
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERATIVE BLOCKS WORLD:
MOVING THINGS AROUND IN PICTURES

Anonymous authors
Paper under double-blind review

Source Image Move cat left Move cat right Camera zoom in Scale up cat’s head

Figure 1: Generative Blocks World. Given an input image (bottom left), we extract a set of 3D
convex primitives (top left) that provide an editable and controllable representation of the scene.
These primitives are used to generate new images that respect geometry, texture, and the text prompt.
The first column shows the original input and its primitive decomposition. Subsequent columns
show sequential edits: translating the cat to the left (second column), translating it to the right (third
column), moving the yarn in front of the cat and shifting the camera toward the scene center (fourth
column), and scaling up the cat’s head (burgundy primitive; fifth column). Our method enables 3D-
aware semantic image editing through intuitive manipulation of these learned primitives.

ABSTRACT

We describe Generative Blocks World to interact with the scene of a generated im-
age by manipulating simple geometric abstractions. Our method represents scenes
as assemblies of convex 3D primitives, and the same scene can be represented by
different numbers of primitives, allowing an editor to move either whole struc-
tures or small details. Once the scene geometry has been edited, the image is
generated by a flow-based method, which is conditioned on depth and a texture
hint. Our texture hint takes into account the modified 3D primitives, exceeding
the texture-consistency provided by existing techniques. These texture hints (a)
allow accurate object and camera moves and (b) preserve the identity of objects.
Our experiments demonstrate that our approach outperforms prior works in visual
fidelity, editability, and compositional generalization. Code will be released.

1 INTRODUCTION

There is a rich literature treating editing real and generated images using various image-centered
interfaces like dragging features. Interaction paradigms that exploit explicit representations of 3D
are much less common. This paper describes an image editor built on a full 3D interaction paradigm,
using a representation that is both compact and accurate – a generative blocks world.

Any scene representation that supports a camera move has some form of 3D representation. An
explicit 3D representation helps, Fig 1. Explicit 3D representations have other important advantages.
First, they offer shape constancy. When an object is moved across a perspective view, it is seen
from a new aspect because the location of the focal point moves in object coordinates. This means

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that (a) the shape of the object may change, with a change that depends on the field of view of the
camera and the shape of the object (e.g. alien head in Fig 7) and (b) some surface markings will
become visible or invisible (e.g. bar code on soda can, Fig 3). When an object is moved toward
or away from the camera, its image should expand or shrink (e.g. cat, Fig 1). If an editor does not
preserve these properties correctly, the viewer may conclude that the shape or size of the object has
changed. A properly constructed 3D representation will prevent this. Second, they offer contact
consistency. A user who moves (say) a tin on a table generally expects the tin to remain in contact
with the table. An explicit 3D representation allows the user to manage whether it does or not
(e.g. dog in Fig 7; soda can, Fig 3). Third, they offer shape completion. Objects have backs that
are not visible, but may have an effect when another object is moved in a scene. An explicit 3D
representation can capture this effect.

It has been hard to build a 3D representation that: (a) represents the scene accurately enough that
edited images are realistic and (b) is compact enough to support interactions. This paper uses mod-
ern fitting methods to represent scenes as small assemblies of meaningful parts or primitives (cf.
Blocks World Roberts (1963) or geons Biederman (1987)). We call our method Generative Blocks
World, though our learned primitives are richer than cuboids. Our method yields assemblies by
decomposing an input image into a sparse set of convex polytopes (Vavilala et al., 2025a) that ap-
proximate the scene’s depth map well enough to enable view-consistent texture projection. Further,
our primitives respect object boundaries rather well. A user can reach into the primitive representa-
tion and move a primitive, with predictable results. Our highly reduced scene representations yield
hints as to the appearance of the final image. These hints, together with the primitive depth map, are
inputs to an off-the-shelf depth conditioned image generator, which renders very accurate images.

Good primitive decompositions have very attractive properties. They are selectable: individual
primitives can be intuitively selected and manipulated (Fig. 1). They are object-linked: a segmen-
tation by primitives is close to a segmentation by objects, meaning an editor is often able to move
an object or part by moving a primitive (Figs 1; 3; 4). They are accurate: the depth map from a
properly constructed primitive representation can be very close to the original depth map (Fig 3.1),
which means primitives can be used to build texture hints (Section 3.2) that support accurate cam-
era moves (Figs 2; 5). They have variable scale: one can represent the same scene with different
numbers of primitives, allowing an editor to adjust big or small effects (Figs 7; 10; 13).

Contributions:

• We describe a pipeline that fuses convex primitive abstractions with a SOTA flow-based
generator to yield a natural 3D interaction paradigm for image editing. Our pipeline uses a
natural texture-hint procedure that supports accurate camera moves and edits at the object-
level, while preserving identity.

• We provide extensive evaluation demonstrating superior geometric control, texture reten-
tion, and edit flexibility relative to recent state-of-the-art baselines.

2 RELATED WORK

Primitive Decomposition: Early vision and graphics pursued parsimonious part-based descriptions,
from Roberts’ Blocks World Roberts (1963) and Binford’s generalized cylinders Binford (1971) to
Biederman’s geons Biederman (1987). Efforts to apply similar reasoning to real-world imagery
have been periodically revisited Gupta et al. (2010); Monnier et al. (2023); Bhattad et al. (2025)
from various contexts and applications. Modern neural models revive this idea: BSP-Net Chen
et al. (2020), CSG-Net Sharma et al. (2018), and CVXNet Deng et al. (2020) represent shapes
as unions of convex polytopes, while Neural Parts Tulsiani et al. (2017), SPD Zou et al. (2018),
and subsequent works Liu et al. (2022) learn adaptive primitive sets. Recent systems extend from
objects to scenes: Convex Decomposition of Indoor Scenes (CDIS) Vavilala & Forsyth (2023) and
its ensembling/Boolean refinement Vavilala et al. (2025a) fit CVXNet-like polytopes to RGB-D
images, using a hybrid strategy. CubeDiff Kalischek et al. (2025) fits panoramas inside cuboids. Our
work leverages CDIS as the backbone, but (i) improves robustness to in-the-wild depth/pose noise
and (ii) couples the primitives to a Rectified Flow (RF) renderer, enabling controllable synthesis
rather than analysis alone.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Conditioned Image Synthesis: Layout-to-image translation was pioneered in GANs Isola et al.
(2017); Zhu et al. (2017); Park et al. (2019) and is now dominated by diffusion models such as
Stable Diffusion Rombach et al. (2022), ControlNet Zhang et al. (2023), and T2I-Adapter Mou
et al. (2024). These models can compose multiple spatial controls (Vavilala et al., 2024), perform
color edits (Vavilala et al., 2025b) and relight scenes Xing et al. (2025). We utilize a pretrained
depth-conditional FLUX model, conditioning it on depth maps derived from our 3D primitives.

Point-Based Interactive Manipulation: Methods like DragGAN (Pan et al., 2023) and its
diffusion-based successors (Shi et al., 2024; Mou et al., 2023; Cui et al., 2024; Pandey et al., 2024)
offer intuitive 2D control by dragging handle points. Some approaches extend this to 3D using
NeRFs for multi-view consistency Guang et al. (2025) or leverage self-guidance for layout con-
trol (Epstein et al., 2023). Our work differs fundamentally by operating on selectable and editable
3D primitives, not 2D points or lines. This enables multi-resolution control and allows for camera
movement while handling perspective, occlusion, and texture.

Object-Level and Scene-Level Editing: Many recent works embed 3D priors for editing, though
often focusing on single objects Gu et al. (2022); Wang et al. (2023); Poole et al. (2023); Tang
et al. (2023); Cheng et al. (2025) or using language to guide transformations Michel et al. (2023).
Our Generative Blocks World generalizes to complex edits not easily described by text. Another
paradigm, seen in Image Sculpting Yenphraphai et al. (2024) and OMG3D Zhao et al. (2025), recon-
structs an explicit 3D mesh for manipulation before re-rendering. While precise, these multi-stage
pipelines can be bottlenecked by reconstruction quality. Our method provides a more streamlined
approach by operating on abstract primitives, achieving strong geometric control without the com-
plexity of direct mesh manipulation.

Primitive-Based Scene Authoring: LooseControl (Bhat et al., 2024) enables control via box-like
primitives by fine-tuning a diffusion model with LoRA weights. This training is necessary to bridge
the domain gap between its coarse primitive-based depth and standard depth maps (Yang et al.,
2024). In contrast, our underlying primitive representation is accurate enough to require no fine-
tuning. Furthermore, by abstracting objects into single, monolithic boxes, LooseControl is limited to
holistic transformations and cannot perform part-level edits. Our method uses structured geometry,
decomposing objects into multiple convex polytopes at variable levels of detail for more granular
control. A more recent work, Build-A-Scene (Eldesokey & Wonka, 2025), uses a similar pipeline
to LooseControl and thus inherits its limitations. Our approach differs by: (i) decomposing objects
into multiple convex polytopes for finer control, (ii) supporting camera movement, and (iii) allowing
novel scenes to be authored from scratch via primitive assembly.

Table 1: Related work comparison summary. While all methods can move objects, ours is the only
one that uses 3D primitives (at varying density) in a training and optimization-free pipeline, while
also supporting scene-level camera moves. Previous drag-based works use 2D arrows in pixel space
to prompt the edit (combined with spatial masks); in contrast, our approach is prompted via selecting
and moving 3D primitives. Loose Control is the closest approach to ours that uses 3D boxes, but it
requires training and cannot support detailed, variable-density primitives. Here, Variable LoD refers
to support for variable primitive count, to enable both coarse and fine edits. Note that while our
image generation process is training-free, our primitives are learned.

Method Interaction Training-free Move Objects Variable LoD Camera Move

Diff. Self-Guid. Epstein et al. (2023) 2D guidance ✓ ✓ ✗ ✗

Diffusion Handles Pandey et al. (2024) 3D handles ✓ ✓ ✗ ✗

Edit. Image Elements Mu et al. (2024) 2D elements ✗ ✓ ✗ ✗

DragDiffusion Shi et al. (2024) 2D points ✗ ✓ ✗ ✗

GoodDrag Zhang et al. (2025) 2D points ✓ ✓ ✗ ✗

FlowDrag Koo et al. (2025) 2D points ✓ ✓ ✗ ✗

DragIn3D Guang et al. (2025) 3D points ✗ ✓ ✓ ✗

LooseControl Bhat et al. (2024) 3D boxes ✗ ✓ ✗ ✓
Ours 3D primitives ✓ ✓ ✓ ✓

3 METHOD

Generative Blocks World generates realistic images conditioned on a parsimonious and editable geo-
metric representation of a scene: a set of convex primitives. The process consists of four main stages

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Train Convex Decomposition Model

Eθ Dθ

(-)minθ

DiTϕ

Training-Free Generation (FLUX-Depth)

Inference Pipeline

Source Image Extract primitives Generate Edit primitives/camera Synthesize with Diffusion Model

“Girl playing with legos”

x h
in

t
c

x0

⊕

xhint

Confidence mask

Primitives

Figure 2: Pipeline Overview. Top left: We use convex decomposition models Vavilala et al. (2025a)
to extract primitives from an input image at multiple scales. Bottom: Users can manipulate these
primitives and the camera to define a new scene layout. We render the modified primitives into a
depth map and generate a texture hint image. These serve as inputs to a pretrained depth-to-image
model Labs (2024), which requires no fine-tuning (Top right). The generated image respects the
modified geometry, preserves texture where possible, and remains aligned with the text prompt.

(Fig. 2): (i) primitive extraction from any image via convex decomposition (Sec. 3.1), (ii) generating
an image conditioned on the primitives (and text prompt), (iii) user edits the primitives and/or cam-
era, and (iv) generates a new image conditioned on the updated primitives, while preserving texture
from the source image (Sec. 3.3). We describe each component in detail below.

3.1 CONVEX DECOMPOSITION FOR PRIMITIVE EXTRACTION

Our primitive vocabulary is blended 3D convex polytopes as described in Deng et al. (2020).
CVXnet represents the union of convex polytopes using indicator functions O(x) → [0, 1] that
identify whether a query point x ∈ R3 is inside or outside the shape. Each convex polytope is
defined by a collection of half-planes.

A half-plane Hh(x) = nh ·x+dh provides the signed distance from point x to the h-th plane, where
nh is the normal vector and dh is the offset parameter.

While the signed distance function (SDF) of any convex object can be computed as the maximum
of the SDFs of its constituent planes, CVXnet uses a differentiable approximation. To facilitate
gradient learning, instead of the hard maximum, the smooth LogSumExp function is employed to
define the approximate SDF, Φ(x):

Φ(x) = LogSumExp{δHh(x)}
The signed distance function is then converted to an indicator function C : R3 → [0, 1] using:
C(x|β) = Sigmoid(−σΦ(x)).
The collection of hyperplane parameters for a primitive is denoted as h = {(nh, dh)}, and the
overall set of parameters for a convex as β = [h, σ]. While σ is treated as a hyperparameter, the re-
maining parameters are learnable. The parameter δ controls the smoothness of the generated convex
polytope, while σ controls the sharpness of the indicator function transition. The soft classification
boundary created by the sigmoid function facilitates training through differentiable optimization.
For our primitive model we use ResNet-18 Encoder Eθ followed by 3 fully-connected layers that
decode into the parameters of the primitives Dθ. While the model is lightweight, the SOTA of
primitive prediction requires a different trained model for each primitive count K.

Recent work has adapted primitive decomposition to real-world scenes (as opposed to well-defined,
isolated objects, such as those in ShapeNet Vavilala & Forsyth (2023)). These methods combine
neural prediction with post-training refinement: an encoder-decoder network predicts an initial set

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Ed
ita

bl
e

Pr
im

itiv
es

Move primitives

Ge
ne

ra
te

d
Re

su
lt

Scale primitives Remove object Move camera“Pepsi can and metal ba"”

Figure 3: Editable Primitives as a Structured Depth Prior for Generative Models. Our method
uses 3D convex primitives as an editable intermediate representation from which depth maps are
derived. These depth maps (shown as insets in the top row) are used to condition a pretrained
depth-to-image generative model. The top row shows primitive configurations after sequential ed-
its—translation, scaling, deletion, and camera motion—alongside their corresponding derived depth
maps. The bottom row shows the resulting synthesized images. Unlike direct depth editing, which
is unintuitive and underconstrained, manipulating primitives offers a structured, interpretable, and
geometry-aware interface for controllable image generation.

of convex polytopes, which is followed by gradient-based optimization to align the primitives closely
to observed geometry. This approach is viable because the primary supervision for primitive fitting
is a depth map (with heuristics that create 3D samples, and auxiliary losses to avoid degenerate
solutions). Note that ground truth primitive parameters are not available (as they could be in many
other computer vision settings e.g., segmentation Kirillov et al. (2023)). This is why the losses
encourage the primitives to classify points near the depth map boundary correctly instead of directly
predicting the parameters.

Rendering the primitives. We condition the RF model on the primitive representation via a depth
map, obtained by ray-marching the SDF from the original viewpoint of the scene. Depth condition-
ing abstracts away potential ‘chatter‘ in the primitive representation from e.g. over-segmentation,
while simultaneously yielding flexibility in fine details (depth maps typically lack pixel-level high-
frequency details). Depth-conditioned image synthesis models are well-established e.g. Zhang et al.
(2023). Because it’s hard to edit a depth map, but easy to edit 3D primitives, our work adds a
new level of control to the existing image synthesis models. As we establish quantitatively in Ta-
ble 3, our primitive generator is extremely accurate, and our evaluations show that we get very tight
control over the synthesized image via our primitives. This means that whatever domain gap there is
between depth from primitives and depth from SOTA depth estimation networks is not significant.

Scaling to in-the-wild scenes. We collect 1.8M images from LAION to train our primitive predic-
tion models. To obtain ground truth depth supervision, we use DepthAnythingv2 Yang et al. (2024).
We lift the depth map to a 3D point cloud using the pinhole camera model.

3.2 DEPTH-CONDITIONED INPAINTING IN RECTIFIED FLOW TRANSFORMERS

Adding Spatial Conditions. We build upon the state-of-the-art Flux, a rectified flow model Esser
et al. (2024); Labs (2024). Older ControlNet implementations Zhang et al. (2023) train an auxil-
iary encoder that adds information to decoder layers of a base frozen U-Net. Newer implemen-
tations, including models supplied by the Black Forest Labs developers, concatenate the latent xt

and condition (e.g., depth map) c as an input to the network, yielding tighter control. FLUX.1
Depth [dev] re-trains the RF model with the added conditioning; FLUX.1 Depth [dev]
LoRA trains LoRA layers on top of a frozen base RF model. Both options give tight control and
work well with our primitives, though LoRA exposes an added parameter loraweight ∈ [0, 1] tuning
how tightly the depth map should influence synthesis. This is helpful when the primitive abstraction
is too coarse relative to the geometric complexity of the desired scene (see Fig. 12).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

OursDrag Diffusion Move primitivesDrag pointsSource image Source primitives

Figure 4: Comparison with Drag Diffusion (Shi et al., 2024). First row: Given a scene (first col-
umn), we attempt to reposition objects using a recent point-based image editing method by drawing
drag handles (second column). However, drag points are ambiguous: it is unclear whether the in-
tended operation is translation or scaling. As a result, the output lacks geometric consistency (third
column). E.g., the clock changes shape, and pushing it deeper into the scene fails to reduce its size
appropriately; fine details on the can are lost. In contrast, Generative Blocks World infers 3D primi-
tives (fourth column) that can be explicitly manipulated (fifth column), producing a plausible image
that respects object geometry, scale, positioning, and texture (last column). We also compare with
proprietary models in supplement. Second row Drag Diffusion requires many arrows to place the
objects. Notice how they are still not precisely where we want them, and there are shape and color
mismatches on the rendered watermelon and potato. Our result respects both texture and geometry.

Role of Hint and Mask. A core contribution of this work is an algorithm to generate a “hint” image
to guide the image generation process, as well as a confidence mask (see Sec 3.3). The hint and
mask influence the generation within timesteps tend ≤ t ≤ tstart, which are hyperparameters. The
mask m ∈ [0, 1] specifies regions where the hint should guide the output. The hint is encoded into
latents xhint via the VAE. During denoising, the latents are updated as xt = (1−m) ·xhint,t+m ·xt,
where xhint,t is the noised hint latent at timestep t: xhint,t = SchedulerScaleNoise(xhint, t, ϵ). Thus,
the hint image is noised to match the current timestep’s noise level before incorporation, ensuring
consistency with the denoising process. Outside [tend, tstart], the hint and mask are ignored.

3.3 TEXTURE HINT GENERATION FOR CAMERA AND OBJECT EDITS

A number of methods have been proposed to preserve texture/object identity upon editing an image.
A common and simple technique is to copy the keys and values from a style image into the newly
generated image (dubbed “style preserving edits”). For older U-Net-based systems, this is done in
the bottleneck layers Bhat et al. (2024). For newer DiTs, this is done at selected “vital” layers Avra-
hami et al. (2025). In our testing, key-value copying methods are insufficient for camera/primitive
moves (see Fig. 6). Further, because of our primitives, we have a geometric representation of the
scene. Here we demonstrate a routine to obtain a source “hint” image xhint as well as a confidence
mask m that can be incorporated in the diffusion process. The hint image is a rough approxima-
tion of what the synthesized image should look like using known spatial correspondences between
primitives in the first view and the second. The confidence mask indicates where we can and cannot
trust the hint, commonly occurring near depth discontinuities. We rely on the diffusion machinery
to essentially clean up the hint, filling gaps and refining blurry projected textures so it looks like a
real image. The result of our process is an image that respects the text prompt, source texture, and
newly edited primitives/camera.

Creating point cloud correspondences We develop a method that accepts point clouds at the
ray-primitive intersection points, a convex map integer array indicating which primitive was hit at
each pixel, a list of per-primitive transforms (such as scale, rotate, translate), and a hyperparameter
max distance for discarding correspondences. This procedure also robustly handles camera moves
because the input point clouds are representations of the same scene in world space.

Creating a texture hint Given a correspondence map of each 3D point in the new view relative to
the original view, we can apply this correspondence to generate a hint image that essentially projects
pixels in the old view onto the new view. This is the xhint supplied to the image generation model,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

D
ep

th
Pr
im

iti
ve
s

O
ur
s

Lo
os
eC

on
tr
ol

Initial Edited Initial Edited Initial Edited Initial Edited

Figure 5: Comparison with LooseControl Bhat et al. (2024). Existing work struggles with camera
moves. Four scenes (left side of each pair), synthesized from the depth maps shown. In each case,
the camera is moved to the right (right side of each pair), and the image is resynthesized. Note how,
for LooseControl, the number of apples changes (first pair); the level of water in the glass changes
and there is an extra ice cube (second pair); the duck changes (third pair); and an extra rock appears
(fourth pair). In each case, our method shows the same scene from a different view, because the
texture hint image is derived from the underlying geometry, and strongly constrains any change.

Source Primitives Modified PrimitivesSource Image No Texture StableFlow Ours Ours (+StableFlow)

Figure 6: Projection-Based Texture Hints Preserve Object Identity After Edits. This figure
compares our projection-based texture hints against StableFlow Avrahami et al. (2025), which uses
vital-layer key-value injection. First two columns: input primitives and image. Third: edited
primitives. Fourth: synthesis from original depth, revealing consistent geometry but altered texture.
Fifth: StableFlow’s approach often changes texture or object identity. Sixth: our projection-based
hints maintain texture fidelity despite edits. Seventh: combining both approaches sometimes im-
proves fine detail recovery (e.g., the treasure chest).

taking into account both camera moves and primitive edits like rotation, translation, and scaling.
The point cloud correspondence ensures that if a primitive moves, its texture moves with it. In
practice, this hint is essential for good texture preservation (see Fig. 6). Correspondence and hint
generation take about 1-2 seconds per image; 30 denoising steps of FLUX at 512 resolution take
about 3 seconds on an H100 GPU.

3.4 EVALUATION

We seek error metrics to establish (1) geometric consistency between the primitives requested vs.
the image that was synthesized and (2) texture consistency between the source and edited image. For
(1) we compute the AbsRel between the depth map supplied to the depth-to-image model (obtained

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

“Red, green, and blue couches” “Zen s#ne arrangement”“Bu$er, ice cream, and mochi” “Pencil case, paper ba%, globe paperweight”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(a) K = 6 parts.
“A cu" dog” “Backyard $rniture” “Alien woodshed”“Happy penguin”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited resultEdited result

(b) K = 8 parts.

Figure 7: Applying same primitive edit for different text prompts at coarse scale (K ∈ {6, 8}
parts). First row in each subplot contains source primitives and depth (first two columns); the con-
fidence mask for hint generation, followed by four source RGB images. Second row shows the
modified primitives and depth, followed by the hint image xhint, followed by the four correspond-
ing edited images. At coarse scales, moving a primitive can move a lot of texture at once. Observe
how our hint generation procedure automatically yields confidence masks and hints, assigning low
confidence to boundaries of primitives that moved (e.g., the dog’s hair) and reveals holes when mov-
ing objects. The image model cleans up the low-confidence regions and even handles blurry/aliased
texture in the hint when tend > 0, meaning that the hint is not used for some denoising steps.

by rendering the primitives) and the estimated depth of the synthesized image (we use the hypersim
metric depth module from Yang et al. (2024) to get linear depth). Consistent with standard practice
in depth estimation, we use least squares to fit scale and shift parameters onto the depth from RGB
(letting the primitive depth supplied to the DM be GT).

To evaluate texture consistency, we apply ideas from the novel view synthesis literature and our
existing point cloud correspondence pipeline. Given the source RGB image and the synthesized
RGB image (conditioned on the texture hint), we warp the second image back into the first image’s
frame using our point cloud correspondence algorithm. If we were to synthesize an image in the
first render’s viewpoint using the second render, this is the texture hint we would use. In error met-
ric calculation, the first RGB image is considered ground truth, the warped RGB image from the
edited synthesized image is the prediction, and the confidence mask filters out pixels that are not
visible in view 1, given view 2. This evaluation procedure falls in the category of cycle consis-
tency/photometric losses that estimate reprojection error Fang et al. (2024); Jeong et al. (2024); Li
et al. (2025); Qin et al. (2025).

4 RESULTS

Fig. 4 shows how users can manipulate depth map inputs to depth-to-image synthesizers; Fig 5
shows camera moves. We have precise control over synthesized geometry while respecting texture.
The evaluation in Table 2, demonstrates we hit both goals conclusively. Existing texture preserva-
tion based on key-value transfer do not preserve details very well, only high-level semantics and
style. We ablate the advantage of our texture preservation approach in Fig. 6. When there are few

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of image reconstruction and generation metrics between our method and
LooseControl. AbsRelsrc and AbsReldst are absolute relative errors evaluating how well the gener-
ated images adhere to the requested primitive geometry (source and modified, respectively). PSNR
and SSIM are evaluated by reprojecting the second synthesized image back to the original camera
viewpoint (see Sec 3.4) and measuring texture consistency with the source. Observe how our proce-
dure simultaneously offers tight geometric adherence to the primitives while preserving the source
texture. Results obtained by averaging 48 test images with random camera moves. Because Bhat
et al. (2024) does not offer primitive extraction code, we supply our own primitives to both methods
for evaluation. We use K = 10 parts for this evaluation.

Method AbsRelsrc ↓ AbsReldst ↓ PSNR ↑ SSIM ↑
Ours 0.072 0.076 18.7 0.874
LooseControl Bhat et al. (2024) 0.143 0.146 6.65 0.670

Source Primitives Modified PrimitivesSource Image Edited Image

Source Image K=4 K=8 K=24

Source Primitives Modified PrimitivesSource Image Edited Image

Figure 8: Failure cases. Top: Illumination mis-
alignments. Our pixel-space texture hints fail to
model lighting (e.g., reflections, shadows) out-
side primitive boundaries. Consequently, mov-
ing an object like the bread stack does not update
its static reflection. Middle: Poor decomposi-
tion. In cluttered scenes or near image edges,
sparse depth can cause primitive fitting to fail,
incorrectly merging adjacent objects (bottle and
paper towel) and resulting in poor control. Bot-
tom: Rotation artifacts. Large object rotations
(50 degrees) disrupt geometry and texture consis-
tency, causing distortions or hallucinated content
(warped text), likely due to a distribution shift in
the texture hints.

primitives, moving one primitive affects a big part of the scene; when there are a lot of primitives,
we can make fine-scale edits. We show several such examples in Figs. 7, 10.

5 DISCUSSION

3D primitives offer precise geometric control over image generation model outputs, and preserve
high-level textures more effectively than key-value transfer methods. This works because primitive
decompositions offer several useful properties: they are selectable; they are object-linked; they are
compact; they allow edits at coarse and fine grain; and they are accurate enough to yield depth
maps that support high-quality texture projection. Our pipeline is designed to allow users to choose
between coarse and fine control by adjusting the number of primitives to suit the editing task and
scene context.

Our methods have difficulty with some non-convex shapes (e.g. underside of a chair or handle of
a coffee mug); additional segmentation and masking, more primitives, or more types of primitive
might help. Depth-of-field blurring/bokeh may not be resolved or sharpened when bringing out-of-
focus objects into focus. Significant object rotations may also fail (see Fig. 8). In an interactive
workflow, manually expanding the confidence mask to include problematic regions e.g., unwanted
reflections that don’t move with a primitive, can fix some issues. Future work that applies our point
correspondences within the network layers themselves (e.g., in vital layers) may yield more robust
solutions. Our method does not yet account for view-dependent lighting effects and does not enforce
temporal consistency across frames for video synthesis.

Our work highlights the delicacy of the links between the text prompt, hint image, initial noise
tensor, and depth map. Current inverters do not support our editing model, apparently because
edited images should start from the same noise tensor and prompt as the source image to achieve
good results. Certain edits that are at odds with the text prompt are likely to cause problems (e.g.,
if the prompt mentions an object is on the right, but a user manipulates the primitives to move the
object to the left). Changing the text prompt could work in some circumstances (Fig. 11).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and
Daniel Cohen-Or. Stable flow: Vital layers for training-free image editing. In Proceedings of the
Computer Vision and Pattern Recognition Conference (CVPR), pp. 7877–7888, June 2025.

Shariq Farooq Bhat, Niloy Mitra, and Peter Wonka. Loosecontrol: Lifting controlnet for generalized
depth conditioning. In ACM SIGGRAPH 2024 Conference Papers, SIGGRAPH ’24, New York,
NY, USA, 2024. Association for Computing Machinery. doi: 10.1145/3641519.3657525. URL
https://doi.org/10.1145/3641519.3657525.

Anand Bhattad, Konpat Preechakul, and Alexei A. Efros. Visual jenga: Discovering object de-
pendencies via counterfactual inpainting, 2025. URL https://arxiv.org/abs/2503.
21770.

I Biederman. Recognition by components : A theory of human image understanding. Psychological
Review, (94):115–147, 1987.

TO Binford. Visual perception by computer. In IEEE Conf. on Systems and Controls, 1971.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary
space partitioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Yen-Chi Cheng, Krishna Kumar Singh, Jae Shin Yoon, Alexander Schwing, Liangyan Gui, Matheus
Gadelha, Paul Guerrero, and Nanxuan Zhao. 3D-Fixup: Advancing Photo Editing with 3D Pri-
ors. In Proceedings of the SIGGRAPH Conference Papers. ACM, 2025. doi: 10.1145/3721238.
3730695.

Yutao Cui, Xiaotong Zhao, Guozhen Zhang, Shengming Cao, Kai Ma, and Limin Wang. Stabledrag:
Stable dragging for point-based image editing. In European Conference on Computer Vision, pp.
340–356. Springer, 2024.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
Tagliasacchi. Cvxnet: Learnable convex decomposition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Abdelrahman Eldesokey and Peter Wonka. Build-a-scene: Interactive 3d layout control for
diffusion-based image generation. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=gg6dPtdC1C.

Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. Diffusion self-
guidance for controllable image generation. 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Qihang Fang, Yafei Song, Keqiang Li, Li Shen, Huaiyu Wu, Gang Xiong, and Liefeng Bo. Evaluate
geometry of radiance fields with low-frequency color prior. In Proceedings of the Thirty-Eighth
AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applica-
tions of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. doi: 10.1609/aaai.v38i2.27938.
URL https://doi.org/10.1609/aaai.v38i2.27938.

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d aware
generator for high-resolution image synthesis. In International Conference on Learning Repre-
sentations, 2022.

Weiran Guang, Xiaoguang Gu, Mengqi Huang, and Zhendong Mao. Dragin3d: Image editing by
dragging in 3d space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 21502–21512, June 2025.

10

https://doi.org/10.1145/3641519.3657525
https://arxiv.org/abs/2503.21770
https://arxiv.org/abs/2503.21770
https://openreview.net/forum?id=gg6dPtdC1C
https://doi.org/10.1609/aaai.v38i2.27938

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks world revisited: Image understanding
using qualitative geometry and mechanics. In European Conference on Computer Vision (ECCV),
2010.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Yoonwoo Jeong, Jinwoo Lee, Seokyeong Lee, Doyup Lee, and Minhyuk Sung. NVS-Adapter: Plug-
and-play novel view synthesis from a single image. In Proceedings of the European Conference
on Computer Vision (ECCV), 2024.

Nikolai Kalischek, Michael Oechsle, Fabian Manhardt, Philipp Henzler, Konrad Schindler, and Fed-
erico Tombari. Cubediff: Repurposing diffusion-based image models for panorama generation,
2025. URL https://arxiv.org/abs/2501.17162.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3992–4003, 2023. doi: 10.1109/ICCV51070.2023.00371.

Florian Kluger, Hanno Ackermann, Eric Brachmann, Michael Ying Yang, and Bodo Rosenhahn.
Cuboids revisited: Learning robust 3d shape fitting to single rgb images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Gwanhyeong Koo, Sunjae Yoon, Younghwan Lee, Ji Woo Hong, and Chang D. Yoo. Flowdrag:
3d-aware drag-based image editing with mesh-guided deformation vector flow fields. In Proceed-
ings of the 42nd International Conference on Machine Learning (ICML 2025), June 2025. URL
https://icml.cc/virtual/2025/poster/43848. Poster (Spotlight Poster).

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Feifei Li, Qi Song, Chi Zhang, Hui Shuai, and Rui Huang. PoI: Pixel of interest for novel view
synthesis assisted scene coordinate regression. arXiv preprint arXiv:2502.04843, 2025.

Haolin Liu, Yujian Zheng, Guanying Chen, Shuguang Cui, and Xiaoguang Han. Towards high-
fidelity single-view holistic reconstruction of indoor scenes. In European Conference on Com-
puter Vision, pp. 429–446. Springer, 2022.

Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Krishna, Aniruddha Kembhavi, and Tanmay
Gupta. Object 3dit: Language-guided 3d-aware image editing. Advances in Neural Information
Processing Systems, 36:3497–3516, 2023.

Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei A. Efros, and Mathieu Aubry. Differentiable
Blocks World: Qualitative 3D Decomposition by Rendering Primitives. In NeurIPS, 2023.

Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and Jian Zhang. Dragondiffusion: Enabling
drag-style manipulation on diffusion models. arXiv preprint arXiv:2307.02421, 2023.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffu-
sion models. Proceedings of the AAAI Conference on Artificial Intelligence, 38(5):4296–4304,
Mar. 2024. doi: 10.1609/aaai.v38i5.28226. URL https://ojs.aaai.org/index.php/
AAAI/article/view/28226.

Jiteng Mu, Michaël Gharbi, Richard Zhang, Eli Shechtman, Nuno Vasconcelos, Xiaolong Wang,
and Taesung Park. Editable image elements for controllable synthesis. In Proceedings of the
European Conference on Computer Vision (ECCV), volume 15059 of Lecture Notes in Computer
Science, pp. 616–635. Springer, 2024. doi: 10.1007/978-3-031-72627-9\ 3.

Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, and Christian
Theobalt. Drag your gan: Interactive point-based manipulation on the generative image mani-
fold. In ACM SIGGRAPH 2023 conference proceedings, pp. 1–11, 2023.

11

https://arxiv.org/abs/2501.17162
https://icml.cc/virtual/2025/poster/43848
https://github.com/black-forest-labs/flux
https://ojs.aaai.org/index.php/AAAI/article/view/28226
https://ojs.aaai.org/index.php/AAAI/article/view/28226

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karran Pandey, Paul Guerrero, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, and Niloy J.
Mitra. Diffusion handles enabling 3d edits for diffusion models by lifting activations to 3d. In
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7695–
7704, 2024. doi: 10.1109/CVPR52733.2024.00735.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In Proceedings of the International Conference on Learning Representations (ICLR).
OpenReview.net, 2023. URL https://openreview.net/forum?id=FjNys5c7VyY.

Yuxin Qin, Xinlin Li, Linan Zu, and Ming Liang Jin. Novel view synthesis with depth priors using
neural radiance fields and cyclegan with attention transformer. Symmetry, 17(1), 2025. ISSN
2073-8994. doi: 10.3390/sym17010059. URL https://www.mdpi.com/2073-8994/
17/1/59.

L. G. Roberts. Machine Perception of Three-Dimensional Solids. PhD thesis, MIT, 1963.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674–10684, 2022. doi:
10.1109/CVPR52688.2022.01042.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF Tan,
and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based image edit-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8839–8849, 2024.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation
and support inference from rgbd images. In Proceedings of the 12th European Conference
on Computer Vision - Volume Part V, ECCV’12, pp. 746–760, Berlin, Heidelberg, 2012.
Springer-Verlag. doi: 10.1007/978-3-642-33715-4 54. URL https://doi.org/10.1007/
978-3-642-33715-4_54.

Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen.
Make-it-3d: High-fidelity 3d creation from a single image with diffusion prior. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 22819–22829, October
2023.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Computer Vision and Pattern Recognition
(CVPR), 2017.

Vaibhav Vavilala and David Forsyth. Convex decomposition of indoor scenes. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9142–9152, 2023. doi: 10.1109/
ICCV51070.2023.00842.

Vaibhav Vavilala, Rahul Vasanth, and David Forsyth. Denoising monte carlo renders with diffusion
models, 2024. URL https://arxiv.org/abs/2404.00491.

Vaibhav Vavilala, Florian Kluger, Seemandhar Jain, Bodo Rosenhahn, Anand Bhattad, and David
Forsyth. Improved convex decomposition with ensembling and boolean primitives, 2025a. URL
https://arxiv.org/abs/2405.19569.

Vaibhav Vavilala, Faaris Shaik, and David Forsyth. Dequantization and color transfer with diffusion
models. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp.
9630–9639, 2025b. doi: 10.1109/WACV61041.2025.00932.

12

https://openreview.net/forum?id=FjNys5c7VyY
https://www.mdpi.com/2073-8994/17/1/59
https://www.mdpi.com/2073-8994/17/1/59
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1007/978-3-642-33715-4_54
https://arxiv.org/abs/2404.00491
https://arxiv.org/abs/2405.19569

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg Shakhnarovich. Score ja-
cobian chaining: Lifting pretrained 2d diffusion models for 3d generation. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12619–12629, 2023. doi:
10.1109/CVPR52729.2023.01214.

Xiaoyan Xing, Konrad Groh, Sezer Karaoglu, Theo Gevers, and Anand Bhattad. Luminet: Latent
intrinsics meets diffusion models for indoor scene relighting. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 442–452, 2025.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and
Hengshuang Zhao. Depth anything v2. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 21875–21911. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/26cfdcd8fe6fd75cc53e92963a656c58-Paper-Conference.pdf.

Jiraphon Yenphraphai, Xichen Pan, Sainan Liu, Daniele Panozzo, and Saining Xie. Image sculpting:
Precise object editing with 3d geometry control. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4241–4251, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3813–3824, 2023. doi: 10.1109/ICCV51070.2023.00355.

Zewei Zhang, Huan Liu, Jun Chen, and Xiangyu Xu. Gooddrag: Towards good practices for drag
editing with diffusion models. In The Thirteenth International Conference on Learning Repre-
sentations, 2025.

Ruisi Zhao, Zechuan Zhang, Zongxin Yang, and Yi Yang. 3d object manipulation in a single image
using generative models, 2025. URL https://arxiv.org/abs/2501.12935.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, 2017.

Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

13

https://proceedings.neurips.cc/paper_files/paper/2024/file/26cfdcd8fe6fd75cc53e92963a656c58-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/26cfdcd8fe6fd75cc53e92963a656c58-Paper-Conference.pdf
https://arxiv.org/abs/2501.12935

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

Here we present additional details and evaluation. Note: we use LLMs to get LaTeX syntax and
cross-check for missing related works. We also use it to create UI for the generation of our results.

A.1 ADDITIONAL TECHNICAL DETAILS

To lift a depth map D ∈ RH×W to a 3D point cloud using the pinhole camera model, each pixel
(u, v) with depth du,v maps to a 3D point (X,Y, Z) as:

X =
(u− cx) · du,v

fx
, Y =

(v − cy) · du,v
fy

, Z = du,v

where (cx, cy) is the principal point (typically W/2, H/2), and (fx, fy) are the focal lengths along
the image axes. DepthAnythingv2 supplies a metric depth module with reasonable camera assump-
tions. These 3D samples are required to supervise primitive fitting. At test-time, we can directly
optimize primitive parameters using the training losses since these 3D samples are available.

Primitive fitting details. We use the standard ResNet-18 encoder (accepting RGBD input) followed
by 3 fully-connected layers to predict the parameters of the primitives. We train different networks
for different primitive counts K ∈ {4, 6, 8, 10, 12, 24, 36, 48, 60, 72}, and allow the user to select
their desired level of abstraction. Alternatively, the ensembling method of Vavilala et al. (2025a)
can automatically select the appropriate number of primitives. Depending on the primitive count,
the training process takes between 40-100 mins on a single A40 GPU, and inference (including
generating the initial primitive prediction, refinement, and rendering) can take 1-3 seconds per im-
age. While traditional primitive-fitting to RGB images fits cuboids Kluger et al. (2021), we find
that polytopes with more faces and without symmetry constraints yield more accurate fits. Thus,
we use F = 12 face polytopes. We do not use a Manhattan World loss or Segmentation loss; the
former helped on NYUv2 Silberman et al. (2012) but not on in-the-wild LAION images and the
latter showed an approximately neutral effect in the original paper Vavilala & Forsyth (2023).

Table 3: AbsRel depth error metrics for varying numbers of 3D primitives (12-face polytopes).
Lower values indicate better depth map approximation quality. While theory would predict AbsRel
→ 0 as K →∞ (e.g. one primitive per pixel), in practice we run into bias-variance problems fitting
more than 60 primitives. Generating primitives is efficient (approx. 1-3 seconds per image on the
GPU including finetuning and rendering) so it is feasible for the user to select from a few candidates
based on the desired level of abstraction. No other primitive-conditioned image synthesis method
offers variable abstraction.

Number of Parts (K) AbsRel Error↓
4 0.0376
6 0.0330
8 0.0295
10 0.0282
12 0.0265
24 0.0223
36 0.0203
48 0.0202
60 0.0194
72 0.0195

A.2 HYPERPARAMETER SELECTION

There are a number of hyperparameters associated with our procedure, and we perform a grid search
on a held-out validation set to find the best ones. When generating correspondence maps between
point clouds, we let max distance= 0.005. In our confidence map, we dilate low-confidence
pixels with a score less than τ = 0.01 by 9 pixels, which tells the image model to synthesize new

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

texture near primitive boundaries that are often uncertain. We set (tstart, tend) to (1000, 500) by
default, though tend can be tuned per test image by the user. Applying the hint for all time steps
can reduce blending quality near primitive boundaries; not applying the hint for enough time steps
could weaken texture consistency. Allowing some time steps to not follow the hint enables desirable
super resolution behavior e.g. when bringing a primitive closer to the camera. The supplementary
contains detailed algorithms for creating the hint and confidence mask.

Inpainting the hint image After warping the source image to the new view, we find it helpful
to inpaint low-confidence regions of the hint xhint before supplying it to the image model. We
considered several possibilities, including cv2 telea and cv2 ns from the OpenCV package,
as well as simply leaving them as black pixels. We find that Voronoi inpainting, a variation of
nearest neighbor inpainting, worked well. The voronoi inpainting function performs image
inpainting by filling in regions of low confidence in a hint image using colors from nearby high-
confidence pixels, based on a Voronoi diagram approach.

Given a hint image I of shape [H,W, 3] and a confidence mask C of shape [H,W] (after resizing
if necessary), we identify valid pixels where the confidence satisfies Ci,j ≥ τ , with τ being the
threshold (default 0.01). For each pixel (i, j) in the image, we assign the color of the nearest valid
pixel (k, l), determined by Euclidean distance, effectively performing nearest-neighbor interpola-
tion. Mathematically, the inpainted image I ′ is defined as:

I ′i,j = Ik,l where (k, l) = arg min
(m,n)∈V

√
(i−m)2 + (j − n)2,

and V = {(m,n) | Cm,n ≥ τ} represents the set of high-confidence pixel coordinates. This process
leverages a KD-tree for efficient nearest-neighbor searches, ensuring that each pixel adopts the color
of the closest reliable pixel, thus preserving local color consistency in the inpainted result.

For FLUX image generation we begin with the default settings from the diffusers FLUX controlled
inpainting pipeline 1. We set the strength parameter (controlling starting noise strength) to 1.0
and guidance to 10. We use 30 num steps for denoising. In comparative evaluation, we use the
default settings from the authors.

OursMove primitivesSource image Reve ChatGPT Gemini

Figure 9: Evaluation with production systems. First row, Left: Source image. The next
two columns show our primitive edits and the synthesized result. The arrow indicates a tex-
ture that our method reproduces faithfully, but others do not. The fourth column shows Reve
(https://app.reve.com/), a commercial image generation system. We can prompt their model with
2D boxes to reposition objects, but we must manually estimate their size to take into account 3D
perspective effects. With our 3D primitives, maintaining object scale is free. ChatGPT and Gemini
do not have interaction mechanisms outside of text prompts and struggle to precisely move objects.
Additionally, all 3 production methods added a seconds hand to the clock that wasn’t in the original.
Those methods were also unable to generate precise camera moves that we can in this work. The
second row shows another example. Our method can precisely move objects while maintaining
texture. Reve changed the orientation of the potato. ChatGPT was unable to move the objects where
requested (we tried variations of“move the watermelon to the top left, move the potato to the bottom
right”). Gemini succeeded in this example.

1https://huggingface.co/docs/diffusers/en/api/pipelines/control_flux_
inpaint

15

https://huggingface.co/docs/diffusers/en/api/pipelines/control_flux_inpaint
https://huggingface.co/docs/diffusers/en/api/pipelines/control_flux_inpaint

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

“Prehis"ric creature wi# sharp $e#” “An eagle”“Stack of cakes”“Lava snake monument”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(a) K = 24 parts.
“Bamboo stalk and river rocks” “Trash can and mouse”“Translucent cell and device” “Candle in ribbed glass and driftwood”Source Primitives

 Modified Primitives

Depth from Primitives Confidence Mask

Hint imageDepth from new Primitives Edited result Edited result Edited result Edited result

(b) K = 60 parts.

Figure 10: Applying the same primitive edit for different text prompts at fine scale (K ∈
{24, 60} parts). Observe in the first two rows how all synthesized images respect the enlarged
green primitive, while background texture is preserved. In the bottom two rows, we compose sev-
eral edits using a large number of primitives (K = 60), enabling fine-scaled edits. We scale up
the light blue primitive while scaling down the light green primitive on the left-hand side. We then
translate the dark blue primitive on the right-hand side towards the bottom center of the image. We
also slightly translate the camera upward. Observe how in the subsequent columns, the edited re-
sult respects the geometry specified by the primitives while following the high-level texture of the
source image. However, notice how composing four edits challenges our procedure, as the texture
preservation isn’t as tight. For example, in the final column, a tiled pattern appears on the floor that
wasn’t in the source.

“A brick, cactus, and rock”Source Primitives Modified Primitives Edited result “A cactus, and rock” + No StableFlow

Figure 11: Primitive edits can conflict with the text prompt. Some geometric edits require chang-
ing the text prompt, for example, when removing an object. The fourth column mentions brick in
the text prompt, but that primitive was removed, resulting in brick pieces in the inpainted region.
In the fifth column, we remove the brick from the text prompt, which removes the brick pieces
but it still leaves behind a white stone. In the final column, we use our texture hints but without
StableFlow, getting a clean surface. The StableFlow key-value sharing approach placed brick and
stone textures where we didn’t want them. We conclude that our texture hints are critical, but com-
bining them with StableFlow Avrahami et al. (2025) key-value sharing can help in some cases, hurt
in others.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Primitives Depth Map LoRA 0.0 LoRA 0.2 LoRA 0.4 LoRA 0.6 LoRA 0.8 LoRA 1.0

Primitives Depth Map LoRA 0.0 LoRA 0.2 LoRA 0.4 LoRA 0.6 LoRA 0.8 LoRA 1.0

Primitives Depth Map LoRA 0.0 LoRA 0.2 LoRA 0.4 LoRA 0.6 LoRA 0.8 LoRA 1.0

Primitives Depth Map LoRA 0.0 LoRA 0.2 LoRA 0.4 LoRA 0.6 LoRA 0.8 LoRA 1.0

Figure 12: Our model is compatible with most depth-image synthesizers. While a pretrained FLUX
works out of the box, LoRA weights on top of the base FLUX model are available (FLUX.1
Depth [dev] LoRA), exposing a new loraweight parameter (scaling the activations of the LoRA
layers). This is intriguing in the context of our primitives, because they can either be used to coarsely
model scene geometry (e.g. loraweight near 0.8, second last column), leaving details to the image
synthesizer, or they can tightly control the result when loraweight is close to 1 (final column).

pr
im

iti
ve

s

K=4 K=6 K=8 K=10 K=12 K=24 K=36 K=48 K=60 K=72

de
pt

h
im

ag
e

pr
im

iti
ve

s

K=4 K=6 K=8 K=10 K=12 K=24 K=36 K=48 K=60 K=72

de
pt

h
im

ag
e

Figure 13: Given the same depth map, we extract primitives at variable resolution (from 4-72 parts).
We show the depth maps in each second row, and synthesized result in each 3rd row. Observe how
no matter the resolution, the FLUX-LoRA model (we use loraweight = 0.8) gives an image that
follows the primitive conditioning. We conclude that a wide array of primitive densities is tolerable
to depth-to-image models, enabling meaningful artistic edits.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D
ep

th

Original Depth +x -x +y -y +z -z

Pr
im

it
iv

es
O

ur
s

Lo
os

eC
on

tr
ol

Figure 14: Additional move camera evaluations. Our method can simultaneously adhere to source
texture and requested primitives.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D
ep

th

Original Depth +x -x +y -y +z -z

Pr
im

it
iv

es
O

ur
s

Lo
os

eC
on

tr
ol

D
ep

th

Original Depth +x -x +y -y +z -z

Pr
im

it
iv

es
O

ur
s

Lo
os

eC
on

tr
ol

Figure 15: Additional move camera evaluations. Generative Blocks World can simultaneously ad-
here to source texture and requested primitives.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D
ep

th

Original Depth +x -x +y -y +z -z

Pr
im

it
iv

es
O

ur
s

Lo
os

eC
on

tr
ol

D
ep

th

Original Depth +x -x +y -y +z -z

Pr
im

it
iv

es
O

ur
s

Lo
os

eC
on

tr
ol

Figure 16: Additional move camera evaluations. Our method can simultaneously adhere to source
texture and requested primitives.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 17: We repeat the analysis of StableFlow Avrahami et al. (2025), which applies U-Net based
key-value transfer of older-generation Diffusion models to newer Diffusion Transformers. Specifi-
cally, their work analyzes FLUX.1 [dev]; given that our work uses depth maps to communicate
geometric information to our image generation model, we analyze Vital Layers in FLUX.1 Depth
[dev] and FLUX.1 Depth [dev] LoRA, finding the top 5 multimodal and single modal lay-
ers to be essentially identical. We try using the vital layers we identified for texture transfer, finding
this method to be inadequate (see Fig. 6).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1: Point Cloud Correspondence Generation
Input: P1,P2: point clouds;M1,M2: convex maps; T : primitive transforms; C: centers;

dmax = 0.005: max distance threshold
Output: R: correspondence map;W: confidence map

Function ApplyTransform(p, c, T):
p′ ← p− c ; // Center the point
if T contains translation then

p′ ← p′ −Ttrans;
end
if T contains rotation angle θ then

c, s← cos(−θ), sin(−θ);
x′, z′ ← x′ · c− z′ · s, x′ · s+ z′ · c ; // Y-axis rotation

end
if T contains scaling factor scale then

p′ ← p′/scale;
end
return p′ + c;

R ← 0H×W×2 ; // Initialize correspondence map
W ← 0H×W ; // Initialize confidence map

for p ∈ unique(M1) do
if p < 0 or p ≥ |C| or p /∈M1 or p /∈M2 then

continue;
end
I1 ← {(y, x) :M1[y, x] = p} ; // Pixel indices for primitive p in map
1
I2 ← {(y, x) :M2[y, x] = p} ; // Pixel indices for primitive p in map
2
Q1 ← {P1[y, x] : (y, x) ∈ I1} ; // 3D points for primitive p

for (y2, x2) ∈ I2 do
q← P2[y2, x2] ; // Query point from second cloud
if p ∈ T then

q← ApplyTransform(q, C[p], T [p]) ; // Apply transformation
end
d← ∥Q1 − q∥2 ; // Compute distances to all points
i∗ ← argmini d[i] ; // Find nearest neighbor
dmin ← d[i∗];
if dmin ≤ dmax then

(y∗1 , x
∗
1)← I1[i∗] ; // Get corresponding pixel coordinates

R[y2, x2]← [x∗
1, y

∗
1];

W[y2, x2]← 1−min(dmin/dmax, 1) ; // Confidence score
end

end
end
returnR,W;

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 2: Hint Generation from Correspondence Maps

Input: Isrc ∈ RC×Hs×Ws : source image;R ∈ RHr×Wr×2: correspondence map;
W ∈ RHr×Wr : confidence map;Mhit ∈ {0, 1}Hr×Wr : hit mask

Output: H ∈ RC×Hs×Ws : generated hint image

Function BilinearSample(I, y, x):
C,H,W ← shape(I);
x← clip(x, 0,W − 1.001), y ← clip(y, 0, H − 1.001);

x0, y0 ← ⌊x⌋, ⌊y⌋ ; // Floor coordinates
x1, y1 ← min(x0 + 1,W − 1),min(y0 + 1, H − 1);
wx, wy ← x− x0, y − y0 ; // Interpolation weights

vtop ← I[:, y0, x0] · (1− wx) + I[:, y0, x1] · wx;
vbot ← I[:, y1, x0] · (1− wx) + I[:, y1, x1] · wx;
return vtop · (1− wy) + vbot · wy;

λh ← Hs/Hr, λw ←Ws/Wr ; // Scale factors
H ← 0C×Hs×Ws

; // Initialize hint image

for y ∈ [0, Hr) do
for x ∈ [0,Wr) do

ifMhit[y, x] = 1 then
continue ; // Skip hit pixels

end
(xc, yc)←R[y, x] ; // Get correspondence
w ←W[y, x] ; // Get confidence
if w < 0.1 then

continue ; // Skip low-confidence correspondences
end
ysrc ← yc · λh, xsrc ← xc · λw ; // Scale to source resolution
ystart ← ⌊y · λh⌋, yend ← ⌊(y + 1) · λh⌋;
xstart ← ⌊x · λw⌋, xend ← ⌊(x+ 1) · λw⌋;
for ys ∈ [ystart, yend) do

for xs ∈ [xstart, xend) do
if ys /∈ [0,Hs) or xs /∈ [0,Ws) then

continue ; // Boundary check
end

αy ← ys−ystart
max(yend−ystart,1)

; // Normalized offset

αx ← xs−xstart
max(xend−xstart,1)

;
ysample ← ysrc + αy · λh;
xsample ← xsrc + αx · λw;
H[:, ys, xs]← BilinearSample(Isrc, ysample, xsample);

end
end

end
end
returnH;

23

	Introduction
	Related Work
	Method
	Convex Decomposition for Primitive Extraction
	Depth-Conditioned Inpainting in Rectified Flow Transformers
	Texture Hint Generation for Camera and Object Edits
	Evaluation

	Results
	Discussion
	Appendix
	Additional Technical Details
	Hyperparameter selection

