861±0.00157 0.2615±0.00148 0.3056±0.00208 0.4494±0.00183 0.7843±0.02010 0.7210±0.01035 0.7028±0.00121 0.6453±0.00114

D Experimental Setup Details

To ensure a fair comparison of the performance of each model, we set the same search space for the
common parameters included in each model. Specifically, (1) The model dimension size dm is set
to: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. (2) The number of layers for the model’s encoder and
decoder is set to: 1, 2, 3. (3) The number of heads for the attention mechanism is set to: 1, 2, 4,
8. In addition, for the individual hyperparameters specific to each model, we also referred to their

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://pems.dot.ca.gov
4https://github.com/zhouhaoyi/ETDataset
5https://www.bgc-jena.mpg.de/wetter/
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respective original papers and conducted parameter search accordingly. This ensured that we took
into account the optimal configurations for each model in our experiments. For models that have
variants, such as MICN-regre and MICN-mean, we treat the variants as separate hyperparameters and
include them in the search process. The aforementioned procedures ensure that the reported results
represent the optimal performance of each model under the same comparison conditions.

TPGN and all baselines were trained using L2 loss and the ADAM optimizer [Kingma and Ba, 2014]
with an initial learning rate of 10−3. All of them are implemented using PyTorch [Paszke et al.,
2019] and conducted on NVIDIA RTX A4000 16GB GPUs. The batch size was set to 32 and the
maximum training epochs was set to 25. If there was no degradation in loss on the validation set after
5 epochs, the training process would be early stopped. We saved the model with the lowest loss on
the validation set for final testing. The mean square error (MSE) and mean absolute error (MAE) are
used as metrics. We followed [Jia et al., 2023] and set the seed to 2023 to ensure the reproducibility
of the results. All experiments are repeated 5 times and we set the mean of the metrics as the final
results, as shown in Table 1.

E Error Bars

During the model training process, we conducted tests using the parameters that achieved the lowest
loss on the validation set. This process was repeated five times, and the error bars were calculated and
presented in Table 4. The results in Table 4 clearly demonstrate the stability of our proposed method,
TPGN, further confirming its superior overall performance compared to other baseline models, being
SOTA approach.

F Comprehensive Experiment for Performance Variations with Different
Forecasting Lengths

We conducted a comprehensive experiment to analyze the performance variation of the models across
different forecasting lengths, as mentioned in Subsection 4.1. According to the experimental results
in Table 1, we selected representative methods from different paradigms: WITRAN (RNN-Based),
TimesNet (CNN-Based), TimeMixer (MLP-Based), and iTransformer (Transformer-Based), and
compared them with TPGN. The results of dataset ECL have already been presented in Figure 3.
Therefore, in this section, we present the other dataset results, as shown in Figure 5-Figure 8, and
further analysis them.
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Figure 5: Experimental results with different forecasting lengths on the Traffic dataset.
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Figure 6: Experimental results with different forecasting lengths on the ETTh1 dataset.
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Figure 7: Experimental results with different forecasting lengths on the ETTh2 dataset.
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Figure 8: Experimental results with different forecasting lengths on the Weather dataset.

Through the results in Figure 3, Figure 5, Figure 6, Figure 7, and Figure 8, we can clearly observe
that as the sequence length increases, all models show varying degrees of performance degradation
across different datasets. However, TPGN not only consistently maintains SOTA performance across
all tasks but also exhibits slower performance decay with increasing forecasting lengths in most
cases. This demonstrates the significant advantage of TPGN in predicting longer-range tasks, further
confirming its ability to effectively extract information from limited inputs and apply them well to
prediction tasks.

G Robustness Analysis

To assess the robustness of TPGN, we conducted experiments following the settings of MICN [Wang
et al., 2023] and WITRAN [Jia et al., 2023], and introduced a simple white noise injection. Specif-
ically, a random proportion ε of data was selected from the original input sequence, and random
perturbations within the range [−2Xi, 2Xi] were applied to the selected data, where Xi represents
the original data. Subsequently, the injected noisy data was used for training, and we recorded the
MSE and MAE metrics in Table 5.

It can be observed that as the perturbation ratio increases, there is a slight increase in the MSE and
MAE metrics in terms of forecasting. This indicates that TPGN exhibits good robustness in handling
data with low noise levels (up to 10%) and has a significant advantage in effectively handling various
abnormal data fluctuations.

H Parameter Sensitivity

In our model, we have only two hyperparameters. One is the number of hidden units, denoted as
dm, which is a common hyperparameter in many models. Its value is determined through parameter
search and further validation on the validation set. During our parameter search process, we have
observed that different models exhibit significant variations in the optimal dm values for the same task.
Similarly, even for the same model, this variability persists when facing different tasks. Therefore,
in this paper, we focus our analysis solely on the parameter norm, as it showcases the notable
differences and its impact on the model’s performance.

In the Subsection 3.2, we mentioned that the parameter norm should be determined based on the
dataset, which has been previously acknowledged in related works [Jia et al., 2023]. However, to
validate the appropriateness of our norm selection in the preparatory work, we conducted a statistical
analysis on the variations across different task datasets, as shown in Table 6.
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Table 5: Robustness experiments of TPGN’s forecasting results. Different ε indicates different
proportions of noise injection.

Tasks 168-168 168-336 168-720 168-1440

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

ε = 0% 0.2107 0.3264 0.2276 0.3446 0.2303 0.3550 0.2484 0.3775
ε = 1% 0.2116 0.3248 0.2277 0.3447 0.2311 0.3557 0.2484 0.3776
ε = 5% 0.2117 0.3270 0.2295 0.3464 0.2314 0.3553 0.2495 0.3783
ε = 10% 0.2142 0.3288 0.2303 0.3466 0.2332 0.3561 0.2497 0.3784

Tr
af

fic

ε = 0% 0.1196 0.1857 0.1156 0.1868 0.1293 0.2057 0.1390 0.2114
ε = 1% 0.1201 0.1861 0.1154 0.1869 0.1295 0.2059 0.1393 0.2120
ε = 5% 0.1219 0.1899 0.1176 0.1913 0.1296 0.2064 0.1439 0.2200
ε = 10% 0.1261 0.1964 0.1205 0.1960 0.1324 0.2119 0.1472 0.2241

E
T

T
h 1

ε = 0% 0.1061 0.2533 0.1110 0.2625 0.1346 0.2908 0.1343 0.2941
ε = 1% 0.1061 0.2534 0.1110 0.2628 0.1348 0.2908 0.1350 0.2944
ε = 5% 0.1067 0.2546 0.1111 0.2631 0.1355 0.2916 0.1407 0.2990
ε = 10% 0.1068 0.2549 0.1113 0.2630 0.1365 0.2932 0.1446 0.3023

E
T

T
h 2

ε = 0% 0.2174 0.3623 0.2237 0.3769 0.2356 0.3898 0.2514 0.4070
ε = 1% 0.2178 0.3629 0.2237 0.3770 0.2358 0.3900 0.2521 0.4086
ε = 5% 0.2180 0.3632 0.2240 0.3772 0.2358 0.3901 0.2521 0.4090
ε = 10% 0.2187 0.3639 0.2242 0.3775 0.2360 0.3904 0.2525 0.4097

W
ea

th
er ε = 0% 0.1877 0.3166 0.1978 0.3278 0.1925 0.3255 0.1786 0.3184

ε = 1% 0.1884 0.3184 0.1980 0.3282 0.1944 0.3273 0.1788 0.3186
ε = 5% 0.1886 0.3184 0.1987 0.3295 0.1950 0.3278 0.1788 0.3188
ε = 10% 0.1889 0.3185 0.1993 0.3320 0.1952 0.3281 0.1797 0.3197

Through statistical analysis of the dataset, we have found that there are some differences between the
training set and the validation set. These differences are due to the inherent characteristics of time
series data and are considered normal fluctuations. If the variances of the training set and validation
set are roughly in the same range, it can be assumed that their fluctuations are roughly consistent.
In this case, there are no significant differences in data distribution between the training set and
validation set, so there is no need for normalization. The hyperparameter norm should be set to 0.

However, when there is a relatively large difference in variance between the training set and the
validation set (approximately twice or half), it indicates a significant difference in data distribution
between the two sets. In such cases, the hyperparameter norm should be set to 1 to facilitate better
training of the model.

Additionally, weather datasets are a special case because they contain negative values, which leads to
their mean being close to zero and a significant difference between the variance and mean. This is
reasonable for weather data. On the other hand, traffic datasets do not have negative values. Therefore,
even if the variances of the training set and validation set are similar, their differences can still be
observed when analyzed in conjunction with the mean.

Table 6: The distribution (Mean and STD) of dataset in the training and validation sets.
Datasets ECL Traffic ETTh1 ETTh2 Weather

Tasks training set validation set norm training set validation set norm training set validation set norm training set validation set norm training set validation set norm

168-168 3425.7773±562.8469 3043.2100±382.1743

0

0.0288±0.0170 0.0341±0.0200

1

17.3383±8.5791 7.6739±4.2814

1

29.0542±12.1271 20.8957±9.1261

0

0.3893±6.6630 1.3814±7.7366

0168-336 3426.0938±563.6643 3031.5738±362.8032 0.0287±0.0170 0.0340±0.0200 17.3711±8.6347 7.8227±4.3176 28.8913±12.1396 21.2674±9.1471 0.3712±6.6834 1.5999±7.6813
168-720 3423.0552±563.4796 3026.3346±343.3309 0.0287±0.0169 0.0339±0.0199 17.4107±8.7921 8.5642±4.0161 28.4763±12.1533 22.7715±8.6228 0.3372±6.7363 2.1966±7.4464
168-1440 3407.1474±558.3798 3017.0031±327.7298 0.0286±0.0169 0.0336±0.0197 17.1370±9.0535 10.0193±3.5586 27.1838±11.6251 26.0480±7.1308 0.3601±6.8383 3.3196±6.9377

I Case Study

To highlight the advantages of TPGN in long-range time series forecasting tasks, we compared
TPGN’s showcase with the showcases of the second-best and third-best models, selected based on
MSE as the evaluation metric, for each dataset. The forecasting results showcases are shown in
Figure 9 to Figure 23.

The comparison of the aforementioned cases clearly demonstrates the superiority of our method in
terms of forecasting results. This unequivocally reaffirms the SOTA performance of TPGN across
various domains. Moreover, it provides further evidence that PGN, as the novel successor to RNNs,
can be effectively applied to long-range time series forecasting tasks.
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Figure 9: Forecasting cases of TPGN for all tasks in dataset ECL.
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Figure 10: Forecasting cases of WITRAN for all tasks in dataset ECL.
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Figure 11: Forecasting cases of FiLM for all tasks in dataset ECL.
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Figure 12: Forecasting cases of TPGN for all tasks in dataset Traffic.
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Figure 13: Forecasting cases of TimeMixer for all tasks in dataset Traffic.

0 100 200 300

0

2

Va
lu

e

iTransformer 168-168

History
Ground Truth
Prediction

0 100 200 300 400 500

0

2

Va
lu

e

iTransformer 168-336

History
Ground Truth
Prediction

0 100 200 300 400 500 600 700 800

0

2

Va
lu

e

iTransformer 168-720
History
Ground Truth
Prediction

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Timestep

0

5

10

Va
lu

e

iTransformer 168-1440
History
Ground Truth
Prediction

Figure 14: Forecasting cases of iTransformer for all tasks in dataset Traffic.
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Figure 15: Forecasting cases of TPGN for all tasks in dataset ETTh1.
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Figure 16: Forecasting cases of TimeMixer for all tasks in dataset ETTh1.
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Figure 17: Forecasting cases of FITS for all tasks in dataset ETTh1.
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Figure 18: Forecasting cases of TPGN for all tasks in dataset ETTh2.
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Figure 19: Forecasting cases of WITRAN for all tasks in dataset ETTh2.
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Figure 20: Forecasting cases of iTransformer for all tasks in dataset ETTh2.
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Figure 21: Forecasting cases of TPGN for all tasks in dataset Weather.
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Figure 22: Forecasting cases of WITRAN for all tasks in dataset Weather.
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Figure 23: Forecasting cases of Basisformer for all tasks in dataset Weather.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
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dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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to reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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