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Abstract

What representation do deep neural networks learn? How similar are images
to each other for neural networks? Despite the overwhelming success of
deep learning methods key questions about their internal workings still
remain largely unanswered, due to their internal high dimensionality and
complexity. To address this, one approach is to measure the similarity of
activation responses to various inputs. Representational Similarity Matrices
(RSMs) distill this similarity into scalar values for each input pair. These
matrices encapsulate the entire similarity structure of a system, indicating
which input leads to similar responses. While the similarity between
images is ambiguous, we argue that the spatial location of semantic objects
does neither influence human perception nor deep learning classifiers.
Thus this should be reflected in the definition of similarity between image
responses for computer vision systems. Revisiting the established similarity
calculations for RSMs we expose their sensitivity to spatial alignment. In
this paper, we propose to solve this through semantic RSMs, which are
invariant to spatial permutation. We measure semantic similarity between
input responses by formulating it as a set-matching problem. Further, we
quantify the superiority of semantic RSMs over spatio-semantic RSMs through
image retrieval and by comparing the similarity between representations to
the similarity between predicted class probabilities.

1 Introduction

Deep neural networks are trained to extract powerful feature representations for a wide
range of downstream tasks. Despite this, their inner workings are highly-complex, making
understanding how networks solve tasks and what they learn challenging. To obtain a better
understanding of these fundamental questions, researchers in the fields of neuroscience,
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cognitive science, and machine learning independently developed various methods to
interpret and relate representations [29].
In the realm of machine learning, a lot of prior-methods have been proposed to meaningfully
measure the similarity between intermediate representations of ANNs [15, 31, 25, 19, 12].
Klabunde et al. [10] provides a comprehensive summary and categorizes them into
measures based on a) Canonical Correlation Analysis (CCA) [25, 19] b) Alignment measures
c) Representational Similarity Matrices (RSMs) d) Nearest Neighbors e) Topologies and
f) Descriptive Statistics.
Of all these methods, Representational Similarity Matrix (RSM) [13] based measures
have enjoyed the most attention over the last years. RSMs consist of sample-to-sample
comparison, measuring the similarity between the (intermediate) responses of the same
network to two different samples. Based on many such comparisons, the RSM represents
the similarity structure of what a model considers similar. This representation of a system’s
behavior reduces the highly-dimensional, complex internal structure, that the model of
interest may possess, to a N ×N Matrix for N samples. It enables the comparison of the
similarity structure of any system, as long as one can input the same samples and measure
the similarity between the responses.
In the machine learning domain, this concept was introduced by Kornblith et al. [12] in
conjunction with Centered Kernel Alignment (CKA) to compare the similarity between
RSMs of different layers within a model or across models. CKA superseded previously
popular Canonical Correlation Analysis (CCA) metrics [25, 19], since they need a vast
amount of samples to measure similarity. Consequently, CKA was used in various
applications, to measure the similarity between Transformers and CNNs [26] or wide and
deep networks [21] and to understand catastrophic forgetting [27] or transfer learning [20]
to name a few.

In this paper, we revisit the key component of the most used similarity measure in the field:
Representational Similarity Matrices and how they are constructed in the vision domain.
The key contributions of our work are summarized as follows:

• We highlight that current RSMs are constructed in a way that couples localization
and semantic information, which constraints one only to measure similarity if,
spatial and semantic information aligns between two samples.

• To address this issue we propose semantic RSMs, which are invariant to spatial
permutation and exclusively measure semantic similarity, by formulating it as a
set-matching problem.

• We show that the inter-sample similarity of semantic RSMs leads to improved
retrieval performance and better reflects the similarity between representations of
classifiers and their predictive behavior.

• Moreover, due to the computational complexity of the proposed algorithm, we
introduce approximations that significantly reduce computation time.

The Code is available here.

2 Representational Similarity

Formalization To establish the concept of representational similarity in the context of
computer vision, we provide a brief formalization of the problem. Let x ∈ {x0, . . . , xN}
denote the input samples for which we collect input responses Z1 ∈ {z1,0, . . . , z1,N} and
Z2, which we call representations. The representations can take different shapes, with
ZCNN ∈ RN×C×W×H denoting the responses of a CNN with C channels and a spatial extent
of W,H or ZViT ∈ RN×D×T denoting the responses of a ViT with depth D and tokens
T . For the purpose of simplification and without loss of generality, we unify the spatial
dimensions W,H for CNNs and T for ViTs into a joint spatial dimension S, resulting in
Z ∈ RN×C×S . Given representations Z, we can construct RSMs K,L ∈ RN×N , with values
Kij = k(z1,i, z1,j) and Lij = l(z2,i, z2,j) measuring how similar the representation zi is
to zj given the kernels k or l. The kernels define the measure of similarity between the
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Figure 1: Current spatio-semantic RSMs couple semantic similarity with spatial alignment.
Our proposal focuses solely on measuring semantic similarity. We achieve this by deter-
mining the optimal permutation between two representations and introducing sample-wise
permutation invariance.

representation vectors and hence play an important role. We introduce an exemplary kernel
in Section 3 and all kernels used in this paper with some properties in Appendix A.
With the two RSMs K and L at hand, it is possible to compare the similarity structure
between the two models. As introduced in Kornblith et al. [12] one can use the Hilbert-
Schmidt independence criterion (HSIC) [5, 28] to calculate the level of independence through
Centered Kernel Alignment, providing a measure of similarity of the two representations Z1

and Z2 with H denoting the centering matrix.

HSIC(K,L) =
1

(n− 1)2
tr (KHLH) (1)

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(2)

Alternatively, a variety of different measures based on RSMs are possible for which we
refer to Section 3.3 of Klabunde et al. [10]. As highlighted above, the similarity calculation
based on RSMs is a two-step process with the first being the calculation of the RSMs and
the latter being the comparison of the RSMs. In this paper, we focus on the first step, by
quantifying the importance of disentangling semantic similarity from spatial alignment.
While not the focus of this paper, we provide qualitative examples of the downstream effect
on CKA measures in Appendix G.

3 The Semantic Representational Similarity Matrix

Representational Similarity Matrices (RSMs) are designed to reflect the system behavior
of interest. The RSM K, originally introduced by Kriegeskorte et al. [13], represents the
similarity structure of a system given a set of inputs x ∈ {x0, . . . xN}. Each value Kij in K
quantifies how similar the responses of two inputs zi and zj are to each other. The definition
of what symmetries between representations similarity measures should be invariant to is a
central point of debate. Previous work proposed permutation invariance [15], invariance to
orthogonal transformations [12], or invariances to invertible linear transformations [25, 19].
While arguments for any of these invariances are valid, we believe that an important
aspect has been neglected in the calculation of RSMs: The spatial alignment between the
representations!

The dependency on spatial alignment Revisiting the structure of representations of a
CNN, channels C correspond to semantic concepts while the spatial position corresponds
to where the semantic concept is localized in the input image [34]. Consequently, one can
reformulate the representation zi of a sample xi to be fully defined by a set of semantic
concept vectors v, one for each spatial location S: zi = {v0, . . . ,vS} with v ∈ RC . In the
case of linear CKA [12], the RSMs are then calculated, between semantic concept vectors
at the same spatial location. For instance, when employing the linear kernel Kij can be
expressed as:

Kij =
∑
s

⟨vz1,s,vz2,s⟩ (3)
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This formulation emphasizes the coupling of semantic similarity and localization during
similarity calculation, which we term as spatio-semantic RSMs. This coupling can lead to
issues, e.g. when comparing an image to a translated version of itself. Due to the quasi
translation-equivariant nature of CNNs3 semantic vectors are translated similarly, changing
the alignment of pairs of v, leading to a low perceived similarity despite highly similar
semantic vectors. This issue is visualized in a small toy example in Fig. 1

3.1 Decoupling Localization and Semantic Content

As shown above, current RSMs compare different input samples without accounting for
the lack of spatial alignment. Previous work of Williams et al. [32] recognized this and
introduced translation invariance to RSMs by finding the optimal translation a, b of the
representations z′j = {v0+a,0+b, . . . ,vw+a,h+b} to maximize similarity Kij maxa,b = ⟨zi, z′j⟩
through circular shifts.
While this is an improvement to no spatial alignment and emulates a CNN’s inherent
translation equivariance, we argue that the measure of representational similarity should
not be constrained to what the underlying model is invariant to, but the similarity measure
should be invariant to the possible spatial configurations of semantic features in the input
image.
To motivate this, we propose a thought experiment:
Imagine we have trained a classifier with an augmentation pipeline including rotations.
Given an image and a rotated version of the image, we extract representations z at layer
i once for the normal zi and once for the rotated image zi,rot. Due to the initial rotation,
these representations may differ in earlier layers i, due to the network extracting different
edges and corners. However, if the network successfully learned to become invariant to
the augmentation, it may have learned to map it to the same semantic vector v at a later
layer but at a different spatial location. For such cases, we argue that the similarity between
the two representations should be high. Should the model be sensitive to the rotation, no
semantically similar representations may be expressed at a later layer, which should lead to
a low similarity.
This reasoning can be extended to all kinds of shifts, be they artificial augmentations like
shearing or mirroring or natural variations of the input manifold. Subsequently, we argue
that the similarity measure should be invariant to as many spatial shifts as possible. This
alone allows one to measure the similarity of representations a model is invariant to, be
these learned or designed invariances. Such variable shifts cannot be captured with simple
translation operations.

3.1.1 Introducing permutation invariance

To impose as minimal constraints on spatial structure as possible, we propose to make Kij

invariant to all spatial permutations of the semantic concept vectors v. Formalizing this we
demand that the similarity Kij = k(zi, zj) = k(zi,Pijzj) with Pij ∈ RS×S being a unique
permutation matrix for the pair of zi and zj . To accomplish this, we propose to find the
optimal permutation matrix Pij that maximizes the similarity Kij .

Pij = argmaxP k(zi,Pijzj) (4)

To find the optimal permutation matrix Pij , we decide to use the linear kernel ⟨·, ·⟩ to
maximize both the magnitude of activation and the direction of vectors, as both magnitude
of activation and direction of the vectors matter[12]. This allows us to calculate an affinity
matrix Aij ∈ RS×S measuring the similarity between all concept vectors:

Aij = [vi,0, . . .vi,S ]
⊺[vj,0, . . .vj,S ]. (5)

With this affinity matrix, bipartite set-matching algorithms, such as Hungarian matching,
can be employed to find the optimal permutation matrix Pij that maximizes the inner
product between zi and z′j . Finding all Pij for all pairs i, j and applying the chosen kernel
k yields the semantic RSM. This semantic RSM is invariant to any arbitrary, unique spatial

3The patch embedding can similarly translate semantics to a different position in the sequence.
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Figure 2: Semantic RSMs capture similarity independent of spatial localization, in
contrast to current spatio-semantic RSMs. We utilize Tiny-ImageNet to generate partially
overlapping crops of the same sample (left) and calculate RSMs for a trained ResNet18
model. The plot displays the original spatio-semantic RSMs (middle top) and our proposed
semantic RSMs (middle bottom) across various layers for a single batch. Additionally, the
distribution of similarity values over multiple batches is shown (right). The results indicate
that spatio-semantic RSMs struggle to detect largely identical but translated images, while
semantic RSMs exhibit an enhanced off-diagonal in the RSMs and a significant gap between
distributions. This demonstrates the capability of our method to detect the same semantics
even when translated.

permutation Pij for each pair of representations, and, depending on the choice of kernel
k, invariant to orthogonal transformations U ∈ RC×C along the channel dimension. These
semantic RSMs can be used as a drop-in replacement for any other RSM, e.g. for applications
such as calculating CKA(K,L) to measure the similarity between systems.

Computational Complexity Finding the optimal permutation matrix Pij is NP-hard
and needs to be repeated for each pair of representations zi, zj . With N samples, this
results in N ·(N+1)

2 unique permutations that need to be computed for a semantic RSM. The
overall complexity of bipartite matching algorithms grows with the spatial dimensions
cubed, resulting in O(N2) × O(S3). The outer O(N2) complexity can be parallelized, or
reduced by decreasing the batch size. However, the inner permutation can become time-
consuming, especially with large spatial dimensionality. To address this, we provide various
approximations to reduce the complexity, which are detailed in Section 4.4. For all later
experiments, except the translational toy example, we use the Batch-Optimal approximation
with windows size b 512, with the batch referring to batches of semantic concept vectors
v and not samples. The pseudo-code for calculating semantic RSMs is visualized in the
Appendix under Algorithm 1.

4 Experiments: Semantic vs Spatio-Semantic RSMs

Given the novel permutation-invariant similarity definition, we evaluate the utility of our
semantic RSMs relative to spatio-semantic RSMs for various similarity kernels, architectures,
and tasks. Across all experiments we compare the linear kernel, the radial basis function
(RBF) kernel, and the cosine similarity kernel, see Appendix A for details.
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Figure 3: Relaxing the constraint of spatial alignment leads to better retrieval. We leverage
general feature extractors to embed images of the EgoObjects dataset. We then compare
these embeddings either with or without permutation invariance. PI: Permutation Invariant

4.1 Translation sensitivity

To illustrate the problems of coupling semantic content and localization a toy dataset is
created using 84× 84 pixels large, downsampled images of ImageNet [2]. For each image
two 64× 64 crops are extracted, one from the upper-left and one from the lower-left corner,
resulting in two images that share 44× 64 identical pixels (Fig. 2 left). Ten upper-left and
ten lower-left crops are then used to extract representations of a ResNet18 [7], which are
subsequently used to calculate spatio-semantic and semantic RSMs at different layers of
the architecture (Fig. 2 middle). As kernel, we use the radial basis function, as it provides
bounded similarity values allowing a better visualization.
As expected, the spatio-semantic RSM measures low similarity between pairs of overlapping
crops, due to the semantic concept vectors not aligning. Only in the last layer, after many
pooling operations, the off-diagonal is slightly expressed. Conversely, our semantic RSM
is capable of detecting the high semantic similarity of the partially overlapping crops
throughout the entire depth of the architecture, as evident by the highly similar off-diagonal.
Aggregating the similarity values between partially-overlapping and between different
images across multiple batches, allows us to measure the distribution of similarity values
between overlapping crops, and non-related image comparisons. Throughout the entire
depth of the architecture, the similarity distributions show that our measure better separates
overlapping images from different images. Notably, the similarity distribution in spatio-
semantic RSMs shows a significant overlap of the distributions of partially overlapping
images and non-related images, making differentiation between them difficult (Fig. 2 right).
A similar toy experiment for a ViT-B/16 [4], is provided in Appendix B.

4.2 Similarity-based retrieval

To test the impact of the semantic RSMs in real-world applications, we now investigate
the common task of image retrieval. Each entry in an RSM quantifies a sample-to-sample
similarity value, which can be directly used for retrieval. While not specifically designed for
it, we argue that better retrieval performance reflects a better inter-sample similarity. This
allows us to quantify improvements in the RSM structure. To measure retrieval performance
the EgoObjects dataset [35] is used. It contains frames of video that capture the same scene
from different viewing perspectives and lighting conditions. This results in object centers
being distributed across the extent of the image.
By randomly sampling 2000 query images and 5000 database images from the test set
and using general feature extractors to extract embeddings from them we construct RSMs
that allow us to do retrieval. As feature extractors we use CLIP (ViT/B32) [24], CLIPSeg
(Rd64) [16], DinoV2-Giant [22], SAM (ViT/B32) [9] and BIT-50 [11] and as kernels for
similarity calculation we use the cosine similarity, RBF and the inner product.
For all RSMs, we retrieve the most similar image that is not part of the same video – the same
scene but different conditions are allowed. As multiple objects can be present in each scene,
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Figure 4: Retrieving by permutation invariant similarity returns similar scenes of different
spatial geometry. We visualize the top 3 most similar images according to two exemplary
query images for SAM ViT/B32.

we quantify retrieval performance by the F1-Score, measuring the overlap of annotated
objects between images. Due to the rather complex dataset, we elaborate this in more detail
in Appendix D.1.
Across all architectures and metrics, the inclusion of permutation invariance (PI) for the
similarity calculation improves retrieval performance relative to the non-invariant similarity,
in some cases with a dramatic difference in performance, see Fig. 3. For models designed for
dense downstream tasks like SAM or CLIPSeg, the retrieval performance changes particularly
much, while models with more global reasoning, like BiT improve less, relatively.

Qualitative Similarity Aside from a quantitative comparison, we visualize the most similar
retrieved images for two exemplary queries of SAM in Fig. 4 as case examples.
Left Query: The image displays various utensils scattered on a desk. When retrieving with
the permutation-invariant similarity metric two images of the same scene but a very different
perspective are successfully retrieved as most similar. Retrieving with the non-invariant
similarity metric fails to retrieve similar images, due to lack of spatial alignment of the
semantic concepts. Instead, it retrieves images of a whiteboard, possibly due to its spatial
alignment with the paper on the desk.
Right Query: The image features a blender on a counter. The retrieval based on non-
permutation-invariant similarity fails to retrieve any of the semantically similar scenes and
returns images with a light switch, likely due to the spatial alignment of the light-switch-
looking object to the right of the blender. Contrary, the retrieval based on permutation-
invariant similarity correctly returns the blender in all cases from different perspectives.
Additional qualitative examples are provided in Appendix D.3.
These experiments display clearly, that demanding spatial alignment can be a significant
shortcoming when semantically similar concepts are misaligned. In Fig. 4, the network
learned to represent the objects very similarly, despite a shift in perspective, but due to
the same objects not aligning anymore, spatio-semantic similarity fails to recognize this.
This effect should generalize to other datasets where objects are not heavily centered. For
datasets with heavy object-centric behavior, like ImageNet, this should be less pronounced.
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Table 1: Similarity invariant to spatial permutations is better at predicting if the class
probabilities will be similar. PI: Permutation Invariant

Pearson Correlation ρ
Architectures Cosine Sim. Inner Product RBF

- (ours) PI - (ours) PI - (ours) PI
ResNet18 -0.276 -0.326 -0.259 -0.270 -0.176 -0.199
ResNet50 -0.248 -0.291 -0.243 -0.261 0.040 0.029
ResNet101 -0.192 -0.276 -0.174 -0.240 0.091 0.084
ConvNextV2-Base -0.134 -0.098 -0.132 -0.171 0.117 0.090
ViT-B/16 -0.046 -0.100 -0.045 -0.026 -0.077 -0.122
ViT-L/32 -0.138 -0.188 -0.138 -0.144 -0.134 -0.166
DinoV2-Giant -0.012 -0.044 -0.013 -0.031 -0.008 -0.048

4.3 Output similarity vs Representational Similarity

While the retrieval experiments relate to a rather human notion of similarity, one can raise
the question if semantic RSMs are also better at measuring the similarity for classifiers.
For each pair of samples, we can compare how similar the predicted class probabilities of a
model are and compare this to the representational similarity. A commonly used metric
for this is the Jensen-Shannon Divergence (JSD), which quantifies how dissimilar the two
probability distributions are from one another. More details are provided in Appendix E.
Consequently, we use various classifiers trained to predict ImageNet1k from Huggingface
and compare the Pearson correlation ρ between their JSD and the representational similarity
of their last hidden layer. We chose to use the Pearson correlation, as it allows observing a
direct linear behavior between representational similarity and predictive similarity. Again
we measure semantic similarity and spatio-semantic similarity with different kernels. Due
to JSD measuring dissimilarity, we want the correlation to be as negative as possible. As
models we use multiple ResNets [7], ViTs [4] , a fine-tuned DinoV2 [22] classifier from and a
convnextv2[33] classifier.
The results, displayed in Table 1, show that for almost all architectures and kernels tested, the
permutation invariant similarities are better at capturing the notion of what a classifier deems
similar. While better than the spatio-semantic similarity, overall correlations are generally
low, indicating that either, the similarity metric is confounded by irrelevant representations,
or that the kernels should be improved. Moreover, the RBF kernel sometimes provides a
positive correlation indicating it is unsuitable to predict the similarity of output probabilities,
whereas the Cosine Similarity and the Inner Product both are consistently negative for all
architectures tested.

4.4 Optimizing runtime

Since we find the best possible permutation matrix through linear sum assignment algorithms
that maximize the inner product of two samples, we can guarantee that the Kij,semantic ≥
Kij∀i, j. This provides us with an upper bound of similarity that can be leveraged to
measure how much of the maximally achievable semantic similarity was measured by the
spatio-semantic similarity. Additionally, it can be used as a baseline to estimate the quality
of permutation matrices Pij provided by faster, approximative assignment algorithms.

Decreasing computational complexity Determining the optimal permutation between
samples poses a substantial computational challenge with a complexity of O(S3) for each
of the O(N2) pairs in the same mini-batch, particularly for early layers with large spatial
resolution S. Although, in theory, the calculation of the K matrix needs to be conducted
only once for the desired representations, applying the method to representations with
larger spatial extents becomes impractical with the demands of optimal matching.
To mitigate runtime, two options are available: reducing the batch sizeN to lessen the number
of permutation calculations or decreasing the time spent on finding the permutation. Given
that scenarios like image retrieval often desire larger batches, our focus is on minimizing the
time required to obtain suitable assignments.
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Solving the optimal bipartite matching between semantic concept vectors is equivalent to
the well-known assignment problem [18, 1]. We attempted to find existing approximate
algorithms for this purpose. Unfortunately, most established algorithms primarily focus
on optimal solutions, and existing approximate algorithm implementations, such as those
based on the auction algorithm [6], are not runtime-optimized, often taking longer than
optimal algorithms in our experiments. To enhance computational efficiency nonetheless,
we explored three tailored approximation algorithms:

A) A Greedy breadth-first matching (Greedy)

B) An optimal matching of the TopK values based on their Norm, followed by the
Greedy algorithm for the remaining samples (TopK-Greedy)

C) Optimal matching of smaller batches, with samples batched by their Norm (Batch-
Optimal)

For explicit details on the approximation algorithms, we refer to Appendix F.
We conducted a comprehensive comparison between the approximate algorithms and the
optimal algorithm. We compare their runtime per sample and the quality of matches,
quantified by the average relative similarity k

koptimal
. The evaluation utilized representations

from a ResNet18 on TinyImageNet, as illustrated in Fig. 5.
It can be seen that the measured spatio-semantic similarity for TinyImageNet samples
are, on average, 30% lower with layers of higher spatial resolution exceeding 40%. This
suggests a notable misalignment of semantic concept vectors. Notably, the Batch-Optimal
approximation stands out as a reliable approximation for optimal matching. The fastest of
the Batch-Optimal approximation methods shows < 8% error while improving run-time ×36
relative to the fastest optimal algorithm for spatial extent 4096, while no spatial alignment
shows 42% deviation from the optimal matching. Moreover, we highlight the time vs
accuracy trade-off of the different optimal and approximate algorithms in Appendix F.1.
Furthermore, it can be seen that the changes between spatio-semantic and semantic RSMs
are anisotropic, as highlighted in Fig. 6, indicating scale invariant downstream applications
may be influenced.

5 Discussion, Limitations, and Conclusion

The concept of Representational Similarity Matrices (RSMs) is a powerful tool to represent
the similarity structure of complex systems. In this paper we revisit the construction of such
RSMs for neural networks of the vision domain, question the current state, and propose
semantic RSMs, warranting discussion.
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Spatio-semantic coupling Being aware that current, spatio-semantic RSMs demand se-
mantic concepts to be aligned is highly relevant to understand what RSMs are sensitive to.
Previous work [32] identified this shortcoming and proposed translation invariance, partially
addressing this issue. We argue translation invariance is insufficient, since models may learn
invariances during training, which the translation invariant metric would not be sensitive
to. Subsequently, we propose a new – spatially permutation invariant – similarity measure
between samples that allows the detection of similarity whenever a model expresses similar
semantic vectors in its representations, irrespective of spatial geometry. To highlight the
benefits of our similarity, we propose that better similarity measures should allow more
accurate retrieval when comparing last-layer representations and should allow better predic-
tions about the similarity of class probabilities of a classifier. However, we acknowledge
certain limitations in our current evaluation. Specifically, we have not yet compared our
method to more established retrieval techniques. Traditional retrieval methods are often not
applied to representations directly but utilize a lower-dimensional non-spatial, global vector
representing the entire sample. In contrast, we chose to limit ourselves to methods that are
directly applied to the representations.

Computational Complexity Aside from quantitative or qualitative benefits, the construc-
tion of semantic RSMs is time-consuming, limiting its applicability. This complexity mostly
affects layers of large spatial extent, which mostly corresponds to early CNN layers while later
layers and ViTs are unproblematic. Our proposed Batch-optimal approximation alleviates
this partially, yet application to large-scale representations at higher resolution, like at the
output of a segmentation architecture with spatial extents of s=65.536 would be too costly.
We leave optimizing the compute efficiency or finding better approximations for future
work.

Conclusion In conclusion, our investigation into semantic RSMs has shed light on the
limitations of spatio-semantic RSMs and introduced a novel approach to disentangle spatial
alignment from semantic similarity. The proposed method provides a more accurate measure
of how representations capture underlying semantic content, showcasing its potential in
various applications, particularly in scenarios where spatial alignment cannot be assumed.
While challenges such as computational complexity and scalability need to be addressed,
the findings open avenues for further research and improvement in the analysis of neural
network representations.

References
[1] R. E. Burkard. Quadratic assignment problems. European Journal of Operational Research,

15(3):283–289, 1984.
[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[3] F. Ding, J.-S. Denain, and J. Steinhardt. Grounding representation similarity through
statistical testing. Advances in Neural Information Processing Systems, 34:1556–1568, 2021.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[5] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, B. Schölkopf, and A. Hyvärinen. Kernel
methods for measuring independence. Journal of Machine Learning Research, 6(12), 2005.

[6] S. Guthe and D. Thuerck. Algorithm: A fast scalable solver for the dense linear (sum)
assignment problem. ACM Trans. Math. Softw., 47(2), apr 2021. ISSN 0098-3500. doi:
10.1145/3442348. URL https://doi.org/10.1145/3442348.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[8] R. Jonker and T. Volgenant. A shortest augmenting path algorithm for dense and
sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th Annual Meeting

10

https://doi.org/10.1145/3442348


of DGOR in Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR zusammen mit
der NSOR, pages 622–622. Springer, 1988.

[9] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

[10] M. Klabunde, T. Schumacher, M. Strohmaier, and F. Lemmerich. Similarity of neural
network models: A survey of functional and representational measures. arXiv preprint
arXiv:2305.06329, 2023.

[11] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big
transfer (bit): General visual representation learning. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pages
491–507. Springer, 2020.

[12] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network
representations revisited. In 36th International Conference on Machine Learning, ICML
2019, volume 2019-June, pages 6156–6175, 2019. ISBN 9781510886988. URL https:
//arxiv.org/abs/1905.00414.

[13] N. Kriegeskorte, M. Mur, and P. A. Bandettini. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience,
page 4, 2008.

[14] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[15] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do different
neural networks learn the same representations? Technical report, 2015.

[16] T. Lüddecke and A. Ecker. Image segmentation using text and image prompts. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7086–7096, June 2022.

[17] S. Marcel and Y. Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pages 1485–1488, 2010.

[18] S. Martello and P. Toth. Linear assignment problems. In North-Holland Mathematics
Studies, volume 132, pages 259–282. Elsevier, 1987.

[19] A. S. Morcos, M. Raghu, and S. Bengio. Insights on representational similarity in
neural networks with canonical correlation. Technical report, 2018. URL https:
//arxiv.org/abs/1806.05759.

[20] B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 33:512–523, 2020.

[21] T. Nguyen, M. Raghu, and S. Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth.
arXiv preprint arXiv:2010.15327, 2020.

[22] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without
supervision. arXiv preprint arXiv:2304.07193, 2023.

[23] L. Perron and V. Furnon. Or-tools. URL https://developers.google.com/
optimization/.

[24] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[25] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. SVCCA: Singular Vector
Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability.
Advances in Neural Information Processing Systems, 2017-Decem:6077–6086, jun 2017. URL
http://arxiv.org/abs/1706.05806.

[26] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy. Do vision
transformers see like convolutional neural networks? Advances in neural information
processing systems, 34:12116–12128, 2021.

11

https://arxiv.org/abs/1905.00414
https://arxiv.org/abs/1905.00414
https://arxiv.org/abs/1806.05759
https://arxiv.org/abs/1806.05759
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://arxiv.org/abs/1706.05806


[27] V. V. Ramasesh, E. Dyer, and M. Raghu. Anatomy of catastrophic forgetting: Hidden
representations and task semantics. arXiv preprint arXiv:2007.07400, 2020.

[28] L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature selection via
dependence maximization. Journal of Machine Learning Research, 13:1393–1434, 2012.
ISSN 15324435.

[29] I. Sucholutsky, L. Muttenthaler, A. Weller, A. Peng, A. Bobu, B. Kim, B. C. Love, E. Grant,
I. Groen, J. Achterberg, et al. Getting aligned on representational alignment. arXiv
preprint arXiv:2310.13018, 2023.

[30] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[31] L. Wang, L. Hu, J. Gu, Y. Wu, Z. Hu, K. He, and J. Hopcroft. Towards Understanding
Learning Representations: To What Extent Do Different Neural Networks Learn the
Same Representation. Technical report, 2018. URL https://arxiv.org/abs/1810.
11750.

[32] A. H. Williams, E. Kunz, S. Kornblith, and S. Linderman. Generalized shape metrics on
neural representations. Advances in Neural Information Processing Systems, 34:4738–4750,
2021.

[33] S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I. S. Kweon, and S. Xie. Convnext v2:
Co-designing and scaling convnets with masked autoencoders. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16133–16142,
2023.

[34] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[35] C. Zhu, F. Xiao, A. Alvarado, Y. Babaei, J. Hu, H. El-Mohri, S. Culatana, R. Sumbaly,
and Z. Yan. Egoobjects: A large-scale egocentric dataset for fine-grained object
understanding. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 20110–20120, 2023.

12

https://arxiv.org/abs/1810.11750
https://arxiv.org/abs/1810.11750


A Kernel function definitions

Defining the notion of similarity between two vectors is a matter of preference and wanted
properties. In this work, we include the Radial Basis Function kernel Eq. (6) and the linear
kernel Eq. (7), as well as the cosine similarity kernel Eq. (8). We include the former two as they
were proposed for RSM construction by Kornblith et al. [12] and the cosine similarity due to
its popularity in the retrieval domain, despite generally being applied to class probabilities.
We denote that in our manuscript we refer to the linear kernel as the inner product and dot
product interchangeably as they correspond to the same operation.

kRBF(x,y) = exp

(
−∥x− y∥2

2σ2

)
(6)

klinear(x,y) = ⟨x,y⟩ (7)

kcosine(x,y) =
⟨x,y⟩
∥x∥∥y∥

(8)

Different properties The three selected kernels all have different properties: The RBF kernel
and the Cosine similarity are bounded between kRBF (x, y), kcosine(x, y) ∈ [0, 1] ∀x, y ∈ R,
while the klinear(x, y) is not bounded.
Moreover, the RBF kernel is parametrized by σ, which influences at which rate the distance
between the representations results in a decrease in similarity. For all our experiments
we choose σ as the square root of the median Euclidean distance of all distances within a
mini-batch.

B Translation Sensitivity of a ViT-B/16

Similarly to the translated Tiny-ImageNet experiment, we prepared a very similar experiment
for a ViT-B/16 vision transformer that was pre-trained on ImageNet1k. We utilize the
implementation and weights provided by torchvision [17].
Given the larger ImageNet images, we resample them to 324 × 324 pixels and crop two
partially overlapping images of size 224× 224 from it. Given these image pairs, we calculate
semantic and spatio-semantic RSMs again, see Fig. 7.
It is important to note that our approach intentionally avoids achieving a perfect translation
that would lead to the same patchified tokens, as we shift the image by a factor that is not
divisible by 16, the patching window size. We believe this realistic imperfection is preferable
to a perfect overlap, where identical tokens would be formed from the exact same set of
pixels.
Similarly to the previous partially overlapping crop experiment, we can observe that
spatio-semantic RSMs are incapable of identifying the largely identical content of the two
partially overlapping crops due to their different localization. The spatio-semantic RSMs
can capture this notion of similarity as evidenced by the off-diagonal and the larger gap
in the distribution of similarity between partially overlapping samples and independent
samples, Fig. 7 (bottom).
Contrary to the CNN example in the main, overall similarity between samples is much lower
overall and separation between translated image pairs and random image pairs follows a
vastly different trajectory. While there is a profound difference, the origin of this difference
cannot be clearly made out. We hypothesize that this may be due to the different ways that
Transformers process information and learn different representations, as highlighted in
Raghu et al. [26].
Moreover, we emphasize, that calculating the optimal permutation is significantly faster
for ViTs than the CNNs, as the early tokenization reduces the spatial dimension S substan-
tially at an early stage, whereas the iterative downsampling of CNNs makes comparing
representations of early layers very costly.
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Figure 7: Semantic RSMs do also capture spatial translations for token sequences of
ViT’s. We calculate spatio-semantic and semantic RSMs with the Radial Basis Function
(RBF) kernel for a ViT-B/16 with representations extracted from ImageNet. Similarly, we
introduce partially-overlapping crops that get tokenized and processed by the ViT. Due to
the initial shift, the token sequence does not align anymore between the crops. Similar to the
CNNs, spatio-semantic RSMs exhibit low similarity values in the off-diagonals, providing a
limited indication of overlapping content between crops. In contrast, Semantic RSMs prove
notably more effective in discerning substantial overlap, offering higher similarity values
in the off-diagonals and thereby indicating a greater degree of similarity between large
portions of the image.

C Pseudo Code

In addition to our provided explanation of the algorithm in the main manuscript, we
provide the pseudo-code used to compute semantic RSMs in Algorithm 1. The only
difference between semantic and spatio-semantic RSMs algorithmically is where the optimal
permutation is calculated that maximally aligns the two representations. The current
definition of spatio-semantic RSMs assumes that spatial locations are corresponding, while
semantic RSMs calculate correspondence through similarity matching.

D Additions: Retrieval Experiment

In addition to the provided retrieval examples in the main manuscript, we provide more
details on the retrieval experiments in Appendix D.1, an additional table holding the
quantitative data of Fig. 3 with varying database sizes in Appendix D.2 and lastly, additional
qualitative retrieval examples for each model including direct comparisons of all models for
the same query image in Appendix D.3.

D.1 Details of Retrieval Experiment

For the retrieval experiment, we utilize the EgoObjects dataset [35]. It contains multiple
frames from multiple videos, with multiple videos capturing the same scene under different
shifts like lighting conditions, distances, viewing angles, and different motion trajectories.
For each frame, multiple objects of different categories can be present and are annotated
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Algorithm 1: Semantic RSM calculation. We calculate the optimal permutation matrix,
resulting in maximal similarity between the representations of two samples.
Data: Z ∈ RN×C×S ; Kernel k
Result: Semantic RSM K
K = 0 ∈ RN×N

for i from 0 to N do
for j from 0 to N do

if i < j then
cont.

if i ̸= j then
Pij = argmaxPij

⟨zi,Pijzj⟩;
z′j = Pijzj ;

else
z′j = zj ;

Kij = k(zi, z
′
j);

Kji = Kij ; /* is symmetric */

through a bounding box. Moreover, frames can vary in spatial resolution, yet a large fraction
was captured in 16:9 format of 1920× 1028 pixels.

Image preprocessing For our experiments, we utilize the EgoObjects test set, which is
comprised of 29.5K images. Of these 29.5k we remove all images not in 16:9 format and
resize the remaining to the 1920× 1028 format. This discards roughly 10k images.
Of all remaining images, we then draw 2k query images and 5k database images used for
extracting embeddings for similarity calculation and later retrieval. Naturally, we sample in
a way to keep the 2k query and 5k database image sets non-overlapping. When passing
the images to the models for feature extraction each image is preprocessed according to the
corresponding Huggingface ImagePreprocessor. This mostly represents resizing the image
by the shortest edge to the expected image input dimensions and normalizing the image.
The only exception is SAM, of which we use the official implementation, which handles
feature extraction and embedding of the image itself.

Feature Extraction and preparation As mentioned in the main manuscript we use

1. CLIP (ViT/B32) [24]
2. ClipSeg (Rd64) [16]
3. DinoV2-Giant [22]
4. SAM (ViT/B32) [9] and
5. BIT-50 [11]

as general feature extractors as they were trained on a vast amount of data.4.
Of all models, we use the last hidden layer as image embeddings should they not per-default
provide image embeddings as output. After extracting representations we calculate the mean
from the database embeddings to zero-center all representations by, query and database
representations alike.

RSM construction Given all 2000 query embeddings and 5000 database embeddings,
we calculate the RSMs. To parallelize this process we mini-batch the representations into
100 × 100 pairs and populate the 2000 × 5000 matrix in this fashion. We denote that this
proved to be necessary for models with large spatial embedding dimensions like SAM,
starring 64 × 64 spatial extent. Moreover, we denote that, due to the RBF choosing its

4Last accessed on 22nd of May 2024
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parameter based on the median of the measured values within one batch this patch-wise
calculation is not optimal for this kernel. The inner product and the cosine similarity kernels
are not affected by this.

Retrieval measurement Given the RSMs containing a sample-to-sample similarity measure,
we can retrieve the most similar sample of the database for each query from it.
As each image can contain multiple objects measuring retrieval performance is not trivial.
For both images we quantify how many objects of each class are present in the image,
resulting in a count of class instances for each image. With the query image representing the
ground truth (GT) and the database representing the prediction, we match class instance
counts. Each correctly matched GT instance represents a TP, each missed an FN and all
unmatched database instances represent an FP.
To formalize: Let Qc be the number of instances of class c in the query image and Dc be the
number of instances of class c in the database image. With this, the used F1 metric can be
expressed as

TP =
∑
c∈C

min(Qc, Dc) (9)

FN =
∑
c∈C

max(0, Qc −Dc) (10)

FP =
∑
c∈C

FPc =
∑
c∈C

max(0, Dc −Qc) (11)

F1 =
2 · TP

2 · TP + FP + FN
(12)

D.2 Additional Quantitative Retrieval data

In addition to the results highlighted in Fig. 3 we provide retrieval results for varying
database sizes to retrieve from EgoObjects. Specifically, results for database sizes of 2.5k, 5k,
and 10k samples are given in Table 2.
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Table 2: Quantitative results of the EgoObject retrieval experiment for multiple models
and multiple database sizes. Database Size 5.000 represents Fig. 3 of the main manuscript.
It can be observed that models with a greater spatial extent (CLIPSeg and SAM) show
greater improvement in retrieval performance over models with a lower spatial extent
(DinoV2-Giant, BiT-50, CLIP). Moreover, it can be observed that retrieval improvements
decrease with growing database size. This is likely due to the increasing odds of finding one
image where spatial position and semantics align w.r.t. the query images. PI: Permutation
Invariant, Diff: Difference (PI - None)

Database Size (N) 2.500 5.000 10.000
Invariance None PI Diff None PI Diff None PI Diff

Architecture Kernel F1@1 F1@1 F1@1

CLIPSeg
Cosine Sim. 0.240 0.781 0.541 0.280 0.835 0.555 0.344 0.859 0.515
Inner Product 0.233 0.548 0.315 0.281 0.624 0.343 0.328 0.569 0.241
RBF 0.205 0.781 0.576 0.247 0.836 0.589 0.293 0.854 0.561

DinoV2-Giant
Cosine Sim. 0.765 0.840 0.075 0.827 0.876 0.049 0.857 0.889 0.032
Inner Product 0.767 0.839 0.072 0.829 0.876 0.047 0.856 0.890 0.033
RBF 0.735 0.834 0.099 0.810 0.876 0.066 0.843 0.888 0.045

BiT-50
Cosine Sim. 0.670 0.799 0.129 0.750 0.846 0.096 0.800 0.868 0.068
Inner Product 0.659 0.780 0.122 0.730 0.823 0.093 0.782 0.852 0.069
RBF 0.582 0.789 0.208 0.668 0.835 0.167 0.741 0.859 0.118

CLIP
Cosine Sim. 0.704 0.803 0.100 0.784 0.858 0.073 0.827 0.876 0.049
Inner Product 0.703 0.792 0.090 0.780 0.848 0.067 0.823 0.867 0.044
RBF 0.584 0.779 0.196 0.679 0.835 0.156 0.749 0.863 0.114

SAM ViT/B32
Cosine Sim. 0.509 0.735 0.226 0.614 0.804 0.190 0.688 0.838 0.151
Inner 0.511 0.695 0.183 0.616 0.774 0.158 0.688 0.815 0.126
RBF 0.371 0.703 0.332 0.474 0.784 0.310 0.556 0.823 0.267

D.3 Additional Qualitative Examples

In addition to the two qualitative examples provided for SAM in the main, additional
examples are provided. Qualitative examples are picked from the first 50 query images when
retrieving from a database size of 5.000 images. Additional qualitative retrieval examples
are provided for DinoV2 in Fig. 8, CLIP in Fig. 9, BiT-50 in Fig. 10, CLIPSeg in Fig. 11 and
SAM in Fig. 12. Moreover, we highlight a direct comparison between all models for the same
images in Fig. 13 and Fig. 14.
Across all models, it can be observed that models retrieve images where semantic content
and spatial positions are aligned when using standard cosine similarity. This leads to
larger-scale objects like desks, tiled floors, or countertops dominating retrieval when imaged
from a similar perspective. When decoupling spatial-alignment from semantic content,
images of the same scene but a different perspective get retrieved more often, leading to the
same scene appearing more regularly in the 5 nearest neighbors. This effect is currently not
quantified in the F1 metric, due to only comparing object presence between the query and
the 1st neighbor and not the average F1 between the query and the top 5 neighbors. We
opted against using this, as retrieval metrics most commonly consider the maximum match
in the top 5 neighbors.
Moreover, it can be observed that models with lower spatial extent can retrieve quite different
neighbors as opposed to models with higher spatial extent, see Fig. 13. While DinoV2 and
CLIP retrieve very similar 4th and 5th neighbors of the same book object without the smaller
mouse and headphone object, CLIPSeg and SAM retrieve scenes with these two objects still
present instead.

D.4 Cityscapes Quantitative Retrieval

Since previous results were limited to the EgoObjects dataset we provide an additional
quantitative experiment on CityScapes. Analog to before, we use N=500 validation images
as the query dataset and the remaining N=2975 training images as the database for retrieval.
We utilize the IoU metric to compare the presence of semantic classes between the images.
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Figure 8: Additional qualitative retrieval samples for DinoV2. We visualize the top 5 most
similar neighbors for four query images.
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Figure 9: Additional qualitative retrieval samples for CLIP. We visualize the top 5 most
similar neighbors for four query images.

19



Figure 10: Additional qualitative retrieval samples for BiT-50. We visualize the top 5 most
similar neighbors for four query images.
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Figure 11: Additional qualitative retrieval samples for CLIPSeg. We visualize the top 5
most similar neighbors for four query images.
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Figure 12: Additional qualitative retrieval samples for SAM. We visualize the top 5 most
similar neighbors for four query images.
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Figure 13: Direct comparison of models. We visualize the top 5 most similar images of all
models retrieved through cosine similarity or permutation invariant cosine similarity.
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Figure 14: Direct comparison of models. We visualize the top 5 most similar images of all
models retrieved through cosine similarity or permutation invariant cosine similarity.
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Due to the lack of instance labels in the CityScapes dataset, we can’t take the quantity of
objects into account as before, but can only consider if a semantic class is present or absent.
As apparent from Table 3 permutation invariance allows for consistently improved retrieval
when utilizing cosine similarity or RBF kernels.

Table 3: Retrieval results for the Cityscapes Dataset. We retrieve the most similar image
according to RSMs and calculate the IoU of query semantic classes and retrieved semantic
classes. Overall query images used are validation images of size N=500 and the database
are the training images of size N=2975. Differences between metrics are low, due to many
images containing a large number of classes and the lack of instance label information.
Despite this, permutation invariance improves Cosine Sim and RBF retrieval performance
consistently, with the Inner Product showing mixed results.

Cosine Sim. Inner Product RBF
Invariance - (ours) PI - (ours) PI - (ours) PI
Architectures
CLIPSeg 0.662 0.694 0.664 0.654 0.664 0.696
DinoV2-Giant 0.689 0.700 0.686 0.696 0.686 0.690
BiT-50 0.679 0.687 0.677 0.677 0.684 0.687
CLIP 0.691 0.701 0.693 0.701 0.678 0.687
SAM ViT/B32 0.690 0.702 0.687 0.677 0.679 0.687

E Details: Output similarity vs Representational Similarity

To measure the correlation between the inter-sample representational similarity and the
prediction probability inter-sample similarity we utilize pre-trained classifiers and the
ImageNet1k [2] dataset. Unlike during the retrieval results this constraints the possible
model selections to models trained for classification.

Image preprocessing Test set images of ImageNet1k are randomly sampled without
applying any filtering to them. In total, we utilize a subset of 2k ImageNet test set samples in
this experiment. This may appear small, yet provides a sufficient basis as the combinatoric
growth increases the absolute number of measurements substantially.

Feature and logit extraction and preparation As mentioned in the main manuscript we
use

1. ResNet18 [7]
2. ResNet50 [7]
3. ResNet101 [7]
4. a DinoV2-Giant based classifier [22]
5. ConvNeXt V2 [33]
6. ViT-B/16 [4] and
7. ViT-L/32 [4] and

as pre-trained classifiers for predicting the ImageNet1k classes.5. For each sample, we extract
the last hidden layer’s representations and center them analog to before. For the same
sample, we extract the logits and obtain the probability distribution through the softmax,
saving the pair for later comparisons.

Correlation measurement For each pair of representations and probabilities, we calculate
the similarities between their representations for all three kernel functions, once permutation
invariant and once not. Additionally, we calculate the Jensen-Shannon Divergence (JSD)

5Last accessed on 22nd of May 2024
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between the predicted class probability distributions for P and Q. A formal definition of the
JSD is provided in Eq. (13).

JSD(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M) (13)

where M is the pointwise mean of P and Q:

M =
1

2
(P +Q) (14)

and DKL is the Kullback-Leibler divergence defined as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(15)

Given the paired JSD and Similarity K between all samples i, j we utilize the Pearson
correlation ρ to calculate the correlation between the two. Due to the JSD being 0 for identical
probabilities and increasing for more dissimilar values and the Similarity being 1 for perfectly
similar representations and 0 for dissimilar representations, the desired correlation between
the two should be negative.

E.1 Additional correlation results

In addition to the Pearson correlation between the Jensen-Shannon-Divergence (JSD) and
inter-image similarity, we also present the results of their relationship measured by the
Spearman correlation, as shown in Table 4.
While the Pearson correlation demonstrated consistently stronger correlations with cosine
similarity, the inner product, and the RBF kernel, the Spearman rank correlations are less
stable across these methods.
For ResNets, we observe a significant decline in correlation consistency and strength with
the exception of ResNet18. Opposed to this, ViTs display notably higher negative correlation
values when using cosine similarity and radial basis function kernels, in contrast to the
Pearson correlation results.

Table 4: Correlation between the representational similarity and the output probabilities of
multiple images. In total 20k samples of the IN1k test set are used (as opposed to 2k in the
table in the main)

Metric Pearson Correlation Spearman’s Rank Correlation
Kernel Cosine Sim. Inner Product RBF Cosine Sim. Inner Product RBF
Invariance - PI - PI - PI - PI - PI - PI
Architecture
ResNet18 -0.279 -0.328 -0.264 -0.272 -0.174 -0.197 -0.231 -0.337 -0.239 -0.225 -0.435 -0.476
ResNet50 -0.256 -0.305 -0.249 -0.269 0.028 0.015 -0.032 0.007 -0.046 -0.040 0.128 0.132
ResNet101 -0.235 -0.330 -0.211 -0.274 0.076 0.067 -0.007 -0.053 -0.007 -0.077 0.071 0.068
ConvNextV2-Base -0.162 -0.126 -0.160 -0.184 0.077 0.050 -0.017 0.026 -0.013 -0.045 0.143 0.128
ViT-B/16 -0.058 -0.098 -0.056 -0.031 -0.079 -0.120 -0.013 -0.230 -0.021 0.029 -0.220 -0.313
ViT-L/32 -0.142 -0.189 -0.143 -0.152 -0.131 -0.164 -0.034 -0.276 -0.029 -0.014 -0.335 -0.392
DinoV2-Giant -0.016 -0.046 -0.016 -0.030 -0.013 -0.052 -0.014 -0.037 -0.015 -0.022 -0.015 -0.042

F Details of the Approximation Algorithms

The computational complexity of determining optimal matchings using the Jonker-Volgenant
algorithm [8] scales significantly with O(s3), resulting in substantial computation time for
input-patch sizes with spatial dimensions s = 642. To address this challenge, we propose
alternative approximate algorithms with reduced computational complexity. In all our
approximations, we take advantage of additional information, specifically the L2-norm
∥vi∥2 of each semantic concept vector. We assume that achieving a high degree of matching
involves pairing vectors with the highest norms and high cosine similarity. This assumption
guides our design of more efficient matching algorithms.
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1. Greedy: The simplest approach we employ is breadth-first matching. We determine
the order in which to match vi by considering the L2-norm ∥vi∥2 in descending
order. We then match the current vi with the best, non-assigned vj based on Aij .
The sorting complexity is O(s log(s)), making this the fastest approximate algorithm
among those tested.

2. TopK-Greedy: Recognizing that the TopK norm concept vectors ∥vi∥2 might have a
significantly higher impact on the final similarity, we attempt to find the optimal
matching for only the highest TopK norm concept vectors vi and vj . The remaining
lower norm concept vectors are assigned using the Greedy algorithm as described
above. The process involves an initial sorting based on the semantic concept vectors’
L2-norm, followed by optimal matching with O(k3) complexity for the k TopK
values and the greedy matching for the remaining values.

3. Batch-Optimal: If the TopK norm concept vectors do not sufficiently approximate
an optimal matching, we apply optimal matching for the remaining concept vectors
in batches. To achieve this, we create s//b smaller batches, with semantic concept
vectors assigned to batches according to their L2-norm. All values within a batch
are then optimally matched, leading to a matching complexity of ( sb ) · O(b3).6

Evaluating the various approximations, we observe that the Greedy matching yields
suboptimal approximation quality and offers marginal to no improvement over the current
same-position assignment. Although we do not present the details of the greedy matching,
it is important to highlight that it is guaranteed to be worse or equal to the TopK-Greedy
matching with a k value of 128, as shown in Fig. 5. We include the Greedy algorithm for
completeness as a simple baseline.
Furthermore, it is noteworthy that the TopK-Greedy matching demonstrates that exclusively
matching the largest norm concept vectors is insufficient for a good approximation of the
optimal matching. This insight suggests that a substantial portion of the overall similarity is
contributed by semantic concept vectors not included in the set of highest norms.
Lastly, we observe that the Batch-Optimal approximation, using a small batch size of 128
samples, provides an approximation with less than 10% error compared to the optimal
matching. This result underscores the effectiveness of our batching approach based on the
L2-norm of the concept vectors. It offers a reliable estimate for overall similarity, simplifying
the matching process significantly.

F.1 Runtime Evaluation

In order to assess algorithm performance across different spatial resolutions, we conducted
a benchmarking study. For each resolution, we randomly selected 10,000 pairs of samples
from a ResNet101 trained on Tiny-ImageNet. Affinity matrices (Aij) were pre-computed
to facilitate permutation (Pij) calculations. The average time taken per matching was
then reported for the same single CPU core, as outlined in Table 5. We observe that the
OR-Tools implementation outperforms other alternatives, being four times faster than the
lapjv implementation 7. However, even this optimal approach requires 1.52 seconds per
pair on a 64× 64 resolution. Despite the potential for parallelizing sample-wise matching,
optimal algorithms face scalability challenges with larger spatial dimensions S. In contrast,
the Batch-Optimal approximation offers a compelling balance between computation time
and approximation quality. Importantly, its complexity scales linearly with S due to the
fixed batch size.

G Semantic RSMs and CKA – Qualitative changes

Building upon the success of Linear/RBF (spatio-semantic) CKA to compare systems, we
provide some preliminary qualitative comparisons gauging how CKA comparisons are
affected by our differently proposed RSM. Unfortunately, hardly any quantitative benchmark

6There is an error in the current version in the main regarding the square root of s, which will be
corrected in a revision. We apologize for any confusion

7Implementation on Github https://github.com/src-d/lapjv
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Table 5: We compare different implementations of the optimal Jonker-Volgenant algorithm
[8] against our linearly scaling Batch-Optimal approximation and no matching. The table
presents average run-times per pair (T ) and average similarity relative to the optimal value
( k
kopt

) for 1,000 randomly chosen image pairs. Utilizing representations of varying sizes from
a ResNet101 trained on Tiny-ImageNet, the optimal solutions are reported relative to the
maximum similarity achieved by the optimal algorithms. The Batch-Optimal approximation
demonstrates a substantial fraction of optimal matching performance with significantly
improved scaling.

Category Complexity Matching Algo Batch b
s = 256 s = 1024 s = 4096

k
kopt

[%] T k
kopt

[%] T k
kopt

[%] T

Optimal O(s3)
OR-Tools [23] - 100 4.26 ms 100 69.6 ms 100 1.52 s
Scipy [30] - 100 5.10 ms 100 148 ms 100 8.75 s
lapjv - 100 5.73ms 100 97.5 ms 100 6.12 s

No Match O(1) np.diag() - 68.9 1.40 µs 67.0 2.49 µs 57.9 4.36 µs

Approximation (
√
s/b) · O(b3) Batch-Optimal

128 97.6 2.41 ms 94.5 9.08 ms 92.8 43.4 ms
256 100 4.56 ms 96.8 16.9 ms 95.0 95.9 ms
512 100 4.57 ms 98.6 37.1 ms 96.8 171 ms
1024 100 4.57 ms 100 79.5 ms 98.2 391 ms

exists to quantify if a representational similarity metric is better than another. Previously
Kornblith et al. [12] evaluated CKA by showing it was better at finding layers of the same
architecture than SVCCA and PWCCA. This was extended by Ding et al. [3] through the
inclusion of statistical testing but remains a rather shallow benchmark. Subsequently, we
constrain ourselves to qualitative experiments, leaving quantitative testing to potential future
benchmarks.
In all following experiments, all representations are extracted globally and zero-centered
along the sample dimension. Given the zero-centered representations spatio-semantic and
semantic RSMs are computed in mini-batches of 250 samples. To calculate the semantic
RSMs on CIFAR an optimal bipartite matching algorithm is used, while for Tiny-ImageNet
and ImageNet we utilize the Batch-Optimal approximation with window size b 512.

G.1 CKA between semantic and spatio-semantic RSMs

As initial inspection, we evaluate how different the similarity structures of a model measured
through spatio-semantic RSMs are to a model measured through semantic RSMs. We do
this by constructing both RSMs from the same representations of a model. Subsequently,
we compare the two alternative RSMs of the same representations to each other through
CKA Eq. (2). The diagonal of this matrix represents a direct comparison of identical
representations, just with another definition of what is considered "similar". This is
evaluated for three ResNet18s and three ResNet34s on Tiny-ImageNet with the linear and
RBF kernels respectively.
We display the average CKA matrices across architecture seeds for both architectures, as
well as the diagonal values of the CKA matrix. Results are shown in Fig. 15.
Examining these CKA matrices multiple observations can be made:
A) Despite the diagonal representing a comparison between identical representations, the
CKA values are not 1. This indicates that the different way of constructing RSMs changes
the perceived similarity structure of the system, as measured by CKA.
B) Inspecting the diagonal shows, that earlier layers with greater spatial extent express
higher differences in similarity, whereas layers at a later layer and lower spatial extent are
less dissimilar. This is consistent with the expectation that, with shrinking spatial extent,
alignment of semantic concepts gets more likely.
Given these large changes in CKA similarity, we conclude that the definition of what a model
perceives as similar can highly influence inter-system similarity. This is especially relevant
when comparing systems across domains, where RSM construction may be domain-specific,
disallowing to be consistent with RSM construction. Exemplary when comparing ML vision
systems to human vision models, in particular when comparing representations of high
spatial extent.
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Figure 15: The dissimilarity between semantic and spatio-semantic RSMs decreases with
shrinking spatial extent. Comparison of semantic and spatio-semantic Representational
Similarity Matrices (RSMs) for the same model. The dissimilarity in early layers decreases
with decreasing spatial extent, as illustrated by Centered Kernel Alignment (CKA) values.
The left and middle panel shows the CKA comparison between all layers, while the right
panels visualize the heatmap’s diagonal, emphasizing the evolving similarity trend from
early to late layers.

G.2 Differences in CKA self-similarity

In the previous paragraph, semantic RSMs were directly compared to spatio-semantic RSMs.
While this can influence measurements when models are compared across domains (e.g.
CNN Vision to Biological Vision), it does not need to imply that the CKA similarity of vision
models changes substantially.
Given that within the same domain, the RSM construction will likely be chosen consistently,
one can opt to either: Calculate only spatio-semantic RSMs or only semantic RSMs, due
to personal opinions or preferences. Subsequently, the question is not "Are spatio-semantic
RSMs similar to semantic RSMs", but "Does the CKA similarity between spatio-semantic RSMs
change when calculating semantic RSMs".
To address this question we: A) Compare the CKA matrix difference of the CKA matrix based
on semantic RSMs to the CKA matrix of spatio-semantic RSMs when comparing a model
with itself (Intra Model) and B) when comparing between different models (Cross-Model).

Intra-Model CKA Similarly to before, we extract representations and form semantic and
spatio-semantic RSMs. We extract representations on CIFAR100 [14] (32×32), Tiny-ImageNet
(64×64) and ImageNet-1k [2] (160×160) datasets, from 3 differently seeded and trained from
scratch ResNet18, ResNet34 and ResNet101 architectures. The semantic RSMs are calculated
utilizing the Batch − Optimal matching with b 512 for matching on Tiny-ImageNet and
ImageNet. We calculate semantic and spatio-semantic RSMs with a mini-batch size of
250, subsequently using them for Canonical Correlation Analysis (CKA) calculations. The
corresponding cka matrices and their differences are displayed in Fig. 16. If not further
specified the experiment uses the linear kernel.
Introspecting the results it can be seen that across all Architectures ResNet18, ResNet34, and
ResNet101 largely the same change in similarity structure can be observed. For CIFAR100,
the very first layers are perceived as less similar to semantic RSMs than with spatio-semantic
RSMs, while the CKA between the middle to later layers is more similar. This structure,
though does not remain consistent across datasets: When moving from CIFAR100 to Tiny-
ImageNet earlier layers appear to become more similar while intermediate layers become
less so. On ImageNet1k CKA on semantic RSMs seem to indicate models are more similar.
This trend indicates that the influence of semantic RSMs on spatio-semantic RSMs seems to
be largely dataset-dependent. Moreover, the overall maximum change in CKA similarity in
these matrices is between −0.2 and +0.2 for Tiny-ImageNet, indicating a modest change in
overall CKA.

Cross-Model CKA Aside from evaluating only CKA similarity of RSMs of the same model
we extend to comparing RSMs between models, as commonly done when comparing models
through CKA. ResNet18/101 models trained on CIFAR100 are used with RSMs constructed
identically to previously specified. Results are displayed in Fig. 17.
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Figure 16: CKA similarity between different Layers of the same ResNet18, ResNet34,
ResNet101, on CIFAR100, Tiny-ImageNet and ImageNet-1k. For each row the left-most
CKA matrix displays the spatio-semantic RSMs, the middle represents the semantic RSMs
while the right represents the difference in CKA similarity between the two. Blue regions
indicate where the We observe that similarity within the block structure is largely unchanged,
whereas the similarity across the later blocks seems to be more similar and the similarity of
the very first blocks is less similar.
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Figure 17: CKA similarity between different Layers of different ResNet18 and ResNet101
models on CIFAR100. We observe a decrease in similarity at high-resolution layers, whereas
similarity between deeper layers is largely unchanged.

It can be seen that for both, ResNet18 and ResNet101, the cross-model CKA similarity is
mostly negative for the majority of the layers, indicating that CKA on spatio-semantic RSMs
estimates models to be more similar than when applying CKA on semantic RSMs. Similarly
to before CKA changes range from −0.175 to +0.025 providing modest changes.
Concluding the Intra and Cross-Model CKA experiments it can be seen that the choice
of RSMs results in qualitatively different CKA matrices. Unfortunately, due to the lack of
quantitative benchmarks, no direct recommendation of which RSM to use for inter-model
similarity calculation through CKA can be given.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer:[Yes]
Justification: The experiments in Section 4 demonstrate the advantage of introducing
permutation invariance for RSMs and directly correspond to the contributions listed
in Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the
claims made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: In Section 5, a comprehensive discussion of the results and their
limitations, such as the runtime, is provided.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their
paper.

• The paper should point out any strong assumptions and how robust the
results are to violations of these assumptions (e.g., independence assumptions,
noiseless settings, model well-specification, asymptotic approximations only
holding locally). The authors should reflect on how these assumptions might
be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly
when image resolution is low or images are taken in low lighting. Or a speech-
to-text system might not be used reliably to provide closed captions for online
lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed
algorithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [NA]
Justification: While the paper provides a comprehensive mathematical formulation,
no new theorems were introduced and thus no theoretical proofs were needed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be com-
plemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data
are provided or not)?
Answer: [Yes]
Justification: All experiments were performed using public datasets and models.
The information provided in Appendix F, Appendix D.1 and Algorithm 1 provide
all necessary information to reproduce the results. Additionally, we will publish
the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this,
but reproducibility can also be provided via detailed instructions for how
to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results
or a way to reproduce the model (e.g., with an open-source dataset or
instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: Code will be provided by acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

• The authors should provide instructions on data access and preparation,
including how to access the raw data, preprocessed data, intermediate data,
and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and
why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [Yes]
Justification: The information provided in Section 4 provide all necessary information
to understand the results. Appendix F, Appendix D.1 and Algorithm 1 add
additional details that are needed to reproduce the exact experimental setting but
not necessarily to understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as

supplemental material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper introduces a new concept that has no direct related methods
to compare with. Therefore, no statistical analysis or ranking methods are needed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [Yes]
Justification: The presented work does not rely on specific compute requirements.
However, in Appendix F.1 we compare the runtime of multiple approximation
algorithms to solve the assignment proble.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have strictly adhered to the ethical guidelines.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [NA]
Justification: We do not see any direct societal impact. The work only provides a
new introspection into the concept of semantic similarity of networks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness
considerations (e.g., deployment of technologies that could make decisions
that unfairly impact specific groups), privacy considerations, and security
considerations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in
addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: See broader impact .
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [Yes]
Justification: All relevant and previous work is cited and only open-source assets
have been used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can
help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [Yes]
Justification: The codebase will be published under a CC BY license.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as

part of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects were
performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
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• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with
Human Subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects were
performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between
institutions and locations, and we expect authors to adhere to the NeurIPS
Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.
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