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1 Introduction

Let w be a nonzero solution of L(w) = 0 in B10(0) ⊂ R
n, where L = ∂i(aij(x)∂j) with the coefficient

matrix A(x) = (aij) satisfying (2.2) and (2.3). Let Ω be a nodal domain of w, which is a path-connected

subregion of the set {x ∈ B10 | w(x) �= 0}. In order to get meaningful analytic estimates such as those

presented in survey articles [2, 25], one cannot avoid dealing with the cases where Ω is a non-smooth

domain. At a micro scale, Ω resembles cone like structures near each point of ∂Ω ∩ B10 by the unique

continuation property, while at larger scales, Ω could be like a highly twisted Hölder type domain with

rather complicated geometrical and topological properties. In higher dimensions, even when the nodal

set Z(w) = {x ∈ B10 | w(x) = 0} is in a small neighborhood of a one-dimensional smooth set and

hence small in the apparent geometric size, its complexity is hard to bound. For example, by Runge’s

theorem, one can easily construct a sequence of harmonic functions {wk(x)} in R
n (n � 2) such that

wk → −1 locally uniformly on Σ while wk → +1 locally uniformly on R
n\Σ, where Σ is a finite union of

closed half-lines connecting the origin to infinity. In particular, some of the nodal domains of wk inside

B10 are collapsed into an arbitrarily small open neighborhood of Σ. In such cases, one cannot expect

the validity of a three-spheres theorem for solutions or the validity of a uniform Carleson type estimate

or the boundary Harnack principle. It is remarkable, on the other hand, that Logunov [18] proved the

Nadirashvili’s conjecture, which asserts that Hn−1({x | w(x) = 0} ∩ B1) � C(n) > 0 for a harmonic
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function w with w(0) = 0. It means that such sequences of harmonic functions {wk(x)} as described

above must be highly oscillating and not locally uniformly bounded.

After examining various examples one concludes that in order to carry out classical potential and

elliptic partial differential equation (PDE) analysis on a nodal domain Ω similar to those in well-known

cases of Lipschitz and non-tangentially accessible (NTA) domains (see [4, 15]), one needs to make some

additional assumptions on the solutions w and operators L. In particular, one hopes to find a class of

domains that are invariant under scaling (at least, they are so with respect to the up scalings). In recent

work of Logunov and Malinnikova [19,20], it was proved that if u and v are usual harmonic functions in

B10 with Z(u) = Z(v), then the ratio f ≡ v/u is analytic and satisfies the Harnack inequality and |∇f |
as well as higher-order derivatives of f validates estimates like those for typical solutions of elliptic PDEs

with analytic coefficients. Similar results were proved in R
2 in [23]. All these estimates depend on a fixed

nature of the analytic variety Z(u), and they are not necessarily scaling invariant. On the other hand, it

is not hard to see that [20] can be generalized to the case where u and v are solutions of elliptic PDEs

with real analytic coefficients.

In this paper, we consider a class of solutions w which have a fixed bound on their growth rates

or a bound on their frequencies on B10 (see Section 2 for details). More precisely, we consider those

w ∈ SN0(Λ) defined by (2.18), a very natural class of solutions which have been investigated in great

detail for their quantitative unique continuation properties and related geometric measure estimates on

the nodal and critical point sets (see Section 2). The following are main results of this paper.

1.1 Main results

Theorem 1.1. Suppose that Lu = Lv = 0 in B10, Nu � N0 < ∞ and 0 ∈ Z(u) ⊂ Z(v). Then

v/u ∈ Cα(B1) for some α = α(Λ, N0) ∈ (0, 1).

For constants in the form of C = C(Λ, N0), we mean that the constants depend on N0 and the

conditions on the coefficients in (2.2) and (2.3) of the operator L. Here, Nu is the frequency function

(doubling index) of u on B10, which will be reviewed in Section 2. Various equivalent notations and

auxiliary lemmas are discussed in Section 2.

The above theorem is derived, as in earlier work, from the upper bound inequality

sup
B1

|v/u| � C(Λ, N0) ·
(
sup
B8

|v|/ sup
B8

|u|
)
, (1.1)

when Z(u) ⊂ Z(v) and Nu � N0 (see Theorem 4.2). In order to get the Hölder continuity for v/u, one

also needs an iterative argument involving improvements of upper and lower bounds as in [4, 15]. The

latter is based on the following Harnack type estimate:(
sup
B1/8

(v/u)− inf
B1

(v/u)
)
� C(Λ, N0) ·

(
inf
B1/8

(v/u)− inf
B1

(v/u)
)
. (1.2)

To prove this Harnack type estimate, we need to show that the frequency of the function

v − u · inf
B1

(v/u)

is also bounded in a smaller ball like B1/4.

The above leads us to the next more general result which says that if two solutions of two possibly

different elliptic partial differential equations have the same nodal set in B10, and if one of the solutions

has a bounded frequency or a fixed growth rate, then the other has to have a bounded frequency and

growth rate as well. We remark that it is in this latter statement that we require both operators L
and L1 to have Lipschitz continuous coefficients. In fact, it can be shown that the conclusion is not valid

if operators are uniformly elliptic with only bounded measurable coefficients.

Theorem 1.2. Suppose that L(u) = L1(v) = 0 in B10 and 0 ∈ Z(u) = Z(v). Also assume that

Nu � N0 < ∞. Then there is a positive constant D = D(Λ, N0) < ∞ such that Nv(0, 1) � D.
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Here, Nv(0, 1) is the frequency function for v and the ball B1(0). We emphasize again that L and L1

could be two different elliptic operators satisfying (2.2) and (2.3). This provides a local compactness

property for a large class of solutions to such elliptic equations (see [8]).

As a direct corollary of Theorems 1.1 and 1.2, we have the following theorem.

Theorem 1.3. Suppose that Δ(u) = Δ(v) = 0 in R
n, u is a harmonic polynomial and Z(u) = Z(v).

Then there is a constant c ∈ R\{0} such that v = c · u.
When u is a homogeneous harmonic polynomial, this theorem was proved (see [20, Theorem 1.2]).

In Corollary 4.7, we prove, in fact, a bit stronger statement. The condition that u is a polynomial is

important for [20]. For example, let ua,b(x, y, z) = sin(z)eax+by and a2+b2 = 1. Then harmonic functions

ua,b share the same nodal set, but with exponential growth. The work [19] described many interesting

examples of harmonic functions sharing the same nodal set either locally or globally.

In connection with harmonic/PDE analysis on non-smooth domains (see, e.g., [4, 15]), we also

established Carleson type estimates like (1.1) on a single nodal domain Ω (defined by a solution u0).

It should be noted that, in general, one cannot expect continuity (or even boundedness) up to the

boundary ∂Ω for the ratio v/u if v and u are solutions defined only on this single Ω (see Theorem 6.1

and Example 1.5). Another main result we establish is the following statement.

Theorem 1.4. Let Ω be a nodal domain of a solution u0 ∈ SN0(Λ) with L0(u0) = 0 and 0 ∈ ∂Ω. Then

there is a set consisting of a bounded number of points {x1, . . . , xT0
} with T0 = T0(Λ, N0) in Ω∩B2, such

that

C−1 · |∇u0| ·Hn−1�(∂Ω ∩B1) �
T0∑
i

ωi�(∂Ω ∩B1) � C · |∇u0| ·Hn−1�(∂Ω ∩B1) (1.3)

for some positive constant C = C(Λ, N0), where {ωi(·)}’s are L0-harmonic measures on ∂(Ω ∩ B5)

with poles at xi ∈ Ω ∩ B2 for i = 1, 2, . . . , T0. In particular,
∑T0

i ωi�(∂Ω ∩ B1), H
n−1�(∂Ω ∩ B1) and

|∇u0| ·Hn−1�(∂Ω ∩B1) are mutually absolutely continuous.

Note that it is necessary in general to choose more than one of such points xi and the corresponding

harmonic measures in order to have the two-sided estimates as shown in the above theorem. If one selects

only one of such points (and its associated harmonic measure), then only the right half inequality of (1.3)

is true in general. We also point out that the locations of these points {xi}, while flexible, may depend

on a particular nodal domain (and hence the defining function u0). What is important is that one can

always choose such points; moreover, the number of such points {xi} is uniformly bounded (by T0) for

any nodal domain of u0 for all u0 ∈ SN0(Λ).

There are two basic ingredients in proving these results. One is the validity of the corkscrew condition

and the existence of modified Harnack chains for this class of nodal domains. Such geometric structural

properties make these nodal domains very similar to the NTA domains (see [15]). The other is the

Carleson type estimates for solutions as in [4,15,20]. We show by the doubling properties of the functions

(solutions) that nodal domains possess these desired geometric properties. We then establish the boundary

Harnack principle and Carleson type estimates for nonnegative solutions of uniformly elliptic operators

with bounded measurable coefficients on such domains. The latter may be a useful fact for applications

to some elliptic free boundary problems.

To end the descriptions of main results, let us show an example due to Leon Simon (see [13]).

Example 1.5. Let f(z) be a smooth function on R with |f ′′| < 1/2. The function u(x, y, z) = xy+f(z)

satisfies the elliptic equation ∂2
xxu+ ∂2

yyu+ ∂2
zzu− (f ′′(z))∂2

xyu = 0. Then the singular set of Z(u), i.e.,

{x ∈ R
3 | u(x) = |∇u(x)| = 0}, is {(0, 0, z) ∈ R

3 | f(z) = f ′(z) = 0}.
One can choose a smooth (even analytic) and sufficiently small f such that around the singular set

of Z(u), Z(u) behaves like many double cones and u only has two nodal domains. For example, one

can consider f with many local fluctuations like (z sin(1/z))2. In each hyperplane with the z-coordinate

fixed, Z(u) is a hyperbola if f(z) �= 0 and is a joint of two crossed lines if f(z) = 0. The topology of the

nodal domains of u and its critical set can be unbounded (in the smooth case) while the frequency of the
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solution u is close to 2. Carleson type estimates as well as the boundary Harnack principle are still valid

among other conclusions proved here.

1.2 The structure of this paper

In Section 2, we go over some tools and basic facts that will be used in the paper, in particular, the

notions of the frequency function, the doubling index and the three-spheres theorems. In Section 3, we

show the corkscrew property and a modified Harnack chain property for this class of nodal domains.

Our arguments generalize those in [20]. In Section 4, we first show that the ratio v/u is locally bounded

near the nodal sets, and then give the proof for Theorem 1.1. We also discuss the entire solutions and

prove Theorem 1.3. In Section 5, we establish the Carleson type estimates and prove Theorem 1.2. In

Section 6, we discuss the boundary Harnack principle on a single given nodal domain and then we prove

Theorem 1.4.

Remark 1.6. Although we only consider the elliptic operators in the divergence form in this paper, one

could easily extend all the results in this paper to the elliptic operators in the non-divergence form with

Lipschitz continuous leading coefficients. It would also be interesting to obtain a parabolic counterpart.

2 Preliminaries and tools

Let w be a W 1,2-solution of an elliptic equation in the divergence form in B10 ⊂ R
n (the Euclidean ball

with the radius equal to 10 and the center at 0), i.e.,

L(w) ≡ div(A(x)∇w(x)) = 0, (2.1)

where the symmetric matrix-valued function, A(x) = (aij)n×n, satisfies

λ · I � A � λ−1 · I (2.2)

with Lipschitz entries

‖aij‖Lip � Λ1 (2.3)

for some positive constants λ and Λ1. In this paper, we write L, L1, etc. for elliptic operators which

satisfy the conditions (2.1)–(2.3). We use L, L1, etc. to denote uniformly elliptic operators that only

satisfy (2.1) and (2.2). For simplicity, we use the notation C(Λ) to denote positive constants which

depend only on λ, Λ1 and n and call them universal constants. We use C(λ) for constants depending

only on (2.2) and the dimension n. Most of the constants appearing in this paper depend only on the

dimension n, the ellipticity constant λ and the doubling constant N0 for solutions of such uniformly

elliptic operators L. By the standard interior estimates, if L(w) = 0 in B10, then w is in C1,α(B9) for any

α ∈ (0, 1). For general uniformly elliptic operators L, one infers that w is in Cα for some positive α by

the De Giorgi’s theorem (see [12]). We define Z(w) ≡ {x ∈ B10 | w(x) = 0} as the zero set of w in B10.

For any point x ∈ B9, we also define δw(x) ≡ dist(x, Z(w)) and use δ(x) if there is no ambiguity.

2.1 The frequency function and the doubling index

Let us first recall the frequency function, which goes back to the work of Agmon [1] and Almgren [3], and

was further developed in [8] (see also [16]). This is a useful ingredient in estimating the size of nodal sets

and the size of critical sets. We refer to [22] for more recent developments with much improved sharp

results and other applications of the frequency functions. For the convenience we recall and collect a few

basic facts about the frequency function and its important consequences.

The frequency function for a solution w of L(w) = 0 is defined as

Nw(Br(x0)) = Nw(x0, r) =
r · ´

Br(x0)
〈A(x)∇w,∇w〉dx´

∂Br(x0)
μ(x)|w|2dσ(x) , (2.4)
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where σ(x) is the standard surface measure on ∂Br(x0). For simplicity, we omit the differentials in

integrals if there is no ambiguity. We also set

Hw(x0, r) = r1−n

ˆ
∂Br(x0)

μ(x)|w|2dσ(x), (2.5)

where μ(x) = 〈A(x)x, x〉/|x|2, 0 < λ < μ(x) < n · λ−1 and x0 ∈ B9. Here, Br(x0) is the Euclidean ball

with the radius equal to r and the center at x0. If x0 = 0, we use Br = Br(0). If there is no ambiguity,

we often use N(r) and H(r) (or Nw(r) and Hw(r)) for simplicity. By [8], one has

H ′

H
=

2N(r)

r
+O(1), (2.6)

and O(1) is bounded by a universal constant C1 = C1(Λ). We then have the following monotonicity

theorem from [8].

Theorem 2.1. There is a positive constant C2 = C2(Λ) such that exp(C2r) ·N(r) is a nondecreasing

function of r.

A main consequence of Theorem 2.1 is the doubling estimate. By using (2.6), one has

log

(
H(2R)

H(R)

)
�
ˆ 2R

R

2 exp(−C2r)
exp(C2r)N(r)

r
dr + C1R

� C(Λ) ·N(2) + C1(Λ) (2.7)

for any x0 ∈ B8 and R < 1. For |∇w|, we have a similar doubling estimate, which was also derived in [8].

Theorem 2.2. Assume that w(0) = 0 and Nw(B5) � N0 < ∞. Then for any x ∈ B2 and R ∈ (0, 1),

we have ˆ
B2R(x)

|w|2dx � 2K1N0

ˆ
BR(x)

|w|2dx, (2.8)

ˆ
B2R(x)

|∇w|2dx � 2K2N0

ˆ
BR(x)

|∇w|2dx (2.9)

for some universal constants K1 and K2.

One can then easily derive the following versions of three-spheres theorems.

Theorem 2.3. There exist universal constants K3 and K4 and universal constants α1, α2 ∈ (0, 1) such

that for any x ∈ B1,

sup
B1(0)

|w| � K3 sup
B1/8(x)

|w|α1 · sup
B2(0)

|w|1−α1 , (2.10)

sup
B1(0)

|∇w| � K4 sup
B1/8(x)

|∇w|α2 · sup
B2(0)

|∇w|1−α2 . (2.11)

Note that (2.10) is a consequence of (2.8) and one can get (2.11) by (2.9) (or by (2.8), the Caccioppoli

estimate and the Poincaré inequality) in a similar way. Recently, in [21], Logunov and Malinnikova have

improved substantially (2.10) and (2.11) by establishing a sharp Remez type estimate for solutions.

Before we proceed further, we want to point out the following equivalence of norms.

Lemma 2.4. There are universal constants c1 and c2 such that for any 0 < r < 4,

sup
Br(x0)

|w|2 � c1

 
B3r/2(x0)

|w|2dx � c2 ·H(x0, 2r) (2.12)

for any x0 ∈ B6.

The first inequality follows from the De Giorgi’s theorem [12], while the second inequality also follows

from (2.6) and N(r) � 0, and it is a general fact for subsolutions.
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In the following, we use the sup | · | norm for most of the estimates. First as in [22], one defines the

doubling index

ND(w,Br(x)) = log

(
supBr(x) |w|
supBr/2(x)

|w|
)

(2.13)

for any Br(x) ⊂ B9. Or more generally, one defines

ÑD(w,Br(x)) = sup
Bs(y)⊂Br(x)

log

(
supBs(y) |w|
supBs/2(y)

|w|
)
. (2.14)

The doubling index ND(r) and the frequency function N(r) are equivalent because of Lemma 2.4, and

we have the following inequalities:

K−1
1 N(r/2)−K2 � ND(r) � K1N(2r) +K2 (2.15)

and

K−1
1 ÑD(r/2)−K2 � ND(r) � ÑD(r) (2.16)

for some universal constants K1 and K2 and all r ∈ (0, 8) (see, for details, [8,16,22]). Henceforth, without

ambiguity, for either L or L, when we say Nw � N0, we mean that ÑD(w,B8(0)) is bounded by N0.

For L, we always, doubling the size of balls if necessary, use the equivalence of N(r), ND(r) and ÑD(r).

Finally, let us give another application of these statements above. It is a growth estimate of |w(x)| in
terms of δ(x) for x near the nodal set of the solution w, which will be an important ingredient in our

paper.

Theorem 2.5. Suppose that L(w) = 0 in B10 for L only satisfying (2.2) with Z(w) ∩ B4 �= ∅ and

Nw � N0 < ∞. Then there exist positive constants A1(λ), A2(λ,N0) and α(λ) ∈ (0, 1) such that

A1 · sup
B8

|w| · distα(x, Z(w)) � |w(x)| � A2 · sup
B8

|w| · dist(x, Z(w))N0 (2.17)

for any x ∈ B2.

Proof. We can assume that supB8
|w| = 1. The inequality on the left-hand side follows directly from

the De Giorgi’s theorem (see [12]). For the one on the right-hand side, let r = dist(x, Z(w)). Then the

usual Harnack inequality implies that supBr/2(x)
|w| � h(λ) · |w(x)| for some h(λ) > 1. By the definition

of Nw � N0, we know that 2−kN0 · supB
2k−1·r(x)

|w| � supBr/2(x)
|w| for all k ∈ Z+, which yields the

conclusion.

Remark 2.6. One can easily find scaled versions of the above growth estimate on balls of size r. For

operators with analytic coefficients (hence solutions are also analytic in the interior), the above growth

estimate can be derived from the �Lojasiewicz inequality as in [20]. However, all the constants involved

depend on the real analytic nature of the variety Z(w). It is thus not so convenient to obtain uniform

estimates when the nodal sets Z(w) or operators involved are perturbed. If the coefficients are Lipschitz

continuous, the gradients of the solutions w satisfy the same growth estimates (see [8]).

2.2 A compact class of solutions

Our second tool builds on the compactness of a class of solutions to any elliptic equations satisfying (2.2)

and (2.3), which are defined as follows:

SN0(Λ) ≡
{
w ∈ W 1,2

∣∣∣L(w) = 0 in B10, L satisfies (2.2) and (2.3), Nw � N0, sup
B8

|w| = 1
}
. (2.18)

This is a compact family in the local C1,α-metric. A direct consequence is the compactness of their zero

sets, i.e.,

FN0(Λ) = {Z(w) ∩B8 | w ∈ SN0(Λ)} (2.19)

is compact under the Hausdorff distance.
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The class SN0(Λ) is usually used to give upper bounds for the size of nodal sets or the size of critical

sets. Let us summarize these estimates into the following statements:

Hn−1(Z(w) ∩B4) � P1(Λ, N0) (2.20)

and

Hn−2(S(w) ∩B4) � P2(Λ, N0) (2.21)

for any w ∈ SN0(Λ). Here, S(w) ≡ {x ∈ B9 | w(x) = |∇w|(x) = 0} and the two positive constants P1

and P2 depend only on Λ and N0.

There are several important contributions for these two estimates (see, for example, [5, 7, 10, 14, 16]).

The best estimates up to date are P1 = M1(Λ) ·Nα
0 for some α = α(n) > 1 and P2 = exp(M2(Λ) ·N2

0 ),

which are in [21], [17] and [24] separately. It is worth pointing out that Cheeger et al. [5] and Naber and

Valtorta [24] also established estimates on the Minkowski content, i.e., the volume of a small neighborhood

of Z(w) and S(w). Moreover, the set S(w) can be replaced by C(w), the set of all the points x ∈ B9

such that |∇w(x)| = 0 (see, for example, [5, 11]).

3 The modified Harnack chain and the corkscrew condition

In this section, we show some geometric properties of nodal domains. Surprisingly, some of them are

similar to properties of NTA domains [15], which have been influential in potential analysis on non-smooth

domains and which have applications to many problems including the regularity of free boundaries. For

a domain to be NTA, it needs to satisfy two assumptions called the corkscrew condition and the Harnack

chain condition. It is not hard to find examples of nodal domains that are not NTA. In some sense,

typical nodal domains are like Lipschitz cones at sufficiently small scales and at larger scales they are

more like twisted Hölder domains with complicated topology. For the class of uniformly elliptic operators

with bounded measurable coefficients, so long as the solutions that are considered satisfy this additional

doubling property (2.8) , the associated nodal domains will satisfy a corkscrew condition and a modified

Harnack chain condition. In the (uniformly) analytic case, it was proved in [20]. Our proof of the following

statement is a generalization of that in [20]. It builds on the natural scaling invariant property for this

class of nodal domains.

Theorem 3.1. Suppose that L(w) = 0 in B10 with 0 ∈ Z(w) and Nw � N0 < ∞. Then for any nodal

domain Ω of w with Ω ∩B1 �= ∅ and any x ∈ Ω ∩B1, there is a chain of points {xi}mi=0 ⊂ Ω with x0 = x

and satisfying the following properties: for i = 0, 1, . . . ,m− 1,

(1) (modified Harnack chain)

(i) |w(xi+1)| � C3(λ,N0)|w(xi)| for some C3 > 1;

(ii) |xi+1 − xi| � (1− θ0(λ,N0)) · δ(xi) for some θ0 ∈ (0, 1), xi ∈ B2 and δ(xi) � 1/4;

(iii) xm ∈ B3\B2 or xm ∈ B2 but δ(xm) > 1/4;

(iv) m � −ξ1(λ,N0) log(δ(x0)) + ξ2(λ,N0) for some ξ1, ξ2 > 0;

(2) (corkscrew condition) δ(xm) > c4(λ,N0) for some c4 ∈ (0, 1/4), and hence B4 ∩ Ω contains a ball

of radius c4/2.

If one considers all the nodal domains of w that intersect with B1, the second statement in the above

theorem exactly implies the two-sided corkscrew condition as in the definition of NTA domains.

The first statement in the above theorem leads to modified Harnack chains. One does have that the

values of w(xi) grow geometrically. But it only implies that xi’s stay away from Z(w) (in a same nodal

domain) by a power of its distance to the boundary of the nodal domain. This latter geometric picture

is consistent with Theorem 2.5. In this connection, we find that there is an interesting connection with

the hyperbolic metric defined on the nodal domains, which is the Euclidean metric multiplied by the

conformal factor w−2. But we shall not explore it in this paper.

Lemma 3.2. Suppose that L(w) = 0 in B10 with 0 ∈ Z(w) and Nw � N0 < ∞. Then there are

constants C3 = C3(λ,N0) > 1 and θ0 = θ0(λ,N0) ∈ (0, 1) such that for any x ∈ B2 with w(x) �= 0 and

δ(x) � 1/4, there is an x̃ ∈ B3 with |x− x̃| � (1− θ0) · δ(x) and |w(x̃)| > C3|w(x)|.
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Proof. Suppose that w(x) > 0 and let δ = δ(x). Set ε ≡ (supB(1−θ)δ(x)
w)/w(x)− 1 > 0 with a positive

and small θ to be chosen later. Since L(w(·)− w(x)) = 0, by the usual Harnack inequality,

sup
B(1−2θ)δ(x)

|w(·)− w(x)| � C(λ, θ) · sup
B(1−θ)δ(x)

(w(·)− w(x)) = C(λ, θ) · εw(x). (3.1)

By the definition of Nw � N0 and the usual Harnack inequality, we see

sup
B2δ(x)

|w| � 4N0 sup
Bδ/2(x)

|w| � 4N0 · C(λ) · w(x). (3.2)

On the other hand, since there is an x∗ ∈ Z(w) such that |x− x∗| = δ, the De Giorgi’s theorem yields

sup
B4θδ(x∗)

|w| � C(λ) · θα sup
B2δ(x)

|w| � C(λ)4N0 · θα · w(x) (3.3)

for some α = α(λ) and for every θ ∈ (0, 1/16). Now we choose a θ = θ(λ,N0) ∈ (0, 1) such that

C(λ)4N0 · θα < 1/2 in (3.3).

Then for any y ∈ B4θδ(x∗) ∩B(1−2θ)δ(x), by (3.1) and (3.3), we know

(1− C(λ, θ)ε) · w(x) � w(y) � 1

2
· w(x), (3.4)

which yields ε � c > 0 for some positive c = c(λ, θ) = c(λ,N0).

With Lemma 3.2, we can proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. For (i) and (ii), one simply applies Lemma 3.2 iteratively. This iteration that

satisfies both (i) and (ii) has to end after finitely many steps. We let m as the smallest positive integer

such that the corresponding xm satisfies Theorem 3.1(iii).

For (iv), the upper bound of m, by (i) and Theorem 2.5, we find

(C3)
m ·A2δ(x)

N0 · sup
B8

|w| � (C3)
m|w(x)| � |w(xm)| � sup

B8

|w|, (3.5)

which is equivalent to

m � (−N0 log(δ(x))− log(A2))/ log(C3). (3.6)

Since C3 > 1, we get the desired ξ1 and ξ2.

For the corkscrew condition, we first assume that δ(xm) � 1/4 and supB8
|w| = 1. From Theorem 2.5,

there are A1(λ), A2(λ,N0) > 0 such that

A1 · δ(y)α � |w(y)| � A2 · δ(y)N0 (3.7)

for any y ∈ B2. Hence, it suffices to show that |w(xm)| � C(λ,N0) > 0. Because

|x0 − xm| �
m−1∑
i=0

|xi − xi+1| (3.8)

and

|xi − xi+1| � δ(xi) � A
−1/N0

2 |w(xi)|1/N0 � A
−1/N0

2 |w(xm)|1/N0 · C(i−m)/N0

3 , (3.9)

also, |x0 − xm| � 2 − 1 = 1 and
∑m−1

i=0 C
(i−m)/N0

3 is bounded by 1/(C
1/N0

3 − 1), we get a desired lower

bound for |w(xm)|.
A direct corollary of the corkscrew condition is the local boundedness of the number of nodal domains.

Corollary 3.3. Suppose that L(w) = 0 in B10 with 0 ∈ Z(w) and Nw � N0 < ∞. Then the number

of nodal domains in B4 which have nonempty intersections with B1 is bounded by a positive integer

T0 = T0(λ,N0).
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4 Boundary Harnack, Hölder continuity and entire solutions

We use the corkscrew property of nodal domains to provide versions of the boundary Harnack principle.

We first observe the following lemma.

Lemma 4.1. Assume that Lu = Lv = 0 in B10 with supB8
|u| = supB8

|v| = 1 and ND(u,B8) � N0

< ∞. If 1 < 2N0+1 < m < ∞, then ND(mu− v,B8) � N0 + 2 < ∞.

Proof. It holds that

supB8
|mu− v|

supB4
|mu− v| �

m+ 1

m · supB4
|u| − 1

� m+ 1

m · 2−N0 − 1
� 2

m+ 1

m · 2−N0
� 4 · 2N0 . (4.1)

This completes the proof.

Theorem 4.2. Suppose that Lu = Lv = 0 in B10 and 0 ∈ Z(u) ⊂ Z(v) with supB8
|u| = supB8

|v| = 1.

If Nu � N0 < ∞, then there is a positive constant C = C(Λ, N0) < ∞ such that |v/u| � C in B1\Z(u).

Proof. First, we show that there is a large C = C(Λ, N0) such that Cu−v has the same nodal domains

as u in B1. Set δ(x) ≡ δZ(u)(x).

Let E = {x ∈ B3 | (Cu − v)(x) · u(x) > 0}. We can first assume that C > 2N0+1 as in the previous

lemma and then by (2.16) get NCu−v � N0 ≡ K1(Λ)(N0 + 2) + K2(Λ) for some K1,K2 > 0. Let

E1 = {x ∈ B3 | δ(x) > c4/8}, where c4 = c4(N0,Λ) is the same constant appearing in the corkscrew

condition of Theorem 3.1 for Cu− v. By Theorem 2.5, we have |u(x)| > A2(c4/8)
N0 ≡ c for any x ∈ E1.

Let us fix C = 2max{c−1, 2N0+1}. For this C, we have E1 ⊂ E because for any x ∈ E1, we have

|Cu(x)| > 2, and then (Cu− v)(x) and u(x) must have the same sign.

For this fixed C, assume that there is an x ∈ B1 such that u(x) > 0 but (Cu − v)(x) � 0. Note

that if (Cu − v)(x) = 0, by the strong maximum principle and unique continuation, we can always

choose another point y arbitrarily close to x with (Cu − v)(y) < 0 but u(y) > 0. So we assume that

(Cu − v)(x) < 0. Therefore, this x is in a negative nodal domain Ω of Cu − v in B3, which means that

Cu − v < 0 in Ω and Ω is in the complement of E. On the other hand, since x is in a positive nodal

domain of u in B3, which we denote by Ω1, Ω is contained in Ω1 and is certainly not connected with

other nodal domains of u. So Ω ⊂ Ω1\E. By the corkscrew property as in Theorem 3.1 for Cu− v (note

that the doubling index is bounded by N0 + 2 independent of large C), there is a point xm ∈ Ω ∩ B3

such that δ(xm) � dist(xm, Z(Cu − v)) > c4, which is clearly impossible by our construction of E1 and

the fact that E1 ⊂ E. Hence we have proved that B1\Z(u) ⊂ E, which means that Cu− v has the same

nodal domains as u in B1.

Similarly, for the same C, we can show that Cu + v has the same nodal domains as u in B1. Hence,

|v/u| � C in B1\Z(u).

Corollary 4.3. Suppose that Lu = Lv = 0 in B10, 0 ∈ Z(u) = Z(v) and supB8
|u| = supB8

|v| = 1 with

Nu � N0 and Nv � N0 for some positive N0 < ∞. Then there is a positive constant C = C(Λ, N0) < ∞
such that C−1 � |v/u| � C in B1\Z(u).

Proof. Switch the positions of u and v in Theorem 4.2.

Remark 4.4. We should note that both Theorem 4.2 and Corollary 4.3 remain true when L is replaced

by L (see Theorem 6.1 in Section 6). On the other hand, by Theorem 5.1 that we will prove in the next

section, we can drop the assumption that Nv � N0 because Theorem 5.1 implies that Nv � D(Λ, N0) < ∞
on B1. Consequently, one can prove the boundedness of |v/u| on B1/10\Z(u) as in Theorem 4.2.

Next, we show that v/u satisfies a strong maximum principle, which was noted in [19, Remark 2.8] for

the case L = Δ.

Theorem 4.5. Suppose that Lu = Lv = 0 in B10 and Z(u) ⊂ Z(v). Then supB8
v/u cannot be

achieved at x ∈ B8 if v/u is not a constant.

Proof. Denote supB8
v/u by M . We consider Mu− v. We can assume that Mu− v �≡ 0. For x ∈ B8,

if u(x) > 0, then M � v(x)/u(x) and then Mu(x)− v(x) � 0. By the usual strong maximum principle,
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we know Mu(x)− v(x) > 0. Similarly, if u(x) < 0, we have Mu(x)− v(x) < 0. Hence, M is not achieved

at x ∈ B8\Z(u). These also tell us that Z(u) ∩B8 = Z(Mu− v) ∩B8.

Now, for any x0 ∈ Z(u) ∩B8, consider B10r(x0) for some r small enough. By Theorem 4.2,

inf
Br(x0)\Z(u)

∣∣∣∣M − v

u

∣∣∣∣ = inf
Br(x0)\Z(u)

∣∣∣∣Mu− v

u

∣∣∣∣
=

1

supBr(x0)\Z(u) |u/(Mu− v)|

� C · supB8r(x0) |Mu− v|
supB8r(x0) |u|

> 0, (4.2)

where C is a positive constant depending on Λ and ÑD(Mu − v,B10r(x0)) < ∞. Hence, we conclude

that in Br(x0), M > v/u. Then M > (v/u)(x) for any x strictly inside B8.

To end this section, we are going to work on the continuity of v/u. If we only need the continuity of

v/u at some point x0 ∈ Z(u), we can consider u and v− (v/u)(x0) · u in Theorem 4.2 and use the Taylor

expansions of u and v at x0 (see [9] for the Taylor expansion and [19] for more in the case of harmonic

functions). But in this way, the continuity scale depends on the point x0. In the R
2 case, this way also

gives differentiability of v/u since the formal gradient of v/u at x0 ∈ S(u) = {x | u(x) = |∇u| = 0} is 0.

Here, we are going to show the Hölder continuity of v/u, and the proof is quite standard if we also

apply the conclusion of Theorem 5.1 which will be proven in the next section.

Theorem 4.6. Suppose that Lu = Lv = 0 in B10, Nu � N0 < ∞ and 0 ∈ Z(u) ⊂ Z(v). Then

v/u ∈ Cα(B1/10) for some α = α(Λ, N0) ∈ (0, 1).

Proof. We are going to show the oscillation decay estimate at 0. If

sup
B1/100

v

u
� 1

2

(
sup
B1

v

u
+ inf

B1

v

u

)
, (4.3)

then

sup
B1/100

v

u
− inf

B1/100

v

u
� 1

2

(
sup
B1

v

u
− inf

B1

v

u

)
. (4.4)

If

sup
B1/100

v

u
� 1

2

(
sup
B1

v

u
+ inf

B1

v

u

)
, (4.5)

we consider v∗(x) = (v − (infB1(v/u)) · u)(x/10) and u∗(x) = u(x/10). Note that u∗ and v∗ have the

same zero set in B10 by the proof of Theorem 4.5, v∗u∗ � 0 and Nu∗ � Nu � N0. By Theorem 5.1,

Nv∗ � D = D(Λ, N0) in B1. Then by Corollary 4.3, with a larger constant C = C(Λ, D) = C(Λ, N0) in

it, we can show

inf
B1/100

v

u
− inf

B1

v

u
= inf

B1/10

v∗

u∗ � C−2 sup
B1/10

v∗

u∗ � 1

2C2

(
sup
B1

v

u
− inf

B1

v

u

)
, (4.6)

and then

sup
B1/100

v

u
− inf

B1/100

v

u
�

(
1− 1

2C2

)(
sup
B1

v

u
− inf

B1

v

u

)
. (4.7)

This completes the proof.

A direct corollary of Theorem 4.6 and (4.7) is the following Liouville theorem for the case L = Δ. In

this case, all the constants C(Λ, N0) will be replaced by C(n,N0) so that we can do both blow-ups and

blow-downs. All the theorems in this section are valid with constants of the form C(n,N0).

Corollary 4.7. Suppose that Δ(u) = Δ(v) = 0 in R
n, Nu(0, r) < N0 < ∞ for all r > 0 and

Z(u) ⊂ Z(v). Then there is a β = β(n,N0) ∈ (0, 1) such that if

lim inf
r→∞ r−β · sup

Br

v

u
< ∞, (4.8)
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we have v = c · u for some c ∈ R. In particular, if Z(u) = Z(v), the condition (4.8) will be satisfied, and

then there is a constant c ∈ R\{0} such that v = c · u.
Proof. If Z(u) �= Z(v), we may assume that (v/u)(0) = 0. Then if supBr

|v/u| = − infBr v/u, one can

define M = supB100r
v/u and consider M − v/u = (Mu − v)/u on B100r. Since Mu − v and u have the

same zero set in B100r, by Theorem 5.1 and Corollary 4.3, there is a constant C = C(n,N0) > 1 such

that

M + sup
Br

∣∣∣∣ vu
∣∣∣∣ = sup

Br

Mu− v

u
� C · inf

Br

Mu− v

u
= C ·M − sup

Br

v

u
� C ·M. (4.9)

Hence, there is always a constant M1 = M1(n,N0) > 1 such that

sup
Br

∣∣∣∣ vu
∣∣∣∣ � M1 · sup

B100r

v

u
. (4.10)

By the proof of Theorem 4.6 and (4.7), there is a constant θ = θ(n,N0) ∈ (0, 1) such that

sup
Br

v

u
− inf

Br

v

u
� θk ·

(
sup

B
100kr

v

u
− inf

B
100kr

v

u

)
� θk · (2M1) · sup

100k+1r

v

u
(4.11)

for all r > 0 and k ∈ Z+. By choosing β = β(n,N0) ∈ (0, 1) such that θ · 100β < 1, we see that the

statement follows if we let k → ∞ and then r → ∞.

If Z(u) = Z(v), by Corollary 4.3 and Theorem 5.1, we have

sup
Br

∣∣∣∣ vu
∣∣∣∣ � C · inf

Br

∣∣∣∣ vu
∣∣∣∣ � C ·

∣∣∣∣ vu
∣∣∣∣(0) (4.12)

for some C = C(n,N0) > 0 and all r > 0. Denote the right-hand side of (4.12) by M2. By the first

inequality of (4.11), we know

sup
Br

v

u
− inf

Br

v

u
� θk ·

(
sup

B
100kr

v

u
− inf

B
100kr

v

u

)
� θk ·M2. (4.13)

The statement follows if we let k → ∞ and then r → ∞. We note that the above proof involves only

controls of growth of both u and v at infinity. If one uses the fact that the operator is the standard

Laplacian, then the hypothesis on u implies that u is a harmonic polynomial. If the ratio v/u grows

like a power of r, then v is also a harmonic polynomial. The conclusions can also be derived directly by

working with polynomials and blow-downs.

5 Uniform bounds on frequency functions for solutions with the same zero
set

In this section, all the elliptic operators L, L1 and L0 satisfy the conditions (2.2) and (2.3). Our main

result is the following theorem.

Theorem 5.1. Suppose that L(u) = L1(v) = 0 in B10 and 0 ∈ Z(v) = Z(u) = Z. Also assume that

Nu � N0 < ∞. Then there is a positive constant D = D(Λ, N0) < ∞ such that

log

(
supB1

|v|
supB1/2

|v|
)

� D. (5.1)

In order to prove this theorem, we first need a Carleson type estimate, which is always a key ingredient

for the boundary Harnack principle (see, for example, [4,15,20]). The proof for this Lemma 5.2 is inspired

by [4].
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Lemma 5.2. Suppose that L(u) = 0 in B10, 0 ∈ Z(u) = Z and Nu � N0 < ∞. Assume that Ω is a

nodal domain of u in B3 which satisfies Ω ∩B1/2 �= ∅. Then if L1(v) = 0 in Ω, v > 0 in Ω and v = 0 on

Z ∩ ∂Ω, there exist constants M = M(λ,N0) > 0 and c = c(λ,N0) > 0 such that the following estimate

holds:

sup
B1/2∩Ω

v � M sup
y∈B2∩Ω,δ(y)�c

v(y). (5.2)

In particular, if L1(v) = 0 in B10 and Z(v) = Z, then

sup
B1/2

|v| � M sup
y∈B2,δ(y)�c

|v|(y). (5.3)

Proof. Take c = c4/2 for c4 in the corkscrew condition of Theorem 3.1. Assume that

sup{|v(y)| | y ∈ B2 ∩ Ω, δ(y) � c} = 1.

Then we prove that sup{|v(y)| | y ∈ B1/4 ∩ Ω} � M for some M = M(λ,N0).

First, we claim that for any x ∈ B1 ∩ Ω, there are α1(λ,N0) > 0 and α2(λ,N0) > 0 such that

v(x) � α2 · δ(x)−α1 . (5.4)

This claim follows from Theorem 3.1(iv) by a backward iteration along the Harnack chain. Indeed,

since the length of the modified Harnack chain associated with x is bounded by −ξ1 log(δ(x)) + ξ2 and

δ(xm) � c4, if we apply the usual Harnack inequality along this modified Harnack chain, we get

v(x) � hm · v(xm) � h−ξ1log(δ(x))+ξ2 · 1 (5.5)

for some h = h(λ, θ0) = h(λ,N0) > 1, which is the constant in the Harnack inequality for this class of

elliptic operators.

Next, we need the following standard elliptic estimate for subsolutions: if L(w) � 0 in B2, w � 0 in B2

and |{x ∈ B2 | w(x) = 0}| � ε > 0, then supB1
w � θ · supB2

w for some θ = θ(λ, ε) ∈ (0, 1).

We now follow the same type arguments as in [4]. Assume that for some y0 ∈ B1/2 ∩ Ω and |v(y0)|
= M0 > 1, then one has δ(y0) < c. Consider the ball B3δ(y0)(y0), on which v may be regarded as a

nonnegative subsolution if we extend v to be 0 out of Ω. By the corkscrew condition of Theorem 3.1,

B3δ(y0)(y0)\Ω contains a ball of radius δ(y0) · r with some small r = r(λ,N0) > 0. Hence, by the above

estimate for nonnegative subsolutions, there is a y1 ∈ B3δ(y0)(y0)∩Ω such that v(y1) � θ−1v(y0) = θ−1M0

for a θ = θ(λ, r) = θ(λ,N0) ∈ (0, 1). Consequently, δ(y1) < c so long as y1 is also in B2.

We can continue this process to find y2, y3, . . . so long as they all stay inside B2. Let us estimate

|y0 − yi| for i � 0. Note that our construction gives |yi − yi+1| � 3δ(yi). By (5.4), if yi ∈ B1 ∩ Ω, then

δ(yi) � β1 · v(yi)−β2 � β1 · θβ2i · v(y0)−β2 = β1 · θβ2i ·M−β2

0 (5.6)

for some β1 = β1(λ,N0) > 0 and β2 = β2(λ,N0) > 0. Since θ < 1, the last terms on the right-hand side

form a convergent geometric series, and we can sum all of them up for i = 1, 2, . . .

If Mβ2

0 � 30β1/(1− θβ2), then |y0 − yi| � 1/10 for all i � 0, and then all yi’s stay in B1 ∩Ω. This is a

contradiction since v(yi) � θ−iM0 → ∞ as i → ∞.

We can now proceed with the proof of Theorem 5.1. The strategy is quite simple. The first step is to

use Lemma 5.2 to push the point where the solution v takes approximate maximum values away from the

nodal set. Next, we apply the Harnack inequality along paths fully contained in a nodal domain of v (or

equivalently, a nodal domain of u), which connects points in a larger ball far away from the zero set to

points where v reaches approximate maximums inside a smaller ball. The difficulty is to avoid neck-like

tiny regions in the process of connecting these points so that it can be done in a quantitatively controlled

manner.
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Proof of Theorem 5.1. We need to consider the following family:

SN0
(Λ) ≡

{
w

∣∣∣ L(w) = 0 in B10, L satisfies (2.2) and (2.3), Nw � N0, sup
B8

|w| = 1
}
, (5.7)

which is a compact family in the local C1,α-metric.

We can then prove the statement by contradiction. If the theorem failed, assume that {un} ⊂ SN0(Λ)

with supB8
|un| = 1 and 0 ∈ Z(un) = Zn. vn satisfies that Ln(vn) = 0 in B10 and Z(vn) = Zn with

log

(
supB1

|vn|
supB1/2

|vn|
)

→ ∞. (5.8)

By compactness of the class SN0(Λ), we can assume that un → u0 ∈ SN0(Λ). Note that 0 ∈ Z(u0) since

the convergence is in the local C1,α-metric.

Let Z0 = Z(u0). We make a partition of B2\Z0 in terms of nodal domains. Let us assume that B2\Z0

=
⊔T

i=1(Ωi ∩B2), where Ωi (i = 1, . . . , T ) are disjoint nodal domains of u0 in B3 such that Ωi ∩B2 �= ∅.
Note that T � T0 = T0(λ,N0) by Corollary 3.3. If we divide [3/2, 2) into [3/2 + (j − 1)/(4T0),

3/2 + j/(4T0)), j = 1, . . . , 4T0, there exists a j = j(Z0) such that for each Ωi, if Ωi ∩ B3/2+j/(4T0) �= ∅,
then Ωi ∩ B3/2+(j−1)/4T0

�= ∅. We denote the subset of subindices of these Ωi by I0. Hence, we can set

η = 3/2+ (j− 1)/(4T0)+ 1/(8T0) ∈ (3/2, 2) and ε = 1/(100T0) � 1. We focus on the ball Bη. The point

here is that those Ωi with i ∈ I0 are path-connected, form a partition of Bη and also have a nonempty

intersection with Bη−10ε.

By using Lemma 5.2 to push maximum points away from zero sets locally, one can show that for some

positive M = M(λ,N0) and c(λ,N0),

sup
Bη−2ε

|vn| � M sup
y∈Bη−ε,δn(y)�c

|vn|(y), (5.9)

where δn(y) = dist(y, Zn). Assume that the maximal value of the right-hand side of (5.9) is achieved

by yn. Note that when n is large enough, {y ∈ Bη−ε | δn(y) � c} is contained in

{y ∈ Bη−ε | δ0(y) = dist(y, Z0) � c/2}.
Hence, we can assume that δ0(yn) � c/2.

Because for each i ∈ I0, Ωi ∩Bη−10ε �= ∅, by the corkscrew condition of Theorem 3.1, there is a small

ball of radius r = r(λ,N0) > 0 with center xi inside Ωi ∩ Bη−4ε. Let d = min{c/4, r/2}. There is a

constant μ = μ(d, Z0) > 0 such that for any two points x and y in Ωi(d) ≡ Ωi ∩ {y ∈ B3−d | δ0(y) � d},
x and y are connected by a path γ, which is fully contained in Ωi(μ) ≡ Ωi ∩ {y ∈ B3−μ | δ0(y) � μ}.
The existence of such a μ and the Harnack inequality lead to the desired conclusion. In fact, if we use

dyadic cubes of side length μ/10 to cover B10, those cubes which intersect with Ωi(μ) are fully contained

in Ωi(μ/2), and the number of cubes is bounded by Q ≡ C(n)μ−n (here n is the dimension and not to

be confused with the subindices).

Hence, when the subindex n of un is large enough, each Ωi(μ/2) is fully contained in a single nodal

domain of un by Theorem 2.5. Since δ0(yn) � c/2, yn is contained in an Ωi(d) for an i ∈ I. yn and xi

are then connected by a path γn,i fully contained in Ωi(μ), which is covered by Q cubes with side length

μ/10. We can then apply the Harnack inequality Q times along γn,i, and get

|vn|(yn) � hQ|vn|(xi) � hQ sup
Bη−4ε

|vn| (5.10)

for some h = h(λ) > 1.

Combining (5.9) and (5.10), we see

sup
η−2ε

|vn| � M · hQ sup
η−4ε

|vn|, (5.11)

which contradicts (5.8) by Theorem 2.1.
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6 Analysis on a single nodal domain

In this section, we fix a single domain and discuss properties of solutions on this domain. More precisely,

let L0(u0) = 0 in B10, 0 ∈ Z(u0) = Z0 and Nu0 � N0 < ∞. We consider a nodal domain Ω of u0 in B5

with 0 ∈ ∂Ω. We use the notation δ(x) ≡ dist(x, Z0) = dist(x, ∂Ω) for x ∈ Ω.

6.1 The boundary Harnack inequality on a given nodal domain

Theorem 6.1. Suppose that L(u) = L(v) = 0 in Ω, u > 0 on Ω and u = v = 0 on ∂Ω ∩ B3

continuously. Then there are positive constants M = M(λ,N0) and r = r(λ,N0) such that∣∣∣∣ vu
∣∣∣∣ � M · supB1∩Ω |v|

infy∈B2∩Ω,δ(y)�r u(y)
(6.1)

on B1/4 ∩ Ω. In particular, if v > 0 on Ω and

0 < C1 � v, u � C2 (6.2)

on {x ∈ B2 ∩ Ω | δ(x) � r}, then
C1

C2
·M−2 � v

u
� C2

C1
·M2 (6.3)

on B1/4 ∩ Ω.

We prove this theorem with cubes in the place of balls for convenience. We consider cubes Qs with

center 0 and side length 2s, and we define Ks ≡ Ω ∩ Qs and As ≡ {x ∈ Ks | δ(x) � δ · s}, where
δ = δ(λ,N0) � 1 will be chosen in the following lemma. The argument is inspired by [6] for NTA

domains.

Lemma 6.2. There exist M0 = M0(λ,N0) > 0 and δ = δ(λ,N0) > 0 such that if w is a solution to

L(w) = 0 in K1, not necessarily positive, which vanishes on ∂Ω ∩ B1, and w � M0 on A1, w � −1 on

K1, then we have w � M0 · a on A1/2 and w � −a on K1/2 for some small a = a(λ,N0) > 0.

Proof. First, we construct the lower bound on A1/2. Pick an x0 ∈ A1/2. Then there is a modified

Harnack chain {x0, x1, . . . , xm}, which we get in Theorem 3.1. In the corkscrew condition of Theorem 3.1,

we show that δ(xm) � c4 = c4(λ,N0). We also find

m � −ξ1log(δ(x0)) + ξ2 � −ξ1log(δ/2) + ξ2 (6.4)

in Theorem 3.1(iv) for ξ1 = ξ1(λ,N0) > 0 and ξ2 = ξ2(λ,N0). Hence, if we assume that δ < c4 first, by

the Harnack inequality along this chain with the constant h(λ, θ0) = h(λ,N0) > 1, we have

w(x0) � (M0 + 1) · hξ1log(δ/2)−ξ2 − 1. (6.5)

We choose

a = (1/2) · hξ1log(δ/2)−ξ2 .

Then when M0 � 1/a, we have

w(x0) � M0 · a. (6.6)

Then we show that w � −a on K1/2 for suitable δ. Let x0 ∈ K1−2δ\A1. Consider the cube Q(x0, 2δ).

By Theorem 3.1, there is a small ball with radius δ ·c for some c = c(λ,N0) in Q(x0, 2δ)\Ω, where w− = 0.

Hence, by the weak Harnack inequality we mentioned in the proof of Lemma 5.2 and w � −1 on K1,

w−(x0) � (1− c1) sup
Q(x0,2δ)

w− � (1− c1) (6.7)

for some c1 = c1(λ,N0) ∈ (0, 1). Hence, w− � (1− c1) in K1−2δ. By iteration, we get w− � (1− c1)
t in

K1−2tδ, and then

w � −(1− c1)
1
8δ on K1/2. (6.8)



Lin F H et al. Sci China Math December 2022 Vol. 65 No. 12 2455

Since δ · log(δ) → 0 as δ → 0, we can choose a small δ = δ(λ,N0) such that

(1− c1)
1
8δ � a = (1/2) · hξ1log(δ/2)−ξ2 . (6.9)

This completes the proof.

By the above Lemma 6.2, and by iterating the same arguments on K2−t and A2−t , we can conclude

that w > 0 in {x ∈ K1 | δ(x) � 2δ|x|}. Because one can vary the centers of Ks and As, hence w is

positive in K1/4.

Proof of Theorem 6.1. Set w ≡ Cu − v. We choose suitable C so that w satisfies the assumptions of

Lemma 6.2.

For (6.1), the statement can be proved by choosing M � M0 + 1, r � δ with M0 and δ in Lemma 6.2

and choosing C = M · supK1
|v| · (infy∈K2,δ(y)�r u(y))

−1.

For (6.3), by Lemma 5.2,

sup
K1

v � M1 · sup
y∈K3/2,dist(y,Z0)�c

v (6.10)

for some positive M1 = M1(λ,N0) and c = c(λ,N0). Hence, if we choose r = min{c, δ} and M =

max{M1,M0 + 1} with M0 and δ in Lemma 6.2, we find

sup
K1

v � M · C2. (6.11)

Then we choose C = C−1
1 C2M

2 and the conclusions of the theorem follow.

Remark 6.3. The strong maximum principle holds for v/u by a similar proof as in Theorem 4.5. An

interesting part is that supΩ∩B1
v/u may not be achieved on ∂Ω ∩B1.

Corollary 6.4. Suppose that L0(v) = 0 in Ω, v > 0 on Ω and v = 0 on ∂Ω ∩ B3 continuously. Then

there are positive constants C = C(λ,N0) and r = r(λ,N0) such that

C−1 · δ(x)N0 · inf
y∈B2∩Ω,δ(y)�r

v(y) � v(x) � C · δα(x) · sup
B1∩Ω

v (6.12)

in B1/4 ∩ Ω.

Proof. These follow from considering v and u0 in Theorems 6.1 and 2.5.

Remark 6.5. As we can see in (6.3) of Theorem 6.1, the upper bound depends on the ratio C2/C1,

which also depends on the set {x ∈ K2 | δ(x) � r}. Since Ω is connected, one can apply the usual

Harnack inequality on this set. So C2/C1 is actually a quantity depending on the shape of the single

nodal domain Ω. Is it possible that C2/C1 could be controlled by some constants only depending on N0?

The answer is no and we have the following counterexample. Consider

Ωε ≡ {(x, y) ∈ R
2 | x2 − y2 > −ε, |x| < 1},

which is the part of one nodal domain of uε(x, y) = x2− y2+ ε in B1. It has a thin and short neck region

around the origin. Let vε be the solution of the following Dirichlet problem:

Δvε = 0 on Ωε (6.13)

and

vε = 1 on {x = 1} ∩ ∂Ωε, vε = 0 on {−1 � x < 1} ∩ ∂Ωε. (6.14)

We notice that vε > 0 in Ωε, vε > C(n) > 0 when x > 1/2 and |y| < 1/2, and vε is very close to 0 when

x < 0. As ε → 0, vε tends to 0 on {x < 0}, which means that uε/vε → ∞. One can also consider vε(−x, y)

for a similar purpose on the part of the nodal domain with x > 0. If one replaces y by (y1, . . . , yn−1), one

finds examples in the dimension n. On the other hand, if one replaces x by (x1, x2) and y by (y1, y2), then

there is no problem when ε goes to zero. In the latter case, Ωε is quantitatively connected (independent

of small ε) (see Definition 6.7).
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Nodal domains are path-connected by their definitions. Examples in Remark 6.5 show that they

can easily degenerate and decompose into several smaller nodal domains even for a sequence of nodal

domains of solutions in SN0(Λ). Consequently, many analytic estimates on a nodal domain of a solution

u0 ∈ SN0(Λ) are not uniform (depending only on Λ and N0). On the other hand, even a single nodal

domain is degenerate and decomposed into several smaller nodal domains, the number of such small nodal

domains is again locally uniformly bounded by a constant T0(λ,N0) (see Corollary 3.3).

Inspired by our proofs of Theorem 5.1 and Lemma 5.2, if we use dyadic cubes with side length r/10

to cover B10 with r = r(λ,N0) chosen in Theorem 6.1, those cubes which have nonempty intersections

with {y ∈ B2 | δ(y) � r} form several big chunks Ei (i = 1, . . . , T ) with each Ei path-connected and

T � C(n)r−n, but different Ei and Ej are disjoint. Then we give another interesting upper bound in the

following corollary.

Corollary 6.6. Let u0 be the solution at the beginning of Section 6 and Ω be a nodal domain of u0

in B5 with 0 ∈ ∂Ω. Also suppose that L0(v) = 0 in Ω, v > 0 on Ω and v = 0 on ∂Ω ∩ B3 continuously.

Then there is a positive constant C = C(λ,N0) such that

v(x)

u0(x)
� C ·max

{
v(x1)

u0(x1)
, . . . ,

v(xT )

u0(xT )

}
(6.15)

in B1/4 ∩ Ω, where xi is an arbitrary point inside Ei for each i = 1, . . . , T .

Proof. On the right-hand side of (6.1), by Lemma 5.2, for some M = M(λ,N0) we have

sup
B1∩Ω

v � M · sup
y∈B3/2∩Ω,δ(y)�r

v. (6.16)

Assume that the maximal value on the right-hand side of the above inequality is achieved by a point

y1 ∈ E1. Then by the usual Harnack inequality inside E1 and the fact that the number of all the dyadic

cubes is also bounded by C(n)r−n, there is a constant C = C(λ,N0) such that

v(y1) � C · v(x1). (6.17)

By Theorem 2.5 and the Harnack inequality, there is a constant c = c(λ,N0, r) = c(λ,N0) such that

inf
y∈B2∩Ω,δ(y)�r

u0(y) � c · u0(x1). (6.18)

By combining the above three inequalities and (6.1), we obtain (6.15).

The above discussions inspire one to introduce the notion of the quantitative connectedness in the

following definition.

Definition 6.7. We say that the nodal domain Ω is quantitatively connected, if there are positive

constants δ1 = δ1(λ,N0) � δ2 = δ2(λ,N0) � r/2 such that for any x0 ∈ Ω, any s > 0 and any pair of

points x and y in Ω∩Bs(x0) with δ(x) � δ2 · s and δ(y) � δ2 · s, they can be connected by a path totally

contained inside Ω ∩Bs(x0) ∩ {z | δ(z) � s · δ1}.
If Ω is quantitatively connected, then it is easy to show that in Corollary 6.6, one can give an upper

bound by an arbitrary v(xi)/u0(xi). With the assumptions in Theorem 6.1, one can show the Hölder

continuity of v/u to the boundary ∂Ω if Ω is quantitatively connected.

6.2 Some other properties and connections to other typical domains

Apart from the corkscrew property and the modified Harnack chain obtained in Section 3, the nodal

domain Ω of a solution u0 ∈ SN0(Λ) has several other properties that are important for classical potential

analysis on non-smooth domains. Let us recall a few of such properties here.

Property 6.8. For u0 ∈ SN0(Λ), ∂Ω ∩B5 is Ahlfors regular. Indeed, the following upper bound

Hn−1(Bs(x) ∩ ∂Ω) � Hn−1(Bs(x) ∩ Z(u0)) � C(Λ, N0) · sn−1 (6.19)
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for all x ∈ ∂Ω ∩B5 and s ∈ (0, 1), follows from the geometric measure estimate (2.20) (see, for example,

[5, 7, 11, 14,16,17,21, 24]). The lower bound follows from the corkscrew condition that

|Ω ∩Bs(x)| � C(Λ, N0) · sn, (6.20)

|Ωc ∩Bs(x)| � C(Λ, N0) · sn (6.21)

for some C(Λ, N0) > 0 and the relative isoperimetric inequality

Hn−1(∂Ω ∩Bs(x)) � C(n) · (min{|Ω ∩Bs(x)|, |Ωc ∩Bs(x)|})
n−1
n . (6.22)

It is also clear from the proofs in [14] and [11] that the following is true.

Property 6.9. ∂Ω ∩ B5 is uniformly rectifiable. In fact, there is an ε0 = ε0(Λ, N0) > 0 such that for

any ε ∈ (0, ε0), Z(u0) ∩ B5 can be decomposed into two parts. One big part is a C1-hypersurface with

the C1-structure depending on ε, and the other small part has Hn−1 Hausdorff measures less than ε.

Finally, we examine some basic properties of harmonic measures with poles in Ω. For any pole x0 ∈
{x ∈ Ω ∩B2 | δ(x) � r/2} with r = r(λ,N0) chosen in Theorem 6.1, one can easily show that

G(x0, x) � C(λ,N0) · u0(x) (6.23)

for x ∈ Ω ∩B1 by the maximum principle on (Ω ∩B5)\Br/4(x0). Here, G(x0, ·) is the Green function of

L0 on Ω ∩B5. Hence, by the definition of the harmonic measure, we know

ωx0�(∂Ω ∩B1) � C(λ,N0) · |∇u0| ·Hn−1�(∂Ω ∩B1). (6.24)

Here, ωx0 is the Harmonic measure on ∂(Ω ∩B5) with the pole x0.

By the estimate (2.21) and the gradient estimates for u0, one sees that

|∇u0| ·Hn−1�(∂Ω ∩B2) � Hn−1�(∂Ω ∩B2) � |∇u0| ·Hn−1�(∂Ω ∩B2). (6.25)

On the other hand, by Corollary 6.6 and Lemma 5.2, one can prove

T∑
i=1

ωxi�(∂Ω ∩B2) � C(λ,N0) · |∇u0| ·Hn−1�(∂Ω ∩B2). (6.26)

Hence, we conclude the following theorem.

Theorem 6.10. Let Ω be a nodal domain of a solution u0 ∈ SN0(Λ) with 0 ∈ ∂Ω. Then there is a set

of points {x1, . . . , xT } chosen in Corollary 6.6 with T � T0(λ,N0) < ∞ in Ω ∩B2 such that

C−1 · |∇u0| ·Hn−1�(∂Ω ∩B1) �
T∑
i

ωi�(∂Ω ∩B1) � C · |∇u0| ·Hn−1�(∂Ω ∩B1) (6.27)

for some positive constant C = C(λ,N0), where {ωi(·)} are harmonic measures on ∂(Ω ∩B5) with poles

xi ∈ Ω ∩ B2 for i = 1, 2, . . . , T . In particular,
∑T

i ωi�(∂Ω ∩ B1), H
n−1�(∂Ω ∩ B1) and |∇u0| · Hn−1�

(∂Ω ∩B1) are mutually absolutely continuous.
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