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Abstract—Large language models (LLMs) are increasingly
used to extract clinical information from unstructured text,
but systematic methods for optimizing their performance in
specialized medical domains are not well established. Reflection,
a prompt-based approach to improve performance, has shown
promise in various settings but is usually applied to single
instances rather than generalized solutions. This study explores
whether open-source LLMs can consolidate multiple successful
reflections into reusable prompt components for clinical text
extraction tasks. We tested six LLMs on clinical notes describing
endovascular thrombectomy procedures, each model extracting
seven key variables. For incorrect outputs, up to five rounds of
self-reflection were triggered, and three strategies were compared
for guiding these reflections. Corrective reflections were then
consolidated into generalized prompt components. While all
models improved on individual instances following reflection,
consolidation of reflections led to mixed results: some models
showed modest overall improvement, while others did not. The
process of summarizing effective reflections often resulted in the
loss of essential details, limiting the benefits of prompt consol-
idation. These findings suggest that while reflection aids self-
correction, effective autonomous generalization remains challeng-
ing and calls for structured human-in-the-loop oversight during
the consolidation phase to preserve critical clinical information
during prompt optimization.

Index Terms—Stroke Surgery; Large language models;
Human-in-the-loop; Information extraction; Prompt engineering

I. INTRODUCTION

The field of natural language processing has experienced
transformative advancements with the advent of LLMs. These
models exhibit remarkable capabilities in generating human-
like text, comprehending complex medical instructions, and
performing diverse healthcare tasks. Nevertheless, extracting
structured, clinically relevant information from unstructured
medical text remains challenging, especially in high-stakes
applications where precision and reliability are paramount.
LLMs have been extensively investigated for various medi-
cal tasks, including information extraction [1]-[3], discharge
summary generation [4], patient-trial matching [5], and clinical
text augmentation [6]. Researchers have pursued fine-tuning

Corresponding author: rosachan@cityu.edu.hk

1 Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong
Kong SAR

2 Department of Electrical Engineering, The City University of Hong Kong,
Hong Kong SAR

3 Division of Neurology, Department of Medicine and Therapeutics, The
Chinese University of Hong Kong, Hong Kong SAR

4 Department of Neurology, Linyi People’s Hospital, China

This work was supported fully by InnoHK Project at Hong Kong Centre
for Cerebro-cardiovascular Health Engineering (COCHE).

and prompt optimization techniques to enhance LLMs’ per-
formance in specialized medical tasks [7]-[10].

Recent studies demonstrate that inference-time compute can
significantly enhance LLMs’ performance, often surpassing
the gains achieved by scaling model size alone [11]-[13].
Methods such as chain-of-thought prompting [14], episodic
memory-based reflection [15], and self-consistency [16]-[18]
have proven effective for reasoning-intensive tasks. Reflective
prompting [19], where LLMs identify and correct their own
errors, has similarly improved clinical question answering in
the medical domain [20]-[22].

Clinical information extraction requires adaptability to vari-
ations in documentation styles, medical practices, and regional
standards [23], [24]. For instance, anticoagulant prescriptions
may differ by region or institution, and definitions such as obe-
sity also vary (e.g. BMI >30 in the West, >25 in East Asia).
Such variability makes this an ideal use case for reflection-
based methods, which can adapt prompts dynamically at
inference time. However, most studies to date have focused on
improving individual instances rather than enabling LLMs to
systematically learn from past errors to enhance performance
across similar cases.

One reason could be that current prompt optimization
techniques are often evaluated on broad clinical benchmarks
such as MedQA [25], MedMCQA [26], and PubMedQA
[27]. While these datasets provide medical questions covering
broad topics [28], their diversity can obscure domain-specific
complexities, making it difficult to distill reusable insights
across cases that may be only loosely related. In contrast,
we employ a homogeneous dataset derived from clinical notes
on endovascular thrombectomy procedures. Instead of viewing
self-reflection as merely a tool for correcting individual errors,
we examine the LLMs’ capacity to generalize insights from
prior reflections and apply them to new but contextually
similar cases. This approach may be especially valuable in
scenarios where high-quality annotated data is scarce and
insufficient for fine-tuning. Homogeneity is key to testing
the hypothesis that error patterns will be recurrent and thus
amenable to consolidated correction strategies.

The contributions of this work extend beyond performance
evaluation to provide fundamental insights into LLM reason-
ing capabilities. First, we present a reflection-based framework
for iterative prompt refinement using LLMs, grounded in
the hypothesis that insights from earlier reflections can be
consolidated to guide future predictions. Second, we system-
atically evaluate the effectiveness of this approach using a



homogeneous dataset. While our framework shows that LLMs
can self-correct through reflection on individual cases, our
findings also reveal key limitations in the LLM’s autonomous
ability to generalize such reflections. To address this chal-
lenge, we advocate for a human-in-the-loop refinement process
during the consolidation phase, where clinical expertise can
help preserve essential insights and ensure the reliability of
reflection-based prompt optimization.

II. METHOD
A. Dataset

This dataset consists of 115 real-world clinical notes doc-
umenting endovascular thrombectomy procedures for acute
ischemic stroke [29]. Each note captures patient presentations,
preoperative assessments (including NIHSS scores and imag-
ing findings), procedural steps (such as sedation protocols,
vascular access, device selection, microcatheter guidance, stent
retriever deployment, and aspiration technique). These notes
also document intraoperative clinical decisions (e.g., switch-
ing catheters when encountering high-resistance thrombi) and
acute complications or findings (e.g., minimal hemorrhage,
reperfusion injury). Detailed timelines are provided for each
stage, including insertion of guiding catheters, microcatheters,
stent deployment, clot retrieval, and final revascularization
outcomes (mTICI scores). Furthermore, the notes include
post-operative management plans, such as blood pressure
control, repeat head CT scans, and instructions for possible
anticoagulation therapy, offering insight into routine clinical
practice. The homogeneity of these notes provides a controlled
environment for isolating how LLMs learn from reflection,
which would be difficult to assess in more diverse clinical
corpora. The LLMs were tasked with extracting the clinical
variables listed in Table I.

All clinical annotations in this dataset were performed
by clinical staff under the supervision of a Specialist in
Neurology. The notes have been fully deidentified to ensure
compliance with privacy and ethical standards. The data col-
lection protocol was reviewed and approved by the institutional
research ethics committee, approval number YX200651. Writ-
ten informed consent was obtained from all participants prior
to their inclusion in the study.

The basic prompt used in our study as baseline included
variable definitions, task description, two-shot examples, clin-
ical note, and an output template. The LLMs were prompted
to follow a chain-of-thought approach. The two-shot examples
were generated using ChatGPT-40 and contain both the correct
answers and reasoning steps, which were validated by clinical
staff. Example of the standard prompt is shown in textbox 1.

B. Reflection framework

Many widely used medical benchmarks, such as MedQA,
span broad medical domains where insights from one case
rarely generalizable to another. In contrast, our task focuses
on extracting a fixed set of variables from clinical notes
that share structural and contextual similarities. Because of
this consistency, extraction errors tend to follow recurring

Textbox 1: Standard prompt example

For First pass method:

You are provided with clinical notes detailing an Endovascular Thrombec-
tomy procedure. Your task is to extract the **“first pass method”** used
for thrombus removal.

The possible methods are:

- Stentriever

- Aspiration

- Solumbra (Stentriever together with Aspiration without indication of
failure in between)

Based on your analysis, specify the first pass method as either Aspiration,
Stentriever, or Solumbra.

Output your final answer in this form **Final answer: [[Aspiration or
Stentriever or Solumbra]]**

Example 1: [Example 1 insert]

Example 2: [Example 2 insert]

Now, analyze the following clinical notes and determine the “first pass
method” used for thrombus removal, following the instructions above.
Clinical Note: [clinical note insert]

patterns, enabling systematic improvement through reusable
insights. This assumption underpins our method: instead of
treating each reflection as a standalone process, we consolidate
multiple reflection outputs into an optimized supporting state-
ment that can guide future extractions more effectively. This
process is conducted separately for each variable, allowing
optimizations to address variable-specific error patterns.

In this study, a case refers to the process of extracting
a single variable from a clinical note. In our method, self-
reflection is applied to incorrect extractions from baseline
prompts. To guide the reflection process, three distinct types
of information were provided separately: (1) Ground Truth
Reflection (GTR): Only the annotated ground truth answer
was provided for the reflection. This approach is the least
resource-intensive, as the answers are already available in the
annotations. However, it introduces a risk of answer leakage,
where the model may produce the right answer simply due to
exposure, rather than through a meaningful reflection on its
reasoning. (2) Chain-of-Thought with Answer (CoTA): the
model is shown an output from another LLM that includes
both a reasoning path and the correct answer. This method
aims to improve reflection quality by exposing the model
to accurate reasoning patterns. (3) Chain-of-Thought Only
(CoTO): Similar to CoTA but with the final correct answer
masked. This aims to minimize the risk of answer leakage
while still leveraging the reasoning path to enhance the reflec-
tion process.

The reflection process is repeated up to five times or until
the correct answer is obtained. This limit was set based on
preliminary observations that showed diminishing returns and
a higher likelihood of repetitive, uninformative reflections be-
yond five attempts. We use a temperature of 0.0 for extraction
to ensure deterministic output, and 0.8 for self-reflection to
encourage diverse, creative suggestions. This setup increases
the likelihood of generating alternative insights when earlier
attempts fail. The prompt templates used for reflection and
consolidation are shown in textbox 2, 3.

These reflection outputs are summarized and consolidated
into an optimized supporting statement to improve future



TABLE I
DESCRIPTION OF THE SEVEN CLINICAL VARIABLES EXTRACTED FROM ENDOVASCULAR THROMBECTOMY NOTES.

Variable Description Answer Type

Anesthesia Type of anesthesia used Local, General

First pass method Technique used during the first attempt to remove the clot Stentriever, Aspiration, Solumbra
Number of passes Total attempts made to retrieve the clot Numerical

Rescue method Backup technique used if standard clot removal fails N/A, Stentriever, Aspiration, Solumbra
Tandem lesions Whether the patient had both extracranial and intracranial arterial blockages Yes, No

Angioplasty Whether balloon dilation was used to treat a vessel during the procedure Yes, No

mTICI Score measuring blood flow restoration after thrombectomy 0, 1, 2a, 2b, 2¢, 3

Textbox 2: Reflection Prompt

This is attempt # at improving the original prompt.

Your task is to:

1. Re-examine the original prompt in light of the previous reflections and
the latest incorrect response.

2. Propose new, more creative improvements or refinements to the prompt
that have not been suggested before.

3. Provide concise, actionable suggestions in point form for refining the
prompt—avoid suggesting a fully rewritten prompt.

Example Output template:

<<Explanation:>>

Supporting statements:

* Here is a clarification of concept “A” . . .

Original prompt:

[original prompt insert]

Iteration number: [iteration number insert]

Previous reflections:

[previous reflections insert]

Latest incorrect response:

[incorrect response insert]

Correct answer:

[correct answer insert]

Textbox 3: Consolidation Prompt

You have been given several reflection outputs, each analyzing errors made
by an LLM in response to a particular prompt. Your task is to:

1. Review all of the provided reflection outputs.

2. Identify and list the distinct types of errors noted across the reflections.
3. Summarize these errors in a clear, point-form format. Be concise in your
response; however, capture all of the essential information.

4. Where available, include any provided ‘“‘supporting statements” that
guide the LLM toward correcting these errors. Integrate or reference these
supporting statements in a cohesive manner.

Then separately provide a refined summary that can be added to the original
prompt to improve the overall performance after the tag below.
[refined Summary]

Reflection outputs:

[reflection outputs insert]

extractions. Due to context length constraints (e.g., Gemma?2’s
8k token limit), we cap the consolidation set at 10 reflections,
a number determined to balance the need for diverse insights
against the context length limitations of the tested models. This
is a practical necessity: certain variables can produce up to 50
incorrect cases, with each reflection spanning several hundred
tokens. Without summarization, the input would soon exceed
the context window. The key motivation for leveraging LLM’s
summarization ability is that across n reflections, there may
be anywhere from 1 to » distinct error types, some recurring,
others entirely unique. Summarization is therefore essential
for identifying and prioritizing the most informative error
patterns, ensuring that the consolidated statement provides
targeted guidance for future extractions.

The workflow for integrating self-reflection and consolida-
tion is illustrated in Fig. 1. The key steps are as follows:

1) The standard prompt utilizes chain-of-thought reasoning
and two-shot examples with corresponding intermediate
reasoning steps.

2) The standard prompt is applied to each clinical note
individually.

3) Cases in which the LLM failed to extract the correct
answer were flagged for self-reflection. We tested three
types of guidance: (1) annotated ground truth (GTR),
(2) a correct chain-of-thought and final answer generated
by another LLM (CoTA), and (3) CoTA with the final
answer masked (CoTO).

4) Using the provided guidance, the LLM generates a
reflection.

5) The reflection is inserted into the original prompt and
used to retry the same case.

6) If the reflection does not yield the correct answer, it
is retained to inform subsequent reflection attempts. Up
to five attempts are made, with the goal of avoiding
repeated errors and encouraging alternative reasoning
paths.

7) Only the final reflection that leads to a correct extraction
is kept for consolidation.

8) For each variable, up to 10 successful reflections are
consolidated into a single supporting statement, which
is added to the original prompt. This enhanced prompt
is then re-applied to all clinical notes to assess its effect
on extraction performance.

While commercial models often achieve state-of-the-art
results [30], their use in healthcare faces significant practi-
cal barriers. Patient data privacy regulations often prohibit
transmitting clinical notes to external APIs, and per-token
pricing models can become prohibitive for large-scale extrac-
tion tasks. Open-source LLMs, particularly those in the 7B-
72B parameter range, support local deployment, allow more
control, and can be fine-tuned for specific domains. For our
experiments, we used models from Llama-3 (8B, 70B) [31],
Gemma-2 (9B, 27B) [32], and Qwen2.5 (7B, 72B) [33]. Al-
though these models may exhibit lower baseline performance
compared to their commercial counterparts, they represent the
realistic deployment scenario. Our study therefore focuses on
these practically deployable models, as understanding their
limitations and optimization potential is crucial for real-world
clinical applications.
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Overview of the self-reflection framework for clinical information extraction. Three reflection guidance types (GTR, CoTA, CoTO) are tested to

evaluate their effect on LLM performance. The process allows up to five iterations, with successful reflections consolidated to guide future extractions.

III. RESULT

A. Baseline performance

The baseline performance of the LLMs on each variable is
shown in Table II. As expected, larger models within the same
foundation model family tend to perform better. Qwen2.5-
72B outperformed the other models overall. The models show
strong performance on variables such as anesthesia, angio-
plasty, and mTICI, with F1 scores ranging from 83.1 to 97.4.
In contrast, variables related to the thrombus removal process,
such as “first pass method”, “number of passes”, and “rescue
method” require more complex reasoning. For example, if both
a stentriever and aspiration are used during a procedure, the
model must determine whether they were applied sequentially
(counting as two separate passes) or in combination (counted
as a single Solumbra attempt). Performance on these variables
shows greater variation, with accuracy ranging from 0.3 to 0.9.

B. Effect of reflection

Figure 2 presents the performance of each model in cor-
recting extraction errors after one and five iterations of self-
reflection (up to step 6 of the workflow). All models benefit
from self-reflection, with a clear increase in resolved cases
after five rounds. For example, Llama-3-8B improves from
49.1% to 70.0%, a 20.9% gain. In contrast, Qwen2.5-72B sees
a smaller rise from 54.6% to 63.0%, likely due to its already
high baseline accuracy.

A consistent trend emerges across all six models: the GTR
approach yields the highest correction rates, followed by
CoTA, with CoTO performing worst. This pattern suggests
that access to the final correct answer during reflection, as
in GTR and CoTA, enhances correction effectiveness, though
potentially at the cost of answer leakage. The weaker per-
formance of CoTO indicates that while reasoning paths are
valuable, the absence of the answer may limit their utility in
guiding accurate reflection.

Next, we evaluate how consolidating multiple reflections
into a generalized prompt affects overall performance. The
goal here is not to improve a single case, but to derive trans-
ferable insights that improve extraction performance across all
cases for the same variable. Figure 3 presents the overall per-
formance of the proposed reflection algorithm across different
models and guidance strategies.

As shown in the previous section, larger models generally
yield better performance across all three foundational architec-
tures. However, none of the three reflection approaches (GTR,
CoTA, and CoTO) consistently outperform the baseline. Some
modest improvements are observed, particularly with the GTR
approach. For example, Llama-3-8B’s F1 score rises from
66.9% to 72.6%. Similarly, Qwen2.5-7B improves its baseline
F1 from 76.9% to 79.6%. While high-performing models like
Llama-3-70B and Qwen2.5-72B show little to no improvement
or even slight regressions. This suggests that the process of
LLM-driven consolidation, as implemented, may introduce its
own errors or dilute the specific insights that were effective
at the individual reflection level. Moreover, there is no clear
ranking among the three reflection strategies. Although GTR
achieves the highest performance gains in some models, it
does not consistently surpass CoTA or CoTO.

Our results on individual reflections suggest that LLMs can
correct their own errors through self-reflection. However, the
insights gained at this level are not well maintained during
consolidation. This reveals a fundamental limitation in LLMs’
ability to generalize subtle clinical reasoning across cases,
suggesting that reflection mechanisms may require domain-
specific adaptation rather than generic approaches. These
limitations ultimately constrain the utility of reflection-based
optimization in specialized clinical contexts.

To assess the impact of consolidation, we compared differ-
ences in F1 score across seven extracted variables between
the three reflection approaches and the baseline (Figure 4).
For most variables, especially those with high baseline accu-



TABLE II
BASELINE PERFORMANCE OF EACH LLM IN EXTRACTING THE SEVEN CLINICAL VARIABLES

Macro F1 Score Llama-3-8B  Llama-3-70B  Gemma-2-9B  Gemma-2-27B  Qwen2.5-7B  Qwen2.5-72B
Anesthesia 83.1 94.1 90.4 89.6 93.3 94.1
First pass method 31.8 75.6 71.2 77.6 64.0 88.0
Number of passes 57.7 85.6 85.4 85.5 79.7 90.4
Rescue method 37.9 51.7 37.4 37.3 50.5 78.2
Tandem lesions 75.7 78.0 73.1 69.5 70.4 73.6
Angioplasty 95.2 97.4 95.6 94.8 93.9 93.0
mTICI 86.6 84.8 86.4 85.2 86.4 85.2
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Fig. 2. Percentage of incorrect extractions successfully corrected after one and five iterations of self-reflection across different models and reflection approaches

(GTR, CoTA, CoTO).
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Fig. 3. Comparison of overall model performance (F1 score) across baseline prompting and three reflection approaches (GTR, CoTA, CoTO).

racy like 'mTICI’ and ’Angioplasty’, F1 differences remained
within a few percentage points, indicating the LLMs’ robust-
ness in extracting these terms. In some cases, the difference
was exactly 0%, which corresponds to the models failed to
correct any of the original errors in the individual reflection
stage. Notably, within the same model, all three reflection
approaches tended to show consistent effects, either all positive
or all negative, likely because they shared a similar set of cases
for consolidation.

To understand why consolidation sometimes degrades per-
formance, we examined the “Anesthesia” variable as an ex-
ample. This variable is relatively simple compared to others,
with a baseline accuracy of roughly 90% across models. Under
the GTR approach, Gemma2-9b’s performance declined post-
consolidation, with 25 out of 30 new errors misclassifying
“local anesthesia” as “general anesthesia.” During individ-
ual reflection, when the correct annotation was provided,
the LLM correctly identified that “propofol in combination
with dexmedetomidine used for intravenous basal anesthesia”
describes a form of sedation rather than general anesthesia.
When this reflection statement was incorporated into the
standard prompt, the LLM successfully produced the correct

answer. However, in the consolidation, this insight was reduced
to: “The prompt should clearly define sedation and general
anesthesia or provide additional context to prevent misinterpre-
tations.” This demonstrates a clear instance where the LLM’s
summarization for consolidation led to an over-generalization,
losing the specific, actionable detail from the successful in-
dividual reflection. Once this more generic guidance was
applied across the dataset, the model failed to consistently
distinguish between sedation and general anesthesia in similar
notes. It repeatedly defaulted to “general anesthesia” whenever
sedatives were mentioned together with local anesthesia. This
example illustrates the challenge of encoding fine-grained
domain knowledge during prompt consolidation and reinforces
the need for expert oversight to prevent loss of essential details
during optimization.

While consolidation sometimes degraded performance, it
could also lead to significant improvements. A notable success
was observed for the variable first pass method using Llama-3-
8B. In the baseline setting, the model correctly identified only
35 out of 115 cases, with a particularly poor performance on
Solumbra, correctly classified in only 17 out of 74 instances.
After applying GTR-based reflection consolidation, accuracy



Model Variable GTR [ CoTA [ CoTO
Anesthesia 5.9% -1.6% 1.5%

First pass method 36.3% 35.1% 27.1%

Number of passes -10.4% -8.7% 2.6%

Llama-3-8B Rescue method 9.8% 6.9% 11.2%
Tandem lesions 1.7% -7.8% -25.9%

Angioplasty -0.4% -5.6% -36.5%

mTICI -2.8% -1.1% -0.3%

Anesthesia -0.6% -1.0% -1.0%

First pass method -13.6% 3.7% 3.9%

Number of passes 2.7% -4.6% -4.2%

Llama-3-70B Rescue method 8.7% -5.3% 6.0%
Tandem lesions 0.4% -6.6% -5.1%

Angioplasty 0.9% 0.0% 0.9%

mTICI 0.8% 0.0% 0.7%

Anesthesia -14.7% 0.8% -10.1%

First pass method -6.6% 4.6% 5.9%

Number of passes -1.3% -1.4% -3.6%

Gemma-2-9b  |Rescue method 4.3% 12.9% 9.5%
Tandem lesions -2.8% -0.5% 0.6%

Angioplasty -0.1% 0.9% 0.9%

mTIC| -0.5% -0.8% 1.7%

Anesthesia 3.5% 4.5% 3.9%

First pass method -15.6% 1.3% -0.5%

Number of passes -8.4% -5.7% -1.1%

Gemma-2-27b |Rescue method 22.2% 21.6% 2.3%
Tandem lesions -12.2% -0.7% -0.1%

Angioplasty 0.9% 2.6% 0.0%

mTIC| -0.6% 0.5% 2.5%

Anesthesia -2.3% -4.3% -0.2%

First pass method 9.0% 8.4% 3.6%

Number of passes 3.0% 3.0% -8.7%

Qwen2.5-7B Rescue method 6.0% -0.2% -4.1%
Tandem lesions 1.7% 1.4% -1.1%

Angioplasty 1.8% 1.8% -1.7%

mTIC| -1.3% -0.8% -1.3%

Anesthesia 0.0% 0.0% 0.0%

First pass method -2.0% -3.0% -1.7%
Number of passes -17.7% -3.1% -14.9%
Qwen2.5-72B |Rescue method -5.0% -16.4% -18.2%
Tandem lesions 2.4% 6.8% 3.2%

Angioplasty 3.6% 5.3% 4.4%

mTICI 2.6% 0.9% -1.8%

Fig. 4. Variable-level F1 score differences after applying three reflection
consolidation strategies compared to the baseline prompt.

on Solumbra cases rose to 71 out of 74, illustrating the
potential of targeted reflection generalization when it aligns
well with model weaknesses.

IV. DISCUSSION

As healthcare increasingly depends on structured data ex-
traction from clinical documentation, our study highlights
key challenges in building self-improving extraction systems.
To explore this, we introduce a domain-specific dataset of
115 endovascular thrombectomy notes and evaluate reflection-
based prompting strategies tailored to specialized clinical
concepts. Our results demonstrate that LLMs can identify
and correct errors through self-reflection when given sufficient
information. However, we encountered significant limitations
in the consolidation stage, where reflections were summarized
into a generalized statement. This process frequently diluted
key clinical insights, diminishing the effectiveness of reflection
generalization. To address this issue, integrating a human-

in-the-loop (HITL) [34] could help retain clinically relevant
information. While the necessity of HITL oversight in medical
Al is well-established, our main contribution is in empirically
identifying where current LLM-based self-correction and gen-
eralization fail in clinical information extraction settings. This
finding pinpoints consolidation as a critical workflow stage
where targeted human oversight remains essential, providing
actionable insights for designing future clinical NLP systems.

A practical HITL extension to our framework would intro-
duce an expert review step following the eight-point reflection
process described in the Methods section. Specifically, after
the LLM consolidates successful reflections into a supporting
statement for each variable (Step 8), a human expert would
review this consolidated output to ensure preservation of
key clinical details and reasoning. The reviewer may edit or
annotate statements as needed before incorporation into en-
hanced prompts. For example, if a consolidation ambiguously
distinguishes between “sedation” and “general anesthesia,” the
reviewer could refine the statement to provide explicit defini-
tions and clarify clinically relevant scenarios. As this oversight
targets only a small number of consolidated statements per
variable, the added human effort remains modest. Such hybrid
pipelines promise better alignment with clinical standards,
particularly in specialized domains like thrombectomy, where
accurate generalization requires both contextual understanding
and domain sensitivity.

In terms of computation cost, for each variable, we allowed
up to 10 successful reflections, each taking up to 5 attempts
(reflection generation and validation). This results in up to 100
reflection-related queries per variable, plus one consolidation
query, about 101 queries per variable during consolidation.
After this, inference on new cases only needs adding the
consolidated supporting statement to the prompt, so the per-
case cost is only slightly higher. In our approach, most of the
extra token usage happens only during the initial consolidation
phase. However, the gains from reflection-based consolidation
were modest and inconsistent in our results, so the cost-benefit
tradeoff is not clearly favorable. Further work is needed to
improve efficiency and effectiveness before these pipelines can
be widely adopted in clinical practice.

Overall, our findings suggest that self-reflection alone is
insufficient for reliable knowledge distillation in high-stakes
clinical domains. Human-in-the-loop oversight is not only a
safety mechanism but an essential component for translating
LLM reasoning into trustworthy clinical tools. Future research
could also explore alternative mechanisms for consolidation
beyond LLM-driven summarization, such as structured knowl-
edge extraction from reflections or template-based synthesis
guided by human experts, to better preserve critical details.

We chose summarization as our consolidation method be-
cause it is intuitive, widely used, and requires minimal an-
notation, providing a straightforward baseline to evaluate an
LLM’s generalization capability. More sophisticated methods,
such as rule induction, error clustering, or dynamic example
creation, might offer deeper insights but require detailed
intermediate annotations (e.g., explicit reasoning chains). Our



current dataset only include final answers, which limits our
ability to develop and systematically evaluate these advanced
strategies. Future studies should incorporate detailed annota-
tions to enable the exploration and comparison of alternative
consolidation techniques.

We acknowledge several methodological limitations. First,
due to the labor-intensive nature of manually reviewing reflec-
tions and the lack of intermediate annotations in our dataset,
we could not directly evaluate and select truly informative re-
flections. Consequently, reflections were deemed successful”
solely based on achieving correct final extractions. Therefore,
some successful” reflections may be minimally informative.

Second, we were similarly unable to explicitly evaluate
the risk of answer leakage. Resource limitations prevented
extensive manual review across numerous reflections, forcing
reliance on indirect assessments through the final accuracy.
These results cannot fully isolate answer leakage from other
factors, such as generalization limitations. Future research
should incorporate explicit qualitative analysis focusing on
answer leakage.

Third, our two-shot examples were generated using a high-
performance proprietary model (ChatGPT-40). While validated
by clinicians, this approach may introduce a stylistic bias in
the prompts, and the performance of the tested open-source
models could potentially differ if the examples were generated
by the models themselves.
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