
ETF: An Entity Tracing Framework for Hallucination Detection in Code
Summaries

Anonymous ACL submission

Abstract

Recent advancements in large language models001
(LLMs) have significantly enhanced their abil-002
ity to understand both natural language and003
code, driving their use in tasks like natural004
language-to-code (NL2Code) and code sum-005
marization. However, LLMs are prone to hal-006
lucination—outputs that stray from intended007
meanings. Detecting hallucinations in code008
summarization is especially difficult due to009
the complex interplay between programming010
and natural languages. We introduce a first-of-011
its-kind dataset with ∼10K samples, curated012
specifically for hallucination detection in code013
summarization. We further propose a novel014
Entity Tracing Framework (ETF) that a) uti-015
lizes static program analysis to identify code016
entities from the program and b) uses LLMs to017
map and verify these entities and their intents018
within generated code summaries. Our experi-019
mental analysis demonstrates the framework’s020
effectiveness, leading to a 73% F1 score. This021
approach provides an interpretable method for022
detecting hallucinations by grounding entities,023
allowing us to evaluate summary accuracy.024

1 Introduction025

Hallucination in natural language processing is de-026

fined as a condition in which a language model027

produces a text that is either incoherent or does028

not faithfully represent the provided source input029

(Ji et al., 2023). Similarly, in the context of code030

summarization, hallucination can be defined as a031

condition in which the generated summary does not032

accurately capture the intent and implementation033

details of the given input code.034

Hallucination can originate from a combination035

of factors, where one common reason could be the036

misinterpretation of code entities. This misunder-037

standing can impact the model’s ability to interpret038

the intended functionality of the code, resulting in039

an inaccurate portrayal of its purpose. For instance,040

consider the Example 1, where the intention of the041

public RowBuilder int16(String name){
ColumnInt16 column =
new ColumnInt16(_columns.size(), name

, _offset);
_offset += column.length ();
_columns.add(column);
return this;}

Summary: This method is used to add a new col-
umn of data type int16 (16-bit integer) to the existing data
structure. It creates a new ColumnInt16 object with the
given name and size (16 bits), updates the offset value to
accommodate the new column............

Example 1 (LLama3-70B): Confused Data Type

int16 java method is to create a new 16-bit integer 042

column (ColumnInt16) with a specified name, up- 043

date the position for the next column, add it to the 044

list of columns, and then return the RowBuilder 045

object. However, the generated explanation intro- 046

duces a non-existent int16 datatype and proceeds 047

to discuss the rest of the logic as if it were valid. 048

This could mislead a novice Java developer into 049

believing that an int16 datatype exists in Java. Fur- 050

thermore, several large language models (LLMs) 051

like LLaMA and Granite failed to detect this hallu- 052

cination. One reason could be that int16 is a valid 053

datatype in other programming languages such as 054

C, C++, C#, and Go, causing both humans and 055

LLMs to confuse it with learning from those lan- 056

guages. Similarly, in the example shown in Figure 057

1, the java method getJobID() takes “jobName" 058

as an argument and simply returns -1. The sum- 059

mary generated by the model provides a detailed 060

explanation, including how the method getJobID() 061

connects to the database and attempts to retrieve 062

the jobID using the given jobName. Additionally, 063

the summary mentions it stores the “jobStatus" in 064

a variable. Clearly, the generated summary has no 065

supporting entities in the code for db access and the 066

model is relying on the method name to hallucinate 067

a plausible summary of the method. 068

In this work, we study different factors that can 069

1

Figure 1: Proposed Methodology: This diagram illustrates our end-to-end Entity Tracing Framework (ETF), which
takes source code and a corresponding summary as input. First, we use code parsers to extract entities from the
source code and employ large language models (LLMs) to identify entities from the summary. Next, we apply
string-based heuristics to match entities from the summary to the code. Following this, an LLM verifies the accuracy
of each entity’s description by cross-referencing the source code with relevant sentences in the summary. This
process enables the localization of hallucinated content in the summary, ultimately enhancing its interpretability.

lead to hallucination and list down a taxonomy to070

map the common causes easily. Noting a lack of071

datasets to reliably research this topic. Therefore,072

we create a first-of-its-kind dataset for studying073

hallucination in code summarization with 411 sum-074

maries generated by seven different large language075

models, broken into 9933 entity-level samples.076

This dataset consists of code and a corresponding077

summary describing the code. The annotation con-078

sists of: a) NER b) Entity Description Verification079

(c) Overall Summary Quality (not focusing on code080

completeness or conciseness). We then introduce a081

framework that evaluates the correctness of the gen-082

erated summary. For this, we verify if the entities083

discussed in the summary are present in the code084

and correctly described in the summary. The frame-085

work leverages code parsers like javalang1 to list086

the different entities in the code snippet and prompt-087

based approaches to detect entities in summary. We088

note that detecting entities in the generated sum-089

mary is more difficult due to the high degree of090

polysemy (Tabassum et al., 2020). For example,091

entities like "list", "while", "if", etc, can be a code092

entity or natural language entities. This necessi-093

tates our reliance on large language models with094

high reasoning capabilities for detecting entities095

on the summary side. We then map the detected096

entities from the summary to code by using string-097

matching heuristics. The sentences with unmapped098

entities can be considered as ungrounded (source099

of extrinsic hallucination). For each mapped entity,100

1https://github.com/c2nes/javalang

we then have a tuple <code, entity, intent-related 101

sentence>, where the intent-related sentence can be 102

considered as the sentence in summary mentioning 103

the entity. The final step is to verify each tuple from 104

the summary for intrinsic hallucination to assess 105

the correctness of the code summary. Our exper- 106

iments demonstrate the importance of localizing 107

entities in the summary for effective hallucination 108

detection. Our contributions are : 109

• A taxonomy covering diverse reasons that 110

might lead to hallucination in the code sum- 111

marization (Figure 2). 112

• A novel dataset2 for studying hallucination 113

detection in code summarization, featuring 114

411 summaries from 7 LLMs and 10K entity- 115

level samples (Table 1). 116

• A first-of-its-kind approach for entity-level 117

hallucination detection in code summarization 118

inspired by the insights from human behaviour 119

during code reviews leading to a performance 120

of 73% F1 score (Table 2). 121

2 Related Work 122

Recent advances in the NLP community have wit- 123

nessed significant improvements in hallucination 124

detection pipelines. In this section, we discuss 125

some of the works that are relevant to ours. 126

Hallucination in Natural Langauge: Rawte 127

et al. (2024); Sahoo et al. (2024) review recent 128

2We plan to open source the Data and Code

2

advances in hallucination detection in natural lan-129

guage, emphasizing its practical significance. Re-130

cently, prompt-based methods (Arora et al. (2022),131

Manakul et al. (2023), Agrawal et al. (2023), Dhu-132

liawala et al. (2023)) are being used to detect hal-133

lucinations in the text produced by LLMs. Xiao134

and Carenini (2022) and Zhang et al. (2022) at-135

tempt to address entity-level verification in natural136

language inputs. Both of these works involve im-137

proving the correctness of natural language sum-138

maries and do not discuss anything in the context139

of code. We note that most of the hallucination140

detection frameworks (Manakul et al., 2023; Arora141

et al., 2022; Dhuliawala et al., 2023; Valentin et al.,142

2024; Rebedea et al., 2023) in natural language do143

not enforce reference text for grounding. In our144

setup of code summarisation, the generated sum-145

mary has to be evaluated with respect to a reference146

text (the code snippet). Therefore, neccessiating147

an approach which could compare the code sum-148

mary to the code snippet. Maynez et al., 2020; Ji149

et al., 2023 discuss further fine-graining of halluci-150

nation in natural language as intrinsic and extrinsic151

hallucination. More specifically, Intrinsic halluci-152

nation occurs when the given text contradicts the153

reference, while Extrinsic hallucination happens154

when the text cannot be verified against the refer-155

ence. We use a similar convention in our paper.156

Hallucination in Code Generation: The code157

generation space has captured significant attention158

due to its practical significance in software devel-159

opment. (Jiang et al., 2024) discusses recent de-160

velopments in code generation and suggests the161

importance of addressing hallucination for improv-162

ing the reliability of LLMs. Liu et al. (2024) stud-163

ies hallucination in code generation and proposes164

a categorization that encompasses five categories165

of hallucinations based on the conflicting objec-166

tives and varying degrees of deviation observed in167

code generation. Tian et al., 2024; Agarwal et al.,168

2024; Spracklen et al., 2024 advanced the field with169

datasets and frameworks addressing hallucination170

in code generation. These studies highlight that171

while LLM-generated code may be syntactically172

correct and semantically plausible, it often fails to173

execute as intended or meet requirements.174

Despite progress in hallucination detection, code175

summarization remains underexplored. Kang et al.,176

2024 and Zhang, 2024 focused on inconsistencies177

in comment generation, addressing specific aspects178

like design constraints and parameter types, but179

their methods face challenges due to reliance on180

execution environments. In contrast, our approach 181

validates the full functionality of generated outputs, 182

independent of external dependencies, offering a 183

more reliable solution by grounding entities in the 184

input code and verifying their intent. 185

3 Datasets 186

To create the hallucination dataset for code summa- 187

rization, we consider code snippets from Java pro- 188

gramming language and CodeXGLUE (Lu et al., 189

2021) – Code-To-Text dataset. We focused on Java 190

programming language due to its widespread rele- 191

vance in the industry. It offers a rich set of entities 192

(such as classes, methods, and variables) due to 193

its structured design and strict typing system. The 194

dataset was annotated by 8 annotators who are ex- 195

perts in Java and held at least a Master’s degree 196

in Computer Science, with some having a PhD in 197

the field. On average, the annotators had 4+ years 198

of experience in Java programming. We report the 199

statistics in Table 1 and describe the data curation 200

process below: 201

Summary Generation: We generate summaries 202

from CodeXGLUE by prompting seven different 203

LLMs (Appendix A) with 600 code snippets. By 204

producing multiple summary variants, we can as- 205

sess hallucination generation by different LLMs 206

and evaluate hallucination detection techniques un- 207

der varied conditions. We present quantitative re- 208

sults (Table 3) and qualitative analysis in Section 6. 209

During initial annotation, we found that annotators 210

spent considerable time verifying summaries, often 211

requiring online documentation searches, leading 212

to an average annotation time of 30 minutes or 213

more per summary. To ensure feasibility, we ran- 214

domly prune samples and use ∼ 10% of the data 215

for the final hallucination annotation task (Table 1). 216

Category Count Percentage (%)
Summary Level Classification

Hallucinated 130 31.63%
Not Hallucinated 281 68.36%
Total Summaries 411 100%

Entity Level Classification
CORRECT 9024 90.84%
INCORRECT 303 3.05%
IRRELEVANT 606 6.11%
Total Entities 9933 100%

Table 1: Overall Data Statistics

Named Entity Recognition Since our frame- 217

3

work involves tracing entities from summary to218

code, we perform NER of the summaries based on219

the tagset suggested in Tabassum et al. (2020) (220

prompt in Appendix 5).221

Hallucination Labeling: For each detected222

code entity in a summary, all sentences describ-223

ing that entity are considered relevant. To account224

for the scenario where the relevant sentence can225

be noisy, we introduced a third label, "IRRELE-226

VANT", which can be used to evaluate the perfor-227

mance of the intent-detection module and removed228

during the preprocessing. Thus, we obtain tuples229

of (code, entity, relevant sentences) for each en-230

tity. A total of 9933 such tuples, sampled from231

441 summaries, were selected for human annota-232

tion (hired based on volunteering) to detect hal-233

lucinations. Out of these, 4354 tuples (from 222234

summaries) were independently reviewed by two235

different sets of annotators, leading to a Cohen236

Kappa score of 0.72, implying high agreement. The237

conflicts were resolved by two independent meta-238

annotators. The annotators were asked to evaluate239

overall summary by assigning a label of ‘GOOD",240

‘FAIR" and ‘POOR" We observe that, on average,241

1.33 entities were marked as hallucinated for the242

summaries rated as ’FAIR" or ’POOR". There-243

fore, we consider a summary as hallucinated if at244

least one of the entities is hallucinated. After pre-245

processing, we consider the instance with labels246

"CORRECT" and "INCORRECT" in human data247

and treat the "IRRELEVANT" label predicted by248

the model as "INCORRECT". We provide the com-249

plete annotation guideline in Appendix E.2.250

4 Categorization of Factors for251

Hallucination in Code Summarization252

In this section, we describe the various factors that253

could lead to hallucination in code summaries (Fig-254

ure 2) based on what we learned from the anno-255

tation process. This classification, based on the256

underlying factors of hallucination, offers insights257

into the generative behaviors of language and code258

models. We describe these categories of halluci-259

nation factors below and discuss their statistical260

analysis in Figure 5.3.261

HC1: Based on Identifier Name Bias: Name262

Bias refers to the tendency of language models to263

rely on identifier names when interpreting code.264

We classify this bias into three subcategories based265

on its source: 1)variables, 2)functions, 3)libraries.266

The model can misinterpret code due to the linguis-267

tic characteristics of these entity names. As the 268

semantics of the code is defined by the underly- 269

ing logic rather than their lexical meaning of enti- 270

ties, this may lead to hallucination. In the example 271

shown in Figure 1, the model (Granite-20B) incor- 272

rectly assumes that getJobID is about retrieving a 273

job ID, based purely on their names, even though 274

the actual code logic suggests otherwise. 275

HC2: Insufficient knowledge: This involves 276

scenarios where the model generates incorrect sum- 277

maries due to lack of knowledge. This may include 278

an incorrect explanation of the imported libraries 279

that the model did not see in its training data, in- 280

correct information about the keyword, etc. We 281

further divide this category into two parts: 282

1) Contextual code:This occurs when the model 283

fails to correctly explain the code, often because 284

it has not encountered the functionality of code 285

during training or is working with a low-resource 286

language like COBOL, where fundamental rules 287

may be misrepresented in the summary. 288

2) Non-contextual code involves the scenario 289

when the input does not contain the complete code 290

and mentions an unseen library or an unknown 291

construct whose functionalities are not understood 292

by the model. For example, in the code sample 293

shown in the HC2 Example, the model incorrectly 294

describes the purpose of SQLException. 295

public String getString (int
columnPosition) throws

SQLException {
return (String) resultSet.

getObject(columnPosition);}

Summary: ...The method first checks if the ResultSet
object is null. If it is, a SQLException is thrown. . . .

HC2: Granite-20B insufficient knowledge
296

HC3: Code Complexity: This pertains to the 297

model’s tendency to produce incorrect code sum- 298

maries due to high code complexity. This may stem 299

from the model’s insufficient reasoning capabili- 300

ties to understand the code or the misinterpretation 301

of user instructions. Key factors contributing to 302

complexity include: 1) Length: Longer code is 303

more complex, requiring deeper understanding and 304

involving more interdependencies with more po- 305

tential points of failure. 2) Lexical Complexity: 306

Complex vocabulary, including diverse operands 307

and operations, increases the number of elements 308

to track and understand. 3) Logical Complexity: 309

Code with high cyclomatic complexity, multiple 310

paths, or distant method invocations increases the 311

4

Figure 2: Taxonomy of hallucination in code summarization based on the causes of hallucination. We start with
four broad categories and then present a fine-grained classification of each category.

challenge of comprehension.312

public <V>V execute(RedisCallback <V>
cb) { Jedis jedis = jedisPool.
getResource ();

boolean success = true;
try {return cb.execute(jedis);}
catch (JedisException e) {

success = false;
if (jedis != null){

jedisPool.returnBrokenResource(jedis)
;} throw e;

} finally { if (success) { jedisPool.
returnResource(jedis);}}}

Summary: ...it then returns the ‘jedis" object to the pool
using the ‘returnBrokenResource" method if the ‘success"
variable is ‘false"...

HC3: Codellama-7B confusion with conditions

In the code snippet shown in HC3 Example, the313

model Codellama-7b (Roziere et al., 2023) pro-314

duces an incorrect interpretation of the condition.315

This may be due to increased complexity due to316

nesting leading to more complicated logic that are317

challenging to understand by model.318

HC4: Natural language Context: This refers to319

cases where natural language in code snippets, such320

as outdated comments or log statements, causes321

hallucinations in code summaries. In the code322

snippet shown in HC4 Example, the LLama3-70B323

model incorrectly infers that the property variable324

contains a list of key-value pairs inferred from a325

commented line. However, the ‘property" variable326

contains an alphanumeric string followed by one327

or more semi-colons.328

5 Methodology329

A code summary typically has a global and local330

view similar to texts (Maharaj et al., 2023). While331

the global view includes purpose, functionality,332

control flow, data flow, etc., the local view includes333

the details of key entities (variables, functions, etc.) 334

from the source code and their purpose (hereby re- 335

ferred to as the intent of the entity). Our approach 336

is based on the intuition that software developers, 337

while verifying the documentation for a given code 338

repository, first understand the local aspects of the 339

code and then build a bottom-up concept for un- 340

derstanding the global aspects of the code. This 341

involves reading the code line by line and tracing 342

the specific code entities from the documentation 343

to the original code. 344

This behaviour aligns with working memory 345

theory in cognitive science (Baddeley and Hitch, 346

1994); working memory is a brain system that tem- 347

porarily stores and manipulates the information 348

necessary for complex cognitive tasks like learning 349

and reasoning. The capacity of working memory is 350

bounded by 7±2 object at any point in time, which 351

further reduces to 2-3 objects if the objects have re- 352

lational dependencies with each other. Since code 353

summaries often involve interdependent objects, 354

developers must focus on local aspects to build 355

a global understanding, suggesting a bottom-up 356

heuristic for code summary comprehension. 357

We leverage these behavioural insights to de- 358

public static HashSet <String >
createSetFromProperty(String
property){...

if (property != null && !property.
equals("null")) { // "([\\w]*)
=([\\w]*);"
Pattern params = Pattern.

compile("([\\w]+) [;]*"); ...}

Summary: The input string is expected to contain
a list of properties in a specific format, where each prop-
erty consists of a name-value pair (e.g., "name=value;")
................

HC4: LLama3-70B mislead by the comment

5

sign an LLM-powered framework for detecting359

hallucinations in code summaries, which involves360

tracing the entities from the summary to the code.361

This aspect of mapping the entities from the sum-362

mary to the code aims to simulate the bottom-up363

behavioural model of verifying the description of364

coding entities at a time. With these insights, we365

aim to measure the correctness of a code summary366

as a two-step process: (1) Entity Verification and367

(2) Entity-Intent Verification. The detailed flow of368

this framework can be found in Figure 1.369

5.1 Entity Verification370

In entity verification, we check if the entities in371

the summary are present in the source code to de-372

tect extrinsic hallucination. This involves extract-373

ing entities from both the code and summary, then374

mapping entities from summary to the code. We375

elaborate on this process below:376

Entity Extraction from code: We leverage377

program analysis to extract entities from code378

(Javalang Python package 3). The code is tok-379

enized (lexer) and parsed into an abstract syntax380

tree (AST). This tree structure represents the hier-381

archical organization of code elements, making it382

easier to analyze. This yields a fine-grained classi-383

fication of all the tokens present in the code such as384

variable names, class names, function names, etc.385

Entity Extraction from summary: Tabassum et al.386

(2020) propose the task of entity detection in code387

summaries and introduce a relevant NER tagset.388

We adopt this tagset for extracting entities from389

code summaries (Prompt: Appendix A Figure 5).390

Leveraging LLMs to recognize entities intro-391

duces the risk of hallucinations, where the model392

may fabricate entities not present in the code sum-393

mary. To address this, we implement a filtration394

step to remove such fabricated entities. We evalu-395

ate Gemini and GPT-4-Omni for Code NER using396

human-collected data, with results in Appendix C.397

Additionally, we assess an open-source model as398

part of our contribution. Our findings show a strong399

correlation between GPT-4-Omni predictions and400

human data, confirming its effectiveness for entity401

detection in our framework.402

Entity Matching: Once the entities from the403

code and summary are extracted, we compare them404

to identify the subset of entities present in the sum-405

mary but not in the code. These entities are termed406

ungrounded, and all the sentences in the summary407

3https://github.com/c2nes/javalang

containing these entities can be labelled as extrin- 408

sic hallucination. The subset of entities in both 409

the summary and the code goes through an addi- 410

tional verification round for intrinsic hallucination. 411

This is to validate if the intent of the entity in the 412

summary is correctly described as per the code. 413

5.2 Entity-Intent Verification 414

The presence of an entity in both the summary and 415

code indicates that the entity is valid but does not 416

warrant the correctness of the context in which it 417

is discussed. For example, in Figure 1 jobId is a 418

correct entity, but the context of retrieving jobID 419

from the database is incorrect. To address this 420

problem, we propose verifying whether the intent 421

of each mapped entity is accurately described in 422

the summary. We extract all sentences containing 423

the entity of interest from the summary to form its 424

intent context. To identify these relevant sentences 425

that describe an entity’s intent, we explored two ap- 426

proaches: (1) prompting a language model to find 427

relevant sentences and (2) using string-matching 428

heuristics (Refer Appendix D). Qualitative assess- 429

ment showed that rule-based heuristics were more 430

effective and efficient than prompt-based methods, 431

which suffered from hallucinations. Therefore, we 432

relied on string-matching-heuristics for our frame- 433

work. After identifying the entity and intent, we use 434

LLMs with zero-shot prompting to verify their cor- 435

rectness with the code (Prompt: Appendix 5).We 436

also experimented with few-shot prompting by in- 437

cluding examples of various hallucination types 438

in code summaries along with the representative 439

code. However, performance degraded due to the 440

increased prompt length, consistent with findings 441

in recent works like Mirzadeh et al. (2024). 442

5.3 Instance Level Hallucination Detection 443

To identify the quality of the whole summary with 444

respect to the code, we aggregate the individual 445

entity-intent hallucination and set the threshold for 446

labelling as 1, as discussed in (Section 3). Specifi- 447

cally, the summary is marked as hallucinated if at 448

least one intent is identified as INCORRECT. 449

6 Experiments and Results 450

For our experiments, we consider summaries 451

from instruction-tuned versions of the SOTA code 452

and language models, from IBM-Granite family 453

(20B-instruct; 34B-instruct) (Mishra et al., 2024), 454

Llama3 family (8B-instruct and 70B-instruct) (Tou- 455

vron et al., 2023), CodeLlama family (7B and 456

6

Figure 3: Distribution of different hallucination cate-
gories proposed in the taxonomy. We observe that the
models tend to hallucinate most frequently due to the
high complexity of the code, while significant instances
of insufficient knowledge were also identified.

34B) (Roziere et al., 2023) and Mistral family (7B-457

instruct) (Jiang et al., 2023).458

For intent verification, we started our initial ex-459

periments with powerful open-source models like460

LLama3-70B (Touvron et al., 2023) but observed461

worse than random performance (F1 score- 0.37)462

due to the very high complexity of the task. Similar463

qualitative studies with other models in our prelimi-464

nary experiments prompted us to explore advanced465

models with stronger capabilities in code reason-466

ing, such as GPT4-Omni (Achiam et al., 2023) and467

Gemini-1.5-Flash (Team et al., 2023). Hyperparam-468

eters and other details can be found in Appendix469

(B).470

Model P R F1
Instance Level

Gemini-1.5-Direct 0.41 0.49 0.25
Gemini-1.5-ETF* 0.68 0.64 0.51
GPT4-Omni-Direct 0.48 0.50 0.28
GPT4-Omni-ETF* 0.72 0.74 0.73

Entity Level
Gemini-1.5 0.55 0.70 0.55
GPT4-Omni 0.59 0.69 0.61

Table 2: Hallucination Detection results. We consider
two evaluation aspects: 1) Instance Level, which aims
to label the entire summary, and 2) Entity level, which
labels individual entities in summaries. Here, P, R and
F1 refer to the precision, recall and F1 score.

Entity-Intent Verification: In this aspect of evalu-471

ation, we aim to verify the intent of an individual472

entity. We report the results of entity-intent verifi-473

cation in the Table 2. It can be observed that the474

GPT4-Omni F1-Score is 0.61 while the Gemini F1 475

Score is 0.55. Upon analysis, we found that these 476

models often classify INCORRECT tuples as COR- 477

RECT. This is mainly due to the convincing nature 478

of the summary, which may also be subjective due 479

to a lack of proper code context. For instance, we 480

observe significant errors when the code references 481

a function or library that is not defined in the input. 482

In such cases, the model infers the functionality 483

based on the library name (Identifier Name Bias 4), 484

which can be difficult to verify. 485

Instance Level Hallucination Verification: In 486

this aspect of evaluation, we aim to verify the over- 487

all summary instance. To compare our approach, 488

we consider a direct setup which involves provid- 489

ing a <code, summary> tuple to identify if the sum- 490

mary is hallucinated or not. We provide these re- 491

sults in Table 2, and it can be observed that our 492

approach provides significant improvement in F1- 493

Score when compared to the Direct approach. In 494

general, the direct evaluation method suffers from 495

hallucinations, such as when identified entities for 496

hallucination are absent from the summary or when 497

natural language entities are mistakenly considered 498

code entities, overall resulting in poor performance. 499

This conveys that our finer-grained evaluation pro- 500

vides a reliable method to identify hallucinated 501

summaries. It also helps with interpretability as it 502

identifies the hallucinated sections of the summary. 503

504

7 Analysis 505

In this section, we discuss various quantitative and 506

qualitative insights of our framework. We first dis- 507

cuss summaries generated by individual models 508

and then elaborate on the general predictive be- 509

haviour of our framework and cases of errors. 510

7.1 Quantitative Analysis 511

As shown in Table 3, Granite-20B produced shorter 512

summaries, while Llama3-70B generated longer 513

ones. Other models had similar average lengths, 514

reflecting varying elaboration due to differences in 515

training methodologies. For entity mapping, we 516

observe that Llama3-70B has the most mapped en- 517

tities, indicating the tendency of the model to stay 518

grounded. Granite-20B has the most unmapped 519

entities, which indicates its tendency to produce 520

content which may not be directly related to the 521

code, leading to extrinsic hallucination. 522

7

Models Summary Length CE count Fabricated (↓) Mapped(↑) Unmapped (↓)
Codellama-7B 236.10 8.638 35.68% 80.17% 17.65%

Mistral-7B 227.91 6.961 8.59% 79.92% 17.22%
Llama3-8B 257.21 9.45 6.44% 84.50% 12.77%
Granite-20B 148.95 7.10 4.25% 79.54% 19.64%
Granite-34B 214.50 6.55 2.45% 85.69% 12.41%

Codellama-34B 278.67 8.22 4.87% 79.78% 19.05%
Llama3-70B 313.58 10.01 0.15% 88.44% 8.69%

Table 3: Quantitative Analysis: This table presents summary statistics for all seven models, where (↑) means a
higher score is better and (↓) means lower is better. "CE count" is the number of code entities in the summary.
"Fabricated" is the percentage of fabricated entities during named entity recognition, normalized by the total entities.
"Mapped" is the percentage of entities correctly mapped to the code, and "Unmapped" refers to those unmapped,
both normalized by the total entity count.

7.2 Predictive Analysis523

Our framework captures ungrounded entities in524

summaries. For example, when the model refers525

to a non-existent Hub API based on the keyword526

‘HubException", the unmapped entities such as527

"Hub" are identified. This enables fine-grained528

and interpretable detection of hallucinations. We529

can see that the ungrounded entities like "Hub" are530

captured here, leading to more fine-grained and531

interpretable detection of hallucination.

private List <Transaction >
retrieveTransactions(String
rowStatusCd) throws HubException
{................}

Summary: This method retrieves transactions using the
“Hub" API based on the input parameters by the “Hub
database". It interacts with several key entities, including
“squid:s1166" and “squid:s1172", to gather the data......

Analysis: Hallucination and Unmapped Entities

532

7.3 Error Analysis533

This section discusses the two major error cases in534

our framework:535

Error Case 1-Creative Summary:536

public static int writeShort(
ArrayView target , int offset ,
short value) {...}

Summary: Here’s a more detailed implementation of the
above method:{JAVA CODE}.....

Creative Summary by Mistral 7B
537

During the generation, the model may mention538

certain aspects of the code in a creative way which539

may not be incorrect. In the given example, the540

code summary discusses a more elaborate version541

of the input code by restating an elongated ver- 542

sion. Here, the entities present in the summary are 543

predicted to be ungrounded by our framework. 544

Error Case 2- Changed Entity Form: Lan- 545

guage models may not use the exact names of code 546

entities in summaries. For example, the entity "Pre- 547

paredStatement" may be referred to as "prepared 548

statement," which could be missed during named 549

entity recognition due to the change in form. The 550

verification of these kinds of summaries may not 551

reflect the inaccuracies due to such sentences. 552

protected PreparedStatement
setObjects(Connection connection ,
String query , Object ... objects)
throws SQLException {....}

Summary:set the parameters of the prepared state-
ment using the provided objects. This method is likely
responsible for iterating over the objects and setting them
as parameters in the prepared statement. Finally, the
method returns the prepared statement object.....

Changed Entity Form by Llama3-70B
553

8 Conclusion and Future Work 554

Our work addresses the critical challenge of detect- 555

ing hallucinations in code summarization, a task 556

that demands a deep understanding of both pro- 557

gramming and natural languages. By introducing 558

a novel dataset and the Entity Tracing Framework 559

(ETF) with 73% F1 score, we establish a system- 560

atic approach to grounding code entities within 561

summaries, enabling a more interpretable and ac- 562

curate evaluation of explanations. In the future, 563

this framework can be enhanced by incorporating a 564

multi-agent system and leveraging multiple LLMs 565

in tandem to improve prediction accuracy. The cur- 566

rent framework can be further developed to better 567

mitigate the occurrence of hallucinations. 568

8

9 Limitations569

While the framework is designed to be generic,570

certain components—such as code parsers for571

entity detection—may be unavailable for low-572

resource programming languages like COBOL or573

Perl. Moreover, the performance of large language574

models (LLMs) heavily depends on their parameter575

size and the volume of training data. Given the576

complexity of this task, smaller open-source mod-577

els may struggle to perform effectively, reinforcing578

the need for larger LLMs. However, these larger579

models may not be scalable and often demand sig-580

nificantly greater computational resources.581

References582

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama583
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,584
Diogo Almeida, Janko Altenschmidt, Sam Altman,585
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.586
arXiv preprint arXiv:2303.08774.587

Vibhor Agarwal, Yulong Pei, Salwa Alamir, and Xi-588
aomo Liu. 2024. Codemirage: Hallucinations in589
code generated by large language models. arXiv590
preprint arXiv:2408.08333.591

Ayush Agrawal, Lester Mackey, and Adam Tauman592
Kalai. 2023. Do language models know when593
they’re hallucinating references? arXiv preprint594
arXiv:2305.18248.595

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel596
Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic597
Sala, and Christopher Ré. 2022. Ask me anything:598
A simple strategy for prompting language models.599
arXiv preprint arXiv:2210.02441.600

Alan D Baddeley and Graham J Hitch. 1994. Develop-601
ments in the concept of working memory. Neuropsy-602
chology, 8(4):485.603

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,604
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja-605
son Weston. 2023. Chain-of-verification reduces hal-606
lucination in large language models. arXiv preprint607
arXiv:2309.11495.608

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan609
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea610
Madotto, and Pascale Fung. 2023. Survey of halluci-611
nation in natural language generation. ACM Comput-612
ing Surveys, 55(12):1–38.613

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-614
sch, Chris Bamford, Devendra Singh Chaplot, Diego615
de las Casas, Florian Bressand, Gianna Lengyel, Guil-616
laume Lample, Lucile Saulnier, et al. 2023. Mistral617
7b. arXiv preprint arXiv:2310.06825.618

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 619
and Sunghun Kim. 2024. A survey on large lan- 620
guage models for code generation. arXiv preprint 621
arXiv:2406.00515. 622

Sungmin Kang, Louis Milliken, and Shin Yoo. 2024. 623
Identifying inaccurate descriptions in llm-generated 624
code comments via test execution. arXiv preprint 625
arXiv:2406.14836. 626

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng 627
Wang, Zhen Yang, and Li Zhang. 2024. Exploring 628
and evaluating hallucinations in llm-powered code 629
generation. arXiv preprint arXiv:2404.00971. 630

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 631
Svyatkovskiy, Ambrosio Blanco, Colin Clement, 632
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021. 633
Codexglue: A machine learning benchmark dataset 634
for code understanding and generation. arXiv 635
preprint arXiv:2102.04664. 636

Kishan Maharaj, Ashita Saxena, Raja Kumar, Abhijit 637
Mishra, and Pushpak Bhattacharyya. 2023. Eyes 638
show the way: Modelling gaze behaviour for hallu- 639
cination detection. In Findings of the Association 640
for Computational Linguistics: EMNLP 2023, pages 641
11424–11438. 642

Potsawee Manakul, Adian Liusie, and Mark JF Gales. 643
2023. Selfcheckgpt: Zero-resource black-box hal- 644
lucination detection for generative large language 645
models. arXiv preprint arXiv:2303.08896. 646

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and 647
Ryan McDonald. 2020. On faithfulness and factu- 648
ality in abstractive summarization. arXiv preprint 649
arXiv:2005.00661. 650

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, 651
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar. 652
2024. Gsm-symbolic: Understanding the limitations 653
of mathematical reasoning in large language models. 654
arXiv preprint arXiv:2410.05229. 655

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang 656
Shen, Aditya Prasad, Adriana Meza Soria, Michele 657
Merler, Parameswaran Selvam, Saptha Surendran, 658
Shivdeep Singh, et al. 2024. Granite code models: 659
A family of open foundation models for code intelli- 660
gence. arXiv preprint arXiv:2405.04324. 661

Vipula Rawte, Aman Chadha, Amit Sheth, and Amitava 662
Das. 2024. Tutorial proposal: Hallucination in large 663
language models. In Proceedings of the 2024 Joint 664
International Conference on Computational Linguis- 665
tics, Language Resources and Evaluation (LREC- 666
COLING 2024): Tutorial Summaries, pages 68–72. 667

Traian Rebedea, Razvan Dinu, Makesh Sreedhar, 668
Christopher Parisien, and Jonathan Cohen. 2023. 669
Nemo guardrails: A toolkit for controllable and safe 670
llm applications with programmable rails. arXiv 671
preprint arXiv:2310.10501. 672

9

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten673
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,674
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.675
Code llama: Open foundation models for code. arXiv676
preprint arXiv:2308.12950.677

Nihar Ranjan Sahoo, Ashita Saxena, Kishan Maharaj,678
Arif A Ahmad, Abhijit Mishra, and Pushpak Bhat-679
tacharyya. 2024. Addressing bias and hallucination680
in large language models. In Proceedings of the681
2024 Joint International Conference on Computa-682
tional Linguistics, Language Resources and Evalu-683
ation (LREC-COLING 2024): Tutorial Summaries,684
pages 73–79.685

Joseph Spracklen, Raveen Wijewickrama, AHM Sakib,686
Anindya Maiti, and Murtuza Jadliwala. 2024. We687
have a package for you! a comprehensive analysis688
of package hallucinations by code generating llms.689
arXiv preprint arXiv:2406.10279.690

Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan691
Ritter. 2020. Code and named entity recognition in692
stackoverflow. arXiv preprint arXiv:2005.01634.693

Gemini Team, Rohan Anil, Sebastian Borgeaud,694
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,695
Radu Soricut, Johan Schalkwyk, Andrew M Dai,696
Anja Hauth, et al. 2023. Gemini: a family of697
highly capable multimodal models. arXiv preprint698
arXiv:2312.11805.699

Yuchen Tian, Weixiang Yan, Qian Yang, Qian Chen,700
Wen Wang, Ziyang Luo, and Lei Ma. 2024. Code-701
halu: Code hallucinations in llms driven by execution-702
based verification. arXiv preprint arXiv:2405.00253.703

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier704
Martinet, Marie-Anne Lachaux, Timothée Lacroix,705
Baptiste Rozière, Naman Goyal, Eric Hambro,706
Faisal Azhar, et al. 2023. Llama: Open and effi-707
cient foundation language models. arXiv preprint708
arXiv:2302.13971.709

Simon Valentin, Jinmiao Fu, Gianluca Detommaso,710
Shaoyuan Xu, Giovanni Zappella, and Bryan Wang.711
2024. Cost-effective hallucination detection for llms.712
arXiv preprint arXiv:2407.21424.713

Wen Xiao and Giuseppe Carenini. 2022. Entity-714
based spancopy for abstractive summarization to715
improve the factual consistency. arXiv preprint716
arXiv:2209.03479.717

Haopeng Zhang, Semih Yavuz, Wojciech Kryscinski,718
Kazuma Hashimoto, and Yingbo Zhou. 2022. Im-719
proving the faithfulness of abstractive summariza-720
tion via entity coverage control. arXiv preprint721
arXiv:2207.02263.722

Yichi Zhang. 2024. Detecting code comment incon-723
sistencies using llm and program analysis. In Com-724
panion Proceedings of the 32nd ACM International725
Conference on the Foundations of Software Engineer-726
ing, pages 683–685.727

A Prompts 728

Summary Generation Prompt

Assume you are an expert in understanding
JAVA code.

Question: As a Java Expert, please provide a
detailed summary of the following Java code
with the following sections:
1. Inputs and outputs of the method
2. Business purpose
3. Detailed functional summary of the method.

“‘
{CODE}
“‘

729

Figure 4: Summary Generation Prompt- This prompt
was used for generating the summaries from different
language models

Intent Verification Prompt

Assume you are an expert in under-
standing JAVA code. Your task is
to verify whether the description of
’mapped_entity’ in the given text is
correct, incorrect, or irrelevant with
respect to the code. Only output one
of the following labels: [“CORRECT",
“INCORRECT", “IRRELEVANT"].

Description:
{relevant_sent}

[CODE]
{CODE}
[/CODE]

730

Figure 5: Intent Verification Prompt- This prompt was
used for verifying the description of a given entity based
on the sentences that mention the entity

10

Named Entity Recognition Prompt

Assume you are an expert in understanding
Java and performing named entity recognition
related to Java code. You have to label the
entities by considering the following labels:

Code Entities: CLASS, VARIABLE,
FUNCTION, LIBRARY, VALUE, DATA
TYPE, and HTML or XML TAG
Natural Language Entities: APPLICATION,
UI ELEMENT, LANGUAGE, DATA STRUC-
TURE, ALGORITHM, FILE TYPE, FILE
NAME, VERSION, DEVICE, OS, WEBSITE,
and USER NAME.

For every entity in the input mention the en-
tity_type in the given format only. Strictly
follow this template and only print the output
without any other word. You can follow the
example below:
“‘
{Incontext Example}
“‘
Now consider the summary describing a code
below:
{generated_summary}

731

Figure 6: Named Entity Recognition Prompt

Direct Evaluation Prompt

Assume you are an expert in under-
standing JAVA code. Your task is to
verify if the description of the code
entities present in the given summary is
correctly described or NOT as per the
code logic. Output all the ‘entity_name’
and a relevant_sentence’ corresponding
to the ‘entity_name’, which are incor-
rectly described. Do not provide any
other details. Strictly follow this format:
[entity_name : “”, relevant_sentence : “”]
Summary:
{SUMMARY}

Code:
{CODE}

732

Figure 7: Direct Evaluation Prompt- This prompt was
used to detect the hallucinated entities and sentences
from the summary without breaking into entities

B Experimental Setup 733

In our setup, we conducted all the experiments 734

using NVIDIA A100-SXM4-80GB GPU in a sin- 735

gle or multi-GPU environment. For our exper- 736

iments, we consider instruction-tuned versions 737

of the SOTA code and language models, from 738

IBM-Granite family (20B-instruct; 34B-instruct) 739

(Mishra et al., 2024), Llama3 family (8B-instruct 740

and 70B-instruct) (Touvron et al., 2023), CodeL- 741

lama family (7B and 34B) (Roziere et al., 2023) 742

and Mistral family (7B-instruct) (Jiang et al., 2023). 743

We use the GPT4-Omni version for our frame- 744

work and keep the temperature at 0.3 and set 745

max_new_tokens to 4000. 746

C NER Evaluation 747

This section discusses the NER performance of var- 748

ious models considered in this work. To perform 749

NER using LLMs, we provide the code summary 750

and NER tagset in the prompt (Appendix 5) using 751

a one-shot in-context example to extract all the en- 752

tities discussed in the summary accompanied by 753

their types. To evaluate the entity extraction, we 754

assess two key aspects: entity coverage and en- 755

tity type correctness. 1) Entity Coverage: This 756

measures whether all valid entities in the summary 757

are detected. We quantify this using the Jaccard 758

Similarity between the entities in the generated out- 759

put and those in the ground truth. 2) Entity Type 760

Correctness: This evaluates whether the detected 761

entities have been assigned the correct types. For 762

this, we use the F1 score as the metric. 763

Models Jaccard Similarity F1
GPT-4-Omni 0.81 0.92

Gemini-1.5-Flash 0.64 0.92

Table 4: NER Results on Human Data

We observed a good correlation between GPT4- 764

Omni and human data and, therefore, used it for 765

NER in our pipeline. As an additional contribu- 766

tion, we also evaluate the open-source models con- 767

sidered in this work for the task of Named En- 768

tity Recognition on summaries generated from 600 769

code snippets initially sampled from CodeXGlue 770

data using GPT predictions as ground truth. 771

11

Models Jaccard Similarity F1
Llama3-8B 0.5298 0.78
Llama3-70B 0.5981 0.90
Mistral-7B 0.4458 0.65

Granite-20B 0.4897 0.85
Granite-34B 0.48181 0.84

Codellama-7B 0.4586 0.84
Codellama-34B 0.5079 0.83

Table 5: NER Results on GPT Data

D String Matching Heuristics772

By string matching heuristics, we mean character-773

level matching with the following regex expres-774

sions:775

• The word is either preceded by or succeeded776

by a space char777

• ignore the “`” characters since some of the778

entities are enclosed using these quoted marks779

by models.780

• Account for brackets: some of the function781

names in the summary include “()” and some782

of the variables include “[]”783

The above regexes are designed to capture all the784

cases of entity forms in summary. It can be noted785

that these regex rules are evaluated in a single mod-786

ule.787

E Annotation Details788

We discuss our annotation process and the annota-789

tor’s guidelines here:790

E.1 Background791

The dataset was annotated by eight annotators who792

are experts in Java and held at least a Master’s793

degree in Computer Science, with some having a794

PhD in the field. On average, the annotators had 4+795

years of experience in Java programming.796

E.2 Guidelines797

The annotation process was conducted in two798

stages. In the first stage, we implemented a three-799

step procedure to annotate hallucinations in code800

summaries independent of specific hallucination801

categories.802

The first part of the annotation process involved val-803

idating the Named Entity Recognition Output. This804

involved annotating missed or incorrectly identi- 805

fied entities in the summary itself by selecting the 806

appropriate label from the drop-down. 807

The second part of the annotation involved evaluat- 808

ing if each sentence accurately describes the entity 809

in the code snippet, marking the entity-sentence 810

pair as: 811

• CORRECT: If the relevant sentence correctly 812

describes the code 813

• INCORRECT: If the relevant sentence incor- 814

rectly describes the code 815

• IRRELEVANT: If the relevant sentence does 816

not talk about the mapped entity itself 817

The third part involved rating the summary based 818

on hallucination severity as 819

• POOR (Most part is hallucinated): The gen- 820

erated code summary shows below-average 821

correctness. 822

• FAIR (Only some part is hallucinated): The 823

generated code summary meets expectations. 824

• GOOD (Almost no hallucination): The gen- 825

erated code summary is completely correct. 826

The second stage involved defining hallucination 827

categories based on annotator feedback and orga- 828

nizing them into a structured taxonomy (Figure 2). 829

This finalized taxonomy was then provided to the 830

annotators, who were asked to assign a specific 831

hallucination category from the predefined options. 832

Annotators were strongly encouraged to include 833

comments explaining their annotations, as these 834

explanations can be useful for researchers utilizing 835

our dataset. 836

12

	Introduction
	Related Work
	Datasets
	Categorization of Factors for Hallucination in Code Summarization
	Methodology
	Entity Verification
	Entity-Intent Verification
	Instance Level Hallucination Detection

	Experiments and Results
	Analysis
	Quantitative Analysis
	Predictive Analysis
	Error Analysis

	Conclusion and Future Work
	Limitations
	Prompts
	Experimental Setup
	NER Evaluation
	String Matching Heuristics
	Annotation Details
	Background
	Guidelines

