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Abstract

Finding correspondences between images is a fundamental problem in computer
vision. In this paper, we show that correspondence emerges in image diffusion
models without any explicit supervision. We propose a simple strategy to extract this
implicit knowledge out of diffusion networks as image features, namely DIffusion
FeaTures (DIFT), and use them to establish correspondences between real images.
Without any additional fine-tuning or supervision on the task-specific data or
annotations, DIFT is able to outperform both weakly-supervised methods and
competitive off-the-shelf features in identifying semantic, geometric, and temporal
correspondences. Particularly for semantic correspondence, DIFT from Stable
Diffusion is able to outperform DINO and OpenCLIP by 19 and 14 accuracy points
respectively on the challenging SPair-71k benchmark. It even outperforms the
state-of-the-art supervised methods on 9 out of 18 categories while remaining on
par for the overall performance. Project page: https://diffusionfeatures.
github.io.

1 Introduction

Drawing correspondences between images is a critical primitive in 3D reconstruction [73], object
tracking [22, 90], video segmentation [92], image and video editing [102, 58, 98]. This problem of
drawing correspondence is easy for humans: we can match object parts not only across different
viewpoints, articulations and lighting changes, but even across drastically different categories (e.g.,
between cats and horses) or different modalities (e.g., between photos and cartoons). Yet, we rarely if
ever get explicit correspondence labels for training. The question is, can computer vision systems
similarly learn accurate correspondences without any labeled data at all?

There is indeed some evidence that contrastive self-supervised learning techniques produce good
correspondences as a side product of learning on unlabeled data [10, 28]. However, in this paper,
we look to a new class of self-supervised models that has been attracting attention: diffusion-based
generative models [32, 79]. While diffusion models are primarily models for image synthesis, a
key observation is that these models produce good results for image-to-image translation [53, 85]
and image editing [8, 80]. For instance, they can convert a dog to a cat without changing its pose
or context [61]. It would appear that to perform such editing, the model must implicitly reason
about correspondence between the two categories (e.g., the model needs to know where the dog’s
eye is in order to replace it with the cat’s eye). We therefore ask, do image diffusion models learn
correspondences?

We answer the question in the affirmative by construction: we provide a simple way of extracting
correspondences on real images using pre-trained diffusion models. These diffusion models [41] have
at the core a U-Net [71, 17, 70] that takes noisy images as input and produces clean images as output.
As such they already extract features from the input image that can be used for correspondence.
Unfortunately, the U-Net is trained to de-noise, and so has been trained on noisy images. Our strategy
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Figure 1: Given a red source point in an image (far left), we would like to develop a model that
automatically finds the corresponding point in the images on the right. Without any fine-tuning
or correspondence supervision, our proposed diffusion features (DIFT) could establish semantic
correspondence across instances, categories and even domains, e.g., from a duck to a penguin, from a
photo to an oil-painting. More results are in Figs. 15 and 16 of Appendix E.

for handling this issue is simple but effective: we add noise to the input image (thus simulating the
forward diffusion process) before passing it into the U-Net to extract feature maps. We call these
feature maps (and through a slight abuse of notation, our approach) DIffusion FeaTures (DIFT).
DIFT can then be used to find matching pixel locations in the two images by doing simple nearest
neighbor lookup using cosine distance. We find the resulting correspondences are surprisingly robust
and accurate (Fig. 1), even across multiple categories and image modalities.

We evaluate DIFT with two different types of diffusion models, on three groups of visual cor-
respondence tasks including semantic correspondence, geometric correspondence, and temporal
correspondence. We compare DIFT with other baselines, including task-specific methods, and other
self-supervised models trained with similar datasets and similar amount of supervision (DINO [10]
and OpenCLIP [36]). Although simple, DIFT demonstrates strong performance on all tasks without
any additional fine-tuning or supervision, outperforms both weakly-supervised methods and other
self-supervised features, and even remains on par with the state-of-the-art supervised methods on
semantic correspondence.

2 Related Work

Visual Correspondence. Establishing visual correspondences between different images is crucial
for various computer vision tasks such as Structure-from-Motion / 3D reconstruction [2, 73, 60, 74],
object tracking [22, 97], image recognition [63, 81, 9] and segmentation [50, 47, 72, 28]. Traditionally,
correspondences are established using hand-designed features, such as SIFT [51] and SURF [6].
With the advent of deep learning, methods that learn to find correspondences in a supervised-learning
regime have shown promising results [46, 14, 42, 35]. However, these approaches are difficult to scale
due to the reliance on ground-truth correspondence annotations. To overcome difficulties in collecting
a large number of image pairs with annotated correspondences, recent works have started looking into
how to build visual correspondence models with weak supervision [91] or self-supervision [92, 37].
Meanwhile, recent works on self-supervised representation learning [10] has yielded strong per-pixel
features that could be used to identify visual correspondence [84, 3, 10, 28]. In particular, recent
work has also found that the internal representation of Generative Adversarial Networks (GAN) [23]
could be used for identifying visual correspondence [99, 62, 57] within certain image categories.
Our work shares similar spirits with these works: we show that diffusion models could generate
features that are useful for identifying visual correspondence on general images. In addition, we
show that features generated at different timesteps and different layers of the de-noising process



encode different information that could be used for determining correspondences needed for different
downstream tasks.

Diffusion Model [78, 32, 79, 41] is a powerful family of generative models. Ablated Diffusion
Model [17] first showed that diffusion could surpass GAN’s image generation quality on Ima-
geNet [15]. Subsequently, the introduction of classifier-free guidance [33] and latent diffusion
model [70] made it scale up to billions of text-image pairs [75], leading to the popular open-sourced
text-to-image diffusion model, i.e., Stable Diffusion. With its superior generation ability, recently
people also start investigating the internal representation of diffusion models. For example, previous
works [85, 31] found that the intermediate-layer features and attention maps of diffusion models are
crucial for controllable generations; other works [5, 94, 101] explored adapting pre-trained diffusion
models for various downstream visual recognition tasks. Different from these works, we are the first
to directly evaluate the efficacy of features inherent to pre-trained diffusion models on various visual
correspondence tasks.

3 Problem Setup

Given two images /1, I» and a pixel location p; in I;, we are interested in finding its corresponding
pixel location ps in I5. Relationships between p; and p, could be semantic correspondence (i.e.,
pixels of different objects that share similar semantic meanings), geometric correspondence (i.e.,
pixels of the same object captured from different viewpoints), or temporal correspondence (i.e., pixels
of the same object in a video that may deform over time).

The most straightforward approach to obtaining pixel correspondences is to first extract dense image
features in both images and then match them. Specifically, given a feature map F; for image [;, we
can extract a feature vector F;(p) for pixel location p through bilinear interpolation. Then given a
pixel p; in image I;, we can obtain the corresponding pixel in image I5 as:

p2 = argmind(Fi(p1), Fa(p)) (D
p

where d is a distance metric and we use cosine distance by default in this work.

4 Diffusion Features (DIFT)

In this section, we first review what diffusion models are and then explain how we extract dense
features on real images using pre-trained diffusion models.

4.1 Image Diffusion Model

Diffusion models [32, 79] are generative models that aim to transform a Normal distribution to an
arbitrary data distribution. In our case, we use image diffusion models, thus the data distribution and
the Gaussian prior are both over the space of 2D images.

During training, Gaussian noise of different magnitudes is added to clean data points to obtain noisy
data points. This is typically thought of as a “diffusion” process, where the starting point of the
diffusion zg is a clean image from the training dataset and z; is a noisy image obtained by “mixing”
T With noise:

Ty = oo + (V1 — ay)e 2

where € ~ N(0,I) is the randomly-sampled noise, and ¢ € [0, 7] indexes “time” in the diffusion
process with larger time steps involving more noise. The amount of noise is determined by {c;}7,
which is a pre-defined noise schedule. We call this the diffusion forward process.

A neural network fj is trained to take x; and time step ¢ as input and predict the input noise €. For
image generation, fy is usually parametrized as a U-Net [71, 17, 70]. Once trained, fy can be used
to “reverse” the diffusion process. Starting from pure noise xp sampled from a Normal distribution,
fo can be iteratively used to estimate noise € from the noisy data z; and remove this noise to get a
cleaner data x;_1, eventually leading to a sample =y from the original data distribution. We call this
the diffusion backward process.
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Figure 2: Given a Stable Diffusion generated image, we extract its intermediate layer activations
at a certain time step ¢ during its backward process, and use them as the feature map to predict the
corresponding points. Although simple, this method produces correct correspondences on generated
images already not only within category, but also cross-category, even in cross-domain situations,
e.g., from a photo to an oil painting.

4.2 Extracting Diffusion Features on Real Images

We hypothesize that diffusion models learn correspondence implicitly [85, 61] in Sec. 1, but how
can we extract this correspondence? Consider first generated images, where we have access to the
complete internal state of the network throughout the entire backward process. Given a generated
image from Stable Diffusion [70] , we extract the feature maps of its intermediate layers at a specific
time step ¢ during the backward process, which we then utilize to establish correspondences between
two different generated images as described in Sec. 3. As illustrated in Fig. 2, this straightforward
approach allows us to find correct correspondences between generated images, even when they belong
to different categories or domains.

Replicating this approach for real images is challenging because of the fact that the real image itself
does not belong to the training distribution of the U-Net (which was trained on noisy images), and
we do not have access to the intermediate noisy images that would have been produced during the
generation of this image. Fortunately, we found a simple approximation using the forward diffusion
process to be effective enough. Specifically, we first add noise of time step ¢ to the real image
(Eq. (2)) to move it to the x; distribution, and then feed it to network fy together with ¢ to extract the
intermediate layer activations as our DIffusion FeaTures, namely DIFT. As shown in Figs. | and 3,
this approach yields surprisingly good correspondences for real images.

Moving forward, a crucial consideration is the selection of the time step ¢ and the network layer from
which we extract features. Intuitively we find that a larger ¢ and an earlier network layer tend to yield
more semantically-aware features, while a smaller ¢ and a later layer focus more on low-level details.
The optimal choices of ¢ and layer depend on the specific correspondence task at hand, as different
tasks may require varying trade-offs between semantic and low-level features. For example, semantic
correspondence likely benefits from more semantic-level features, whereas geometric correspondence
between two views of the same instance may perform well with low-level features. We therefore
use a 2D grid search to determine these two hyper-parameters for each correspondence task. For a
comprehensive list of the hyper-parameter values used in this paper, please refer to Appendix C.

Lastly, to enhance the stability of the representation in the presence of random noise added to the
input image, we extract features from multiple noisy versions with different samples of noise, and
average them to form the final representation.

5 Semantic Correspondence

In this section, we investigate how to use DIFT to identify pixels that share similar semantic meanings
across images, e.g., the eyes of two different cats in two different images.

5.1 Model Variants and Baselines

We extract DIFT from two commonly used, open-sourced image diffusion models: Stable Diffusion
2-1 (SD) [70] and Ablated Diffusion Model (ADM) [17]. SD is trained on the LAION [75] whereas
ADM is trained on ImageNet [15] without labels. We call these two features DIFT ;4 and DIFT 4y,
respectively.

To separate the impact of training data on the performance of DIFT, we also evaluate two other
commonly used self-supervised features as baselines that share basically the same training data:
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Figure 3: Visualization of semantic correspondence prediction on SPair-71k using different features.
The leftmost image is the source image with a set of keypoints; the rightmost image contains the
ground-truth correspondence for a target image whereas any images in between contain keypoints
found using feature matching with various features. Different colors indicate different keypoints. We
use circles to indicate correctly-predicted points under the threshold agppe, = 0.1 and crosses for
incorrect matches. DIFT is able to establish correct correspondences under clustered scenes (row 3),
viewpoint changes (row 2 and 4), and occlusions (row 5). See Fig. 17 in Appendix E for more results.

OpenCLIP [36] with ViT-H/14 [18] trained on LAION, as well as DINO [10] with ViT-B/8 trained
on ImageNet [15] without labels. Note that for both DIFT and other self-supervised features, we do
not fine-tune or re-train the models with any additional data or supervision.

5.2 Benchmark Evaluation

Datasets. We conduct evaluation on three popular benchmarks: SPair-71k [55], PF-WILLOW [27]
and CUB-200-2011 [89]. SPair-71k is the most challenging semantic correspondence dataset,
containing diverse variations in viewpoint and scale with 12,234 image pairs on 18 categories for
testing. PF-Willow is a subset of PASCAL VOC dataset [20] with 900 image pairs for testing. For
CUB, following [58], we evaluate 14 different splits of CUB (each containing 25 images) and report
the average performance across all splits.

Evaluation Metric. Following prior work, we report the percentage of correct keypoints (PCK).
The predicted keypoint is considered to be correct if they lie within « - max(h, w) pixels from the
ground-truth keypoint for o € [0, 1], where h and w are the height and width of either the image
((timg) or the bounding box (awppoz)- To find a suitable time step and layer feature to use for DIFT
and other self-supervised features, we grid search the hyper-parameters using SPair-71k and use the
same hyper-parameter settings for PE-WILLOW and CUB.

We observed inconsistencies in PCK measurements across prior literature' . Some works [35, 42, 14]
use the total number of correctly-predicted points in the whole dataset (or each category split) divided

1ScorrSAN [35] and GANgealing [62]’s evaluation code snippets, which calculate PCK per image and PCK per point respectively.
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Table 1: PCK(appor = 0.1) per image on SPair-71k. All the DIFT results have gray background
for easy lookups. Methods are grouped into 3 groups: (a) fully supervised with correspondence
annotations, (b) weakly supervised with in-domain image collections, (c) no supervision. Best
numbers in group (a) are bolded. Among groups (b) and (c) taken together, we annotate best
and second-best results. Without any supervision, both DIFT,,; and DIFT 4, outperform previous
weakly-supervised methods and self-supervised techniques by a large margin.

s SPair-71K Category
up. Method

Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV | All
CATs [14] 52.0 347 722 343 499 575 43.6 665 244 632 565 520 @ 42.6 417 430 336 726 580|499
(@ MMNet [100] 559 370 650 354 500 639 457 628 287 650 547 51.6 38.5 346 417 363 777 625 | 504
TransforMatcher [42] 592 393 730 412 525 663 554 67.1 261 67.1 566 532 450 399 421 353 752 686 | 53.7
SCorrSAN [35] 57.1 403 783 381 51.8 57.8 47.1 679 252 713 639 493 453 498 488 403 777 69.7 | 553
NCNet [69] 179 122 321 117 290 199 161 392 99 239 188 157 17.4 15.9 14.8 9.6 242 311|201
CNNGeo [67] 234 167 402 143 364 277 260 327 127 274 228 137 20.9 21.0 175 102 308 341 | 206
‘WeakAlign [68] 222 176 419 151 381 274 272 318 128 268 226 142 20.0 222 179 104 322 351 | 209
(b) A2Net [76] 226 185 420 164 379 308 265 356 133 296 243 160 21.6 228 205 135 314 365|223
SFNet [45] 269 172 455 147 380 222 164 553 135 334 275 177 20.8 21.1 166 156 322 359|263
PMD [48] 262 185 486 153 38.0 21.7 173 51.6 137 343 254 180 200 24.9 157 163 314 381 | 265
PSCNet [38] 283 177 451 151 375 301 275 474 146 325 264 177 24.9 24.5 199 169 342 379 |27.0
PWarpC [83] 374 288 608 229 405 294 228 60.1 195 378 384 279 32.1 297 292 202 445 500|353
DINO [10] 436 272 649 240 305 314 283 552 168 402 37.1 329 29.1 41.1 220 268 364 269 | 339
(© DIFTain (ours) 497 392 775 293 409 361 305 755 237 637 528 493 341 523 393 373 596 454 463
OpenCLIP [36] 517 314 687 284 315 349 361 564 211 445 415 412 412 518 217 286 463 207 | 384
DIFT,, (ours) 612 532 795 312 453 398 333 778 347 701 515 572  50.6 414 519 460 676 595 529

Table 2: PCK(appor; = 0.1) per point of various methods on SPair-71k. The groups and colors
follow Tab. 1. “Mean" denotes the PCK averaged over categories. Same as in Tab. 1, without any
supervision, both DIFT,,; and DIFT 4, outperform previous weakly-supervised methods with a
large margin, and also outperform their contrastive-learning counterparts by over 14 points.

SPair-71K Category
Sup. Method
Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV | Mean All
NBB [1, 26] 295 227 619 265 206 254 141 237 142 276 300 29.1 247 274 19.1 19.3 244 226 | 274 -
vy GANgealing[62] - 375 - - - - - 670 - - 231 - - - - - - 579 -
NeuCongeal [58] - 29.1 - - - - - 533 - - 35.2 - - - - - - - - -
ASIC [26] 579 252 681 247 354 284 309 548 216 450 472 399 26.2 48.8 145 245 490 246 | 369 -
DINO [10] 450 295 663 228 321 363 31.7 548 187 431 392 349 31.0 443 23.1 29.4 384  27.1 ‘ 36.0 36.7
© DIFTdm (ours)  51.6 404 77.6 307 430 472 421 749 266 673 558 527 360 559 463 457 627 474 502 520
OpenCLIP [36] 532 334 694 28.0 333 410 418 558 233 470 439 441 43.5 55.1 23.6 317 478 218 | 410 414
DIFT,, (ours) 63.5 545 808 345 462 527 483 717 390 760 549 613 533 46.0 578 571 71.1 634 577 595

Table 3: Comparison with state-of-the-art methods on PF-WILLOW PCK per image (left) and CUB
PCK per point (right). The groups follow Tab. 1. Colors of numbers indicate the best, second-best
results. All the DIFT results have gray background for better reference. DIFT 4 achieves the best
results without any fine-tuning or supervision with in-domain annotations or data.

PCK@OLbe‘,U

Sup.  Method

a = 0.05 a =0.10

SCNet [29] 38.6 70.4
DHPF [56] 49.5 77.6
PMD [48] - 75.6 Sup.  Method PCK@q;yny = 0.1
(@)  CHM [54] 52.7 79.4 A
CATs [14] 50.3 79.2 ) GANgealing [62] 56.8
TransforMatcher [42] - 76.0 NeuCongeal [58] 65.6
SCorrSAN [35] 54.1 80.0 DINO [10] 66.4
WarpC [82] 49.0 75.1 () | DIFTadm (ours) 180
(b) PWarpC [83] 45.0 75.9 OpenCLIP [36] 67.5
GSF [39] 49.1 78.7 DIFTs4 (ours) 83.5
DINO [10] 30.8 51.1
©  DIFTaun (ours) 46.9 67.0
OpenCLIP [36] 344 61.3
DIFT 4 (ours) 58.1 81.2

by the total number of predicted points as the final PCK, while some works [62, 58, 26] first calculate
a PCK value for each image and then average it across the dataset (or each category split). We denote
the first metric as PCK per point and the second as PCK per image. We calculate both metrics for
DIFT and self-supervised features, and compare them to methods using that metric respectively.

Quantitative Results. We report our results in Tabs. 1 to 3. In addition to feature matching using
DINO and OpenCLIP, we also report state-of-the-art fully-supervised and weakly-supervised methods
in the respective tables for completeness. Across the three datasets, we observe that features learned
via diffusion yield more accurate correspondences compared to features learned using contrastive
approaches (DIFT,4 vs. OpenCLIP, DIFT,4,, vs. DINO).
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Figure 4: Given image patch specified in the leftmost image (red rectangle), we use DIFT ¢ to retrieve
the top-5 nearest patches in images from different categories in the SPair-71k test set. DIFT is able to
find correct correspondence for different objects sharing similar semantic parts, e.g., the wheel of an
airplane vs. the wheel of a bus. More results are in Fig. 18 of Appendix E.
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Figure 5: PCK per point of DIFT,, on SPair-71k. It maintains high accuracy with a wide range of
t, outperforming other off-the-shelf self-supervised features.

Furthermore, even without any supervision (be it explicit correspondence or in-domain data), DIFT
outperforms all the weakly-supervised baselines on all benchmarks by a large margin. It even
outperforms the state-of-the-art supervised methods on PE-WILLOW, and for 9 out of 18 categories
on SPair-71k.

Qualitative Results. To get a better understanding of DIFT’s performance, we visualize a few
correspondences on SPair-71k using various off-the-shelf features in Fig. 3. We observe that DIFT is
able to identify correct correspondences under cluttered scenes, viewpoint changes, and instance-level
appearance changes.

In addition to visualizing correspondence within the same categories in SPair-71k, we also visualize
the correspondence established using DIFT,, across various categories in Fig. 4. Specifically, we
select an image patch from a random image and query the image patches with the nearest DIFT
embedding in the rest of the test split but from different categories. DIFT is able to identify correct
correspondence across various categories.

Sensitivity to the choice of time step ¢. For DIFT,,, we plot how its PCK per point varies with
different choices of ¢ on SPair-71k in Fig. 5. DIFT is robust to the choice of ¢ on semantic correspon-
dence, as a wide range of ¢ outperforms other off-the-shelf self-supervised features. Appendix B
includes more discussion on how and why does ¢ affect the nature of correspondence.



Figure 6: Edit propagatlon The first column shows the source 1mage with edlts (.e., the overlaid
stickers), and the rest columns are the propagated results on new images from dlfferent instances,
categories, and domains, respectively. Compared to OpenCLIP, DIFT,,; propagates edits much more
accurately. More results are in Fig. 20 of Appendix E.

5.3 Application: Edit Propagation

One application of DIFT is image editing: we can propagate edits in one image to others that share
semantic correspondences. This capability is demonstrated in Fig. 6, where we showcase DIFT’s
ability to reliably propagate edits across different instances, categories, and domains, without any
correspondence supervision.

To achieve this propagation, we simply compute a homography transformation between the source
and target images using only matches found in the regions of the intended edits. By applying this
transformation to the source image edits (e.g., an overlaid sticker), we can integrate them into the
corresponding regions of the target image. Figure 6 shows the results for both OpenCLIP and DIFT 4
using the same propagation techniques. OpenCLIP fails to compute reasonable transformation due
to the lack of reliable correspondences. In contrast, DIFT,; achieves much better results, further
justifying the effectiveness of DIFT in finding semantic correspondences.

6 Other Correspondence Tasks

We also evaluate DIFT on geometric correspondence and temporal correspondence. As in Sec. 5, we
compare DIFT to other off-the-shelf self-supervised features as well as task-specific methods.

6.1 Geometric Correspondence

Intuitively, we find when ¢ is small, DIFT focuses more on low-level details, which makes it useful as
a geometric feature descriptor.

Setup. We evaluate DIFT for homography estimation on the HPatches benchmark [4]. It con-
tains 116 sequences, where 57 sequences have illumination changes and 59 have viewpoint
changes. Following [91], we extract a maximum of 1,000 keypoints from each image, and use
cv2.findHomography () to estimate the homography from mutual nearest neighbor matches. For
DIFT, we use the same set of keypoints detected by SuperPoint [16], as in CAPS [91].

For evaluation, we follow the corner correctness metric used in [91]: the four corners of one image
are transformed into the other image using the estimated homography and are then compared with
those computed using the ground-truth homography. We deem the estimation correct if the average
error of the four corners is less than e pixels. Note that we do this evaluation on the original image
resolution following [91], unlike [16].

Results. We report the accuracy comparison between DIFT and other methods in Tab. 4. Visualization
of the matched points can be found in Fig. 7. Though not trained using any explicit geometry
supervision, DIFT is still on par with the methods that utilize explicit geometric supervision signals



Table 4: Homography estimation accuracy [%] at 1, 3, 5 pixels on HPatches. Colors of numbers
indicate the best, second-best results. All the DIFT results have gray background for better reference.
DIFT with SuperPoint keypoints achieves competitive performance.

Method Geometric All Viewpoint Change Illumination Change
Supervision e=1 e=3 e=5|e=1 €e=3 e=5|€e=1 e=3 e=5

JSIETS None 402 _ 680 _ 793 | 268 _ 554 _ 721 | 546 815 _ 869 _
LF-Net [59] 344 62.2 73.7 16.8 439 60.7 53.5 81.9 87.7
SuperPoint [16] 36.4 72.7 82.6 22.1 56.1 68.2 51.9 90.8 98.1
D2-Net [19] Stron 16.7 61.0 75.9 3.7 38.0 56.6 30.2 84.9 95.8
DISK [86] ong 40.2 70.6 81.5 232 51.4 67.9 58.5 91.2 96.2
ContextDesc [52] 40.9 73.0 82.2 29.6 60.7 72.5 53.1 86.2 92.7
R2D2 [66] 400 744 843 264 604 739 | 546 896 954

w/ SuperPoint kp.

JGaespll Weak 448 763 _ 852 | 357 _ 629 _ 743 | 546 908 969 _
DINO [10] 38.9 70.0 81.7 21.4 50.7 67.1 57.7 90.8 97.3
DIFT, 4, (ours) None 43.7 73.1 84.8 26.4 57.5 74.3 62.3 90.0 96.2
OpenCLIP [36] 333 67.2 78.0 18.6 45.0 59.6 49.2 91.2 97.7
DIFT 4 (ours) 45.6 73.9 83.1 304 56.8 69.3 61.9 92.3 98.1

Viewpoint Change Illumination Change

Figure 7: Sparse feature matching using DIFT;; on HPatches after removing outliers with
cv2.findHomography (). Left are image pairs under viewpoint change, and right are ones un-
der illumination change. Although never trained with correspondence labels, it works well under
both challenging changes. More results are in Fig. 21 of Appendix E.

designed specifically for this task, such as correspondences obtained from Structure-from-Motion [73]
pipelines. This shows that not only semantic-level correspondence, but also geometric correspondence
emerges from image diffusion models.

6.2 Temporal Correspondence

DIFT also demonstrates strong performance on temporal correspondence tasks, including video
object segmentation and pose tracking, although never trained or fine-tuned on such video data.

Setup. We evaluate DIFT on two challenging video label propagation tasks: (1) DAVIS-2017 video
instance segmentation benchmark [65]; (2) JHMDB keypoint estimation benchmark [40].

Following evaluation setups in [49, 37, 10, 95], representations are used as a similarity function:
we segment scenes with nearest neighbors between consecutive video frames. Note that there is
no training involved in this label propagation process. We report region-based similarity 7 and
contour-based accuracy F [64] for DAVIS, and PCK for JHMDB.

Results. Table 5 reports the experimental results, comparing DIFT with other self-supervised
features (pre-)trained with or without video data. DIFT,4,, outperforms all the other self-supervised
learning methods on both benchmarks, even surpassing models specifically trained on video data by
a significant margin. DIFT also yields the best results within the same pre-training dataset.



Table 5: Video label propagation results on DAVIS-2017 and JHMDB. Colors of numbers indicate
the best, second-best results. All the DIFT results have gray background for better reference. DIFT
even outperforms other self-supervised learning methods specifically trained with video data.

(pre-)Trained DAVIS JHMDB
on Videos  Miethod Dataset J&Fn T Fa | PCK@0O.I PCK@02
InstDis [93] 664 639 689 58.5 80.2
MoCo [30] 659 634 684 59.4 80.9
SimCLR [12] ImageNet[15] | 669 644 694 59.0 80.8
BYOL [25] el 665 640 690 58.8 80.9
X SimSiam [13] Wio labels 67.2 648 688 59.9 81.6
DINO [10] 714 679 749 572 812
_ DlFTgqm (Qus) | 757 727 786 | 634 843
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Figure 8: Video label propagation results on DAVIS-2017. Colors indicate segmentation masks for
different instances. Blue rectangles show the first frames. Compared to DINO, DIFT,4,, produces
masks with more accurate and sharper boundaries. More results are in Fig. 22 of Appendix E.

We also show qualitative results in Fig. 8, presenting predictions of video instance segmentation in
DAVIS, comparing DIFT, g, with DINO. DIFT,4,, produces masks with clearer boundaries when
single or multiple objects are presented in the scene, even attends well to objects in the presence of
occlusion.

7 Conclusion

This paper demonstrates that correspondence emerges from image diffusion models without explicit
supervision. We propose a simple technique to extract this implicit knowledge as a feature extractor
named DIFT. Through extensive experiments, we show that although without any explicit supervision,
DIFT outperforms both weakly-supervised methods and other off-the-shelf self-supervised features
in identifying semantic, geometric and temporal correspondences, and even remains on par with the
state-of-the-art supervised methods on semantic correspondence. We hope our work inspires future
research on how to better utilize these emergent correspondence from image diffusion, as well as
rethinking diffusion models as self-supervised learners.

10



Acknowledgement. This work was partially funded by NSF 2144117 and the DARPA Learning with
Less Labels program (HR001118S0044). We would like to thank Zeya Peng for her help on the edit
propagation section and the project page, thank Kamal Gupta for sharing the evaluation details in
the ASIC paper, thank Aaron Gokaslan, Utkarsh Mall, Jonathan Moon, Boyang Deng, and all the
anonymous reviewers for valuable discussion and feedback.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

K. Aberman, J. Liao, M. Shi, D. Lischinski, B. Chen, and D. Cohen-Or. Neural best-buddies: Sparse
cross-domain correspondence. ACM Transactions on Graphics (TOG), 37(4):1-14, 2018. 6

S. Agarwal, Y. Furukawa, N. Snavely, 1. Simon, B. Curless, S. M. Seitz, and R. Szeliski. Building rome
in a day. Communications of the ACM, 54(10):105-112, 2011. 2

S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep vit features as dense visual descriptors. arXiv
preprint arXiv:2112.05814, 2(3):4, 2021. 2

V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In CVPR, 2017. 8, 18

D. Baranchuk, I. Rubachev, A. Voynov, V. Khrulkov, and A. Babenko. Label-efficient semantic segmenta-
tion with diffusion models. arXiv preprint arXiv:2112.03126, 2021. 3, 16

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Lecture notes in computer
science, 3951:404-417, 2006. 2

A. Birhane, V. U. Prabhu, and E. Kahembwe. Multimodal datasets: misogyny, pornography, and malignant
stereotypes. arXiv preprint arXiv:2110.01963, 2021. 15

T. Brooks, A. Holynski, and A. A. Efros. Instructpix2pix: Learning to follow image editing instructions.
arXiv preprint arXiv:2211.09800, 2022. 1

K. Cao, M. Brbic, and J. Leskovec. Concept learners for few-shot learning. arXiv preprint
arXiv:2007.07375, 2020. 2

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties
in self-supervised vision transformers. In /CCV, pages 9650-9660, 2021. 1, 2, 5, 6,9, 10, 17

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In
CVPR, pages 6299-6308, 2017. 10

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In International conference on machine learning, pages 1597-1607. PMLR, 2020. 10

X. Chen and K. He. Exploring simple siamese representation learning. In CVPR, pages 15750-15758,
2021. 10

S. Cho, S. Hong, S. Jeon, Y. Lee, K. Sohn, and S. Kim. Cats: Cost aggregation transformers for visual
correspondence. NeurlPS, 34:9011-9023, 2021. 2,5, 6

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248-255. leee, 2009. 3,4, 5, 10

D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest point detection and
description. In CVPRW, pages 224-236, 2018. 8, 9, 18

P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. NeurlPS, 34:8780-8794,
2021. 1,3,4

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 5

M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler. D2-net: A trainable cnn
for joint detection and description of local features. arXiv preprint arXiv:1905.03561, 2019. 9, 18

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes
(voc) challenge. 1JCV, 88:303-338, 2010. 5

D. F. Fouhey, W.-c. Kuo, A. A. Efros, and J. Malik. From lifestyle vlogs to everyday interactions. In
CVPR, pages 4991-5000, 2018. 10

S. Gao, C. Zhou, C. Ma, X. Wang, and J. Yuan. Aiatrack: Attention in attention for transformer visual
tracking. In ECCV, pages 146-164. Springer, 2022. 1, 2

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks. Communications of the ACM, 63(11):139-144, 2020. 2

11



[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]
[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

D. Gordon, K. Ehsani, D. Fox, and A. Farhadi. Watching the world go by: Representation learning from
unlabeled videos. arXiv preprint arXiv:2003.07990, 2020. 10

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires, Z. D.
Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv
preprint arXiv:2006.07733, 2020. 10

K. Gupta, V. Jampani, C. Esteves, A. Shrivastava, A. Makadia, N. Snavely, and A. Kar. Asic: Aligning
sparse in-the-wild image collections. arXiv preprint arXiv:2303.16201, 2023. 6

B. Ham, M. Cho, C. Schmid, and J. Ponce. Proposal flow. In CVPR, 2016. 5, 17

M. Hamilton, Z. Zhang, B. Hariharan, N. Snavely, and W. T. Freeman. Unsupervised semantic segmenta-
tion by distilling feature correspondences. In /CLR, 2022. 1, 2

K. Han, R. S. Rezende, B. Ham, K.-Y. K. Wong, M. Cho, C. Schmid, and J. Ponce. Scnet: Learning
semantic correspondence. In ICCV, 2017. 6

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation
learning. In CVPR, pages 9729-9738, 2020. 10

A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or. Prompt-to-prompt image
editing with cross attention control. arXiv preprint arXiv:2208.01626, 2022. 3

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:6840-6851, 2020.
1,3

J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022. 3

Y. Hu, R. Wang, K. Zhang, and Y. Gao. Semantic-aware fine-grained correspondence. In ECCV, pages
97-115. Springer, 2022. 10

S. Huang, L. Yang, B. He, S. Zhang, X. He, and A. Shrivastava. Learning semantic correspondence with
sparse annotations. arXiv preprint arXiv:2208.06974,2022. 2,5, 6

G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave, V. Shankar,
H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt. Openclip, July 2021. 2, 5, 6,
9,10, 17

A. Jabri, A. Owens, and A. A. Efros. Space-time correspondence as a contrastive random walk. NeurIPS,
2020. 2,9, 10, 17

S. Jeon, S. Kim, D. Min, and K. Sohn. Pyramidal semantic correspondence networks. IEEE TPAMI,
44(12):9102-9118, 2021. 6

S. Jeon, D. Min, S. Kim, J. Choe, and K. Sohn. Guided semantic flow. In European Conference on
Computer Vision, 2020. 6

H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recognition. In
ICCV, pages 3192-3199, 2013. 9

T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based generative
models. arXiv preprint arXiv:2206.00364,2022. 1, 3

S. Kim, J. Min, and M. Cho. Transformatcher: Match-to-match attention for semantic correspondence. In
CVPR, pages 8697-8707, 2022. 2,5, 6

Z. Lai, E. Lu, and W. Xie. Mast: A memory-augmented self-supervised tracker. In CVPR, pages
6479-6488, 2020. 10

Z. Lai and W. Xie. Self-supervised learning for video correspondence flow. arXiv preprint
arXiv:1905.00875, 2019. 10

J. Lee, D. Kim, J. Ponce, and B. Ham. Sfnet: Learning object-aware semantic correspondence. In CVPR,
pages 2278-2287,2019. 6

J. Y. Lee, J. DeGol, V. Fragoso, and S. N. Sinha. Patchmatch-based neighborhood consensus for semantic
correspondence. In CVPR, pages 13153-13163, 2021. 2

W. Li, O. Hosseini Jafari, and C. Rother. Deep object co-segmentation. In ACCV, pages 638—653.
Springer, 2019. 2

X. Li, D.-P. Fan, F. Yang, A. Luo, H. Cheng, and Z. Liu. Probabilistic model distillation for semantic
correspondence. In CVPR, pages 7505-7514, 2021. 6

X. Li, S. Liu, S. De Mello, X. Wang, J. Kautz, and M.-H. Yang. Joint-task self-supervised learning for
temporal correspondence. NeurlPS, 32,2019. 9, 10

S. Liu, L. Zhang, X. Yang, H. Su, and J. Zhu. Unsupervised part segmentation through disentangling
appearance and shape. In CVPR, pages 8355-8364, 2021. 2

12



[51]
[52]

(53]

[54]
[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]
[74]

[75]

[76]

(771

D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:91-110, 2004. 2, 9

Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, and L. Quan. Contextdesc: Local descriptor
augmentation with cross-modality context. In CVPR, pages 2527-2536, 2019. 9

C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon. Sdedit: Guided image synthesis and
editing with stochastic differential equations. In /CLR, 2021. 1
J. Min and M. Cho. Convolutional hough matching networks. In CVPR, 2021. 6

J. Min, J. Lee, J. Ponce, and M. Cho. Spair-71k: A large-scale benchmark for semantic correspondence.
arXiv prepreint arXiv:1908.10543,2019. 5

J. Min, J. Lee, J. Ponce, and M. Cho. Learning to compose hypercolumns for visual correspondence. In
ECCV,2020. 6

J. Mu, S. De Mello, Z. Yu, N. Vasconcelos, X. Wang, J. Kautz, and S. Liu. Coordgan: Self-supervised
dense correspondences emerge from gans. In CVPR, pages 10011-10020, 2022. 2

D. Ofri-Amar, M. Geyer, Y. Kasten, and T. Dekel. Neural congealing: Aligning images to a joint semantic
atlas. In CVPR, 2023. 1,5,6

Y. Ono, E. Trulls, P. Fua, and K. M. Yi. Lf-net: Learning local features from images. NeurlPS, 31, 2018.
9

0. Ozyesil, V. Voroninski, R. Basri, and A. Singer. A survey of structure from motion. Acta Numerica,
26:305-364,2017. 2

G. Parmar, K. K. Singh, R. Zhang, Y. Li, J. Lu, and J.-Y. Zhu. Zero-shot image-to-image translation.
arXiv preprint arXiv:2302.03027, 2023. 1, 4

W. Peebles, J.-Y. Zhu, R. Zhang, A. Torralba, A. Efros, and E. Shechtman. Gan-supervised dense visual
alignment. In CVPR, 2022. 2, 5,6

Y. Peng, X. He, and J. Zhao. Object-part attention model for fine-grained image classification. /EEE TIP,
27(3):1487-1500, 2017. 2

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A benchmark
dataset and evaluation methodology for video object segmentation. In CVPR, pages 724732, 2016. 9

J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeldez, A. Sorkine-Hornung, and L. Van Gool. The 2017 davis
challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017. 9

J. Revaud, P. Weinzaepfel, C. De Souza, N. Pion, G. Csurka, Y. Cabon, and M. Humenberger. R2d2:
repeatable and reliable detector and descriptor. arXiv preprint arXiv:1906.06195, 2019. 9

1. Rocco, R. Arandjelovic, and J. Sivic. Convolutional neural network architecture for geometric matching.
In CVPR, pages 6148-6157, 2017. 6

I. Rocco, R. Arandjelovié, and J. Sivic. End-to-end weakly-supervised semantic alignment. In CVPR,
pages 6917-6925, 2018. 6

I. Rocco, M. Cimpoi, R. Arandjelovié, A. Torii, T. Pajdla, and J. Sivic. Neighbourhood consensus
networks. NeurIPS, 31, 2018. 6

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models, 2021. 1, 3, 4

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part 111 18, pages 234-241.
Springer, 2015. 1, 3

J. C. Rubio, J. Serrat, A. Lépez, and N. Paragios. Unsupervised co-segmentation through region matching.
In CVPR, pages 749-756. IEEE, 2012. 2

J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In CVPR, 2016. 1,2, 9

J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view selection for unstructured
multi-view stereo. In ECCV, 2016. 2

C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation
image-text models. arXiv preprint arXiv:2210.08402, 2022. 3, 4, 10, 15

P. H. Seo, J. Lee, D. Jung, B. Han, and M. Cho. Attentive semantic alignment with offset-aware correlation
kernels. In ECCV, pages 349-364, 2018. 6

J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 15

13



(78]

[79]

[80]

(81]

(82]

[83]

[84]

(85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. NeurlPS,
32,2019. 3

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative
modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020. 1, 3

L. Tang, N. Ruiz, Q. Chu, Y. Li, A. Holynski, D. E. Jacobs, B. Hariharan, Y. Pritch, N. Wadhwa,
K. Aberman, et al. Realfill: Reference-driven generation for authentic image completion. arXiv preprint
arXiv:2309.16668, 2023. 1

L. Tang, D. Wertheimer, and B. Hariharan. Revisiting pose-normalization for fine-grained few-shot
recognition. In CVPR, pages 14352-14361, 2020. 2

P. Truong, M. Danelljan, F. Yu, and L. Van Gool. Warp consistency for unsupervised learning of dense
correspondences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10346-10356, 2021. 6

P. Truong, M. Danelljan, F. Yu, and L. Van Gool. Probabilistic warp consistency for weakly-supervised
semantic correspondences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8708-8718, 2022. 6, 17

N. Tumanyan, O. Bar-Tal, S. Bagon, and T. Dekel. Splicing vit features for semantic appearance transfer.
In CVPR, pages 10748-10757, 2022. 2

N. Tumanyan, M. Geyer, S. Bagon, and T. Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. arXiv preprint arXiv:2211.12572,2022. 1, 3, 4

M. Tyszkiewicz, P. Fua, and E. Trulls. Disk: Learning local features with policy gradient. Advances in
Neural Information Processing Systems, 33:14254-14265, 2020. 9

J. Valmadre, L. Bertinetto, J. F. Henriques, R. Tao, A. Vedaldi, A. W. Smeulders, P. H. Torr, and E. Gavves.
Long-term tracking in the wild: A benchmark. In ECCV, pages 670-685, 2018. 10

C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy. Tracking emerges by colorizing
videos. In ECCV, pages 391-408, 2018. 10

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
2011. 5

Q. Wang, Y.-Y. Chang, R. Cai, Z. Li, B. Hariharan, A. Holynski, and N. Snavely. Tracking everything
everywhere all at once. arXiv preprint arXiv:2306.05422, 2023. 1

Q. Wang, X. Zhou, B. Hariharan, and N. Snavely. Learning feature descriptors using camera pose
supervision. In ECCV, pages 757-774. Springer, 2020. 2, 8, 9, 18

X. Wang, A. Jabri, and A. A. Efros. Learning correspondence from the cycle-consistency of time. In
CVPR, pages 2566-2576, 2019. 1, 2, 10

Z. Wu, Y. Xiong, S. Yu, and D. Lin. Unsupervised feature learning via non-parametric instance-level
discrimination. arXiv preprint arXiv:1805.01978, 2018. 10

J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. De Mello. Open-vocabulary panoptic segmentation
with text-to-image diffusion models. arXiv preprint arXiv:2303.04803, 2023. 3, 16

J. Xu and X. Wang. Rethinking self-supervised correspondence learning: A video frame-level similarity
perspective. arXiv preprint arXiv:2103.17263, 2021. 9, 10

N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang. Youtube-vos: A large-scale video object
segmentation benchmark. arXiv preprint arXiv:1809.03327, 2018. 10

B. Yan, Y. Jiang, P. Sun, D. Wang, Z. Yuan, P. Luo, and H. Lu. Towards grand unification of object
tracking. In ECCV, pages 733-751. Springer, 2022. 2

E. Yu, K. Blackburn-Matzen, C. Nguyen, O. Wang, R. Habib Kazi, and A. Bousseau. Videodoodles:
Hand-drawn animations on videos with scene-aware canvases. ACM Transactions on Graphics (TOG),
42(4):1-12,2023. 1

Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Torralba, and S. Fidler. Datasetgan:
Efficient labeled data factory with minimal human effort. In CVPR, 2021. 2

D. Zhao, Z. Song, Z. Ji, G. Zhao, W. Ge, and Y. Yu. Multi-scale matching networks for semantic
correspondence. In ICCV, pages 3354-3364, 2021. 6

W. Zhao, Y. Rao, Z. Liu, B. Liu, J. Zhou, and J. Lu. Unleashing text-to-image diffusion models for visual
perception. arXiv preprint arXiv:2303.02153,2023. 3, 16

Y. Zhou, C. Barnes, E. Shechtman, and S. Amirghodsi. Transfill: Reference-guided image inpainting
by merging multiple color and spatial transformations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2266-2276, 2021. 1

14



A Societal Impact

Although DIFT can be used with any diffusion model parameterized with a U-Net, the dominant
publicly available model is the one trained on LAION [75]. The LAION dataset has been identified
as having several issues including racial bias and stereotypes [7]. Diffusion models trained on these
datasets inherit these issues. While these issues may a priori seem less important for estimating
correspondences, it might lead to differing accuracies for different kinds of images. One could obtain
the benefit of good correspondences without the associated issues if one could trained a diffusion
model on a curated dataset. Unfortunately, the huge computational cost also prohibits the training of
diffusion models in academic settings on cleaner datasets. We hope that our results encourage efforts
to build more carefully trained diffusion models.

B Discussion

Why does correspondence emerge from image diffusion? One conjecture is that the diffusion
training objective (i.e., coarse-to-fine reconstruction loss) requires the model to produce good,
informative features for every pixel. This is in contrast to DINO and OpenCLIP that use image-level
contrastive learning objectives. In our experiments, we have attempted to evaluate the importance
of the training objective by specifically comparing DIFT,,, and DINO in all our evaluations: two
models that share exactly the same training data, i.e., ImageNet-1k without labels.

How and why does ¢ affect the nature of correspondence? In Fig. 9, for the same clean image,
we first add different amount of noise to get different x; following Eq. (2), then feed it into SD’s de-
xt—(m)ﬂa(wt,t)

noising network €4 together with time step ¢ to get the predicted clean image &, = NG
We can see that, with the increase of ¢, more and more details are removed and only semantic-level
features are preserved, and when ¢ becomes too large, even the object structure is distorted. Intuitively,
this explains why we need a small ¢ for correspondences that requires details and a relatively large ¢
for semantic correspondence.

input clean image predicted clean images at different time step ¢

t=>51 t=261 t=501

Figure 9: Within a reasonable range, when ¢ gets larger, the predicted clean images remain the overall
structure but have less details, suggesting DIFT contains more semantic-level information and less
low-level features with the increase of ¢.

How long does it take to run DIFT? Since we only perform a single inference step when extracting
DIFT, it actually takes similar running time compared to competing self-supervised features with
the same input image size. For example, when extracting features for semantic correspondence as
in Sec. 5, on one single NVIDIA A6000 GPU, DIFT,, takes 203 ms vs. OpenCLIP’s 231 ms on
one single 768x768 image; DIFT,g4,, takes 110 ms vs. DINO’s 154 ms on one single 512x512
image. In practice, as mentioned in the last paragraph of Sec. 4.2, since there is randomness when
extracting DIFT, we actually use a batch of random noise to get an averaged feature map for each
image to slightly boost stability and performance, which would increase the running time shown
above. But if computation is a bottleneck, one can remove this optimization at the cost of a tiny loss
in performance: e.g., on SPair-71k, DIFT4: PCK 59.5—57.9; DIFT,4,,,: PCK 52.0—51.1.

Would diffusion inversion help? Another way to get , from a real input image is diffusion inversion.
Using DDIM inversion [77] to recover input image’s corresponding x; and then feeding into fy to
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get diffusion feature yielded similar results. At the same time, inversion makes the inference process
several times slower. We leave how to utilize diffusion inversion to get better correspondence to
future work.

Does correspondence information exist in SD’s encoder? We also evaluated SD’s VAE encoder’s
performance on all benchmarks and found that its performance was lower by an order of magnitude.
So DIFT,,;’s correspondence only emerges inside its U-Net and requires diffusion-based training.

Would task-specific adaptation lead DIFT to better results? More sophisticated mechanisms
could be applied to further enhance the diffusion features, e.g., concatenating and re-weighting
features from different time step ¢ and different network layers, or even fine-tuning the network with
task-specific supervision. Some recent works [5, 94, 101] fine-tune either the U-Net or the attached
head for dense prediction tasks and yield better performance. However, task-specific adaptation
entangles the quality of the features themselves with the efficacy of the fine-tuning procedure. To
keep the focus on the representation, we chose to avoid any fine-tuning to demonstrate the quality
of the off-the-shelf DIFT. Nevertheless, our preliminary experiments suggest that such fine-tuning
would indeed further improve performance on correspondence. We’ll leave how to better adapt DIFT
to downstream tasks to future work.

C Implementation Details

The total time step 71" for both diffusion models (ADM and SD) is 1000. U-Net consists of downsam-
pling blocks, middle blocks and upsampling blocks. We only extract features from the upsampling
blocks. ADM’s U-Net has 18 upsampling blocks and SD’s U-Net has 4 upsampling blocks (the
definition of blocks are different between these two models). Feature maps from the n-th upsampling
block output are used as the final diffusion feature. For a fair comparison, we also grid-search which
layer to extract feature for DINO and OpenCLIP for each task, and report the best results among the
choices.

As mentioned in the last paragraph of Sec. 4.2, when extracting features for one single image using
DIFT, we use a batch of random noise to get an averaged feature map. The batch size is 8 by default.
We shrink it to 4 when encountering GPU memory constraints.

The input image resolution varies across different tasks but we always keep it the same within the
comparison vs. other off-the-shelf self-supervised features (i.e., DIFT,4,, vs. DINO, DIFT,, vs.
OpenCLIP) thus the comparisons are fair. For DIFT, feature map size and dimension also depend on
which U-Net layer features are extracted from.

The following sections list the time step ¢ and upsampling block index n (n starts from 0) we used
for each DIFT variant on different tasks as well as input image resolution and output feature map
tensor shape.

C.1 Semantic Correspondence

We use ¢t = 101 and n = 4 for DIFT,4,, on input image resolution 512x512 so feature map size is
1/16 of input and dimension is 1024; we use ¢t = 261 and n = 1 for DIFT 4 on input image resolution
768x768 so feature map size is 1/16 of input and dimension is 1280. These hyper-parameters are
shared on all semantic correspondence tasks including SPair-71k, PF-WILLOW, and CUB, as well as
the visualizations in Figs. 1, 15 and 16.

We don’t use image-specific prompts for DIFT,,. Instead, we use a general prompt “a photo of
a [class]” where [class] denotes the string of the input images’ category, which is given by
the dataset. For example, for the images of SPair-71k under cat class, the prompt would be “a
photo of a cat”. For CUB, the same prompt is used for all images: “a photo of a bird”. Changing
per-class prompt to a null prompt (empty string "") will only lead a very small performance drop,
e.g., DIFT;;’s PCK per point on SPair-71k: 59.5—57.6.
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C.2 Geometric Correspondence

On HPatches, the input images are resized to 768 x 768 to extract features for both DIFT,,, and
DIFT,,. We use t = 41, n = 11 for DIFT, 4, so feature map size is 1/2 of input and dimension is
512; we use t = 0, n = 2 for DIFT,, so feature map size is 1/8 of input and dimension is 640.

In addition, for DIFT,4, each image’s prompt is a null prompt, i.e., an empty string "".

For all the methods listed in Tab. 4, when doing homography estimation, we tried both co-
sine and L2 distance for mutual nearest neighbor matching, and both RANSAC and LMEDS for
cv2.findHomography (), and eventually we report the best number among these choices for each
method.

C.3 Temporal Correspondence

The configurations we use for DIFT,,,, and DIFT,, are:

Dataset Method Time step  Block index Iemperature Propagation  k for Number of

t n for softmax radius top-k  prev. frames
DAVIS-2017 DIFT 4m 51 7 0.1 15 10 28
DAVIS-2017 DIFT,q, 51 2 0.2 15 15 28
JHMDB DIFTqam 101 5 0.2 5 15 28
JHMDB DIFTsq4 51 2 0.1 5 15 14

For experiments on DAVIS, we use the same original video frame size (480p version of DAVIS,
specific size varies across different videos) as in DINO’s implementation [10], for both DIFT,4,, and
DIFT,. n=7 for DIFT 4, so feature map size is 1/8 of input and dimension is 512. n=2 for DIFT,
so feature map size is 1/8 of input and dimension is 640. For experiments on JHMDB, following
CRW’s implementation [37], we resize each video frame’s smaller side to 320 and keep the original
aspect ratio. n=5 for DIFT,4,,, so feature map size is 1/8 of input and dimension is 1024. n=2 for
DIFT, so feature map size is 1/8 of input and dimension is 640.

In addition, for DIFTs4, each image’s prompt is a null prompt, i.e., an empty string "".

D Additional Quantitative Results

D.1 Semantic Correspondence on PF-PASCAL

We didn’t do evaluation on PF-PASCAL [27] in the main paper because we found over half of the
test images (i.e., 302 out of 506) actually also appear in the training set, which makes the benchmark
numbers much less convincing, and also partially explains why the previous supervised methods tend
to have much higher test accuracy on PF-PASCAL vs. PF-WILLOW (e.g., over 90 vs. around 70)
even using exactly the same trained model. And this duplication issue of train/test images also gives
huge unfair disadvantage to the methods that are never adapted (either supervised or unsupervised)
on the training set before evaluation.

However, even in this case, as shown in Tab. 6, DIFT still demonstrates competitive performance
compared to the state-of-the-art weakly-supervised method PWarpC [83], as well as huge gains vs.
other off-the-shelf self-supervised features.

Table 6: PCK per image on PF-PASCAL. The groupings and colors follow Tab. 1.

Sup. Method PCK@aimg
a=0.05 a=0.10
(b)  PWarpC [83] 64.2 844
DINO [10] 36.9 53.6
© DIFT, 4y, (ours) 56.5 72.5
OpenCLIP [36] 39.8 61.1
DIFT,, (ours) 69.4 84.6
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Figure 10: Mean Matching Accuracy (MMA) on HPatches [4]. For each method, we show the MMA
with varying pixel error thresholds. We also report the mean number of detected features and mutual
nearest neighbor matches. Although not trained with any explicit geometric correspondence labels,
DIFT,, is able to achieves competitive performance compared to other feature descriptors that are
specifically design or trained for this task.
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Figure 11: Homography estimation accuracy [%] at 1, 3, 5 pixels on HPatches using DIFT; with
different time step ¢. Intuitively, as ¢ gets larger, DIFT contains more semantic information and less
low-level details, so the accuracy decreases when using larger ¢.

D.2 Feature Matching on HPatches

Following CAPS [91], for the given image pair, we extract SuperPoint [16] keypoints in both images
and match them using our proposed feature descriptor, DIFT,;. We follow the evaluation protocol as
in [19, 91] and use Mean Matching Accuracy (MMA) as the evaluation metric, where only mutual
nearest neighbors are considered as matched points. The MMA score is defined as the average
percentage of correct matches per image pair under a certain pixel error threshold. Fig. 10 shows the
comparison between DIFT and other feature descriptors that are specially designed or trained for
geometric correspondence. We report the average results for the whole dataset, as well as subsets
on illumination and viewpoint changes respectively. For each method, we also present the mean
number of detected features per image and mutual nearest neighbor matches per image pair. We can
see that, although not trained with any explicit geometry supervision, DIFT is still able to achieve
competitative performance.

D.3 Analysis on Hyper-parameters

Here we analyze how the choice of time step and U-Net layer would affect DIFT’s performance on
different correspondence tasks.

Ablation on time step. Similar to Fig. 5, we plot how HPatches homography estimation accuracy
and DAVIS video label propagation accuracy vary with different choices of ¢, in Figs. 11 and 12
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Figure 12: Video label propagation accuracy (7 &Fy,) on DAVIS using DIFT, 4, with different time
step ¢t. There’s a wide range of ¢, where DIFT maintains a stable and competitive performance.
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Figure 13: PCK per point on SPair-71k using DIFT,,; with different layer ¢ inside U-Net’s 15
upsampling layers in total. The transition from block index n to layer index ¢ is 0/1/2/3 to 3/7/11/14
respectively. We can see there are multiple choices of ¢ leading to good performance.

respectively. Both curves have smooth transitions and there’s a large range of ¢t where DIFT gives
competitive performance.

Ablation on U-Net layer. Compared to the definition of 4 block choices in Appendix C, here we make
a more fine-grained sweep over SD’s 15 layers inside U-Net upsampling blocks. The transition from
block index n to layer index i is 0/1/2/3 to 3/7/11/14 respectively and both start from 0. We evaluate
PCK per point on SPair-71k using DIFT 4 with different layer index ¢. As shown in Fig. 13, the
accuracy varies but there are still multiple choices of 7 that lead to good performance.

E Additional Qualitative Results

PCA visualization of DIFT. In Fig. 14, for each pair of images, we extract DIFT; from the
segmented instances, then compute PCA and visualize the first 3 components, where each component
serves as a color channel. We can see the same object parts share similar embeddings, which also
demonstrates the emergent correspondence.

Correspondence on diverse internet images. Same as Fig. 1, in Figs. 15 and 16 we show more
correspondence prediction on various image groups that share similar semantics. For each target
image, the DIFT 4 predicted point will be displayed as a red circle, together with a heatmap showing
the per-pixel cosine distance calculated using DIFT,4. We can see it works well across instances,
categories, and even image domains, e.g., from an umbrella photo to an umbrella logo.

Semantic correspondence comparison among off-the-shelf features on SPair-71k. Same as
Fig. 3, we show more comparison in Fig. 17, where we can see DIFT works well under challenging
occlusion, viewpoint change and intra-class appearance variation.
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Cross Instance

Same Instance Cross Category

Figure 14: Visualization of the first three PCA components of DIFT,,; on the segmented instance
pairs (same instance, cross instance, cross category). Each component matches a color channel. We
can see the same object parts share similar DIFT embeddings.

Cross-category semantic correspondence. Same as Fig. 4, in Fig. 18 we select an interesting image
patch from a random source image and query the image patches with the nearest DIFT,, features in
the rest of the test split but with different categories. We see that DIFT is able to identify reasonable
correspondence across various categories.

Failure Cases on SPair-71k. In Fig. 19, we select four examples with low PCK accuracy and
visualize DIFT,;’s predictions along with ground-truths. We can see that, when the semantic
definition of key points is ambiguous, or the appearance/viewpoint change between source and target
images is too dramatic, DIFT fails to give correct predictions.

Image editing propagation. Similar to Fig. 6, Fig. 20 shows more examples on edit propagation
using our proposed DIFT ;. It further demonstrates the effectiveness of DIFT on finding semantic
correspondence, even when source image and target image are from different categories or domains.

Geometric correspondence. Same as Fig. 7, in Fig. 21 we show the sparse feature matching results
using DIFT ;4 on HPatches. Though not trained using any explicit geometry supervision, DIFT still
works well under large viewpoint change and challenging illumination change.

Temporal correspondence. Similar to Fig. 8, Fig. 22 presents additional examples of video instance
segmentation results on DAVIS-2017, comparing DINO, DIFT4,,, and Ground-truth (GT). We can
see DIFT 4, could create instance masks that closely follow the silhouette of instances.
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Source Point DIFT,, Predicted Target Points

Figure 15: DIFT can find correspondences on real images across instances, categories, and even
domains, e.g., from a photo of statue of liberty to a logo.
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Source Point DIFT,, Predicted Target Points
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Figure 16: DIFT can find correspondences on real images across instances, categories, and even
domains, e.g., from a photo of an aeroplane to a sketch.
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Figure 17: Semantic correspondence using various off-the-shelf features on SPair-71k. Circles
indicates correct predictions while crosses for incorrect ones.
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Figure 18: Given the image patch specified in the leftmost image (red dot), we use DIFT,, to query
the top-5 nearest image patches from different categories in the SPair-71k test set. DIFT is still able
to find correct correspondence for object parts with different overall appearance but sharing the same
semantic meaning, e.g., the leg of a bird vs. the leg of a dog.
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Figure 19: Failure cases of semantic correspondence on SPair-71k. Circle denotes correct predictions
while cross for wrong ones. When the semantic definition of key points is ambiguous, or the
appearance/viewpoint change between source and target images is too dramatic, DIFT, fails to

predict the correct corresponding points.
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Figure 20: Edit propagation using DIFT,,. Far left column: edited source images. Right columns:
target images with the propagated edits. Note that despite the large domain gap in the last row,
DIFT,, still manages to establish reliable correspondences for correct propagation.
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Figure 21: Sparse feature matching using DIFT,; on HPatches after removing outliers. Left are
image pairs under viewpoint change, and right are ones under illumination change. Although never
trained with geometric correspondence labels, it works well under both challenging changes.
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DIFT,,, DINO GT  DIFT,, DINO

GT

Figure 22: Additional video label propagation results on DAVIS-2017. Colors indicate segmentation
masks for different instances. Blue rectangles show the first frames. GT is short for "Ground-Truth".
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