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A DEEPER LOOK AT DISCOUNTING MISMATCH IN
ACTOR-CRITIC ALGORITHMS

ABSTRACT

We investigate the discounting mismatch in actor-critic algorithm implementa-
tions from a representation learning perspective. Theoretically, actor-critic algo-
rithms usually have discounting for both actor and critic, i.e., there is a γt term in
the actor update for the transition observed at time t in a trajectory and the critic is
a discounted value function. Practitioners, however, usually ignore the discount-
ing (γt) for the actor while using a discounted critic. We investigate this mismatch
in two scenarios. In the first scenario, we consider optimizing an undiscounted
objective (γ = 1) where γt disappears naturally (1t = 1). We then propose to
interpret the discounting in critic in terms of a bias-variance-representation trade-
off and provide supporting empirical results. In the second scenario, we consider
optimizing a discounted objective (γ < 1) and propose to interpret the omission of
the discounting in the actor update from an auxiliary task perspective and provide
supporting empirical results.

1 INTRODUCTION

Actor-critic algorithms have enjoyed great success both theoretically (Williams, 1992; Sutton et al.,
2000; Konda, 2002; Schulman et al., 2015a) and empirically (Mnih et al., 2016; Silver et al., 2016;
Schulman et al., 2017; OpenAI, 2018). There is, however, a longstanding gap between the theory
behind actor-critic algorithms and how practitioners implement them. Let γ, γA, and γC be the
discount factors for defining the objective, updating the actor, and updating the critic respectively.
Theoretically, no matter whether γ = 1 or γ < 1, we should always use γA = γC = γ (Sutton
et al., 2000; Schulman et al., 2015a) or at least keep γA = γC if Blackwell optimality (Veinott, 1969;
Weitzman, 2001) 1 is considered. Practitioners, however, usually use γA = 1 and γC < 1 in their
implementations (Dhariwal et al., 2017; Caspi et al., 2017; Zhang, 2018; Kostrikov, 2018; Achiam,
2018; Liang et al., 2018; Stooke & Abbeel, 2019). Although this mismatch and its theoretical
disadvantage have been recognized by Thomas (2014); Nota & Thomas (2020), whether and why
it yields benefits in practice has not been systematically studied. In this paper, we empirically
investigate this mismatch from a representation learning perspective. We consider two scenarios
separately.

Scenario 1: The true objective is undiscounted (γ = 1). The theory prescribes to use γA = γC =
γ = 1. Practitioners, however, usually use γA = γ = 1 but γC < 1, introducing bias. We explain
this mismatch with the following hypothesis:
Hypothesis 1. γC < 1 optimizes a bias-variance-representation trade-off.

It is easy to see that γC < 1 reduces the variance in bootstrapping targets. Besides this, we further
provide empirical evidence showing that when γC < 1, it may become easier to find a good repre-
sentation compared to γC = 1. Consequently, although using γC < 1 introduces bias, it can facilitate
representation learning. For our empirical study, we make use of recently introduced techniques,
such fixed horizon temporal different learning (De Asis et al., 2019) and distributional reinforce-
ment learning (Bellemare et al., 2017) to disentangle the various effects the discount factor has on
the learning process.

Scenario 2: The true objective function is discounted (γ < 1). Theoretically, there is a γt term
for the actor update on a transition observed at time t in a trajectory (Sutton et al., 2000; Schulman

1Blackwell optimality states that, in finite MDPs, there exists a γ0 < 1 such that for all γ ≥ γ0, the optimal
policies for the γ-discounted objective are the same.
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et al., 2015a). Practitioners, however, usually ignore this term while using a discounted critic, i.e.,
γA = 1 and γC = γ < 1 are used. We explain this mismatch with the following hypothesis:
Hypothesis 2. Using γC = γ < 1 and γA = 1 is effectively similar to using γC = γA = γ < 1 plus
an auxiliary loss that sometimes facilitates representation learning.

Our empirical study involves implementing the auxiliary task explicitly by using an additional policy
for optimizing the difference term between the loss of γA = 1 and the loss of γA < 1. We also design
new benchmarking environments where the sign of the reward function is flipped after a certain time
step such that later transitions differ from earlier ones. In that setting, γA = 1 becomes harmful.

2 BACKGROUND

γ define the objective
γA update the actor
γC update the critic

Table 1: Roles of the differ-
ent discount factors

Markov Decision Processes: We consider an infinite horizon MDP
with a finite state space S, a finite action spaceA, a bounded reward
function r : S → R, a transition kernel p : S × S × A → [0, 1],
an initial state distribution µ0, and a discount factor γ ∈ [0, 1].2 The
initial state S0 is sampled from µ0. At time step t, an agent in state
St takes action At ∼ π(·|St), where π : A×S → [0, 1] is the policy
it follows. The agent then gets a reward Rt+1

.
= r(St) and proceeds

to the next state St+1 ∼ p(·|St, At). The return of the policy π at
time step t is defined as Gt

.
=
∑∞
i=1 γ

i−1Rt+i, which allows us to
define the state value function vγπ(S)

.
= E[Gt|St = s] and the state-action value function qγπ(s, a)

.
=

E[Gt|St = s,At = a]. We consider episodic tasks where we assume there is an absorbing state
s∞ ∈ S such that r(s∞) = 0 and p(s∞|s∞, a) = 1 holds for any a ∈ A. When γ < 1, vγπ and
qγπ are always well defined. When γ = 1, to ensure vγπ and qγπ are well defined, we further assume
finite expected episode length. Let Tπs be a random variable denoting the first time step that an
agent hits s∞ when following π given S0 = s. We assume Tmax

.
= supπ∈Π maxs E[Tπs ] < ∞,

where π is parameterized by θ and Π is the corresponding function class. Similar assumptions are
also used in stochastic shortest path problems (e.g., Section 2.2 of Bertsekas & Tsitsiklis (1996)).
In our experiments, all the environments have a hard time limit of 1000, i.e., Tmax = 1000. This
is standard practice, classic RL environments also have an upper limit on their episode lengths (e.g.
27k in Bellemare et al. (2013, ALE)). Following Pardo et al. (2018), we add the (normalized) time
step t in the state to keep the environment Markovian. We measure the performance of a policy π
with Jγ(π)

.
= ES0∼µ0

[vγπ(S0)].

Vanilla Policy Gradient: Sutton et al. (2000) compute∇θJγ(π) as

∇θJγ(π)
.
=
∑
s d

γ
π(s)

∑
a q

γ
π(s, a)∇θπ(a|s), (1)

where dγπ(s)
.
=
∑∞
t=0 γ

t Pr(St = s|µ0, p, π) for γ < 1 and dγπ(s)
.
= E[

∑TπS0
t=0 Pr(St = s|S0, p, π)]

for γ = 1.3 Note dγπ remains well-defined for γ = 1 when Tmax < ∞. In order to optimize the
policy performance Jγ(π), one can follow (1) and, at time step t, update θt as

θt+1 ← θt + αγtAq
γC
π (St, At)∇θ log π(At|St), (2)

where α is a learning rate. If we replace qγC
π with a learned value function, the update rule (2)

becomes an actor-critic algorithm, where the actor refers to π and the critic refers to the learned
approximation of qγC

π . In practice, an estimate for vγC
π instead of qγC

π is usually learned. Theoretically,
we should have γA = γC = γ. Practitioners, however, usually ignore the γtA term in (2), and use
γC < γA = 1. What this update truly optimizes remains an open problem (Nota & Thomas, 2020).

TRPO and PPO: To improve the stability of actor-critic algorithms, Schulman et al. (2015a) pro-
pose Trust Region Policy Optimization (TRPO), based on the performance improvement lemma:
Lemma 1. (Theorem 1 in Schulman et al. (2015a)) For γ < 1 and any two policies π and π′,

Jγ(π′) ≥ Jγ(π) +
(∑

s d
γ
π(s)

∑
a π
′(a|s)Advγπ(s, a)

)
− 4 maxs,a |Advγπ(s,a)|γε(π,π′)

(1−γ)2 ,

2Following Schulman et al. (2015a), we consider r : S → R instead of r : S ×A → R for simplicity.
3Sutton et al. (2000) do not explicitly define dγπ when γ = 1, which, however, can be easily deduced from

Chapter 13.2 in Sutton & Barto (2018).
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where Advγπ(s, a)
.
= Es′∼p(·|s,a)[r(s) + γvγπ(s′) − vγπ(s)] is the advantage, ε(π, π′)

.
=

maxsDKL(π(·|s)||π′(·|s)), and DKL refers to the KL divergence.

To facilitate our empirical study, we first make a theoretical contribution by extending Lemma 1 to
the undiscounted setting. We have the following lemma:
Lemma 2. Assuming Tmax <∞, for γ = 1 and any two policies π and π′,

Jγ(π′) ≥ Jγ(π) +
(∑

s d
γ
π(s)

∑
a π
′(a|s)Advγπ(s, a)

)
− 4 maxs,a |Advγπ(s, a)|T 2

maxε(π, π
′).

The proof of Lemma 2 is provided in the appendix. A practical implementation of Lemmas 1 and 2
is to compute a new policy θ via gradient ascent on the clipped objective:

L(θ)
.
=
∑∞
t=0 γ

t
A min

{
πθ(At|St)
πθold (At|St) AdvγC

πθold
(St, At), clip( πθ(At|St)

πθold (At|St) )AdvγC
πθold

(St, At)
}
, (3)

where St and At are sampled from πθold , and clip(x)
.
= max(min(x, 1 + ε), 1 − ε) with ε a hyper-

parameter. Theoretically, we should have γA = γC, but practical algorithms like Proximal Policy
Optimization (Schulman et al., 2017, PPO) usually use γC < γA = 1.

Policy Evaluation: We now introduce several policy evaluation techniques we use in our empirical
study. Let v̂ be our estimate of vγπ . At time step t, Temporal Difference learning (TD, Sutton
(1988)) updates v̂ as v̂(St)← v̂(St) +α(Rt+1 + γv̂(St+1)− v̂(St)). Instead of the infinite horizon
discounted returnGt, De Asis et al. (2019) propose to consider theH-step returnGHt

.
=
∑H
i=1Rt+i.

Correspondingly, the H-step value function is defined as vHπ (s)
.
= E[GHt |St = s]. We let v̂H be our

estimate of vHπ . At time step t, De Asis et al. (2019) use the following update rule to learn v̂H :

v̂i(St)← v̂i(St) + α(Rt+1 + v̂i−1(St+1)− v̂i(St)) (i = 1, . . . H), (4)

where v̂0(s)
.
= 0. In other words, to learn v̂H , we need to learn {v̂i}i=1,...,H simultaneously.

De Asis et al. (2019) call (4) Fixed Horizon Temporal Difference learning (FHTD).

As Gt is a random variable, Bellemare et al. (2017) propose to learn its full distribution instead of
its expectation only, yielding the Distributional Reinforcement Learning (RL) paradigm. They use
a categorical distribution with 51 atoms uniformly distributed in [−Vmax, Vmax] to approximate the
distribution of Gt, where Vmax is a hyperparameter. In this paper, we refer to the corresponding
policy evaluation algorithm as C51.

Methodology: We consider MuJoCo robot simulation tasks from OpenAI gym (Brockman et al.,
2016) as our benchmark. Given its popularity in understanding deep RL algorithms (Henderson
et al., 2017; Ilyas et al., 2018; Engstrom et al., 2019; Andrychowicz et al., 2020) and designing new
deep RL algorithms (Fujimoto et al., 2018; Haarnoja et al., 2018), we believe our empirical results
are relevant to most practitioners.

We choose PPO, a simple yet effective and widely used algorithm, as the representative actor-critic
algorithm for our empirical study. PPO is usually equipped with generalized advantage estima-
tion (Schulman et al., 2015b, GAE), which has a tunable hyperparameter γ̂. The roles of γ and γ̂ are
similar. To reduce its confounding effect, we do not use GAE in our experiments, i.e., the advantage
estimation for our actor is simply the TD errorRt+1 +γCv̂(St+1)− v̂(St). The PPO pseudocode we
follow is provided in Alg. 1 in the appendix and we refer to it as the default PPO implementation.

We use the standard architecture and optimizer across all tasks, in particular, the actor and the
critic do not share layers. We conduct a thorough learning rate search in Ant for each algorithmic
configuration (i.e., a curve in a figure) and then use the same learning rate for all other tasks. When
using FHTD and C51, we also include H and Vmax in the grid search. All details are provided in the
appendix. We report the average episode return of the ten most recent episodes against the number
of interactions with the environment. Curves are averages over ten independent runs with shaded
regions indicating standard errors.

3 OPTIMIZING THE UNDISCOUNTED OBJECTIVE (SCENARIO 1)

When our goal is to optimize the undiscounted objective Jγ=1(π), one theoretically grounded option
is to use γA = γC = γ = 1. By using γA = 1 and γC < 1, practitioners introduce bias. We first
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empirically confirm that introducing bias in this way indeed has empirical advantages. A simple first
hypothesis is that γC < 1 leads to lower variance in Monte Carlo return bootstrapping targets than
γC = 1, it thus optimizes a bias-variance trade-off. However, we further show that there are empirical
advantages from γC < 1 that cannot uniquely be explained by this bias-variance trade-off, indicating
that there are additional factors beyond variance. We then show empirical evidence identifying
representation learning as an additional factor, leading to the bias-variance-representation trade-off
from Hypothesis 1. All the experiments in this section use γA = 1.
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Figure 1: The default PPO implementation with different discount factors.
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Figure 2: Comparison between PPO and PPO-TD when γC = 1.
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Figure 3: PPO-TD with different discount factors.

Bias-variance trade-off: To investigate the advantages of using γC < 1, we first test default PPO
with γC ∈ {0.95, 0.97, 0.99, 0.995, 1}. We find that the best discount factor is always with γC < 1
and that γC = 1 usually leads to a performance drop (Figure 1). In default PPO, although the
advantage is computed as the one-step TD error, the update target for updating the critic v̂(St)
is almost always a Monte Carlo return. As there is no γtA term in the actor update, we should
theoretically use γC = γA = 1 when computing the Monte Carlo return, which usually leads to
high variance. Consequently, a simple hypothesis for the empirical advantages of using γC < 1 is a
bias-variance trade-off. We find, however, that there is more at play.

Beyond bias-variance trade-off: To reduce the effect of γC in controlling the variance, we bench-
mark PPO-TD (Algorithm 2 in the appendix). PPO-TD is the same as default PPO except that
the critic is updated with one-step TD, i.e., the update target for v̂(St) is now Rt+1 + γCv̂(St+1).
Although Figure 2 shows that PPO-TD (γC = 1) outperforms PPO (γC = 1) by a large margin,
indicating bias-variance may be at play, Figure 3 suggests that for PPO-TD as well, γC < 1 is still
preferable to γC = 1. To further study this phenomenon, we benchmark PPO-TD-Ex (Algorithm 3 in
the appendix), in which we provide N extra transitions to the critic by sampling multiple actions at
any single state and using an averaged bootstrapping target. The update target for v̂(St) in PPO-TD-
Ex is 1

N+1

∑N
i=0R

i
t+1 +γCv̂(Sit+1). Here R0

t+1 and S0
t+1 refer to the original reward and successor

state. To get Rit+1 and Sit+1 for i ∈ {1, . . . , N}, we first sample an action Ait from the sampling
policy, then reset the environment to St, and finally execute Ait to get Rit+1 and Sit+1. Importantly,
we do not count those N extra transitions in the x-axis when plotting. The advantage for the actor
update in PPO-TD-Ex is estimated with R0

t+1 + v̂(S0
t+1)− v̂(St) regardless of γC to further control

the influence of variance. The critic v̂ is not trained on the extra successor states {Sit+1}i=1,...,N .
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Figure 4: PPO-TD-Ex (γC = 0.99).
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Figure 5: PPO-TD-Ex (γC = 1).

So the quality of the prediction v̂(Sit+1) depends mainly on the generalization of v̂. Intuitively, if
v̂ generalizes well, providing proper amount of transitions this way should improve or maintain the
overall performance as they help reduce variance. As shown by Figure 4, PPO-TD-Ex (γC = 0.99)
roughly follows this intuition. However, surprisingly, providing extra data to PPO-TD-Ex (γC = 1)
leads to a significant performance drop (Figure 5). This drop suggests that the larger variance from
the randomness of St+1 is not the only issue when using γC = 1 to train the critic. The quality of the
estimate v̂, at least in terms of making prediction on untrained states {Sit+1}1,...,N , is lower when
γC = 1 is used than γC < 1. In other words, the generalization of v̂ is poor when γC = 1. The curves
for PPO-TD-Ex (γC = 0.995) are a mixture of γC = 0.99 and γC = 1 and are provided in Figure 16
in the appendix.

In the undiscounted setting, we should theoretically have Rt+1 + v̂(St+1) as the update target for
the critic. When γC < 1 is used instead, the update target becomes Rt+1 + γCv̂(St+1) and the
variance resulting from the randomness of St+1 becomes less pronounced. So here, γC trades off
bias with variance, similar to that in Monte Carlo return bootstrapping targets in default PPO. We
refer to this effect of γC as variance control. However, γC can also affect the difficulty of learning
a good estimate v̂ for vγC

π ; we refer to this effect of γC as learnability control (Lehnert et al., 2018;
Laroche & van Seijen, 2018; Romoff et al., 2019). Inspired by the poor generalization of v̂ when
γC = 1, we investigate learnability control mainly from the representation learning perspective. By
representation learning, we refer to learning the bottom layers (backbone) of a neural network. The
last layer of the neural network is then interpreted as a linear function approximator whose features
are the output of the backbone. This interpretation of representation learning is widely used in the
RL community, see e.g. Jaderberg et al. (2016); Chung et al. (2018); Veeriah et al. (2019).

Bias-representation trade-off: To separate variance control and learnability control, ideally we
should investigate the update target Rt+1 + γC,1v̂(St+1), where v̂ is trained to approximate vγC,2

π

and γC,2 < γC,1 = 1. Learning an estimate v̂ for vγC,2
π , however, implies to use the update target

Rt+1 + γC,2v̂(St+1): the two effects of γC,2 then get mixed again. To solve this dilemma, we
consider the update targetRt+1 + v̂H−1(St+1), where v̂H−1(St+1) is trained to approximate vH−1

π ,
i.e., we use FHTD to train the critic in PPO, which we refer to as PPO-FHTD (Algorithm 4 in the
appendix). PPO-FHTD implements γC,1 = 1 directly, and manipulating H changes the horizon of
the policy evaluation problem, which is also one of the effects of manipulating γC,2.

We test two parameterizations for PPO-FHTD to investigate representation learning. In the first
parameterization, to learn vHπ , we parameterize {viπ}i=1,...,H as H different heads over the same
representation layer (backbone). In the second parameterization, we always learn {viπ}i=1,...,1024

as 1024 different heads over the same representation layer, whatever H we are interested in. To
approximate vHπ , we then simply use the output of the H-th head. A diagram (Figure 13) in the
appendix further illustrates the difference between the two parameterizations.

Figure 6 shows that by tuning H for FHTD, PPO-FHTD with the first parameterization matches
or exceeds the performance of PPO-TD (γC < 1) in most tasks, and that the best H is always
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Figure 6: PPO-FHTD with the first parameterization. The best H and γC are used for each game.
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Figure 7: PPO-FHTD with the second parameterization.

smaller than 1024. Theoretically, as long as we use an H ≥ Tmax = 1000, we always have
vHπ (s) ≡ vγ=1

π (s). Figure 6 shows that the performance of PPO-FHTD (H = 1024) is very close
to PPO-TD (γC = 1), indicating that learning {viπ}i=1,...,1023 is not an additional overhead for the
network in terms of learning vH=1024

π , i.e., increasingH does not pose additional challenges in terms
of network capacity. However, Figure 7 suggests that for the second parameterization, H = 1024
is almost always among the best choices of H . Comparing Figures 6 and 7, we conclude that in the
tested domains, learning vHπ with different H requires different representations. This suggests that
we can interpret the results in Figure 6 as a bias-representation trade-off. Using a larger H is less
biased but representation learning may become harder due to the longer policy evaluation horizon.
Consequently, an intermediate H achieves the best performance in Figure 6. As reducing H cannot
bring in advantages in representation learning under the second parameterization, the less biased H ,
i.e., the larger H , usually performs better in Figure 7. Overall, γC optimizes a bias-representation
trade-off by changing the policy evaluation horizon H .

0 1 2 N……

Figure 8: A simple MRP.

We further conjecture that representation learning may be harder for
a longer horizon because good representations can become rarer.
We provide a simulated example to support this. Consider policy
evaluation on the simple Markov Reward Process (MRP) from Fig-
ure 8. We assume the reward for each transition is fixed and is
randomly generated in [0, 1]. Let xs ∈ RK be the feature vector
for a state s; we set its i-th component as xs[i]

.
= tanh(ξ), where

ξ is a random variable uniformly distributed in [−2,−2]. We chose
this feature setup as we use tanh as the activation function in our PPO. We use X ∈ RN×K to
denote the feature matrix. To create state aliasing (McCallum, 1997), which is common under func-
tion approximation, we first randomly split the N states into S1 and S2 such that |S1| = αN and
|S2| = (1 − α)N , where α is the proportion of states to be aliased. Then for every s ∈ S1, we
randomly select an ŝ ∈ S2 and set xs ← xŝ. Finally, we add Gaussian noise N (0, 0.12) to each
element of X . We use N = 100 and K = 30 in our simulation and report the normalized represen-
tation error (NRE) as a function of γ. For a feature matrix X , the NRE is computed analytically as
NRE(γ)

.
=

minw ||Xw−vγ ||2
||vγ ||2 , where vγ is the analytically computed true value function of the MRP.

We report the results in Figure 9, where each data point is averaged over 104 randomly generated
feature matrices (X) and reward functions. In this MRP, the average representation error becomes
larger as γ increases, which suggests that learning a good representation under a large γ and state
aliasing may be harder than with a smaller γ. We report the unnormalized representation error in
Figure 17 in the appendix, where the trend is much clearer.

Overall, though we do not claim that there is a monotonic relationship between the discount factor
and the difficulty of representation learning, our empirical study does suggest that representation
learning is a key factor at play in the misuse of the discounting in actor-critic algorithms, beyond

4The trend that NRE decreases as α increases is merely an artifact from how we generate vγ .
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Figure 9: Normalized representation error as a function of the discount factor. Shaded regions
indicate one standard derivation. 4

the widely recognized bias-variance trade-off. In the appendix, we provide additional experiments
involving distributional RL to further support the bias-variance-representation trade-off hypothe-
sis, under the assumption that the benefits of distributional RL comes mainly from the improved
representation learning (Bellemare et al., 2017; Munos, 2018; Petroski Such et al., 2019).

4 OPTIMIZING THE DISCOUNTED OBJECTIVE (SCENARIO 2)
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Figure 10: Comparison between PPO and DisPPO with γ = 0.995

When our goal is to optimize the discounted objective Jγ<1(π), theoretically we should have the
γtA term in the actor update and use γC < 1. Practitioners, however, usually ignore this γtA (i.e.,
set γA = 1), introducing bias. Figure 10 shows that even if we use the discounted return as the
performance metric, the biased implementation of PPO still outperforms the theoretically grounded
implementation DisPPO in the domains we tested. Here PPO refers to the default PPO implemen-
tation where γA = 1, γC = γ < 1, and DisPPO (Alg. 6 in the appendix) adds the missing γtA term
in PPO by using γA = γC = γ < 1. We propose to interpret the empirical advantages of PPO over
DisPPO with Hypothesis 2. For all experiments in this section, we use γC = γ < 1.

An auxiliary task perspective: The biased policy update implementation of (2) ignoring γtA can be
decomposed into two parts as ∆t = γt∆t + (1− γt)∆t, where ∆t

.
= qγC

π (St, At)∇θ log π(At|St).
We propose to interpret the difference term between the biased implementation (∆t) and the theoreti-
cally grounded implementation (γt∆t), i.e., the (1−γt)qγC

π (St, At)∇θ log π(At|St) term, as the gra-
dient of an auxiliary objective with a dynamic weighting 1− γt. Let Js,µ(π)

.
=
∑
a π(a|s)qγµ(s, a);

we have ∇θJs,µ(π)|µ=π = Ea∼π(·|s)[q
γ
π(s, a)∇θ log π(a|s)]. This objective changes every time

step (through µ). Inspired by the decomposition, we augment PPO with this auxiliary task, yielding
AuxPPO (Algorithm 7 and Figure 13 in the appendix). In AuxPPO, we have two policies π and π′
parameterized by θ and θ′ respectively. The two policies are two heads over the same neural network
backbone, where π is used for interaction with the environment and π′ is the policy for the auxiliary
task. AuxPPO optimizes θ and θ′ simultaneously by considering the following joint loss

L(θ,θ′)
.
=
∑∞
t=0 γ

t min
{

πθ(At|St)
πθold (At|St) AdvγC

πθold
(St, At), clip( πθ(At|St)

πθold (At|St) )AdvγC
πθold

(St, At)
}

+∑∞
t=0(1− γt) min

{
πθ′ (At|St)
πθold (At|St) AdvγC

πθold
(St, At), clip( πθ′ (At|St)πθold (At|St) )AdvγC

πθold
(St, At)

}
,

where St and At are obtained by executing θold. We additionally synchronize θ′ with θ periodically
to avoid an off-policy learning issue.

Flipped rewards: Besides AuxPPO, we also design novel environments with flipped rewards to
investigate Hypothesis 2. Recall we include the time step in the state, this allows us to simply create
a new environment by defining a new reward function r′(s, t) .

= r(s)It≤t0 − r(s)It>t0 , where I
is the indicator function. During an episode, within the first t0 steps, this new environment is the
same as the original one. After t0 steps, the sign of the reward is flipped. We select t0 such that
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Figure 11: Curves without any marker are obtained in the original Ant / HalfCheetah.
Diamond-marked curves are obtained in Ant / HalfCheetah with r′. 5

γt0 is sufficiently small, e.g., we define t0
.
= mint{γt < 0.05}. With this criterion for selecting t0,

the later transitions (i.e., transitions after t0 steps) have little influence on the evaluation objective,
the discounted return. Consequently, the later transitions affect the overall learning process mainly
through representation learning. DisPPO rarely makes use of the later transitions due to the γtA
term in the gradient update. AuxPPO makes use of the later transitions only through representation
learning. PPO exploits the later transitions for representation learning and the later transitions also
affect the control policy of PPO directly.

Results: When we consider the original environments, Figure 11 shows that in 8 out 12 tasks, PPO
outperforms DisPPO, even if the performance metric is the discounted episodic return. In all those
8 tasks, by using the difference term as an auxiliary task, AuxPPO is able to improve upon DisPPO.
In 6 out of those 8 tasks, AuxPPO is able to roughly match the performance of PPO at the end of
training. For γ ∈ {0.93, 0.9} in Ant, the improvement of AuxPPO is not clear and we conjecture
that this is because the learning of the π-head (the control head) in AuxPPO is much slower than the
learning of π in PPO due to the γtC term. Overall, this suggests that the benefit of PPO over DisPPO
comes mainly from representation learning.

When we consider the environments with flipped rewards, PPO is outperformed by DisPPO and
AuxPPO by a large margin in 11 out of 12 tasks. The transitions after t0 steps are not directly rele-
vant when the performance metric is the discounted return. However, learning on those transitions
may still improve representation learning provided that those transitions are similar to the earlier
transitions, which is the case in the original environments. PPO and AuxPPO, therefore, outperform
DisPPO. However, when those transitions are much different from the earlier transitions, which is
the case in the environments with flipped rewards, learning to control on them directly becomes dis-
tracting. PPO, therefore, is outperformed by DisPPO. Different from PPO, AuxPPO does not learn
to control on later transitions. Provided that the network has enough capacity, the control head πθ
in AuxPPO will not be affected much by the irrelevant transitions. The performance of AuxPPO is,
therefore, similar to DisPPO.

To summarize, Figure 11 suggests that using γA = 1 is simply an inductive bias that all transitions
are equally important. When this inductive bias is helpful for learning, γA = 1 implicitly imple-
ments auxiliary tasks thus improving representation learning and the overall performance. When this
inductive bias is detrimental, however, γA = 1 can lead to significant performance drops. AuxPPO
appears to be a safe choice that does not depend much on the correctness of this inductive bias.

5 RELATED WORK

The mismatch in actor-critic algorithm implementations has been previously studied. Thomas
(2014) focuses on the natural policy gradient setting and shows that the biased implementation
ignoring γtA can be interpreted as the gradient of the average reward objective under a strong as-
sumption that the state distribution is independent of the policy. Nota & Thomas (2020) prove that

5See Section B.1 for more details about task selection.
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without this strong assumption, the biased implementation is not the gradient of any stationary ob-
jective. This does not contradict our auxiliary task perspective as our objective Js,µ(π) changes at
every time step. Nota & Thomas (2020) further provide a counterexample showing that following
the biased gradient can lead to a policy of poor performance w.r.t. both discounted and undis-
counted objectives. Both Thomas (2014) and Nota & Thomas (2020), however, focus on theoretical
disadvantages of the biased gradient and regard ignoring γtA as the source of the bias. We instead
regard the introduction of γC < 1 in the critic as the source of the bias in the undiscounted setting
and investigate its empirical advantages, which are more relevant to practitioners. Moreover, our
representation learning perspective for investigating this mismatch is to our knowledge novel.

Although we propose the bias-variance-representation trade-off, we do not claim that is all that γ
affects. The discount factor also has many other effects (e.g., Sutton (1995); Jiang et al. (2016);
Laroche et al. (2017); Laroche & van Seijen (2018); Lehnert et al. (2018); Fedus et al. (2019);
Van Seijen et al. (2019); Amit et al. (2020)), which we leave for future work. In Scenario 1, using
γC < 1 helps reduce the variance. Variance reduction in RL itself is an active research area (see,
e.g., Papini et al. (2018); Xu et al. (2019); Yuan et al. (2020)). Investigating those variance reduction
techniques with γC = 1 is a possibility for future work. Recently, Bengio et al. (2020) study the
effect of the bootstrapping parameter λ in TD(λ) in generalization. Our work studies the effect of
the discount factor γ in representation learning in the context of the misuse of the discounting in
actor-critic algorithms, sharing a similar spirit of Bengio et al. (2020).

6 CONCLUSION

In this paper, we investigate the longstanding mismatch between theorists and practitioners in actor-
critic algorithms from a representation learning perspective. Although the theoretical understanding
of policy gradient algorithms have recently been significantly advanced (Agarwal et al., 2019; Wu
et al., 2020), this mismatch has drawn little attention. We hope our empirical study can help prac-
titioners understand actor-critic algorithms better and therefore design more efficient actor-critic
algorithms in the setting of deep RL, where representation learning emerges as a major considera-
tion. We hope our empirical study can draw more attention to the mismatch, which could enable the
community to finally close this longstanding gap.
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Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. arXiv preprint arXiv:1707.06887, 2017.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Interference and generalization in temporal
difference learning. arXiv preprint arXiv:2003.06350, 2020.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific Bel-
mont, MA, 1996.

9



Under review

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Itai Caspi, Gal Leibovich, Gal Novik, and Shadi Endrawis. Reinforcement learning coach, Decem-
ber 2017. URL https://doi.org/10.5281/zenodo.1134899.

Wesley Chung, Somjit Nath, Ajin Joseph, and Martha White. Two-timescale networks for nonlinear
value function approximation. In International Conference on Learning Representations, 2018.

Kristopher De Asis, Alan Chan, Silviu Pitis, Richard S Sutton, and Daniel Graves. Fixed-horizon
temporal difference methods for stable reinforcement learning. arXiv preprint arXiv:1909.03906,
2019.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International Conference on Learning Representations, 2019.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo Larochelle. Hyper-
bolic discounting and learning over multiple horizons. arXiv preprint arXiv:1902.06865, 2019.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A closer look at deep policy gradients. arXiv preprint
arXiv:1811.02553, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Nan Jiang, Satinder P Singh, and Ambuj Tewari. On structural properties of mdps that bound loss
due to shallow planning. In IJCAI, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay R Konda. Actor-critic algorithms. PhD thesis, Massachusetts Institute of Technology, 2002.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Romain Laroche and Harm van Seijen. In reinforcement learning, all objective functions are not
equal. 2018.

Romain Laroche, Mehdi Fatemi, Joshua Romoff, and Harm van Seijen. Multi-advisor reinforcement
learning. arXiv preprint arXiv:1704.00756, 2017.

Lucas Lehnert, Romain Laroche, and Harm van Seijen. On value function representation of long
horizon problems. In AAAI Conference on Artificial Intelligence, 2018.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In International Conference on Machine Learning, 2018.

10

https://doi.org/10.5281/zenodo.1134899
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail


Under review

R McCallum. Reinforcement learning with selective perception and hidden state. PhD thesis, 1997.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33rd International Conference on Machine Learning, 2016.
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A PROOF OF LEMMA 2

Proof. The proof is based on Appendix B in Schulman et al. (2015a), where perturbation theory
is used to prove the performance improvement bound (Lemma 1). To simplify notation, we use a
vector and a function interchangeably, i.e., we also use r and µ0 to denote the reward vector and
the initial distribution vector. J(π) and dπ(s) are shorthand for Jγ(π) and dγπ(s) with γ = 1. All
vectors are column vectors.

Let S+ be the set of states excluding s∞, i.e., S+ .
= S/{s∞}, we define Pπ ∈ R|S+|×|S+| such

that Pπ(s, s′)
.
=
∑
a π(a|s)p(s′|s, a). Let G .

=
∑∞
t=0 P

t
π . According to standard Markov chain

theories, G(s, s′) is the expected number of times that s′ is visited before s∞ is hit given S0 = s.
Tmax < ∞ implies that G is well-defined and we have G = (I − Pπ)−1. Moreover, Tmax < ∞
also implies ∀s,

∑
s′ G(s, s′) ≤ Tmax, i.e., ||G||∞ ≤ Tmax. We have J(π) = µ>0 Gr.

Let G′ .= (I − Pπ′)−1, we have

J(π′)− J(π) = µ>0 (G′ −G)r.

Let ∆
.
= Pπ′ − Pπ , we have

G′−1 −G−1 = −∆,

Left multiply by G′ and right multiply by G,

G−G′ = −G′∆G,
G′ = G+G′∆G (Expanding G′ in RHS recursively)

= G+G∆G+G′∆G∆G.

So we have

J(π′)− J(π) = µ>0 G∆Gr + µ>0 G
′∆G∆Gr.

It is easy to see µ>0 G = d>π and Gr = vπ . So

µ>0 G∆Gr = d>π ∆vπ

=
∑
s

dπ(s)
∑
s′

(∑
a

π′(a|s)p(s′|s, a)−
∑
a

π(a|s)p(s′|s, a)
)
vπ(s′)

=
∑
s

dπ(s)
∑
a

(π′(a|s)− π(a|s))
∑
s′

p(s′|s, a)vπ(s′)

=
∑
s

dπ(s)
∑
a

(π′(a|s)− π(a|s))
(
r(s) +

∑
s′

p(s′|s, a)vπ(s′)− vπ(s)
)

(
∑
a(π′(a|s)− π(a|s))f(s) = 0 holds for any f that dependes only on s)

=
∑
s

dπ(s)
∑
a

π′(a|s)Advπ(s, a).

(
∑
a π(a|s)Advπ(s, a) = 0 by Bellman equation)

We now bound µ>0 G
′∆G∆Gr. First,

|(∆Gr)(s)| = |
∑
s′

(∑
a

π′(a|s)− π(a|s)
)
p(s′|s, a)vπ(s′)|

= |
∑
a

(
π′(a|s)− π(a|s)

)(
r(s) +

∑
s′

p(s′|s, a)vπ(s′)− vπ(s)
)
|

= |
∑
a

(
π′(a|s)− π(a|s)

)
Advπ(s, a)|

≤ 2 max
s

DTV (π′(·|s), π(·|s)) max
s,a
|Advπ(s, a)|,
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where DTV is the total variation distance. So

||∆Gr||∞ ≤ 2 max
s

DTV (π′(·|s), π(·|s)) max
s,a
|Advπ(s, a)|.

Moreover, for any vector x,

|(∆x)(s)| ≤ 2 max
s

DTV (π′(·|s), π(·|s))||x||∞,

||∆x||∞ ≤ 2 max
s

DTV (π′(·|s), π(·|s))||x||∞.

So

||∆||∞ ≤ 2 max
s

DTV (π′(·|s), π(·|s)),

|µ>0 G′∆G∆Gr| ≤ ||µ>0 ||1||G′||∞||∆||∞||G||∞||∆Gr||∞
≤ 4T 2

max max
s

D2
TV (π′(·|s), π(·|s)) max

s,a
|Advπ(s, a)|

≤ 4T 2
max max

s
DKL(π(·|s)||π′(·|s)) max

s,a
|Advπ(s, a)|,

which completes the proof.

Note this perturbation-based proof of Lemma 2 holds only for r : S → R. For r : S × A → R,
we can turn to the coupling-based proof as Schulman et al. (2015a), which, however, complicates
the presentation and deviates from the main purpose of this paper. We, therefore, leave it for future
work.

B EXPERIMENT DETAILS

B.1 METHODOLOGY

We use HalfCheetah, Walker, Hopper, Ant, Humanoid, and HumanoidStandup as our
benchmarks. We exclude other tasks as we find PPO plateaus quickly there. The tasks we con-
sider have a hard time limit of 1000. Following Pardo et al. (2018), we add time step information
into the state, i.e., there is an additional scalar t/1000 in the observation vector. Following Achiam
(2018), we estimate the KL divergence between the current policy θ and the sampling policy θold
when optimizing the loss (3). When the estimated KL divergence is greater than a threshold, we
stop updating the actor and update only the critic with current data. We use Adam (Kingma & Ba,
2014) as the optimizer and perform grid search for the initial learning rates of Adam optimizers.
Let αA and αC

.
= βαA be the learning rates for the actor and critic respectively. For each algo-

rithmic configuration (i.e., a curve in a figure), we tune αA ∈ {0.125, 0.25, 0.5, 1, 2} × 3 · 10−4

and β ∈ {1, 3} with grid search in Ant with 3 independent runs maximizing the average re-
turn of the last 100 training episodes. In particular, αA = 3 · 10−4 and β = 3 is roughly
the default learning rates for the PPO implementation in Achiam (2018). We then run this al-
gorithmic configuration with the best αA and αC in all tasks. Overall, we find after remov-
ing GAE, smaller learning rates are preferred. When we use FHTD, we additionally consider
H ∈ {16, 32, 64, 128, 256, 512, 1024} in the grid search. When we use C51, we additionally con-
sider Vmax ∈ {20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 81920, 163840, 327680} in the
grid search. We use PPO-TD with γC = 0.99 as an example to study how the best hyperparameter
configuration in Ant transfers to other games. As shown in Figure 12, the best learning rates of
Ant (αA = 3 · 10−4 and β = 3) yields reasonably good performance in all the other games except
Humanoid. In the paper, we do not draw a conclusion from a single task. So an outlier is unlikely
to affect the overall conclusion.

In the discounted setting, we consider only Ant, HalfCheetah and their variants. For
Walker2d, Hopper, and Humanoid, we find the average episode length of all algorithms are
smaller than t0, i.e., the flipped reward rarely takes effects. For HumanoidStandup, the scale of
the reward is too large. To summarize, other four environments are not well-suited for the purpose
of our empirical study. Moreover, in the discounted setting, we performed the grid search of the
learning rates for both Ant and HalfCheetah.
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Figure 12: PPO-TD (γC = 0.99) with different learning rates. A curve labeled with (x, β) cor-
responds to an initial learning rate for the actor and critic of αA = x × 3 · 10−4 and αC = βαA

respectively. The best learning rates for Ant (αA = 3 · 10−4 and β = 3) yields reasonably good
performance in all the other games except Humanoid.

B.2 ALGORITHM DETAILS

The pseudocode of all implemented algorithms are provide in Algorithms 1 - 7 with their architec-
tures illustrated in Figure 13. For hyperparameters that are not included in the grid search, we use
the same value as Dhariwal et al. (2017); Achiam (2018). In particular, for the rollout length, we set
K = 2048. For the optimization epochs, we setKopt = 320. For the minibatch size, we setB = 64.
For the maximum KL divergence, we set KLtarget = 0.01. We clip πθ(a|s)

πθold (a|s) into [−0.2, 0.2]. We
use Ns = 51 supports for PPO-C51.

We use two-hidden-layer neural networks for function approximation. Each hidden layer has 64
hidden units and a tanh activation function. The output layer of the actor network has a tanh acti-
vation function and is interpreted as the mean of an isotropic Gaussian distribution, whose standard
derivation is a global state-independent variable as suggested by Schulman et al. (2015a).
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Algorithm 1: PPO
Input:
θ, ψ: parameters of π, v̂
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

S0 ∼ µ0

while True do
Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si)
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0

else
mi ← 1

end
end
GK ← v̂(SK)
for i = K − 1, . . . , 0 do

Gi ← Ri+1 + γCmiGi+1

Advi ← Ri+1 + γCmiv̂ψ(Si+1)− v̂ψ(Si)
Store (Si, Ai, Gi,Advi) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai, Gi,Advi)}i=1,...,B from M

L(ψ)← 1
2B

∑B
i=1(v̂ψ(Si)−Gi)2 /* No gradient through Gi */

L(θ)← 1
B

∑B
i=1 min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ maximizing L(θ) with Adam
end

end
end

16
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Algorithm 2: PPO-TD
Input:
θ, ψ: parameters of π, v̂
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

S0 ∼ µ0

while True do
Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si)
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0

else
mi ← 1

end
end
for i = K − 1, . . . , 0 do

Advi ← Ri+1 + γCmiv̂ψ(Si+1)− v̂ψ(Si)
S′i ← Si+1, ri ← Ri+1

Store (Si, Ai,mi, ri, S
′
i,Advi) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai,mi, ri, S
′
i,Advi)}i=1,...,B from M

yi ← ri + γCmiv̂ψ(S′i)
L(ψ)← 1

2B

∑B
i=1(v̂ψ(Si)− yi)2 /* No gradient through yi */

L(θ)← 1
B

∑B
i=1 min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ maximizing L(θ) with Adam
end

end
end
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Algorithm 3: PPO-TD-Ex
Input:
θ, ψ: parameters of π, v̂
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold
N : number of extra transitions
p, r: transition kernel and reward function of the oracle

S0 ∼ µ0

while True do
Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

for j = 0, . . . , N do
Aji ∼ πθold(·|Si), Rji+1 ← r(Si, A

j
i ), S

j
i+1 ∼ p(·|Si, A

j
i )

if Sji+1 is a terminal state then
mj
i ← 0, Sji+1 ∼ µ0

else
mj
i ← 1

end
end
Si+1 ← S0

i+1

end
for i = K − 1, . . . , 0 do

Advi ← R0
i+1 + γCm

0
i v̂ψ(S0

i+1)− v̂ψ(S0
i )

for j = 0, . . . , N do
S′ji ← Sji+1

end
Store ({Sji , A

j
i ,m

j
i , r

j
i , S
′j
i }j=0,...,N ,Advi) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {({Sji , A
j
i ,m

j
i , r

j
i , S
′j
i }j=0,...,N ,Advi)}i=1,...,B from M

yi ← 1
N+1

∑N
j=0 r

j
i + γCm

j
i v̂ψ(S′ji )

L(ψ)← 1
2B

∑B
i=1(v̂ψ(S0

i )− yi)2 /* No gradient through yi */

L(θ)← 1
B

∑B
i=1 min{ πθ(A0

i |S
0
i )

πθold (A0
i |S0

i )
Advi, clip(

πθ(A0
i |S

0
i )

πθold (A0
i |S0

i )
)Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(A0

i |S0
i )− log πθ(A

0
i |S0

i ) < KLtarget then
Perform one gradient update to θ maximizing L(θ) with Adam

end
end

end
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Algorithm 4: PPO-FHTD
Input:
θ, ψ: parameters of π, {v̂j}j=1,...,H

αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

S0 ∼ µ0

while True do
Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si)
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0

else
mi ← 1

end
end
for i = K − 1, . . . , 0 do

Advi ← Ri+1 +miv̂
H
ψ (Si+1)− v̂Hψ (Si)

S′i ← Si+1, ri ← Ri+1

Store (Si, Ai,mi, ri, S
′
i,Advi) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai,mi, ri, S
′
i,Advi)}i=1,...,B from M

for j = 1, . . . ,H do
yji ← ri +miv̂

j−1
ψ (S′i)) /* v̂0(S′i) ≡ 0 */

end
L(ψ)← 1

2B

∑B
i=1

∑H
j=1(v̂jψ(Si)− yji )2 /* No gradient through yji */

L(θ)← 1
B

∑B
i=1 min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ maximizing L(θ) with Adam
end

end
end
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Algorithm 5: PPO-C51
Input:
θ, ψ: parameters of π, {v̂j}j=1,...,Ns with Ns being the number of supports and v̂j being the
probability of each support
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

∆z
.
= 2Vmax

Ns−1 , {zj
.
= −Vmax + (j − 1)∆z : j = 1, . . . , Ns} // Define the supports

S0 ∼ µ0

while True do
Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si)
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0

else
mi ← 1

end
end
for i = K − 1, . . . , 0 do

Advi ← Ri+1 +miγC
∑Ns
j=1 v̂

j
ψ(Si+1)zj −

∑Ns
j=1 v̂

j
ψ(Si)zj

S′i ← Si+1, ri ← Ri+1

Store (Si, Ai,mi, ri, S
′
i,Advi) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai,mi, ri, S
′
i,Advi)}i=1,...,B from M

for i = 1, . . . , B do
for j = 1, . . . , Ns do

zij ← ri +miγCzj
end

end
for j = 1, . . . , Ns do

yij ←
∑Ns
k=1[1− |[z

i
j ]
Vmax
−Vmax

−zj |
∆z

]10v̂
k
ψ(S′i) /* [x]ul

.
= min(max(x, l), u) */

end
L(ψ)← 1

B

∑B
i=1

∑Ns
j=1−yij log v̂jψ(Si) /* No gradient through yij */

L(θ)← 1
B

∑B
i=1 min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ maximizing L(θ) with Adam
end

end
end
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Algorithm 6: DisPPO
Input:
θ, ψ: parameters of π, v̂
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

S0 ∼ µ0, t← 0
while True do

Initialize a buffer M
θold ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si), ti ← t
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0, t← 0

else
mi ← 1, t← t+ 1

end
end
GK ← v̂(SK)
for i = K − 1, . . . , 0 do

Gi ← Ri+1 + γCmiGi+1

Advi ← Ri+1 + γCmiv̂ψ(Si+1)− v̂ψ(Si)
Store (Si, Ai, Gi,Advi, ti) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai, Gi,Advi, ti)}i=1,...,B from M

L(ψ)← 1
2B

∑B
i=1(v̂ψ(Si)−Gi)2 /* No gradient through Gi */

L(θ)← 1
B

∑B
i=1 γ

ti
A min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ maximizing L(θ) with Adam
end

end
end
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Algorithm 7: AuxPPO
Input:
θ, θ′, ψ: parameters of π, π′, v̂
αA, αC : Initial learning rates of the Adam optimizers for θ, ψ
K,Kopt, B: rollout length, number of optimization epochs, and minibatch size
KLtarget: maximum KL divergence threshold

S0 ∼ µ0, t← 0
while True do

Initialize a buffer M
θold ← θ, θ′ ← θ
for i = 0, . . . ,K − 1 do

Ai ∼ πθold(·|Si), ti ← t
Execute Ai, get Ri+1, Si+1

if Si+1 is a terminal state then
mi ← 0, Si+1 ∼ µ0, t← 0

else
mi ← 1, t← t+ 1

end
end
GK ← v̂(SK)
for i = K − 1, . . . , 0 do

Gi ← Ri+1 + γCmiGi+1

Advi ← Ri+1 + γCmiv̂ψ(Si+1)− v̂ψ(Si)
Store (Si, Ai, Gi,Advi, ti) in M

end
Normalize Advi in M as Advi ← Advi−mean({Advi})

std({Advi})
for o = 1, . . . ,Kopt do

Sample a minibatch {(Si, Ai, Gi,Advi, ti)}i=1,...,B from M

L(ψ)← 1
2B

∑B
i=1(v̂ψ(Si)−Gi)2 /* No gradient through Gi */

L(θ, θ′)← 1
B

∑B
i=1γ

ti
C min{ πθ(Ai|Si)

πθold (Ai|Si) Advi, clip( πθ(Ai|Si)
πθold (Ai|Si) )Advi}+

(1− γtiC ) min{ πθ′ (Ai|Si)
πθold (Ai|Si) Advi, clip( πθ′ (Ai|Si)

πθold (Ai|Si) )Advi}

Perform one gradient update to ψ minimizing L(ψ) with Adam
if 1
B

∑B
i=1 log πθold(Ai|Si)− log πθ(Ai|Si) < KLtarget then

Perform one gradient update to θ, θ′ maximizing L(θ, θ′) with Adam
end

end
end
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(a) Architecture of PPO, PPO-
TD, PPO-TD-Ex, DisPPO

(b) The first parameterization of PPO-FHTD

(c) The second parameterization of PPO-FHTD (d) Architecture of PPO-C51

(e) Architecture of AuxPPO

Figure 13: Architectures of the algorithms

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 DISTRIBUTIONAL RL

Hypothesis 1 and the previous empirical study suggest that representation learning may be the main
bottleneck of PPO-TD (γC = 1). To further support this, we benchmark PPO-C51 (γC = 1) (Al-
gorithm 5 in the appendix), where the critic of PPO is trained with C51. C51 is usually considered
to improve representation learning by implicitly providing auxiliary tasks (Bellemare et al., 2017;
Munos, 2018; Petroski Such et al., 2019). Figure 14 shows that training the critic with C51 in-
deed leads to a performance improvement and PPO-C51 (γC = 1) sometimes outperforms PPO-TD
(γC < 1) by a large margin. Figure 15 further shows that when Vmax is optimized for PPO-C51, the
benefit for using γC < 1 in PPO-C51 is less pronounced than that in PPO-TD, indicating the role of
γC < 1 and distributional learning may overlap. Figures 6, 7, & 9, suggest that the overlapping is
representation learning.

C.2 OTHER COMPLEMENTARY RESULTS

Figure 16 shows how PPO-TD-Ex (γC = 0.995) reacts to the increase of N . Figure 17 shows the
unnormalized representation error in the MRP experiment. Figure 18 shows the average episode
length for the Ant environment in the discounted setting. For HalfCheetah, it is always 1000.

D LARGER VERSION OF FIGURES
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Figure 14: For PPO-C51, we set γC = 1.
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Figure 15: For each game, Vmax is the same as the Vmax in Figure 14.
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Figure 16: PPO-TD-Ex (γC = 0.995).
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Figure 17: Unnormalized representation error (RE) as a function of the discount factor. Shaded
regions indicate one standard derivation. RE is computed analytically as RE(X, γ)

.
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Figure 18: Curves without any marker are obtained in the original Ant. Diamond-marked curves
are obtained in Ant with r′.
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Figure 19: The default PPO implementation with different discount factors. The larger version of
Figure 1.
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Figure 20: Comparison between PPO and PPO-TD when γC = 1. The larger version of Figure 2.
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Figure 21: PPO-TD with different discount factors. The larger version of Figure 3.
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Figure 22: PPO-TD-Ex (γC = 0.99). The larger version of Figure 4.
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Figure 23: PPO-TD-Ex (γC = 1). The larger version of Figure 5.
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Figure 24: PPO-FHTD with the first parameterization. The best H and γC are used for each game.
The larger version of Figure 6.
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Figure 25: PPO-FHTD with the second parameterization. The larger version of Figure 7.
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Figure 26: Comparison between PPO and DisPPO with γ = 0.995. The larger version of Figure 10.
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Figure 27: Curves without any marker are obtained in the original Ant environment. Diamond-
marked curves are obtained in Ant with r′. The larger version of Figure 11.
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