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1 Introduction

Let w be a nonzero solution of £L(w) = 0 in Bjo(0) C R™, where £ = 0;(a;;(x)0;) with the coefficient
matrix A(x) = (a;5) satisfying (2.2) and (2.3). Let © be a nodal domain of w, which is a path-connected
subregion of the set {x € Big | w(x) # 0}. In order to get meaningful analytic estimates such as those
presented in survey articles [2,25], one cannot avoid dealing with the cases where 2 is a non-smooth
domain. At a micro scale, € resembles cone like structures near each point of 92 N Byg by the unique
continuation property, while at larger scales, 2 could be like a highly twisted Holder type domain with
rather complicated geometrical and topological properties. In higher dimensions, even when the nodal
set Z(w) = {z € Byg | w(z) = 0} is in a small neighborhood of a one-dimensional smooth set and
hence small in the apparent geometric size, its complexity is hard to bound. For example, by Runge’s
theorem, one can easily construct a sequence of harmonic functions {wg(z)} in R” (n > 2) such that
wy, — —1 locally uniformly on ¥ while wy, — +1 locally uniformly on R™\X, where ¥ is a finite union of
closed half-lines connecting the origin to infinity. In particular, some of the nodal domains of wj, inside
By are collapsed into an arbitrarily small open neighborhood of . In such cases, one cannot expect
the validity of a three-spheres theorem for solutions or the validity of a uniform Carleson type estimate
or the boundary Harnack principle. It is remarkable, on the other hand, that Logunov [18] proved the
Nadirashvili’s conjecture, which asserts that H"~!({z | w(z) = 0} N By) > C(n) > 0 for a harmonic
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function w with w(0) = 0. It means that such sequences of harmonic functions {wy(x)} as described
above must be highly oscillating and not locally uniformly bounded.

After examining various examples one concludes that in order to carry out classical potential and
elliptic partial differential equation (PDE) analysis on a nodal domain €2 similar to those in well-known
cases of Lipschitz and non-tangentially accessible (NTA) domains (see [4,15]), one needs to make some
additional assumptions on the solutions w and operators £. In particular, one hopes to find a class of
domains that are invariant under scaling (at least, they are so with respect to the up scalings). In recent
work of Logunov and Malinnikova [19,20], it was proved that if « and v are usual harmonic functions in
Bjo with Z(u) = Z(v), then the ratio f = v/u is analytic and satisfies the Harnack inequality and |V f]
as well as higher-order derivatives of f validates estimates like those for typical solutions of elliptic PDEs
with analytic coefficients. Similar results were proved in R? in [23]. All these estimates depend on a fixed
nature of the analytic variety Z(u), and they are not necessarily scaling invariant. On the other hand, it
is not hard to see that [20] can be generalized to the case where u and v are solutions of elliptic PDEs
with real analytic coefficients.

In this paper, we consider a class of solutions w which have a fixed bound on their growth rates
or a bound on their frequencies on Big (see Section 2 for details). More precisely, we consider those
w € Sn,(A) defined by (2.18), a very natural class of solutions which have been investigated in great
detail for their quantitative unique continuation properties and related geometric measure estimates on
the nodal and critical point sets (see Section 2). The following are main results of this paper.

1.1 Main results

Theorem 1.1.  Suppose that Lu = Lv = 0 in Big, N, < Nog < o0 and 0 € Z(u) C Z(v). Then
v/u € C*(By) for some oo = a(A, Ny) € (0,1).

For constants in the form of C = C(A, Ny), we mean that the constants depend on Ny and the
conditions on the coefficients in (2.2) and (2.3) of the operator £. Here, N, is the frequency function
(doubling index) of u on Bjp, which will be reviewed in Section 2. Various equivalent notations and
auxiliary lemmas are discussed in Section 2.

The above theorem is derived, as in earlier work, from the upper bound inequality

sup |v/u|l < C(A, Np) - (sup |v|/ sup |u|), (1.1)
By 8 8

when Z(u) C Z(v) and N, < Ny (see Theorem 4.2). In order to get the Holder continuity for v/u, one
also needs an iterative argument involving improvements of upper and lower bounds as in [4,15]. The
latter is based on the following Harnack type estimate:

(sup (v/u) — iglf(v/u)) < C(A, Ny) - ( inf (v/u) - iglf(v/u)). (1.2)

By g 1/8
To prove this Harnack type estimate, we need to show that the frequency of the function

v—u- %11f(v/u)

is also bounded in a smaller ball like By /4.

The above leads us to the next more general result which says that if two solutions of two possibly
different elliptic partial differential equations have the same nodal set in By, and if one of the solutions
has a bounded frequency or a fixed growth rate, then the other has to have a bounded frequency and
growth rate as well. We remark that it is in this latter statement that we require both operators £
and £ to have Lipschitz continuous coefficients. In fact, it can be shown that the conclusion is not valid
if operators are uniformly elliptic with only bounded measurable coefficients.

Theorem 1.2.  Suppose that L(u) = L1(v) = 0 in Byy and 0 € Z(u) = Z(v). Also assume that
N, < Ny < co. Then there is a positive constant D = D(A, Ng) < oo such that N,(0,1) < D.
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Here, N,(0,1) is the frequency function for v and the ball B;(0). We emphasize again that £ and £,
could be two different elliptic operators satisfying (2.2) and (2.3). This provides a local compactness
property for a large class of solutions to such elliptic equations (see [8]).

As a direct corollary of Theorems 1.1 and 1.2, we have the following theorem.

Theorem 1.3.  Suppose that A(u) = A(v) =0 in R”, u is a harmonic polynomial and Z(u) = Z(v).
Then there is a constant ¢ € R\{0} such that v =c- u.

When w is a homogeneous harmonic polynomial, this theorem was proved (see [20, Theorem 1.2]).
In Corollary 4.7, we prove, in fact, a bit stronger statement. The condition that u is a polynomial is
important for [20]. For example, let u, ;(z,y, 2) = sin(2)e®®** and a?+b* = 1. Then harmonic functions
Uq,p share the same nodal set, but with exponential growth. The work [19] described many interesting
examples of harmonic functions sharing the same nodal set either locally or globally.

In connection with harmonic/PDE analysis on non-smooth domains (see, e.g., [4, 15]), we also
established Carleson type estimates like (1.1) on a single nodal domain € (defined by a solution wuy).
It should be noted that, in general, one cannot expect continuity (or even boundedness) up to the
boundary 99 for the ratio v/u if v and u are solutions defined only on this single Q (see Theorem 6.1
and Example 1.5). Another main result we establish is the following statement.

Theorem 1.4.  Let Q be a nodal domain of a solution ug € Sn,(A) with Lo(ug) =0 and 0 € Q. Then
there is a set consisting of a bounded number of points {x1, ...,z } with To = To(A, No) in QN Ba, such

that
To

C™ 1| Vug| - H* 'L (09N By) < Z WL (02N By) < C - |Vug| - H*'L(002N By) (1.3)
for some positive constant C = C(A, Ny), where {w;(-)}’s are Lo-harmonic measures on O(2 N Bs)
with poles at x; € QN By fori =1,2,...,Ty. In particular, ZZ}’ wiL (02N By), H" (02 N By) and
|Vuo| - H"=1(0Q N By) are mutually absolutely continuous.

Note that it is necessary in general to choose more than one of such points x; and the corresponding
harmonic measures in order to have the two-sided estimates as shown in the above theorem. If one selects
only one of such points (and its associated harmonic measure), then only the right half inequality of (1.3)
is true in general. We also point out that the locations of these points {;}, while flexible, may depend
on a particular nodal domain (and hence the defining function ug). What is important is that one can
always choose such points; moreover, the number of such points {z;} is uniformly bounded (by 7j) for
any nodal domain of g for all ug € Sy, (A).

There are two basic ingredients in proving these results. One is the validity of the corkscrew condition
and the existence of modified Harnack chains for this class of nodal domains. Such geometric structural
properties make these nodal domains very similar to the NTA domains (see [15]). The other is the
Carleson type estimates for solutions as in [4,15,20]. We show by the doubling properties of the functions
(solutions) that nodal domains possess these desired geometric properties. We then establish the boundary
Harnack principle and Carleson type estimates for nonnegative solutions of uniformly elliptic operators
with bounded measurable coefficients on such domains. The latter may be a useful fact for applications
to some elliptic free boundary problems.

To end the descriptions of main results, let us show an example due to Leon Simon (see [13]).

Example 1.5.  Let f(z) be a smooth function on R with | f”| < 1/2. The function u(z,y, 2) = zy+ f(2)
satisfies the elliptic equation 97, u + 97, u + 02,u — (f"(2))07,u = 0. Then the singular set of Z(u), i.e.,
{z € R® | u(z) = [Vu(z)| = 0}, is {(0,0,2) € R® | f(2) = f(2) = 0}.

Omne can choose a smooth (even analytic) and sufficiently small f such that around the singular set
of Z(u), Z(u) behaves like many double cones and u only has two nodal domains. For example, one
can consider f with many local fluctuations like (zsin(1/z))2. In each hyperplane with the z-coordinate
fixed, Z(u) is a hyperbola if f(z) # 0 and is a joint of two crossed lines if f(z) = 0. The topology of the
nodal domains of v and its critical set can be unbounded (in the smooth case) while the frequency of the
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solution w is close to 2. Carleson type estimates as well as the boundary Harnack principle are still valid
among other conclusions proved here.

1.2 The structure of this paper

In Section 2, we go over some tools and basic facts that will be used in the paper, in particular, the
notions of the frequency function, the doubling index and the three-spheres theorems. In Section 3, we
show the corkscrew property and a modified Harnack chain property for this class of nodal domains.
Our arguments generalize those in [20]. In Section 4, we first show that the ratio v/u is locally bounded
near the nodal sets, and then give the proof for Theorem 1.1. We also discuss the entire solutions and
prove Theorem 1.3. In Section 5, we establish the Carleson type estimates and prove Theorem 1.2. In
Section 6, we discuss the boundary Harnack principle on a single given nodal domain and then we prove
Theorem 1.4.

Remark 1.6.  Although we only consider the elliptic operators in the divergence form in this paper, one
could easily extend all the results in this paper to the elliptic operators in the non-divergence form with
Lipschitz continuous leading coefficients. It would also be interesting to obtain a parabolic counterpart.

2 Preliminaries and tools

Let w be a W12-solution of an elliptic equation in the divergence form in By C R (the Euclidean ball
with the radius equal to 10 and the center at 0), i.e.,

L(w) = div(A(x)Vw(z)) = 0, (2.1)
where the symmetric matrix-valued function, A(z) = (ai;j)nxn, satisfies
AI<ASAH T (2.2)

with Lipschitz entries
llaijllLip < Ax (2.3)

for some positive constants A and A;. In this paper, we write £, L1, etc. for elliptic operators which
satisfy the conditions (2.1)—(2.3). We use L, Lq, etc. to denote uniformly elliptic operators that only
satisfy (2.1) and (2.2). For simplicity, we use the notation C(A) to denote positive constants which
depend only on A\, A; and n and call them universal constants. We use C'()) for constants depending
only on (2.2) and the dimension n. Most of the constants appearing in this paper depend only on the
dimension n, the ellipticity constant A and the doubling constant Ny for solutions of such uniformly
elliptic operators L. By the standard interior estimates, if £(w) = 0 in Byg, then w is in C*%(By) for any
a € (0,1). For general uniformly elliptic operators L, one infers that w is in C* for some positive a by
the De Giorgi’s theorem (see [12]). We define Z(w) = {x € B1g | w(z) = 0} as the zero set of w in Bjy.
For any point © € By, we also define d,,(x) = dist(z, Z(w)) and use () if there is no ambiguity.

2.1 The frequency function and the doubling index

Let us first recall the frequency function, which goes back to the work of Agmon [1] and Almgren [3], and
was further developed in [8] (see also [16]). This is a useful ingredient in estimating the size of nodal sets
and the size of critical sets. We refer to [22] for more recent developments with much improved sharp
results and other applications of the frequency functions. For the convenience we recall and collect a few
basic facts about the frequency function and its important consequences.

The frequency function for a solution w of £(w) = 0 is defined as

r- fBT(zO)(A(x)Vw,VwMJJ

NolBrlwo)) = Moo ) = = @ wPdo(@)

; (2.4)
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where o(x) is the standard surface measure on 9B, (zg). For simplicity, we omit the differentials in
integrals if there is no ambiguity. We also set

Ho(eor) == [ Pl o), (2.5)

where pu(z) = (A(z)z,z)/|z?, 0 < A < p(z) < n-A~' and ¢ € By. Here, B, (z) is the Euclidean ball
with the radius equal to r and the center at xg. If zg = 0, we use B, = B,.(0). If there is no ambiguity,
we often use N(r) and H(r) (or Ny (r) and H,/(r)) for simplicity. By [8], one has

E’_QN(’I‘)
H 7

+0(1), (2.6)

and O(1) is bounded by a universal constant C; = Cy(A). We then have the following monotonicity
theorem from [8].

Theorem 2.1.  There is a positive constant Co = Co(A) such that exp(Car) - N(r) is a nondecreasing
function of r.

A main consequence of Theorem 2.1 is the doubling estimate. By using (2.6), one has
H(2R) 2R exp(Cor)N (r)
< _ it S S VA
log ( R ) < /R 2exp(—Car) . dr + C1R
< C(A)-N(2)+ Ci(A) (2.7)

for any z¢ € Bs and R < 1. For |Vw|, we have a similar doubling estimate, which was also derived in [8].

Theorem 2.2.  Assume that w(0) = 0 and N, (Bs) < Ny < co. Then for any x € By and R € (0,1),
we have

/ lw|*dx < 2K1N"/ lw|*dz, (2.8)
Bag(x) Br(z)

/ |Vw|?de < 252N / \Vw|?da (2.9)
Bap(z) Br(z)

for some universal constants K1 and Ks.
One can then easily derive the following versions of three-spheres theorems.

Theorem 2.3.  There exist universal constants K5 and K4 and universal constants aq, s € (0,1) such
that for any x € By,

sup |w| < K3 sup |w|® - sup |w|'™, (2.10)
B1(0) By /g(z) B2(0)

sup |Vw| < K4 sup |[Vw|*? - sup [Vw|' ™22 (2.11)
B1(0) Bq/s(x) B2(0)

Note that (2.10) is a consequence of (2.8) and one can get (2.11) by (2.9) (or by (2.8), the Caccioppoli
estimate and the Poincaré inequality) in a similar way. Recently, in [21], Logunov and Malinnikova have
improved substantially (2.10) and (2.11) by establishing a sharp Remez type estimate for solutions.

Before we proceed further, we want to point out the following equivalence of norms.

Lemma 2.4.  There are universal constants ¢y and co such that for any 0 < r < 4,
sup |w|? < 01][ |w|?dz < ¢y - H(zo,2r) (2.12)
By (o) Bs,./2(z0)

for any xy € Bg.

The first inequality follows from the De Giorgi’s theorem [12], while the second inequality also follows
from (2.6) and N(r) > 0, and it is a general fact for subsolutions.
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In the following, we use the sup |- | norm for most of the estimates. First as in [22], one defines the
doubling index

su w
Np(w, By (z)) = log (pB(”'> (2.13)
Supg, ,(«) |w|
for any B,.(x) C Bg. Or more generally, one defines
~ su w
No(w,B,(z)) = sup log <pB(y>||) (2.14)
B.(y)CBr(x)  \SUPB,_,(y) (W]

The doubling index Np(r) and the frequency function N(r) are equivalent because of Lemma 2.4, and
we have the following inequalities:

K{'N(r/2) — Ky < Np(r) < K1 N(2r) + Ks (2.15)

and
K{'Np(r/2) — K3 < Np(r) < Np(r) (2.16)

for some universal constants K and K3 and all r € (0,8) (see, for details, [8,16,22]). Henceforth, without
ambiguity, for either L or £, when we say N, < Ny, we mean that ND(w,Bg(O)) is bounded by Nj.
For £, we always, doubling the size of balls if necessary, use the equivalence of N(r), Np(r) and Np(r).
Finally, let us give another application of these statements above. It is a growth estimate of |w(x)| in
terms of d(x) for = near the nodal set of the solution w, which will be an important ingredient in our
paper.
Theorem 2.5.  Suppose that L(w) = 0 in By for L only satisfying (2.2) with Z(w) N By # () and
Ny < Ny < co. Then there exist positive constants Ay (N), Aa(A\, No) and a(N) € (0,1) such that

Ay - sup |wl - dist®(z, Z(w)) > |w(z)| = Az - sup Jw] - dist(z, Z(w))N° (2.17)
Bg BS

for any x € Bs.

Proof. ~ We can assume that supp_ |w| = 1. The inequality on the left-hand side follows directly from
the De Giorgi’s theorem (see [12]). For the one on the right-hand side, let » = dist(z, Z(w)). Then the
usual Harnack inequality implies that supp_, (. [w| < h(A) - [w(z)] for some h(A) > 1. By the definition
of N, < Ny, we know that 27FNo “SUPB, , (a) W] < supp (e [w] for all k € Z,, which yields the
conclusion. O

Remark 2.6. One can easily find scaled versions of the above growth estimate on balls of size r. For
operators with analytic coefficients (hence solutions are also analytic in the interior), the above growth
estimate can be derived from the Lojasiewicz inequality as in [20]. However, all the constants involved
depend on the real analytic nature of the variety Z(w). It is thus not so convenient to obtain uniform
estimates when the nodal sets Z(w) or operators involved are perturbed. If the coefficients are Lipschitz
continuous, the gradients of the solutions w satisfy the same growth estimates (see [8]).

2.2 A compact class of solutions

Our second tool builds on the compactness of a class of solutions to any elliptic equations satisfying (2.2)
and (2.3), which are defined as follows:

Sny(A) = {w cwh? ’E(w) =0 in Bjg, L satisfies (2.2) and (2.3), N,, < No, s;p |lw| = 1}. (2.18)

This is a compact family in the local C'**-metric. A direct consequence is the compactness of their zero
sets, i.e.,
Fnoy(A) ={Z(w)N Bs | w e Sy, (A)} (2.19)

is compact under the Hausdorff distance.
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The class Sy, (A) is usually used to give upper bounds for the size of nodal sets or the size of critical
sets. Let us summarize these estimates into the following statements:

H" Y Z(w) N By) < Pi(A, Ny) (2.20)

and
H"2(S(w) N By) < Py(A, Nyp) (2.21)

for any w € Sn,(A). Here, S(w) = {z € By | w(z) = |Vw|(x) = 0} and the two positive constants P;
and P, depend only on A and Nj.

There are several important contributions for these two estimates (see, for example, [5,7,10, 14, 16]).
The best estimates up to date are Py = My(A) - N§ for some a = a(n) > 1 and P = exp(Ma(A) - NZ),
which are in [21], [17] and [24] separately. It is worth pointing out that Cheeger et al. [5] and Naber and
Valtorta [24] also established estimates on the Minkowski content, i.e., the volume of a small neighborhood
of Z(w) and S(w). Moreover, the set S(w) can be replaced by C(w), the set of all the points x € By
such that |Vw(z)| = 0 (see, for example, [5,11]).

3 The modified Harnack chain and the corkscrew condition

In this section, we show some geometric properties of nodal domains. Surprisingly, some of them are
similar to properties of NTA domains [15], which have been influential in potential analysis on non-smooth
domains and which have applications to many problems including the regularity of free boundaries. For
a domain to be NTA, it needs to satisfy two assumptions called the corkscrew condition and the Harnack
chain condition. It is not hard to find examples of nodal domains that are not NTA. In some sense,
typical nodal domains are like Lipschitz cones at sufficiently small scales and at larger scales they are
more like twisted Holder domains with complicated topology. For the class of uniformly elliptic operators
with bounded measurable coefficients, so long as the solutions that are considered satisfy this additional
doubling property (2.8) , the associated nodal domains will satisfy a corkscrew condition and a modified
Harnack chain condition. In the (uniformly) analytic case, it was proved in [20]. Our proof of the following
statement is a generalization of that in [20]. It builds on the natural scaling invariant property for this
class of nodal domains.

Theorem 3.1.  Suppose that L(w) = 0 in By with 0 € Z(w) and N, < Ng < co. Then for any nodal
domain Q of w with QN By # 0 and any x € QN By, there is a chain of points {x;}, C Q with xo = x
and satisfying the following properties: fori=0,1,...,m —1,

(1) (modified Harnack chain)

(1) Jw(xit1)| = Cs(N\, No)|w(x;)| for some C5 > 1;

(ii) |zit1 — 23] < (1= 6p(A, No)) - 0(x;) for some Oy € (0,1), x; € By and 6(x;) < 1/4;
(iil) @y € B3\Ba or &, € By but §(xp) > 1/4;

(iv) m < =&1(A, No) log(6(z0)) + &2(A, No) for some &1, & > 0;

(2) (corkscrew condition) §(x.m,) > ca(X, No) for some ¢y € (0,1/4), and hence By N Q contains a ball
of radius cq4/2.

If one considers all the nodal domains of w that intersect with By, the second statement in the above
theorem exactly implies the two-sided corkscrew condition as in the definition of NTA domains.

The first statement in the above theorem leads to modified Harnack chains. One does have that the
values of w(z;) grow geometrically. But it only implies that z;’s stay away from Z(w) (in a same nodal
domain) by a power of its distance to the boundary of the nodal domain. This latter geometric picture
is consistent with Theorem 2.5. In this connection, we find that there is an interesting connection with
the hyperbolic metric defined on the nodal domains, which is the Euclidean metric multiplied by the
conformal factor w=2. But we shall not explore it in this paper.

Lemma 3.2.  Suppose that L(w) = 0 in Byg with 0 € Z(w) and Ny < Ng < oo. Then there are
constants Cg3 = C3(\, Ng) > 1 and 0y = 09(\, No) € (0,1) such that for any v € By with w(z) # 0 and
d(z) < 1/4, there is an & € B with |v — | < (1 —0p) - 6(x) and |w(Z)| > Cslw(zx)|.
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Proof.  Suppose that w(z) > 0 and let § = §(z). Set € = (SUPB(I,Q)J(@ w)/w(z) —1 > 0 with a positive
and small 0 to be chosen later. Since L(w(-) — w(x)) = 0, by the usual Harnack inequality,

sup  |w(:) —w(z)] < C(N,0)- sup (w(-) —w(x)) =C(\0) - ew(z). (3.1)
B(1-20)s(x) B(1—0)s(x)

By the definition of N,, < Ny and the usual Harnack inequality, we see

sup |w| < 4™ sup |w| <4 - C(\) - w(x). (3.2)
Bas () B2 (x)

On the other hand, since there is an x, € Z(w) such that |z — z.| = J, the De Giorgi’s theorem yields

sup |w| < C(\) 0% sup |w| < C(N)4N0 - 0% - w(x) (3.3)
Bags () Bas ()
for some o = a(\) and for every # € (0,1/16). Now we choose a § = (A, Ng) € (0,1) such that
C(\)4No .9 < 1/2 in (3.3).
Then for any y € Baps(x+) N B(1—20)5(x), by (3.1) and (3.3), we know

(1 - CA0)e) - wle) < wly) < 5 - w(), (3.4)

N~

which yields € > ¢ > 0 for some positive ¢ = ¢(X, 0) = ¢(\, Np). O
With Lemma 3.2, we can proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1.  For (i) and (ii), one simply applies Lemma 3.2 iteratively. This iteration that
satisfies both (i) and (ii) has to end after finitely many steps. We let m as the smallest positive integer
such that the corresponding x,, satisfies Theorem 3.1(iii).

For (iv), the upper bound of m, by (i) and Theorem 2.5, we find

(C3)™ - Azd(2) ™ - sup [w] < (C3)" [w(@)| < [w(zm)| < sup |w], (3.5)

Bs Bs

which is equivalent to
m < (~Nolog(6(2)) — log(A2))/ 10g(Cs). (3.6)

Since C3 > 1, we get the desired & and &s.
For the corkscrew condition, we first assume that 6(z,,) < 1/4 and suppg, |w| = 1. From Theorem 2.5,
there are A;()), A2(\, Np) > 0 such that

A 6(y)* = |w(y)] > Az - 3(y)™ (3.7)

for any y € By. Hence, it suffices to show that |w(z,,)| = C(A\, Nog) > 0. Because

m—1
[Zo — Tm| < Z |Ti — Tit1] (3.8)
=0
and )
i = w1 | < 05) < Ay fw() [N < AG Y fw () [V - 5T (3.9)

also, |29 — Tpm| =2 —1=1and 37! c{m™/MNo ig hounded by 1/(C5/N° — 1), we get a desired lower
bound for |w(z,,)|. O

A direct corollary of the corkscrew condition is the local boundedness of the number of nodal domains.

Corollary 3.3.  Suppose that L(w) = 0 in By with 0 € Z(w) and Ny, < Ny < co. Then the number
of modal domains in By which have nonempty intersections with By is bounded by a positive integer
Ty = To(\, No)-
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4 Boundary Harnack, Holder continuity and entire solutions

We use the corkscrew property of nodal domains to provide versions of the boundary Harnack principle.
We first observe the following lemma.

Lemma 4.1.  Assume that Lu = Lv = 0 in Big with supg_ |u| = suppg_ |[v| = 1 and Np(u, Bg) < No
<oo. If1< N0+l iy < 00, then Np(mu — v, Bg) < Ny + 2 < co.

Proof. It holds that

su mu — v 1 1 1
PBS| |\ m + < mJ]rV < m+N <4'21\70' (4'1)
supp, |mu —v| = m-supp, |[u[—1 =~ m-27No -1 m -2~ No
This completes the proof. O

Theorem 4.2.  Suppose that Lu = Lv = 0 in Big and 0 € Z(u) C Z(v) with supg, |u| = supp_ |v| = 1.
If N, < Ny < 00, then there is a positive constant C = C(A, Ng) < oo such that |v/u| < C in B1\Z(u).

Proof.  First, we show that there is a large C' = C'(A, Np) such that Cu— v has the same nodal domains
as uin Bi. Set 0(z) = 0z ().

Let E = {z € B3 | (Cu—v)(z) - u(z) > 0}. We can first assume that C' > 2¥0F! as in the previous
lemma and then by (2.16) get Noy—» < Ny = K1(A)(Ng + 2) + Ka(A) for some Ky, Ky > 0. Let
Ey = {z € B3 | §(z) > c4/8}, where ¢4 = c4(Np, A) is the same constant appearing in the corkscrew
condition of Theorem 3.1 for Cu — v. By Theorem 2.5, we have |u(x)| > Ag(cs/8)N = ¢ for any = € Ej.
Let us fix C = 2max{c™ !, 2N+ For this C, we have E; C E because for any € E;, we have
|Cu(z)| > 2, and then (Cu — v)(z) and u(x) must have the same sign.

For this fixed C, assume that there is an © € By such that u(z) > 0 but (Cu — v)(x) < 0. Note
that if (Cu — v)(z) = 0, by the strong maximum principle and unique continuation, we can always
choose another point y arbitrarily close to x with (Cu — v)(y) < 0 but u(y) > 0. So we assume that
(Cu —v)(x) < 0. Therefore, this x is in a negative nodal domain Q of Cu — v in Bj, which means that
Cu—v < 0in Q and  is in the complement of £. On the other hand, since x is in a positive nodal
domain of w in Bjs, which we denote by 2y, {2 is contained in {2; and is certainly not connected with
other nodal domains of u. So 2 C 27\ E. By the corkscrew property as in Theorem 3.1 for Cu — v (note
that the doubling index is bounded by Ny + 2 independent of large C), there is a point z,, € Q N Bs
such that §(x,,) > dist(z,, Z(Cu — v)) > ¢4, which is clearly impossible by our construction of E; and
the fact that E; C E. Hence we have proved that B1\Z(u) C E, which means that Cu — v has the same
nodal domains as v in Bj.

Similarly, for the same C, we can show that C'u + v has the same nodal domains as v in By. Hence,
[v/u| < Cin B1\Z(u). O

Corollary 4.3.  Suppose that Lu = Lv = 0 in B, 0 € Z(u) = Z(v) and supg_ |u| = supg, |[v] = 1 with
N, < Ny and N, < Ny for some positive Ng < oo. Then there is a positive constant C = C(A, Ny) < oo
such that C~! < |v/u| < C in B1\Z(u).

Proof.  Switch the positions of u and v in Theorem 4.2. O

Remark 4.4. We should note that both Theorem 4.2 and Corollary 4.3 remain true when L is replaced
by L (see Theorem 6.1 in Section 6). On the other hand, by Theorem 5.1 that we will prove in the next
section, we can drop the assumption that N, < Ny because Theorem 5.1 implies that N,, < D(A, Ny) < oo
on B;. Consequently, one can prove the boundedness of |v/u| on By 10\ Z(u) as in Theorem 4.2.

Next, we show that v/u satisfies a strong maximum principle, which was noted in [19, Remark 2.8] for
the case £ = A.

Theorem 4.5.  Suppose that Lu = Lv = 0 in By and Z(u) C Z(v). Then supg v/u cannot be
achieved at x € Bg if v/u is not a constant.

Proof.  Denote supg, v/u by M. We consider Mu — v. We can assume that Mu —v # 0. For = € Bg,
if u(z) > 0, then M > v(z)/u(z) and then Mu(z) — v(z) > 0. By the usual strong maximum principle,
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we know Mu(z) —v(z) > 0. Similarly, if u(z) < 0, we have Mu(x) —v(z) < 0. Hence, M is not achieved
at © € Bg\Z(u). These also tell us that Z(u) N Bg = Z(Mwu — v) N Bs.
Now, for any z¢ € Z(u) N Bg, consider Big,(z¢) for some r small enough. By Theorem 4.2,

) v . Mu —v
inf ——| = inf
Br(z0)\Z (u) u By (x0)\Z (u) u
B 1
SUPB, (so)\Z(w) |W/ (Mu —v)]|
su Mu—wv
> ¢ S8y (o) | | 0, (4.2)

SUD g, (o) ]

where C is a positive constant depending on A and Np(Mu — v, Byoy(z0)) < oo. Hence, we conclude
that in By(xo), M > v/u. Then M > (v/u)(x) for any x strictly inside Bs. O

To end this section, we are going to work on the continuity of v/u. If we only need the continuity of
v/u at some point z¢ € Z(u), we can consider v and v — (v/u)(x) - u in Theorem 4.2 and use the Taylor
expansions of u and v at xo (see [9] for the Taylor expansion and [19] for more in the case of harmonic
functions). But in this way, the continuity scale depends on the point z¢. In the R? case, this way also
gives differentiability of v/u since the formal gradient of v/u at z¢ € S(u) = {z | u(z) = |Vu| =0} is 0.

Here, we are going to show the Holder continuity of v/u, and the proof is quite standard if we also
apply the conclusion of Theorem 5.1 which will be proven in the next section.

Theorem 4.6.  Suppose that Lu = Lv = 0 in Big, N, < Nog < o0 and 0 € Z(u) C Z(v). Then
v/u € C*(By 19) for some o = a(A, No) € (0,1).

Proof.  We are going to show the oscillation decay estimate at 0. If

1
sup U<(supv+inf”>, (4.3)
Bi/100 W 2\ g, u Biu
then
1 v v
sup — — inf — < —=( sup— —inf — 44
BI/EOU Bl/lODU\2<Blpu B u) (4.4)
If
1
sup 2 (supv + inf v>7 (4.5)
Bi/100 U 2 B, U B u

we consider v*(z) = (v — (infp, (v/u)) - u)(z/10) and v*(z) = u(xz/10). Note that u* and v* have the
same zero set in Byg by the proof of Theorem 4.5, v*u* > 0 and N+ < N, < Ny. By Theorem 5.1,
Ny« < D = D(A,Np) in B;. Then by Corollary 4.3, with a larger constant C' = C'(A, D) = C(A, Np) in
it, we can show

v v v* v* 1 v v
inf ——inf— = inf —>C"? sup — > —— | sup— —inf — ), 4.6
Bijioo & Bi U Bijio u* Bl/Il)O u* = 202< Blpu B u) (4.6)
and then

v v 1 v v
sup — — inf — < (1 — 2) (su — —inf ) (4.7)

Bijioo ¥ Bijioo U 2C B, U Biu
This completes the proof. O

A direct corollary of Theorem 4.6 and (4.7) is the following Liouville theorem for the case £L = A. In
this case, all the constants C'(A, Np) will be replaced by C(n, Np) so that we can do both blow-ups and
blow-downs. All the theorems in this section are valid with constants of the form C(n, Np).

Corollary 4.7.  Suppose that A(u) = A(v) = 0 in R", N,(0,7) < Ng < oo for all v > 0 and
Z(u) C Z(v). Then there is a B = 3(n, No) € (0,1) such that if

v
liminf =" - sup — < oo, (4.8)
7—>00 B,
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we have v = c-u for some ¢ € R. In particular, if Z(u) = Z(v), the condition (4.8) will be satisfied, and
then there is a constant ¢ € R\{0} such that v =c- u.

Proof.  If Z(u) # Z(v), we may assume that (v/u)(0) = 0. Then if supg _|v/u| = —infp, v/u, one can
define M = supp, . v/u and consider M —v/u = (Mu —v)/u on Bigo,. Since Mu — v and u have the
same zero set in Bigor, by Theorem 5.1 and Corollary 4.3, there is a constant C' = C(n, Ny) > 1 such
that

:C-M—supE<C~M. (4.9)
B, U

v Mu—v Mu—wv
M + sup ’:sup < C -inf
B, |U B, By

Hence, there is always a constant My = M (n, Ny) > 1 such that

sup v’ <My - sup — (4.10)
B, |U Bioor
By the proof of Theorem 4.6 and (4.7), there is a constant 6 = 0(n, Ny) € (0, 1) such that
sup R Y <6 < sup Y inf v) < 6% (2My) - sup 0 (4.11)
B, W Bru Bigok, ¥ Buook, U 100k +17 U

for all > 0 and k € Z,. By choosing 3 = B(n, Ng) € (0,1) such that 6 - 100° < 1, we see that the
statement follows if we let k — oo and then r — oc.
If Z(u) = Z(v), by Corollary 4.3 and Theorem 5.1, we have

v
sup - <C-

B,

- (0) (4.12)

v .
‘ < C-inf
B,

for some C' = C(n,Ny) > 0 and all » > 0. Denote the right-hand side of (4.12) by M. By the first
inequality of (4.11), we know

supg—infg <6k ( sup v inf U) <08 M,. (4.13)
B, U B u Bk, W Bigok, U

The statement follows if we let k& — oo and then r — oco. We note that the above proof involves only
controls of growth of both u and v at infinity. If one uses the fact that the operator is the standard
Laplacian, then the hypothesis on u implies that u is a harmonic polynomial. If the ratio v/u grows
like a power of 7, then v is also a harmonic polynomial. The conclusions can also be derived directly by
working with polynomials and blow-downs. O

5 Uniform bounds on frequency functions for solutions with the same zero
set

In this section, all the elliptic operators £, £; and Ly satisfy the conditions (2.2) and (2.3). Our main
result is the following theorem.

Theorem 5.1.  Suppose that L(u) = L1(v) =0 in Bip and 0 € Z(v) = Z(u) = Z. Also assume that
N, < Ny < co. Then there is a positive constant D = D(A, Ny) < oo such that

log (SUPBJU> < D. (5.1)

supp, , |v]

In order to prove this theorem, we first need a Carleson type estimate, which is always a key ingredient
for the boundary Harnack principle (see, for example, [4,15,20]). The proof for this Lemma 5.2 is inspired

by [4].
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Lemma 5.2.  Suppose that L(u) = 0 in By, 0 € Z(u) = Z and N, < Nog < oo. Assume that Q is a
nodal domain of u in Bs which satisfies QN By o # 0. Then if Li(v) =0 in Q, v >0 in Q and v =0 on
Z N0, there exist constants M = M(X, No) > 0 and ¢ = ¢(\, Ng) > 0 such that the following estimate
holds:

sup v< M sup o(y). (52)
By 2NQ y€B2NN,6(y)=c

In particular, if Li(v) =0 in Byo and Z(v) = Z, then

sup [v] <M sup  v[(y). (5.3)
B2 yEB2,0(y)2c

Proof.  Take ¢ = ¢4/2 for ¢4 in the corkscrew condition of Theorem 3.1. Assume that
sup{|v(y)| |y € B2NQ,8(y) > c} = 1.

Then we prove that sup{|v(y)| | y € B1/4 N Q} < M for some M = M (X, No).
First, we claim that for any = € By N, there are a3 (A, Ny) > 0 and as(A, Ny) > 0 such that

v(x) < ag-o(x)” . (5.4)

This claim follows from Theorem 3.1(iv) by a backward iteration along the Harnack chain. Indeed,
since the length of the modified Harnack chain associated with z is bounded by —¢&; log(d(x)) + & and
§(xm) = ¢4, if we apply the usual Harnack inequality along this modified Harnack chain, we get

o(@) <™ - v(zy) < A1 (5.5)

for some h = h(\,6p) = h(A, Ng) > 1, which is the constant in the Harnack inequality for this class of
elliptic operators.

Next, we need the following standard elliptic estimate for subsolutions: if L(w) > 0in B2, w > 0 in Bs
and [{z € By | w(z) = 0}| > € > 0, then supg, w < 0 - supp, w for some § = O(\,¢€) € (0,1).

We now follow the same type arguments as in [4]. Assume that for some yo € By N Q and [v(yo)|
= My > 1, then one has d(yo) < c. Consider the ball Bss(,,)(y0), on which v may be regarded as a
nonnegative subsolution if we extend v to be 0 out of 2. By the corkscrew condition of Theorem 3.1,
Bss(yo) (40)\§2 contains a ball of radius d(yo) - r with some small 7 = (X, Np) > 0. Hence, by the above
estimate for nonnegative subsolutions, there is a y1 € Bas(y,)(yo) N2 such that v(y;) = 0~ v(yo) = 01 My
for a @ = 0(\,r) = 0(\, Ng) € (0,1). Consequently, §(y1) < ¢ so long as y; is also in Bs.

We can continue this process to find yo,ys,... so long as they all stay inside Bs. Let us estimate
lyo — y;| for ¢ > 0. Note that our construction gives |y; — yi+1| < 30(y;). By (5.4), if y; € B1 N, then

§(yi) < Br-v(y) ™% < Br- 0% u(ye) P = By - 0% My (5.6)

for some 81 = B1(A, No) > 0 and By = B2(A, Ng) > 0. Since 6 < 1, the last terms on the right-hand side
form a convergent geometric series, and we can sum all of them up for i =1,2,...

If M52 > 3081 /(1 — 672), then |yo — ;| < 1/10 for all i > 0, and then all y;’s stay in B; N Q. This is a
contradiction since v(y;) = 0~ My — co as i — oo. O

We can now proceed with the proof of Theorem 5.1. The strategy is quite simple. The first step is to
use Lemma 5.2 to push the point where the solution v takes approximate maximum values away from the
nodal set. Next, we apply the Harnack inequality along paths fully contained in a nodal domain of v (or
equivalently, a nodal domain of u), which connects points in a larger ball far away from the zero set to
points where v reaches approximate maximums inside a smaller ball. The difficulty is to avoid neck-like
tiny regions in the process of connecting these points so that it can be done in a quantitatively controlled
manner.
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Proof of Theorem 5.1.  We need to consider the following family:

Sn,(A) = {w ’ L(w) =0 in Bjo, L satisfies (2.2) and (2.3), N, < No, sgp lw| = 1}7 (5.7)

which is a compact family in the local C''*“-metric.
We can then prove the statement by contradiction. If the theorem failed, assume that {u,} C Sn,(A)
with suppg_ |u,| =1 and 0 € Z(u,) = Z,. v, satisfies that L,,(v,,) = 0 in By and Z(v,) = Z,, with

log <SupBl|Un|> — 00. (5.8)

supp, , [va]

By compactness of the class Sy, (A), we can assume that u, — ug € Sn,(A). Note that 0 € Z(ug) since
the convergence is in the local C'**®-metric.

Let Zy = Z(up). We make a partition of B\ Zj in terms of nodal domains. Let us assume that Ba\Zj
= |_|;TF:1(QZ' N By), where Q; (i = 1,...,T) are disjoint nodal domains of ug in Bz such that ; N By # (.
Note that T < Ty = Tp(A, No) by Corollary 3.3. If we divide [3/2,2) into [3/2 + (j — 1)/(4Tp),
3/2+j/(4Tv)), j = 1,...,4Tp, there exists a j = j(Zy) such that for each €, if Q; N Bs /oy /am,) # 0,
then Q; N Bsoy(j—1)/a1, # 0. We denote the subset of subindices of these Q; by Iy. Hence, we can set
n=3/2+(j—1)/(4Tp) +1/(8Tp) € (3/2,2) and € = 1/(1007p) < 1. We focus on the ball B,. The point
here is that those Q; with ¢ € I are path-connected, form a partition of B, and also have a nonempty
intersection with B, _1ge.

By using Lemma 5.2 to push maximum points away from zero sets locally, one can show that for some
positive M = M (X, Ny) and ¢(\, Ny),

sup |v,| < M sup lvn|(y), (5.9)
By —2e YEBy—e,0n(y)2c
where §,,(y) = dist(y, Z,). Assume that the maximal value of the right-hand side of (5.9) is achieved
by yn. Note that when n is large enough, {y € B, | 6,(y) > ¢} is contained in

{y € By—c | do(y) = dist(y, Zo) > ¢/2}.

Hence, we can assume that 0o(y,) = ¢/2.

Because for each i € Iy, §; N By,_10c # 0, by the corkscrew condition of Theorem 3.1, there is a small
ball of radius r = (A, Ng) > 0 with center z; inside Q; N By_4c. Let d = min{c/4,7/2}. There is a
constant 1 = u(d, Zp) > 0 such that for any two points « and y in Q;(d) = Q; N {y € Bs_q | do(y) = d},
x and y are connected by a path «y, which is fully contained in Q;(n) = Q; N{y € Bs_, | do(y) = u}.
The existence of such a p and the Harnack inequality lead to the desired conclusion. In fact, if we use
dyadic cubes of side length 11/10 to cover Byg, those cubes which intersect with ;(u) are fully contained
in Q;(u/2), and the number of cubes is bounded by @ = C'(n)u~™ (here n is the dimension and not to
be confused with the subindices).

Hence, when the subindex n of u, is large enough, each ;(u/2) is fully contained in a single nodal
domain of u,, by Theorem 2.5. Since do(yn) = ¢/2, yy, is contained in an ;(d) for an i € I. y, and z;
are then connected by a path ~,, ; fully contained in €;(u), which is covered by @ cubes with side length
1/10. We can then apply the Harnack inequality @ times along -, ;, and get

[0al(yn) < PPonl(zi) < RO sup [vg] (5.10)

for some h = h(\) > 1.
Combining (5.9) and (5.10), we see

sup |vn| < M - h9 sup |v,|, (5.11)
n—2e n—4e

which contradicts (5.8) by Theorem 2.1. O
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6 Analysis on a single nodal domain

In this section, we fix a single domain and discuss properties of solutions on this domain. More precisely,
let Lo(ug) = 0 in Big, 0 € Z(ug) = Zp and N, < Ny < oo. We consider a nodal domain Q of ug in Bs
with 0 € 92. We use the notation §(z) = dist(z, Zy) = dist(x, 9Q) for = € Q.

6.1 The boundary Harnack inequality on a given nodal domain

Theorem 6.1.  Suppose that L(u) = L(v) = 0 in Q, u > 0 on Q@ and u = v = 0 on 00 N Bs
continuously. Then there are positive constants M = M (X, Ng) and r = r(\, Ny) such that

o <. sWscald o
u infye B,n0,5(y)=r u(Y)
on By,4 N8 In particular, if v >0 on Q and
0<Ci <v,u<Cy (6.2)
on{x € BoNQ|d(x)>r}, then o .
é-M‘2<§<Fj-M2 (6.3)

on Bl/4 N Q.

We prove this theorem with cubes in the place of balls for convenience. We consider cubes Qs with
center 0 and side length 2s, and we define Ky = QN Qs and Ay = {x € K | 6(x) > § - s}, where
d = 0(A\,Nog) < 1 will be chosen in the following lemma. The argument is inspired by [6] for NTA
domains.

Lemma 6.2.  There exist My = My(X, No) > 0 and § = 6(\, Ng) > 0 such that if w is a solution to
L(w) = 0 in K1, not necessarily positive, which vanishes on 0Q N By, and w > My on A1, w > —1 on
Ky, then we have w > Mg - a on Ay /5 and w > —a on K5 for some small a = a(\, Ng) > 0.

Proof.  First, we construct the lower bound on A;/;. Pick an z9 € Aj/p. Then there is a modified

Harnack chain {xg, x1, ..., &y, }, which we get in Theorem 3.1. In the corkscrew condition of Theorem 3.1,
we show that §(z,) = c¢q = ca(A, Np). We also find

m < —&1log(0(wo)) + &2 < —&1log(8/2) + &2 (6.4)

in Theorem 3.1(iv) for & = &1 (A, No) > 0 and & = &2(A, Np). Hence, if we assume that 6 < ¢y first, by
the Harnack inequality along this chain with the constant h(X,60) = h(\, Ng) > 1, we have

w(wp) = (Mg + 1) - hS1108(0/2)=8 1, (6.5)
We choose
a=(1/2)- pé1log(8/2)=E2
Then when My > 1/a, we have
w(xg) = My - a. (6.6)

Then we show that w > —a on K/, for suitable 0. Let 2o € K;_25\A;. Consider the cube Q(zo,20).
By Theorem 3.1, there is a small ball with radius ¢-¢ for some ¢ = ¢(A, Ny) in Q(z0,29)\2, where w™ = 0.
Hence, by the weak Harnack inequality we mentioned in the proof of Lemma 5.2 and w > —1 on K7,

w (xg) <(1—¢1) sup w” < (1—¢1) (6.7)
Q(w0,26)

for some ¢; = ¢1(\, Ng) € (0,1). Hence, w™ < (1 —¢;) in K1_s5. By iteration, we get w™ < (1 —¢1)t in
K1_9:5, and then
w>—(1—¢)% on K. (6.8)



Lin F H et al. Sci China Math  December 2022 Vol. 65 No.12 2455

Since 0 - log(d) — 0 as ¢ — 0, we can choose a small § = §(\, Ny) such that
(1—c1)% <a=(1/2)- hérlos0/D=¢ (6.9)

This completes the proof. O

By the above Lemma 6.2, and by iterating the same arguments on K,-: and A,-+, we can conclude
that w > 0 in {z € K7 | §(x) > 20|z|}. Because one can vary the centers of Ky and A, hence w is
positive in K 4.

Proof of Theorem 6.1.  Set w = Cu — v. We choose suitable C' so that w satisfies the assumptions of
Lemma 6.2.

For (6.1), the statement can be proved by choosing M > My + 1, r < § with My and § in Lemma 6.2
and choosing C' = M - supy, [v] - (infy e, s)>r u(y))

For (6.3), by Lemma 5.2,

supv < M - sup v (6.10)
K yE K3 /2,dist(y,Zo)>c
for some positive My = M;(A\, Ng) and ¢ = ¢(\, Ny). Hence, if we choose r = min{¢,é} and M =
max{My, My + 1} with My and ¢ in Lemma 6.2, we find

supv < M - Cs. (6.11)
Ky
Then we choose C' = C7 Ly M? and the conclusions of the theorem follow. O

Remark 6.3. The strong maximum principle holds for v/u by a similar proof as in Theorem 4.5. An
interesting part is that supgqp, v/ may not be achieved on 92 N By.

Corollary 6.4.  Suppose that Lo(v) =0 in Q, v > 0 on Q and v = 0 on QN Bz continuously. Then
there are positive constants C' = C'(\, No) and r = r(X\, No) such that

Cct.o(x)No . inf v(y) <v(r) <C-d%x) - sup v 6.12
() semarh e (y) < v(x) (z) Sup, (6.12)

m Bl/4 NnaQ.
Proof.  These follow from considering v and wug in Theorems 6.1 and 2.5. O

Remark 6.5. As we can see in (6.3) of Theorem 6.1, the upper bound depends on the ratio Cs/Ct,
which also depends on the set {z € Ky | §(x) > r}. Since © is connected, one can apply the usual
Harnack inequality on this set. So Co/C1 is actually a quantity depending on the shape of the single
nodal domain 2. Is it possible that C5/C; could be controlled by some constants only depending on Ny?
The answer is no and we have the following counterexample. Consider

Qe ={(z,y) €R? | 2® —¢* > —¢ 2| < 1},

which is the part of one nodal domain of u.(z,y) = 22 —y? + € in B;. It has a thin and short neck region
around the origin. Let v. be the solution of the following Dirichlet problem:

Ave =0 on Q, (6.13)

and
ve=1 on{zx=1}Nd2, v.=0 on{-1<z<1}NIN.. (6.14)

We notice that ve > 0 in ¢, v. > C(n) > 0 when « > 1/2 and |y| < 1/2, and v, is very close to 0 when
x < 0. Ase — 0, v tends to 0 on {z < 0}, which means that u./v. — 0o. One can also consider v.(—z,y)
for a similar purpose on the part of the nodal domain with z > 0. If one replaces y by (y1,...,Yn—1), One
finds examples in the dimension n. On the other hand, if one replaces « by (1, 22) and y by (y1,y2), then
there is no problem when e goes to zero. In the latter case, (2, is quantitatively connected (independent
of small €) (see Definition 6.7).
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Nodal domains are path-connected by their definitions. Examples in Remark 6.5 show that they
can easily degenerate and decompose into several smaller nodal domains even for a sequence of nodal
domains of solutions in Sy, (A). Consequently, many analytic estimates on a nodal domain of a solution
ug € Sn,(A) are not uniform (depending only on A and Ny). On the other hand, even a single nodal
domain is degenerate and decomposed into several smaller nodal domains, the number of such small nodal
domains is again locally uniformly bounded by a constant To(X, No) (see Corollary 3.3).

Inspired by our proofs of Theorem 5.1 and Lemma 5.2, if we use dyadic cubes with side length 7/10
to cover Byy with r = (A, Ng) chosen in Theorem 6.1, those cubes which have nonempty intersections
with {y € Bz | (y) > r} form several big chunks E; (i = 1,...,T) with each F; path-connected and
T < C(n)r~™, but different E; and E; are disjoint. Then we give another interesting upper bound in the
following corollary.

Corollary 6.6.  Let ug be the solution at the beginning of Section 6 and 2 be a nodal domain of ug
in Bs with 0 € 0. Also suppose that Lo(v) =0 in Q, v >0 on Q and v =0 on QN B3 continuously.
Then there is a positive constant C' = C(\, Ny) such that

v() < C-max{ v(z1) ey v(zr) } (6.15)
uo(x) uo(z1) uo(z7)
in B,y N, where x; is an arbitrary point inside E; for each i =1,...,T.

Proof.  On the right-hand side of (6.1), by Lemma 5.2, for some M = M (A, Ny) we have

Sup v g M . sup V. (616)
B1NQ yEB3,2NQ,8(y) 27

Assume that the maximal value on the right-hand side of the above inequality is achieved by a point
y1 € E1. Then by the usual Harnack inequality inside F; and the fact that the number of all the dyadic
cubes is also bounded by C'(n)r~", there is a constant C' = C(\, Np) such that

v(yr) < C-o(zy). (6.17)
By Theorem 2.5 and the Harnack inequality, there is a constant ¢ = ¢(X, Ny, ) = ¢(\, Np) such that

inf >c- . 6.18
yEBQF}SI%}S(y)?TUo(y) - ug(ry) (6.18)

By combining the above three inequalities and (6.1), we obtain (6.15). O
The above discussions inspire one to introduce the notion of the quantitative connectedness in the

following definition.

Definition 6.7. We say that the nodal domain  is quantitatively connected, if there are positive

constants 0; = 61(\, No) < 02 = d2(\, Ng) < 7/2 such that for any zo € Q, any s > 0 and any pair of

points z and y in QN By(zo) with é(x) > d2-s and 6(y) = 02 - s, they can be connected by a path totally

contained inside Q N By (z9) N{z | 6(z) = s- 1}

If Q is quantitatively connected, then it is easy to show that in Corollary 6.6, one can give an upper
bound by an arbitrary v(z;)/ug(z;). With the assumptions in Theorem 6.1, one can show the Holder
continuity of v/u to the boundary 99 if Q is quantitatively connected.

6.2 Some other properties and connections to other typical domains

Apart from the corkscrew property and the modified Harnack chain obtained in Section 3, the nodal
domain  of a solution uy € Sn,(A) has several other properties that are important for classical potential
analysis on non-smooth domains. Let us recall a few of such properties here.

Property 6.8. For ug € Sy, (A), 9Q N Bs is Ahlfors regular. Indeed, the following upper bound

H" Y (By(2) N 09) < H" Y (By(2) N Z(up)) < C(A, Np) - s" ! (6.19)



Lin F H et al. Sci China Math  December 2022 Vol. 65 No.12 2457

for all x € 902N B;s and s € (0, 1), follows from the geometric measure estimate (2.20) (see, for example,
[5,7,11,14,16,17,21,24]). The lower bound follows from the corkscrew condition that

|21 By ()]
|Q° N Bs(x)]

> C(A, Ny) - ™, (6.20)
> C(A, Ng) - s" (6.21)

for some C(A, Ny) > 0 and the relative isoperimetric inequality

n—1
n .

H™ (00N By(2)) = C(n) - (min{|Q N By ()], |2° N Bs(2)[}) (6.22)

It is also clear from the proofs in [14] and [11] that the following is true.

Property 6.9. 002N Bj is uniformly rectifiable. In fact, there is an ¢y = €y(A, Np) > 0 such that for
any € € (0,¢€p), Z(ug) N Bs can be decomposed into two parts. One big part is a C''-hypersurface with
the C''-structure depending on ¢, and the other small part has H"~! Hausdorff measures less than e.

Finally, we examine some basic properties of harmonic measures with poles in 2. For any pole zg €
{r € QN By | 6(x) = r/2} with r = r(\, Np) chosen in Theorem 6.1, one can easily show that

G(zo,z) < C(A, Np) - up(x) (6.23)

for 2 € QN By by the maximum principle on (2 N Bs)\B, /4(xo). Here, G(xo,-) is the Green function of
Ly on QN Bs. Hence, by the definition of the harmonic measure, we know

wmol_((‘)Q N Bl) < C()\, No) . |VUQ| . H”‘H(&Q n Bl). (624)

Here, wy, is the Harmonic measure on 9(€2 N Bs) with the pole .
By the estimate (2.21) and the gradient estimates for ug, one sees that

V| - H" 1L(0QN By) < H™ 'L (002 N By) < [Vug| - H™ 1L(09 N By). (6.25)

On the other hand, by Corollary 6.6 and Lemma 5.2, one can prove

T
> we, (02N By) = C(A, No) - [Vug| - H*'L(0Q N By). (6.26)
i=1

Hence, we conclude the following theorem.

Theorem 6.10.  Let Q be a nodal domain of a solution ug € Sn,(A) with 0 € 0. Then there is a set
of points {x1,...,xr} chosen in Corollary 6.6 with T < Ty(\, Ny) < oo in QN By such that

T
C™ - [Vuo| - H*'L(02N By) < Y wi(9QN By) < C - [Vug| - H™ (92N By) (6.27)

%

for some positive constant C = C'(A\, Ny), where {w;(-)} are harmonic measures on (2N Bs) with poles
x; € QN By fori=1,2,...,T. In particular, Z?WiL(aQ N B1), H1L(0Q N By) and |Vug| - H* 1L
(02N By) are mutually absolutely continuous.
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