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ABSTRACT

Natural language is one of the most intuitive ways to express human intent. How-
ever, translating instructions and commands towards robotic motion generation and
deployment in the real world is far from being an easy task. The challenge of com-
bining a robot’s inherent low-level geometric and kinodynamic constraints with a
human’s high-level semantic instructions traditionally is solved using task-specific
solutions with little generalizability between hardware platforms, often with the
use of static sets of target actions and commands. This work instead proposes a
flexible language-based framework that allows a user to modify generic robotic
trajectories. Our method leverages pre-trained language models (BERT and CLIP)
to encode the user’s intent and target objects directly from a free-form text input
and scene images, fuses geometrical features generated by a transformer encoder
network, and finally outputs trajectories using a transformer decoder, without the
need of priors related to the task or robot information. We significantly extend
the previous work presented in Bucker et al. (2022) by expanding the trajectory
parametrization space to 3D and velocity as opposed to just XY movements. In
addition, we now train the model to use actual images of the objects in the scene
for context (as opposed to textual descriptions), and we evaluate the system in a
diverse set of scenarios beyond manipulation, such as aerial and legged robots. Our
simulated and real-life experiments demonstrate that our transformer model can
successfully follow human intent, modifying the shape and speed of trajectories
within multiple environments.

1 INTRODUCTION

Robots are increasingly working in proximity to humans, sharing living and working spaces. Within
this context, it is of high importance for the robotics community to research techniques that allow
autonomous agents to seamlessly interact with human users. This work focuses on one important
facet of human-robot interaction: given a user’s objective and an obstacle environment, how can
the robot best generate a trajectory that respects the human preferences while tending to safety and
dynamics constraints in its surroundings?

Robots of today are still largely pre-programmed for specific tasks, and have very limited capability to
operate and adapt to new contexts among unstructured human-centered environments. Ideally, in such
scenarios the robot should have the ability to recognize and understand natural language commands
in a given context and map them to the task-domain space — where tasks and constraints are largely
influenced by context, intent and affordances with objects (Jain et al., 2015). This paradigm shift
deviates from traditional motion planning, and requires methodologies that are able to integrate
multi-modal inputs coming from perception systems (for instance user-provided language commands
and robot vision) together with geometrical information to shape robot trajectories towards the desired
human intent. Figure 1 displays a typical application scenario for our trajectory adaptation method.

The core of our method lies within natural language understanding, which is the most intuitive way
for a user to express their intent. While large pre-trained large language models (LLMs) such as
BERT (Devlin et al., 2018), GPT3 (Brown et al., 2020) and Megatron-Turing (Smith et al., 2022)
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Figure 1: Trajectory reshaping obeying user’s constraints. Our method fuses natural language commands,
images of the environment, and geometrical data to generate the modified robot’s trajectory.
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Figure 2: Systems architecture: in blue, the language and contextual encoding module, compose mainly of
frozen pre-trained models. In green the geometrical encoding . In orange the multimodal tranformer decoder.

have revolutionized our ability to perform linguistic tasks in recent years, we have just started to
see pioneering works that incorporate large foundation language models with robotics tasks (Bucker
et al., 2022; Gadre et al., 2022; Shridhar et al., 2022; Ahn et al., 2022; Sharma et al., 2022). The use
of pre-trained LLMs is extremely beneficial within the robotics context because human-provided
annotations are scarce and often costly to obtain. The challenge which we explore in this paper then
becomes how we can exploit these rich semantic representations and align them with geometrical
trajectory data when mapping commands towards trajectory waypoints.

In this work we propose a framework that allows a user to reshape a trajectory using language
instructions. Our method uses a initialization from any geometrical planner (e.g. A", RRT" (LaValle,
2006), MPC (Garcia et al., 1989)), which are concerned solely about obstacle avoidance and dynamics
constraints, and augments it with semantic objectives. This paper serves as an extension of the
previous work in this domain by Bucker et al. (2022), but with significant improvements in the
architecture and experimental evaluations:

* Trajectory dimensionality: we expand the dimension of each trajectory waypoint from
planar (XY) to 3D and velocity in this work;

* Environment images: while the original paper used textual object labels (e.g. "Hammer’,
"Bottle’) as input to the network, here we use images of objects when inferring targets for
the user’s commands, which is a more realistic setting;

* Multi-platform evaluation: We expand the experimental evaluation towards multiple
robotics form factors beyond manipulators. We show that the model’s outputs are amenable
to different robot dynamics and motion controller in aerial and legged locomotion domains.

2 RELATED WORK

Natural language and robotics: Equipping robots with natural language models provides an
intuitive and straightforward interface to address these challenges through human interaction and
decision-making. Classically, modeling human-robot interactions using language is challenging



because it forces the user to operate within a rigid set of instructions (Tellex et al., 2020), or requires
mathematically complex algorithms to keep track of multiple probability distributions over actions
and target objects (Arkin et al., 2020; Walter et al., 2021). There has been an increase in recent
works that explore the use of deep models to implicitly keep track of the complex mapping between
language and actions, but the downside is that they often require vast amounts of data for training (Fu
et al., 2019; Hong et al.; Stepputtis et al., 2020; Goyal et al., 2021).

In the domain of navigation we find literature that investigates the use of multi-modal representations
fusing natural language and perception along with planning modules through the use of cost functions
or reinforcement learning (Huang et al., 2022; Shridhar et al., 2022; Hong et al.; Shao et al., 2021;
Goodwin et al., 2021; Bommasani et al., 2021; Szot et al., 2021; Anderson et al., 2018). In the
manipulation domain we also find the work of Shridhar et al. (2022), which uses CLIP (Radford et al.,
2021) embeddings to combine semantic and spatial information. To this end, it can be often beneficial
to use pre-trained multi-modal representations that align visual and language inputs representation
such as (Sun et al., 2019; Lu et al., 2019; Zhou et al., 2020; Su et al., 2019), which often using
BERT-style (Devlin et al., 2018) training procedures. Representations are often fine-tuned (Hao et al.,
2020; Thomason et al., 2020; Nguyen & Daumé, 2019) on the deployment scenario.

Transformers for robotics: Transformers, originally introduced in the language processing (Vaswani
et al., 2017), quickly proved to be useful in modeling long-range data dependencies other domains.
Within the robotics motion planning context, transformers architectures have been directly used for
trajectory forecasting (Giuliari et al., 2021) and reinforcement learning (Chen et al., 2021; Janner
et al., 2021). A more common use of transformers in robotics has been as feature extraction modules
for one or more modalities simultaneously that leverage large-scale pre-trained models (Bucker et al.,
2022; Ahn et al., 2022; Gadre et al., 2022; Shridhar et al., 2022; Sharma et al., 2022).

Particularly close to this paper is the work of Sharma et al. (2022). It uses pre-trained LLMs to
create a semantic cost map that guides a optimization-based motion planner to produce trajectories
that satisfy motion constraints provided by a user in free-form text. Similarly, our method also uses
LLMs for textual and visual feature extraction, however we use a transformer encoder-decoder pair to
align semantic information with geometric cues to recast trajectories. The related paper presented in
Bucker et al. (2022) validated our approach for 2D scenarios, and showed its effectiveness compared
to other interfaces for human-robot interaction. As described at the end of section 1 this paper extends
these ideas to higher dimensions and more realistic experimental settings.

3 APPROACH

Our overall goal is to provide a flexible interface for human-robot interaction within the context
of trajectory reshaping that is agnostic to robotic platforms. The user provides a natural language
command, and the robot’s body or end-effector behavior, which is expressed with a 3D trajectory
over time, is expected to be modified accordingly. Our trajectory generation system uses a sequential
waypoint prediction model that takes into account multiple data modalities from scene geometry,
environment images and the language input, all of which are fed into a transformer encoder-decoder
pair.

Beyond the user’s semantic intent, we expect the final trajectory to also respect safety and dynamics
space-state constraints, which can be achieved by post-processing the model’s output into a continuous
state space. This last stage allows our same model to be employed by different robot form factors by
using the proper inverse kinematics modules.

3.1 PROBLEM DEFINITION

Let &, : [-1,1] — R* be the original normalized robot trajectory which is composed by a col-
lection of N waypoints and associated velocities §, = {(z1,y1,21,v1), .-, (TN, YN, 2N, UN)) },
where z;,y;,2; and v; are the waypoint coordinates and the velocity at time step i, respec-
tively. We assume that the original trajectory obeys the system constraints and can be pre-
calculated using any desired motion planning algorithm, but falls short of the full task specifi-
cations. Let L;, be the user’s natural language input sent to correct the original trajectory, such as
Ly, = “Go slower when next to the fragile glasses”.



Let O = {0y, ...,Op} be a collection of M objects in the environment, each with a corresponding
position P(0;) € R? and image I(O;). Our goal is to learn a function f that maps the original
trajectory, user command and obstacles towards a modified trajectory &,,,4, Which obeys the user’s
semantic objectives and is contained in the system feasible domain K:

gmod = f(meim O) (1)

3.2 PROPOSED NETWORK ARCHITECTURE

We approximate function f from equation 1 by a parametrized model fy, learned directly in a data-
driven manner. This mapping is non-trivial since it combines data from multiple distinct modalities,
and also contains ambiguities in solution space since there are multiple trajectories that satisfy the
user’s semantic objective.

Our model architecture is divided into 3 main modules and one constraint satisfaction step. Fig. 2
shows the connection between this modules. First, a language and image encoder makes use of
distinct pre-trained feature encoders (BERT and CLIP) to generate a embedded representation of the
natural language input and to identify the possible objects referred to in the text. Next, a geometry
encoder uses object poses and trajectory waypoints as inputs and uses a transformer to learn geometric
relations between the original trajectory, speed profiles and the objects in the scene. Finally, a multi-
modal transformer decoder combines the embedded outputs of the two prior modules to generate the
modified trajectory autoregressively. We discuss each module in detail below:

Language and image encoder: The use of a large language model creates more flexibility in the
natural language interface, allowing the use of synonyms (shown in Section 4.2) and less training
data, given that the encoder has already been trained with a massive corpus. We use a pre-trained
BERT encoder Devlin et al. (2018), to produce semantic feature gggrr(z|Lin) from the user’s input.
In addition, we use the pre-trained text and image encoders from CLIP Radford et al. (2021) to extract
latent embeddings from both the user’s text g¢y ;p(2|Li,) and the M object images ¢ p(2]1(O)).
We compute the cosine similarity vector s between the visual and textual embeddings in order to
identify a possible target object for the user’s command. In section 4.2 we show that using the object’s
images for target identification brings equivalent results as our previous work Bucker et al. (2022)
with object textual descriptions, since CLIP maps both modalities to a joint latent space. Finally,
we concatenate the similarity vector s and the semantic features gggrr(2|Lin) forming what we call
semantic embedding gs.

Geometry encoder: The original trajectory &, is composed of points that are low-dimensional tuples
(x4, Y, 2, v;) € R%. In order to extract more meaningful information from each waypoint, we follow
the example of Giuliari et al. (2021) and apply a linear transform with learnable weights W, that
projects each of these points into a higher dimensional feature space. The poses P(O;) of each object
are also processed with the same linear transform, and padded with zeros for the velocity component.

We then concatenate the sequences of high-dimensional feature vectors from waypoints and objects
and use a transformer-based feature encoder T, to extract geometrical features for each element.
The use of a Transformer model is preferred for sequences over recurrent networks because its
architecture can intrinsically attend to multiple time steps simultaneously. Conversely, recurrent
networks suffer from vanishing gradient issues Giuliari et al. (2021), which negatively affect feature
extraction and training stability.

Multi-modal transformer decoder: Feature embeddings from both language and geometry are
combined as input to a multi-modal transformer decoder block Tge.. This block generates the reshaped
trajectory &4 sequentially, feeding the last token prediction as input to the next waypoint prediction.
This procedure is analogous to common transformer-based approaches for language translation Brown
et al. (2020); Vaswani et al. (2017), but in this case we can image that our model translates trajectories
from the original feature space towards a new space that obeys the user’s semantic constraints. We use
imitation learning to train the model, and employ the Huber loss Huber (1992) between the predicted
and ground-truth waypoints.
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Figure 3: Procedural dataset examples showing the original trajectory (red), ground-truth modifications, and
model predictions (blue). Images representing objects are crawled from the web (bottom left), and the speed
profile can also be modified (bottom right).

3.3 POST-PROCESSING AND EXECUTION

Once a trajectory is generated by our model it needs to be post-processed to allow for the robot’s
execution. The modules described here allow our method to be agnostic to specific robotics platforms.

Constraint satisfaction: Constraint satisfaction is a complex and open field of study in robotics. In
this work we establish two simplifying assumptions regarding our deployment objectives. First, the
base motion planner outputs a set of hard constraints K defined in the Cartesian space that define an
admissible region for the trajectories. Second, we assume that the original trajectory is already within
in the allowable constraint set. We post-process our model’s output trajectory by taking steps starting
at the original waypoint towards the direction of new one: £(t) = &,(t) + a(Emoa(t) — &o(t)), where
0 < o < 1. If at any step we find that one waypoint reaches an inadmissible region then its position is
not further updated. We note that more complex constraint satisfaction algorithms can be developed
here, but the simple approached described worked well with our scenarios.

Inverse kinematics: Once the final trajectory is obtained, the user may plug in any inverse kinematics
algorithm to obtain final trajectories for higher-dimensional degree of freedom robots. In this work
we evaluate our system with manipulators, aerial and legged robots.

3.4 SYNTHETIC DATA GENERATION

Data collection in the robotics domain can be challenging and expensive, specially when we require
alignment between multiple modalities such as language, vision, and geometry. We find different
strategies in the robotics literature to deal with these issues, ranging from costly large-scale online
user studies for language labeling (Bonatti et al., 2021; Mandlekar et al., 2018) all the way to
procedural data generation using heuristics (Stepputtis et al., 2020). Our work relies on purely
procedural generation of trajectory-language pairs. We make a key hypothesis that the use of
large-scale language models for feature encoding (gggrr, gcLip) reduces the data requirements in
terms of vocabulary diversity. We assume that if we are able to procedurally generate a small but
meaningful set of examples with semantically-driven trajectory modifications we can train an effective
transformer decoder, given that the BERT and CLIP encoders have already been trained with large
corpuses and are able to handle vocabulary and sentence variations. These assumptions are validated
experimentally in Section 4.4.

Each data sample is composed of a base trajectory &g, a natural language input L;,, a modified
trajectory &4, and a set of object O = {01, ..., O } represented as central poses P(O) and images
I(0). & is generated by fitting a spline in the Cartesian space through points generated in a random
walk. Objects poses are then randomly generated in space, and we sample object names from the
Imagenet dataset (Deng et al., 2009) as their labels, and obtain various images for each one using a
crawler over Bing Images using the object name as the web query.

As for the language input L;,,, we focus on three main trajectory modifications: i) changes in the
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absolute Cartesian trajectory space (e.g. “stay on the left”, “go more to the right”), ii) changes in
speed (e.g. “go faster”, “go slower when next to x”°), and iii) positional changes relative to objects
(e.g. “walk closer to x”, “drive further away from x”’). We pick a sample from a vocabulary bank
associate each modification type, and calculate a force vector field over the enviornment using a

handcrafted function F'(L;,, P(O)). The field strength may vary depending on additional intensifier



words that can be added to the sentences such as “very”, “a bit”, etc. In the section 4.2 we also
explore augmenting these language inputs using BART (Lewis et al., 2019), which is a pre-trained
paraphrasing model. Finally, we generate the ground-truth trajectory modification by iteratively
optimizing the original trajectory along the vector field.

We introduce one additional hyper-parameter in the dataset generation and model training which we
name locality factor. For the same language prompt, some robotics contexts might require small
localized trajectory changes while others might expect long-range modifications. After training, the
locality factor allows the user to define their desired range of model influence.

4 EXPERIMENTS

We conducted several simulated and real-world experiments to validate our methods. Our main goals
were to: 1) measure the effectiveness of our trajectory modification algorithm in 3D and velocity
space, ii) understand the influence of the different architectural components towards the model’s
success, and iii) validate the applicability of the model to multiple robotic platforms.

4.1 MODEL TRAINING DETAILS

We trained and evaluated the model described in Section 3 over a dataset containing 100k examples
of procedurally generated trajectory modification. Among these, we used 70k samples for training,
10k for validation and 20k for testing. We kept both BERT and CLIP encoder weights frozen in other
to avoid biasing the models towards our vocabulary, with gggrr(2|Lin) €7 and ¢¢; 1p(2|1(0)) €512
We upscale the dimensionality of each scene object pose from 4 — 400 (depth) using a learned
linear matrix, and apply the same procedure to 40 waypoints from the original trajectory &,. Tenc is @
1-block transformer encoder, and T is a 5-block transformer. Each transformer has 3 hidden layers
with 512 fully-connected neurons with Relu activations,one Layer Normalization, 8 attention heads.
We use the AdamW You et al. (2019) optimizer with an initial learning rate v = le — 4, a linear
warm-up period of 15 epochs and a learning rate decay of 10% after a plateau of 10 epochs on the
validation loss. We use a Nvidia Tesla V100 GPU with batch size of 16, and train the model for 500
epochs in approximately 2 hours.

4.2 SIMULATION EXPERIMENTS

We apply our method to several simulated scenarios. First, we show the basic workings of our
trajectory adaptation method through qualitative results which can be visualized in Figure 3. In
this scenario, we use sample objects that were randomly chosen from crawling the web and their
corresponding images. Assuming there is an initial trajectory that traverses around these objects,
and given language commands indicating how to modify the trajectory (farther/closer to the object,
faster/slower in the vicinity of an object), our model predicts trajectories that account for user intent.
We show both spatial modifications as well as changes in speed profile in the trajectories output by
our model.

Multi-platform evaluation: To validate our framework’s ability to adapt to different robot dynamics
and environments we designed simulated environments using the CoppeliaSim simulator with Bullet
physical engine Rohmer et al. (2013). While our original training dataset presents itself in a format
amenable to end-effector positions within a manipulation context, this new simulator allows us to test
our system on distinct robotic platforms, dynamics and base motion controllers.

Specifically, we employ an aerial vehicle and a legged hexapod platform. The drone operates within
a 3D global frame of reference and uses PID motion controller for trajectory tracking. In contrast,
the hexapod is constrained to 2D movements and uses an open-loop motion controller. As figure 4
shows, our approach can successfully modify the base trajectories (red) for different types of natural
language inputs. Additional experiments can be seen in the video attachment.

Baseline architectures: We compare our proposed multi-modal transformer against architecture
variations. Table 1 shows the result of a grid search over the number of layers and encoding dimension
(depth) of the transformer encoder and decoders. The model with one encode layer, 5 decoder layer
and an depth of 400 was chosen to be the reference model for our architecture and further baseline
comparisons. We measure performance in terms the similarity between our model’s output and the
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Figure 4: Model deployed with different robot form factors (drone and legged hexapod) for obstacle avoidance,
speed refinement and absolute cartesian changes. Original trajectory shown in red, modification in blue, and
corresponding speed profiles below each scenario.

ground-truth trajectory modification in the dataset. Our metrics are MSE (mean squared error), MAE
(mean absolute error), DTW (dynamic time warping), and DFD (discrete Frechet distance).

n.enc|n.dec|n.depth| param. MSE| | MAE| | DTW] | DFDJ
256 | 4.95M || 0.00306 | 0.0314 | 3.1085 | 0.1346
400 | 9.28M || 0.00235 | 0.0273 | 2.6966 | 0.1198
256 | 6.53M || 0.00280 | 0.0284 | 2.8455 | 0.1265
400 | 12.7M || 0.00238 | 0.0231 | 2.4900 | 0.1152
256 | 4.42M || 0.00274 | 0.0272 | 2.8122 | 0.1245
400 | 8.22M || 0.00224 | 0.0229 | 2.4445 | 0.1130
256 | 6.00M || 0.00277 | 0.0264 | 2.7527 | 0.1238
400 | 11.2M || 0.00234 | 0.0227 | 2.4699 | 0.1138
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Table 1: Architecture variations

Table 1 provides valuable findings regarding the model architecture. For instance, increasing the
number of encoder blocks caused no improvement on the model’s performance. Furthermore the
model with 3 decoder blocks presented slightly better results than the assumed baseline of 5 decoder
block.

In addition to model size, in table 2 we compare different architecture structures. The Naive approach
simply copies the original trajectory. The No NL input baseline represents a universal prior of the
dataset, with an empty language command. Ours light is a more compact version of our model with 1
enc., 3 dec. and depth of 256.



Approach | Param. || MSE| | MAE| | DTW/| | DFD}
Naive - 0.00437 | 0.02709 | 3.568 | 0.1387
No NL input | 11.2M || 0.04193 | 0.1663 15.097 | 0.5674
Ours light 4,42M || 0,00274 | 0,0272 2,8122 | 0,1245
Ours 11.2M || 0,00234 | 0,02273 | 2,4699 | 0,1138

Table 2: Baseline architecture comparisons
"Stay further away from the lamp”
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Locality factor: Fig. 5 shows the response of our model for different
values of the locality factor (LF). This hyper-parameter provides useful 0=
information on the range of the desired change change over the trajectory,
which can serve as a finer user control besides the language input itself.
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Dataset size and augmentations: Table 3 shows the effect of increasing “
the training dataset size in model performance, as well as the effect of
applying augmentations in the training data. An increase in the dataset
size from 1k to 10k samples significantly improves the validation metrics
with minimal challenges besides a longer training time, given that data
can be generated procedurally without expensive human annotations. The
geometrical augmentation (randomly shifting and scaling operations) shows a modest increase in
performance.

Figure 5: Locality factor
influence

Without geometrical augmentation
Dataset size | MSE| MAE| | DTWJ] DFD|

1k 0.02608 | 0.11063 | 8.20700 | 0.46488
10k 0.00243 | 0.02347 | 2.47016 | 0.11683
100k 0.00229 | 0.02201 | 2.39301 | 0.11175

With geometrical augmentation
Dataset size | MSE| MAE| DTW/] DFD/|

1k 0.01420 | 0.07590 | 5.35290 | 0.35737
10k 0.00248 | 0.02324 | 2.50841 | 0.11593
100k 0.00234 | 0.02273 | 2.46992 | 0.11383

Table 3: Effect of dataset size and geometrical augmentation.

4.3 REAL ROBOT EXPERIMENTS WITH MANIPULATION

We deployed our model in real-world experiments using a 7-DOF PANDA Arm robot equipped
with a claw gripper. An off-the-shelf CPU/GPU setup computes the arm’s low-level controller and
our model. A camera mounted on the workbench captures images of the obstacle setting, and a
YOLOV3Redmon & Farhadi (2018) object detector extracts bounding boxes of the five most likely
objects to be sent to the CLIP encoder. Snapshots of the setup and results can be found in figures 1
and 6. Additional experiments shown in the video attachment.

4.4 USER STUDY EXPERIMENTS

We evaluated the model’s performance against baseline architectures in a user study, collecting in
total 300 data-points from 10 participants. Each user was asked to evaluate within a 1-5 Likert scale
the trajectory changes generated from 5 different approaches considering a given NL interaction.
Figure 7 summarizes the distribution of answers for each baseline. ”Ground Truth” represents the
procedural dataset used for training. As the chart shows, most users considered that our trajectory
modifications in the dataset correctly represented the language commands. A similar pattern emerged
from our trained model (”Ours”), which yielded high-quality ratings. The ”Ground Fake” approach
shows samples of the dataset with intentionally wrong modifications, opposite to the ground truth,
for the means of comparison. Non surprisingly it is rated with the lowest score. The ”"No language”
baseline was also badly evaluated, showing that the model’s performance is highly dependent on
the language input, and that the model does not memorizes bias purely based on the scene context.
Finally, the ”Projected 2D distribution shows a direct comparison with the previous work in Bucker
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Figure 6: Real life setup and sample interaction. It depicts the speed modification through online language
instructions. An approximated representation of the original trajectory is shown in red, while the modified one in
blue. Full videos in the supplementary material.

et al. (2022), which produces pure 2D trajectory modifications. Its bad performance motivates the
importance of the additions of 3D and velocity space that we incorporate in this paper.

B yes, much better
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N No, a bit wrong
I No, totally wrong
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Ground Truth ours Ground Fake No language Projected 2D model

Figure 7: User study distributions of answer for each baseline.

After the initial evaluations, each user was asked to freely interact with 5 trajectories using a text
box, and next judge the quality of the generated modifications. 48% of the user inputs presented
words never seen by the model during the training process (out of distribution). Even under these
challenging conditions the model only failed on 24% of the cases. Table 4 compares our model’s
performance for in and out of distribution settings.

Textual interaction | Better [%] | Same [%] | Worse [%]
In-dataset vocabulary 66.0 26.0 8.0
Free user input 46.0 30.0 24.0

Table 4: Evaluation of out of distribution NL interactions

5 CONCLUSION AND DISCUSSION

This work develops a flexible language-based human-robot interface that allows a user to modify
existing robotic trajectories. Our method leverages pre-trained large language and image models
(BERT and CLIP) to encode the user’s intent and target objects directly from a free- form text input
and scene images, fuses geometrical features generated by a transformer encoder network, and outputs
trajectories using a transformer decoder.

Our model can operate manipulate robot trajectories in 3D and velocity spaces. The output trajectory
can be post-processed and applied towards diverse different platforms such as manipulation, aerial
vehicles and legged robots. We provide a comprehensive set of simulated and real-world experiments
demonstrating the effectiveness of our model and highlighting insights into what the model is learning.



In future iterations of this work we seek to explore additional modalities such as force inputs, as
well as the ability of the model to interact with the user over longer time horizons and multiple
instruction inputs. We hope that our framework can serve as a building block for a novel paradigms
in human-robot collaboration that employ large language models.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3674-3683, 2018. doi: 10.1109/CVPR.2018.00387.

Jacob Arkin, Daehyung Park, Subhro Roy, Matthew R Walter, Nicholas Roy, Thomas M Howard,
and Rohan Paul. Multimodal estimation and communication of latent semantic knowledge for
robust execution of robot instructions. The International Journal of Robotics Research, 39(10-11):
1279-1304, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Rogerio Bonatti, Arthur Bucker, Sebastian Scherer, Mustafa Mukadam, and Jessica Hodgins. Batter-
ies, camera, action! learning a semantic control space for expressive robot cinematography. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7302-7308. 1IEEE,
2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, and Rogerio Bonatti.
Reshaping robot trajectories using natural language commands: A study of multi-modal data
alignment using transformers. International Conference on Intelligent Robots and Systems (IROS),
2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to
goals: Inverse reinforcement learning for vision-based instruction following. arXiv preprint
arXiv:1902.07742, 2019.

Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and Shuran Song. Clip
on wheels: Zero-shot object navigation as object localization and exploration. arXiv preprint
arXiv:2203.10421, 2022.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and
practice—a survey. Automatica, 25(3):335-348, 1989.



Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer networks for
trajectory forecasting. In 2020 25th International Conference on Pattern Recognition (ICPR), pp.
10335-10342. IEEE, 2021.

Walter Goodwin, Sagar Vaze, loannis Havoutis, and Ingmar Posner. Semantically grounded object
matching for robust robotic scene rearrangement. arXiv preprint arXiv:2111.07975, 2021.

Prasoon Goyal, Raymond J Mooney, and Scott Niekum. Zero-shot task adaptation using natural
language. arXiv preprint arXiv:2106.02972, 2021.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. Towards learning a
generic agent for vision-and-language navigation via pre-training. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 13134-13143, 2020. doi: 10.1109/
CVPR42600.2020.01315.

Y Hong, Q Wu, Y Qi, C Rodriguez-Opazo, and S Gould. A recurrent vision-and-language bert for
navigation. arxiv 2021. arXiv preprint arXiv:2011.13922.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207,
2022.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pp. 492-518.
Springer, 1992.

Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. Learning preferences for ma-
nipulation tasks from online coactive feedback. Int. J. Robotics Res., 34(10):1296-1313, 2015. doi:
10.1177/0278364915581193. URL https://doi.org/10.1177/0278364915581193.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. Advances in neural information processing systems,
32,2019.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao,
John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In Conference on Robot Learning, pp. 879-893. PMLR, 2018.

Khanh Nguyen and III Daumé. Help, anna! visual navigation with natural multimodal assistance via
retrospective curiosity-encouraging imitation learning, 09 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748-8763. PMLR, 2021.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly v-rep): a versatile and scalable
robot simulation framework. In Proc. of The International Conference on Intelligent Robots and
Systems (IROS), 2013. www.coppeliarobotics.com.

Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2robot: Learning
manipulation concepts from instructions and human demonstrations. The International Journal of
Robotics Research, 40(12-14):1419-1434, 2021.


https://doi.org/10.1177/0278364915581193

Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton, Tucker Hermans, Antonio
Torralba, Jacob Andreas, and Dieter Fox. Correcting robot plans with natural language feedback.
arXiv preprint arXiv:2204.05186, 2022.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on Robot Learning, pp. 894-906. PMLR, 2022.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deepspeed
and megatron to train megatron-turing nlg 530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990, 2022.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni Ben Amor.
Language-conditioned imitation learning for robot manipulation tasks. Advances in Neural
Information Processing Systems, 33:13139-13150, 2020.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530, 2019.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A
joint model for video and language representation learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7464-7473, 2019.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in Neural Information Processing
Systems, 34, 2021.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots that use language.
Annual Review of Control, Robotics, and Autonomous Systems, 3:25-55, 2020.

Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog naviga-
tion. In Conference on Robot Learning, pp. 394—406. PMLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, fLukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Matthew R Walter, Siddharth Patki, Andrea F Daniele, Ethan Fahnestock, Felix Duvallet, Sachithra
Hemachandra, Jean Oh, Anthony Stentz, Nicholas Roy, and Thomas M Howard. Language
understanding for field and service robots in a priori unknown environments. arXiv preprint
arXiv:2105.10396, 2021.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng Gao. Unified
vision-language pre-training for image captioning and vqa. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 13041-13049, 2020.



	1 Introduction
	2 Related Work
	3 Approach
	3.1 Problem Definition
	3.2 Proposed Network Architecture
	3.3 Post-processing and execution
	3.4 Synthetic Data Generation

	4 Experiments
	4.1 Model training details
	4.2 Simulation Experiments
	4.3 Real Robot Experiments with Manipulation
	4.4 User study experiments

	5 Conclusion and Discussion

