BUGPILOT: COMPLEX BUG GENERATION FOR EFFICIENT TRAINING OF SWE AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

High quality bugs are key to training the next generation of language model based software engineering (SWE) agents. We introduce a novel method for synthetic generation of difficult and diverse bugs. Our method instructs SWE Agents to introduce a feature into the codebase whereby they may unintentionally break tests, resulting in bugs. Prior approaches often induce an out-of-distribution effect by generating bugs intentionally (e.g. by introducing local perturbation to existing code), which does not reflect realistic development processes. We do a qualitative analysis to demonstrate that our approach for generating bugs more closely reflects the patterns found in human-authored edits. Through extensive experiments, we demonstrate that our bugs provide more efficient training data for supervised fine-tuning, outperforming other bug datasets by 2% with half the training data. Finally, we train with reinforcement learning on our high-quality generated bugs; starting with a strong base model that we trained with a mixture of previously available bugs. We thereby obtain a state-of-the-art 32B parameter model on SWE-Bench Verified achieving 52.4% pass@1 averaged over three seeds.

1 Introduction

Large language model (LLM)—based agents have recently made strong progress on software engineering (SWE) tasks (Yang et al., 2024; Jimenez et al., 2023; Pan et al., 2024; Wei et al., 2025). However, the strongest agents rely on proprietary models, and improving open-weight models on these tasks remains challenging. Training using these bug examples using supervised fine-tuning or reinforcement learning is a promising path (Yang et al., 2025; Jain et al., 2025; Luo et al., 2025; Wei et al., 2025), but scaling this approach requires large, high-quality bug datasets.

Existing bug curation strategies fall into two camps. One mines real bugs from pull requests and commits in open-source repositories, which demands careful issue localisation and filtering (Xie et al., 2025; Badertdinov et al., 2025; Pan et al., 2024; Wang et al., 2025). Alternatively, synthetic bug generation injects faults into existing codebases, allowing researchers to scale data without being bottlenecked by the availability of existing commits, pull requests or issues (Yang et al., 2025). A notable example of synthetic bugs is SWE-Smith Yang et al. (2025), which relies on hand-engineered rules and LLM re-implementations of existing functions and pull requests to perturb existing functions until tests break. Although useful, this method produces datasets skewed toward a narrow set of bug types with fixes that are short and typically confined to a single file. This might undermine the transferability of models trained on such synthetic data to real-world scenarios, where bugs typically arise through natural development processes rather than deliberate injection of errors.

In this work, we introduce BUGPILOT, a novel approach to synthetic bug generation that leverages software engineering agents to create more naturalistic bugs through realistic development workflows. One naive approach to agentic bug generation would be what we refer to as BUGINSTRUCT: to explicitly instruct a SWE agent to *intentionally* introduce a bug in an existing code-base. This approach generates bugs that qualitatively do not resemble realistic bugs. Therefore, rather than intentionally injecting errors into existing code, our method tasks SWE agents with developing new features within existing repositories (which we refer to as FEATADD). This results in naturally introducing bugs when these implementations *unintentionally* break existing test suites. We detect when such breakages arise and record the state of the repository at this point as containing a bug that

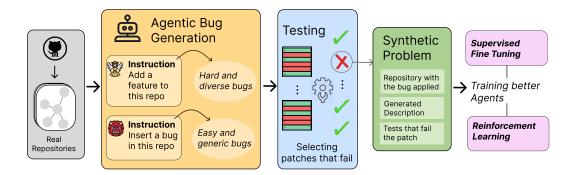


Figure 1: **Illustration of our BUGPILOT pipeline.** First, we instruct SWE Agent (Yang et al., 2024) with Claude Sonnet 4 to introduce bugs, either through deliberate attempts or by attempting to add a feature. Then, we check whether these modifications resulted in the tests for the repository failing. If the tests fail, then we add this to our dataset of bugs. Otherwise, we ask the model to continue changing the code until the tests fail.

needs to be resolved. This process mirrors authentic software development scenarios where bugs commonly arise as unintended side effects of feature development and code modifications.

Through qualitative and quantitative analyses, we demonstrate that our generated bugs are not only more challenging for current agents, but are more diverse and exhibit more natural characteristics compared to existing synthetic datasets. Comparing *unintentionally* generated bugs (FEATADD) to *intentionally* generated bugs (BUGINSTRUCT and SWE-SMITH) when used to do further fine-tuning from a base model reveals that unintentional bugs provide much more efficient training examples performing 2% better with half the number of training trajectories (1.2k vs. 2.3k). Using our bugs to train an agent using reinforcement learning, our model achieves state-of-the-art results for a 32B with 52.4% on SWE-Bench Verified with a 32B parameter model (Pass@1 averaged across 3 seeds).

Our contributions are fourfold: (1) we propose BUGPILOT, a novel methodology for generating synthetic bugs through realistic development workflows with SWE agents (Figure 1), (2) through qualitative analysis we categorise bug datasets and show that bugs generated through FEATADD reflect a more natural category distribution (Section 5.1), (3) we demonstrate that *unintentionally* generated bugs provide more efficient training data for supervised finetuning than *intentionally* generated bugs, (4) we achieve state-of-the-art results for a 32B model of 52.4% Pass@1 over three seeds by training with reinforcement learning on our unintentionally generated FEATADD bugs.

2 Related Work

Software Engineering Benchmarks and Tasks SWE-Bench (Jimenez et al., 2023) introduced 2, 294 problems from real GitHub issues and the corresponding solution PR, driving the first benchmark to study whether state of the art LLM agents can solve real-world SWE tasks. However, this initial set of problems has a few issues: (1) the solvability of these tasks, (2) the relative complexity of these tasks, and (3) the limited number of bugs. To solve the former, SWE-Bench Verified was introduced: a set of tasks verified by human engineers of whether they were solvable given the information described in the problem statement. To address the issue of a limited number of bugs, SWE-Fixer introduced a dataset of 110k human-authored bugs extracted from GitHub Issues Xie et al. (2025), SWE-rebench Badertdinov et al. (2025) introduced a set of 60k human generated tasks and SWE Gym introduced 2.4k new tasks Pan et al. (2024). Recent work has studied the synthetic generation of bugs in the form of SWE-Smith (Yang et al., 2025) whereby LLMs rewrite functions to have bugs and R2E-Gym (Jain et al., 2025) where bugs are extracted from the commits of repositories rather than the GitHub issues.

Frameworks for Software Engineering Agents Most work revolving around the development of improved software development frameworks involves improving the agentic framework and tools surrounding the base LLM agent. There have been many agentic frameworks that subsequently improve on SWE Bench performance such as (Yang et al., 2024; Ma et al., 2024; Yuan et al., 2025;

Wang et al., 2024; Jain et al., 2025) implementing new tools such as a pdb debugger in Debug Gym, or complex navigation and manipulation tools in Moatless tools. In contrast to agentic approaches are pipeline based approaches such as Agentless Xia et al. (2024), a framework where instead of relying on an end-to-end agent loop, the tool goes through three pre-set phases: localization, repair, and patch validation.

Learning Approaches for Developing Better SWE Agents A number of training frameworks have been introduced to train better SWE agents using supervised finetuning and reinforcement learning Luo (2025); Wei et al. (2025). Current learning paradigms that have been attempted include SFT, performed with SWE-Smith bugs, R2E-Gym bugs, and SWE-gym bugs as well as RL performed with R2E-Gym bugs and RL with human-authored bugs Wei et al. (2025). Moreover, approaches such as test-time scaling using test generation or LLM-as-a-judge yield significant performance improvements in both SWE-Gym and R2E-Gym, including using Monte Carlo tree search (MCTS) (Antoniades et al., 2024) or inference time process reward models Gandhi et al. (2025) to guide better search procedures with verification.

3 AUTOMATIC BUG GENERATION

Synthetic bug generation pipelines enable us to generate bugs for abitrary repositories and languages without relying on an existing GitHub history. Before introducing our agentic generation approach, we briefly describe two existing bug generation approaches, R2E-GYM (Jain et al., 2025) and SWE-SMITH (Yang et al., 2025):

Human-authored Edits. The R2E-GYM dataset of bugs is created by rolling back commits from pre-existing repositories. The authors identify Python repositories with many commits, then use heuristics to filter commits. For example, they limit the edit length of the commit to be 100 edited lines in total across all non-test files files and the number of files edited to be less than five. More details on their filtering techniques can be found in their paper Jain et al. (2025).

SWE-Smith: Synthetic Bug Generation. For SWE-SMITH bugs, the authors start with 128 repositories and use procedural modifications along with LLM reimplementation of a specific function to break the tests in the repository and create a bug example. They also introduce PR Mirroring where an LLM is prompted to reverse an existing PR by regenerating each file and undoing the PR change. To create bugs that are more complicated, they join bugs together (e.g. if there are two simple bugs in two different files they merge them together to create one bug with two different files).

3.1 BUGPILOT: AGENTIC GENERATION OF BUGS

Current methods for generating synthetic bugs (e.g. SWE-Smith) by perturbing the code until the tests break. We hypothesize that SWE agents themselves might be used to introduce bugs in a way more reflective of real-life software engineering. We start with the set of 128 SWE-Smith repositories where, for each repository we have a containerised environment (docker image) where the codebase along with all dependencies has been installed. To synthesize bugs within these repositories we use SWE-Agent (Yang et al., 2024) with Claude Sonnet 4. The agent interacts with these containers and ultimately makes a set of changes to files across the repository. The agent consists of a loop that prompts the language model with high level instructions along with outputs from the last step. The language model is asked to generate a tool call, where possible tools in our configuration include viewing / editing files as well as executing terminal commands in the container. The loop terminates after the language model generates the submit tool or if certain limits are reached. An illustration of our bug generation pipeline can be found in Figure 1 and a comparison between the bugs generated using FEATADD approach can be found in Figure 2

There are two ways to introduce bugs using this framework:

Intentional Bug Introduction (BUGINSTRUCT) We instruct the agent to make changes to the repository that result in a bug. This is done by enriching the system prompt by providing possible

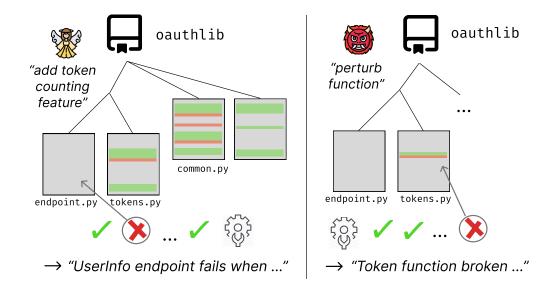


Figure 2: Contrasting approaches to adding bugs. On the left, our FEATADD approach first attempts to implement a token counting feature in the repository. This results in large changes across multiple files as well as a test case failure arising from a seemingly unrelated part of the repository. In contrast on the right, approaches like SWE-SMITH and our proposed baseline BUGINSTRUCT make local perturbations to the code which cause related tests to fail. We can see that FEATADD more closely resembles how bugs arise during the development process, where test failures can occur due to complex interactions between changes.

ways to integrate bugs as well as asking it to verify whether the changes broke existing functionalities. We will see later that intentionality makes generated bugs easy and generic. This difference in distribution from real world bugs makes them less effective at improving agentic coding performance. We call this method BUGINSTRUCT.

Buggy Feature Addition (FEATADD) Many real world bugs in the software development process arise when existing code is modified incorrectly to support new features. We emulate this by tasking our agent to come up with and implement a new feature for the given repository. Whenever the feature breaks an existing test, a bug is created. Unlike the earlier approach, bugs here are *unintentional* and thus are more likely to align to naturally occurring bugs. We refer to this method as FEATADD.

For both of these approaches, given a repository, we execute both strategies multiple times in order to collect differing approaches from at performing the same task. We evaluate whether a run resulted in a bug by running tests after the agent has submitted and making sure at least one test fails (see Figure 3). The description of the bug for each "buggy" run is generated by prompting the language model to generate a bug-report given the output of the failed tests, following SWE-Smith (Yang et al., 2025). The final synthetically generated bug is thus composed of the code changes made by the agent during its execution along with the failing test and its outputs. Our approach enjoys the same scalability benefits of SWE-smith, wherein once a repository is setup in a containerised environment, no additional manual effort is required in order to generate more bugs.

4 DATASETS AND TRAINING METHODOLOGY

Below we describe how we collect trajectories for training from various bug datasets, along with our methodology for training on these trajectories.

Agentic Framework For all our inference and training purposes we use R2EGym as our agentic scaffold, because of it's previous usage and strong performance on SWE-Bench Verified Jain et al. (2025). Moreover, the R2EGym scaffold is built into rllm Tan et al. (2025), a framework for training

Models	R2E-GYM	SWE-SMITH	BugInstruct	FEATADD
Claude Sonnet 4	63.5%	65.9%	54.6%	41.4%
Successful Trajectories	3,208	2,611	2,330	1,243
Avg Steps	42.0	39.2	43.1	45.5
Avg Observation Tokens	460.1	448.8	464.7	433.5
Avg Assistant Content / Trajectory	34.5	30.5	32.9	35.3
Avg Assistant Content Tokens	56.8	59.1	60.4	61.0
GPT-40	32.8%	29.4%	13.4%	18.5%
Avg Assistant Content / Trajectory	5.6	5.8	6.2	7.7
Avg Assistant Content Tokens	150.7	152.1	157.7	154.4
GPT-5	68.7%	77.5%	67.8%	53.4%
Avg Assistant Content / Trajectory	0.8	0.5	12.3	14.5
Avg Assistant Content Tokens	465.6	481.3.6	21.0	22.0

Table 1: Solve statistics of Claude Sonnet 4, GPT-40 and GPT-5 using R2E-Gym as the agentic scaffold. Agentic bugs generated via either FEATADD or BUGINSTRUCT are more difficult than the SWE-SMITH and R2E-GYM bugs, with FEATADD bugs being the most difficult of them all across the three models.

language models with RL on SWE tasks, making it convenient for us to compare SFT to RL. The R2EGym scaffold offers to the agent four tools: the file-editor, execute-bash, search and finish.

Supervised Fine-tuning We collect trajectories for training with supervised fine-tuning (SFT) using Claude Sonnet 4 and bug datasets from all four of the bug generation techniques described above. To create the dataset for SFT, we use rejection sampling on each of the datasets. We generate the trajectories using a 64k context length and 10k max prompt length and then filter them based on success. The statistics of these trajectories are reported in Table 1. For our student model, we choose Qwen3-32B (Team, 2025). We fully fine-tune our model using LlamaFactory (Zheng et al., 2024) with a learning rate of 1e-5, no weight decay, we perform 2 epochs of training with a maximum context length of 32k tokens. If a trajectory generated at 64k tokens is successful, we train on the first 32k tokens. This occupies one node of 8 Nvidia H100 for 10 hours.

Reinforcement Learning Recent work has shown promise in using Reinforcement Learning to fine-tune LLMs for tasks with verifiable rewards, especially for Maths and Competition programming. Software development tasks as discussed in this paper differ from the above in that they are multi-turn, requiring the model to interact with the environment in a diverse way. Following DeepSWE (Luo et al., 2025), we employ the RLLM (Tan et al., 2025) framework for fine-tuning language models using RL with various rewards. Similar to the SFT paradigm, we generate rollouts with a max context length of 64k tokens, but truncate to the first 32k tokens for training. To train reinforcement learning for 25 steps with 64 bugs per step and 8 rollouts per bug, we require 8 nodes of 8H100s for 50 hours.

Evaluation Evaluation was performed on SWE-Bench Verified and every model was run over three seeds with a context length of 64k, 100 max steps and a temperature of 1. Full hyperparameters can be found in the appendix.

Methodology and Data Mixtures Our main experiments use a base mixture of R2E-GYM and SWE-SMITH bugs totaling 5,621 successful resolution trajectories from Claude Sonnet 4 (as reported in Table 1, we have 5,819 trajectories for these two datasets but we leave out 198 trajectories for validation). We call this mixture BASEMIX. We first fine-tune our base model on this mixture followed by perform another round of fine-tuning on our agentic generated bugs BUGINSTRUCT and FEATADD bugs. For a fair comparison, we perform this second stage of fine-tuning on additional 1k trajectories (same size as the above datasets) from R2E-GYM and SWE-SMITH, not included in BASEMIX.

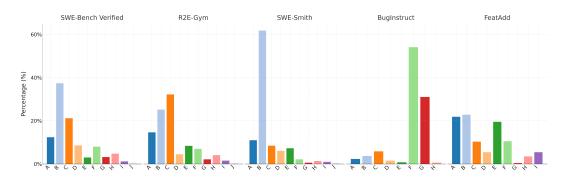


Figure 3: **Distribution of common bug types across different bug datasets.** FEATADD demonstrates the most even distribution of bugs compared to prior work as well as our agentic baseline BUGINSTRUCT. SWE-SMITH bugs shows a particular skew towards B (logic and conditional bugs). This can be explained by the rule based and local nature of the SWE-SMITH generation process. Most bugs generated by BUGINSTRUCT are caching (F) or mutability (G) bugs. The distribution of FEATADD bugs is similar to R2E-GYM and SWE-BENCH, which is closest to the human authored edit distribution found in real repositories.

Feature	SWE-B-V	R2E-GYM	SWE-SMITH	BUGINSTRUCT	FEATADD
Total tasks	500	1000	1000	1000	785
Problem tokens	447.7	264.6	312.0	332.6	304.4
Avg diff patch tokens	394.0	352.6	598.2	435.3	4376.0
Avg files modified	1.2	2.6	1.2	1.3	4.2
Avg net lines changed	5.6	36.0	-3.2	12.4	415.9
Unique repositories	12	10	125	111	86
Avg tasks per repo	41.7	100.0	8.0	9.0	9.1

Table 2: **Bug Statistics.** We compare bugs from different generation methods with SWE-Bench Verified. R2E-GYM uses human-authored edits, while others use synthetic generated bugs. FEATADD characteristics differ significantly from previous approaches in that the patch used to introduce the bug has many more tokens and on average twice as many files changed.

5 RESULTS

5.1 BUG ANALYSIS

We first study the characteristics of the bugs generated by our approach by categorizing bugs and comparing the distribution with both human-authored bugs (SWE-Bench Verified and R2E-GYM) and AI-generated (SWE-SMITH).

Bug Categorization In Figure 3 we present results from an LLM-aided categorisation of bugs into common bug-types. Bugs generated using FEATADD demonstrate a more even distribution of bugs across various categories compared to prior work, which is skewed to a few bug types. This demonstrates that FEATADD bug generation approach can be used to generate diverse bugs synthetically, which match real world bug distributions, unlike prior synthetic generation baselines. Further details of the bug categorisation can be found in Appendix C and examples of FEATADD bugs of different types can be found in Appendix B.

Bug Statistics In Table 2, we study how the patch that introduces the bugs differs quantitatively across different generation methods. FEATADD results in starkly different bug patches to the other approaches, with the changes usually being made across multiple files and of a greater magnitude.

Bug Difficulty We evaluate bug difficulty by measuring the ability of a strong coding agent to solve generated bugs from that dataset. We use the R2E-Gym *scaffold* (Jain et al., 2025) as our agentic scaffold and we use Claude Sonnet 4 as our strong coding agent. For all bugs, we sample 4 attempts.

Model/Method	Scaffold	Bugs	Trajectories	SWE-Bench (V)
Proprietary Models				
Claude Sonnet 4	Moatless Tools	-	-	70.8
	SWE-Agent	-	-	66.6
	R2E-Gym	-	-	66.9
GPT-40	R2E-Gym	-	-	29.3
GPT-5	R2E-Gym	-	-	65.7
Open Weights Models				
DeepSeek-R1-0528 (Guo et al., 2025)	OpenHands	-	-	45.6
Qwen3-Coder-480B (Team, 2025)	mini-SWE-Agent	-	-	55.4
GLM-4.5-358B Zeng et al. (2025a)	SWE-Agent	-	-	64.2
-	mini-SWE-Agent	-	-	54.2
SWE-Fixer-72B (Xie et al., 2025)	SWE-Fixer	110k	-	32.8
SWE-RL-70B (Wei et al., 2025)	Agentless			41.0
DeepSWE-32B-Preview (Luo et al., 2025)	R2E-Gym	4.6k	-	42.2
SWE-Gym-32B (Pan et al., 2024)	OpenHands	2.4k	491	20.6
R2E-Gym-32B (Jain et al., 2025)	R2E-Gym	4.6k	4.5k	34.4
Skywork-SWE-32B (Zeng et al., 2025b)	OpenHands	10.1k	8k	38.0
SWE-Smith-LM-32B (Yang et al., 2025)	SWE-Agent	50k	5k	40.2
SWE-Mirror-LM-32B (Wang et al., 2025)	OpenHands	60k	12k	52.2
Ours				
BASEMIX (SFT)	R2E-Gym	2k	5.8k	49.9
BASEMIX + FEATADD (SFT)	R2E-Gym	3k	7k	51.9
BASEMIX + FEATADD (RL)	R2E-Gym	3k	5.8k	52.4

Table 3: **Comparison to Current State-of-the-Art** We achieve state-of-the-art results for a 32B model by training with reinforcement learning (RL) on FEATADD for only 25 steps; starting from a base model fine-tuned with BASEMIX. Our model trained with supervised fine-tuning (SFT) on BASEMIX +FEATADD achieves near state-of-the-art results with 40% of the total training trajectories (7k vs. 12k) and 5% of the total bugs (3k vs. 60k).

The results in Table 1 show that FEATADD bugs are the most challenging even for frontier models and the solve success rate drops from 63.5% to 41.4%.

5.2 Training on Bugs

Table 3 compares the performance of our Qwen3-32B finetuned with RL on FEATADD, and our models trained on BASEMIX +FEATADD with curriculum learning and our model trained on BASEMIX. Our model trained with RL achieves state-of-the-art results on SWE-Bench Verified with a Pass@1 of 52.4% averaged over three seeds. BASEMIX +FEATADD achieves comparable to state-of-the-art results on SWE-Bench Verified with a Pass@1 averaged over three seeds with 40% fewer trajectories and 5% as many bugs in the SFT dataset as the concurrent work SWE-Mirror Wang et al. (2025). Overall these results highlight the effectiveness of training using our FEATADD, our high-quality synthetically generated dataset.

Comparison to continued fine-tuning on other synthetic data mixtures. In Table 4 we compare doing further steps of SFT on FEATADD from BASEMIX to further fine-tuning on R2E-GYM, SWE-SMITH and BUGINSTRUCT. Using a mix of 5.6k trajectories from previously available bugs (BASEMIX) and 1.2k trajectories from a strong teacher model solving our synthetically generated bugs (FEATADD), we are able to train a state-of-the-art 32B parameter model on SWE-Bench Verified to 51.9% pass@1 averaged over three seeds, achieving comparable results to concurrent work (SWE Mirror) while using a trajectory mixture that is 40% smaller (7k vs. 12k). The 2.1% performance improvement over BASEMIX can't be achieved by continued training on other data of the same size (BASEMIX +R2E-GYM, BASEMIX +SWE-SMITH). The results suggest that we have found a method of synthetic bug generation that more closely matches the distribution of bugs found in human-authored edits. This is particularly visible when comparing FEATADD with BUGIN-STRUCT. The intentional nature of BUGINSTRUCT doesn't yield visible gains over BASEMIX. The

Model	Pass@1	Pass@3	Pass ³	Pass@Short
Qwen3-32B	25.00	40.00	12.60	29.40
BASEMIX (SFT)	49.87	63.80	37.00	50.20
BASEMIX + R2E-GYM (SFT)	50.73	63.60	36.60	54.60
BASEMIX + SWE-SMITH (SFT)	50.53	64.60	36.60	52.40
BASEMIX + BUGINSTRUCT (SFT)	49.87	65.00	33.00	49.60
BASEMIX + FEATADD (SFT)	51.93	64.40	39.40	54.60
BASEMIX + FEATADD (RL)	52.40	65.60	38.20	56.80

Table 4: **Comparison between SFT on different bug datasets.** We report the Pass@1 averaged over three seeds, the Pass@3 and the Pass³ which is the set of tasks where the model must get the problem right every time over the three seeds. Finally, we report the Pass@Short, which is where we sample three times and select the shortest trajectory.

Size	Full 500	Challenging 155	Frontier 95	Hard 45	Multi-file 40
Qwen3-32B	25.33	1.29	0.35	5.19	0.83
BaseMix (SFT)	49.87	3.66	1.05	12.59	0.83
BaseMix + R2E-Gym (SFT)	50.73	5.38	1.75	9.63	2.50
BaseMix + SWE-Smith (SFT)	50.57	5.59	2.11	15.56	2.50
BaseMix + FeatAdd (SFT) BaseMix + FeatAdd (RL)	51.93 52.40	6.45 5.81	2.81 0.35	14.07 15.56	1.67 0.83

Table 5: **Results on Harder Subsets of SWE-Bench Verified.** We report the Pass@1 averaged over three seeds. The frontier, challenging, hard, and multi-file subsets are pulled from this dataset ² of problems where state-of-the-art closed source models struggle.

improvement w.r.t. to the baseline in Pass³ shows that the model gets more consistent in resolution strategies across seeds.

Challenging Splits While SWE-Bench Verified has been extensively studied and tested in the community, there are subsets of the benchmark that drive most of the progress for state-of-the-art models. Namely, the Frontier and Challenging problems are problems on which Claude Opus 4 achieves 11% and 31% respectively, despite achieving 73.60% on the entire set of SWE-Bench Verified. The Hard problems are problems rated by an expert human SWE to require more than one hour to solve with an overall 42.2% solve rate by Claude Opus 4. The Multi-File problems are any problems in SWE-Bench Verified that cross more than one file and solved 10.0% of the time by Claude Opus 4. We report our results on the subsets in Table 5. We find that on all subsets of SWE-Bench Verified that the inclusion of FEATADD results in improved performance over BASEMIX in Pass@1 score averaged over three seeds. Moreover, including FEATADD results in a 1% improved in the challenging and frontier subsets. However, on the multi-file and hard subsets, finetuning further on SWE-SMITH results in improved performance over FEATADD. This may be because the relatively small size of hard and multi-file subsets (40 and 45 respectively) may have contributed to a higher variance result. Notably, training with RL on FEATADD from BASEMIX shows improvement over BASEMIX on challenging and hard problems, but no improvement over BASEMIX on frontier and multi-file problems. Moreover, training with RL does not improve over training with SFT on FEATADD for any subset. This could be because we use the GRPO algorithm that requires a problem to be partially solvable to make progress - if problems are too difficult, the advantage will be zero for those problems.

The two-phase training curriculum Our best results are achieved by SFT or RL fine-tuning a model on FEATADD after having previously fine-tuned models on the BASEMIX (i.e., R2E-GYM \cup SWE-SMITH). In Table 6, we show ablation study regarding this two-phase training curriculum. As previously mentioned in Section 4, the bugs in FEATADD are more challenging for LLM-based

agents to resolve. For the same reason, we observe the trajectories collected from such debugging attempts are also particularly difficult to be learned by the student models. This may due to the challenging nature of the problems and limited sample size-Claude Sonnet 4 only solves 41.0% of the FEATADD bugs in comparison with 65.9% of the SWE-SMITH bugs. It may require the student model to be sufficiently strong to be able to effectively distil knowledge from FEATADD.

We therefore train the Qwen3-32B base model with BASEMIX, so the model can first learn from a decent amount of trajectories (5.8k) collected from a diverse set of bugs (human-authored edits in R2E-GYM and LLM-authored edits in SWE-SMITH) that are relatively easy. As shown in Table 6, using BASEMIX achieved better student model performance compared to baselines that perform SFT on trajectories collected from individual bug sets. Then, we further fine-tune the model on the trajectories from the harder bugs in FEATADD. Model trained using this curriculum outperforms the baseline which directly train the Qwen3-32B base model with all trajectories (BASEMIX \cup FEATADD). Note the two setting use the same set of trajectories. This evinces the effectiveness of the design of the two-phase training curriculum.

Impact of Teacher Model In addition to Claude Sonnet 4, we also attempt to collect agent trajectories using GPT-40 and GPT-5 as LLM backbone. We report the statistics of these trajectories in Table 1. Performance wise, GPT-5 outperforms Claude Sonnet 4 in all four sets of bugs, while GPT-40 struggles to resolve even one third of the bugs, especially on the BUGINSTRUCT and FEATADD sets. In comparison to Claude Sonnet 4, we observe that the GPT models tend to generate significantly less assistant content in association with the tool/function calls. This is particularly obvious in the trajectories collected on the R2E-GYM and SWE-SMITH using GPT-5 as backbone, on average there is less than one assistant content being generated per trajectory. This is perhaps because the design of the GPT models intentionally prevents the model from generating too much text when calling the tool.

SFT Training Data	Pass@1
Qwen3-32B	25.00
R2E-GYM	48.33
SWE-SMITH	46.93
FEATADD	45.73
BASEMIX	49.87
$BaseMix \cup FeatAdd$	50.07
BASEMIX +FEATADD	51.93

Table 6: **Results of supervised fine-tuning base model on different curricula.** BASEMIX UFEATADD indicates training on a combined dataset. BASEMIX + FEATADD indicates first training on BASEMIX followed by FEATADD. We report the **Pass@1** averaged over three seeds on SWE-Bench Verified.

We observe the lack of assistant content (e.g.

think tokens combined with the tool call itself) can significantly hurt the performance of a model fine-tuned on such data, even that the teacher model's performance might be better. We trained a Qwen3-32B student model on the successful trajectories collected using the GPT models as backbone (similar setting as BASEMIX). The student models trained on GPT-5 and GPT-40 trajectories result in a success rate of 31.40% and 21.57% on SWE-Bench Verified, respectively. This suggests the assistant content (a summary of the teacher's reasoning) is essential in distilling code repairing skills from teacher models into student models, the assistant content may serve as a Chain-of-Thought (Wei et al., 2022) that more effectively conditions the student model to generate the tool/function calls. Our observation aligns well with recent reasoning curation work (Abdin et al., 2025; Zhao et al., 2025) where they demonstrate the quality of the reasoning content can be crucial in SFT training in domains such as maths and code generation.

6 DISCUSSION

Through our extensive experiments, we have shown the utility of our approach for producing difficult bugs that produce efficient training of SWE agents. However, one potential drawback of this method is that it may over time become less effective as a distillation technique if the teacher model (e.g. a large closed source model such as Claude Sonnet 4) no longer produces bugs while introducing new features. To address this, an avenue for future work could be to use the student model (e.g. a model finetuned for Qwen3-32B) itself to generate the bugs. This could result in a pipeline whereby a student model produces both it's own training problems as well as training data (such as in an RL loop).

7 REPRODUCIBILITY STATEMENT

In Section 4, we describe the hyperparameters and learning frameworks used to finetune with SFT and RL. We further lay out training details and our training curve in Appendix D.

REFERENCES

- Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning technical report. *arXiv preprint arXiv:2504.21318*, 2025.
- Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang. Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement. *arXiv* preprint arXiv:2410.20285, 2024.
- Ibragim Badertdinov, Alexander Golubev, Maksim Nekrashevich, Anton Shevtsov, Simon Karasik, Andrei Andriushchenko, Maria Trofimova, Daria Litvintseva, and Boris Yangel. Swe-rebench: An automated pipeline for task collection and decontaminated evaluation of software engineering agents. *arXiv preprint arXiv:2505.20411*, 2025.
- Shubham Gandhi, Jason Tsay, Jatin Ganhotra, Kiran Kate, and Yara Rizk. When agents go astray: Course-correcting swe agents with prms. *arXiv preprint arXiv:2509.02360*, 2025.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym: Procedural environments and hybrid verifiers for scaling open-weights swe agents. *arXiv* preprint *arXiv*:2504.07164, 2025.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint arXiv:2310.06770*, 2023.
- Michael Luo. Deepswe: Training a fully open-sourced, state-of-the-art coding agent by scaling rl, Jul 2025. URL https://www.together.ai/blog/deepswe.
- Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak, Colin Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art coding agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-2025. Notion Blog.
- Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang, Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei Huang, and Yongbin Li. Lingma swe-gpt: An open development-process-centric language model for automated software improvement. *arXiv preprint arXiv:2411.00622*, 2024.
- Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. Training software engineering agents and verifiers with swe-gym. *arXiv preprint arXiv:2412.21139*, 2024.
- Michael Luo, Colin Cai, Tarun Venkat, Kyle Montgomery, Hao, Tianhao Wu, Arnav Balyan, Manan Roongta, Chenguang Wang, Li Er-ran Li, Raluca Ada Popa, and Ion Stoica. rllm: A framework for post-language https://pretty-radio-b75.notion.site/ training agents. rLLM-A-Framework-for-Post-Training-Language-Agents-21b81902c146819db63cd98a54ba5f3 2025. Notion Blog.
 - Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.
 - Junhao Wang, Daoguang Zan, Shulin Xin, Siyao Liu, Yurong Wu, and Kai Shen. Swemirror: Scaling issue-resolving datasets by mirroring issues across repositories. *arXiv* preprint *arXiv*:2509.08724, 2025.
 - Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as generalist agents. *arXiv preprint arXiv:2407.16741*, 2024.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via reinforcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.
 - Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based software engineering agents. *arXiv preprint arXiv:2407.01489*, 2024.
 - Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai Lam, Difan Zou, and Kai Chen. Swe-fixer: Training open-source llms for effective and efficient github issue resolution. *arXiv* preprint arXiv:2501.05040, 2025.
 - John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 50528–50652. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/5a7c947568c1b1328ccc5230172e1e7c-Paper-Conference.pdf.
 - John Yang, Kilian Leret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang, Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software engineering agents. *arXiv* preprint arXiv:2504.21798, 2025.
 - Xingdi Yuan, Morgane M Moss, Charbel El Feghali, Chinmay Singh, Darya Moldavskaya, Drew MacPhee, Lucas Caccia, Matheus Pereira, Minseon Kim, Alessandro Sordoni, et al. debug-gym: A text-based environment for interactive debugging. *arXiv preprint arXiv:2503.21557*, 2025.
 - Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. *arXiv preprint arXiv:2508.06471*, 2025a.
 - Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei, Jujie He, Xuchen Song, Yang Liu, et al. Skywork-swe: Unveiling data scaling laws for software engineering in llms. *arXiv preprint arXiv:2506.19290*, 2025b.
 - Wanru Zhao, Lucas Caccia, Zhengyan Shi, Minseon Kim, Xingdi Yuan, Weijia Xu, Marc-Alexandre Côté, and Alessandro Sordoni. Learning to solve complex problems via dataset decomposition. In 2nd AI for Math Workshop@ ICML 2025, 2025.
 - Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv* preprint arXiv:2403.13372, 2024.

APPENDIX

650 651

648

649

A.1 AGENTIC SYNTHETIC BUG GENERATION

652 653

Purposeful Bug Introduction

654 655

656 657

658 659

660 661 662

663 664

665 666 667

668 669 670

671 672

673 674 675

676 677 678

679 681

682 683

684 685 686

687 688 689

690 691

692 693

694 695

696 697 698

699 700 701

<uploaded_files> {{working_dir}} </uploaded_files> I've uploaded a python code repository in the directory {{ working_dir}}.

Your job is to to introduce subtle runtime bugs that cannot be reliably detected through code reading alone and require debugging tools to diagnose.

The bug you introduce must cause an existing test to fail but should require runtime debugging tools (like pdb, breakpoints, or state inspection) to diagnose.

It should NOT be detectable through careful code reading or looking at the stacktrace of the failing test alone.

Focus on runtime state issues, reference sharing, timing dependencies, or complex execution flows that only become apparent during execution.

To this end, some kinds of bugs you might introduce include: - Create data flow bugs through deep object mutation: Modify nested data structures (like dictionaries within lists within objects) where the mutation path is long and the effect appears far from the cause.

- Implement context-dependent behavior with global state pollution: Use global variables or class-level state that gets modified as a side effect, causing functions to behave differently depending on previous execution history.
- Implement recursive functions with shared mutable state: Use mutable default arguments or class-level variables in recursive functions that accumulate state across different call trees, causing interference between separate recursive operations.
- Create shared reference issues with mutable objects: Use the same mutable object reference across multiple operations without proper copying, causing modifications in one context to unexpectedly affect another (e.g., sharing lists or dictionaries between instances).
- Introduce accidental state mutations in nested calls: Modify object state unexpectedly deep within a chain of method calls, where the mutation appears unrelated to the method's stated purpose (e.g., a validation method that accidentally modifies the object being validated.

Tips for introducing the bug:

- It should not cause compilation errors.
- It should not be a syntax error.
- It should not modify the documentation significantly.
- It should cause a pre-exisiting test to fail. But the bug should not be easy to diagnose just by looking at the stacktrace of the failing test.

- The root cause should be separated from the symptom manifestation - where the bug occurs should be different from where the error appears.
- The bug maybe a result of edits to multiple function/files which interact in complex ways.
- The bug should require runtime inspection such as stepping through execution with a debugger to trace the actual cause - it cannot be reliably detected through static code analysis alone.
- For functions with complex state or multiple objects, introduce bugs that span multiple method calls or object interactions.
- Focus on bugs that involve shared state, reference aliasing , or side effects that are not immediately obvious but is only visible during execution.
- The bug should require tools like pdb, debugger breakpoints , or runtime state inspection to diagnose effectively.
- Please DO NOT INCLUDE COMMENTS IN THE CODE indicating the bug location or the bug itself.

Follow these steps to introduce the bug:

- 1. As a first step, it might be a good idea to go over the general structure of the repository.
- 2. Decide where and what kind of bug you want to introduce.
- 3. Plan out how you might need to make changes to introduce this bug.
- 4. Make the changes by editing the relevant parts of the codebase.
- 5. Make sure that after editing the code to introduce the bug , at least one pre-existing test fails.
- 6. Make sure that the bug you have introduced cannot be detected by looking at the code or the stacktrace alone, and it need the use of debugging tools to diagnose.
- 7. Do not include any comments in the code or point out the bug in any way.
- Your thinking should be thorough and so it's fine if it's very long.

Feature Addition

```
<uploaded_files>
{{working_dir}}
</uploaded_files>
I've uploaded a python code repository in the directory {{
    working_dir}}.

Your task is to implement a new feature in this codebase.
First go through the codebase and identify a suitable new
    feature to add.
Come up with a plan to implement it and then make the
    necessary changes to the codebase.
You can use the tools provided to edit files, run tests, and
    submit your changes.
The feature you introduce should not break any existing
    functionality.
```

Make sure the edit you make is complex - you should introduce at least two related changes in the codebase in different files.

B FEATURE ADD EXAMPLE BUGS

756

758

759760761762

763 764

765766767

768

769 770

771

772

773

774

775

776 777

778779

780 781

782

783

784 785

786

787

789

790

791

792

793

794

796

797

798

799

800 801

802

803

804 805

806 807

808

```
Type A - API/signature mismatch or backward-compatibility break
ind_available_providers() returns extra provider that breaks
   expected module list
### Describe the bug
The `find_available_providers()` function is returning an
   unexpected provider module 'faker.providers.technology'
   that is not part of the expected provider list. This
   causes issues when comparing the actual providers against
    the expected set.
### How to Reproduce
Run the following code to see the issue:
'''python
from faker.utils import find available providers
from importlib import import_module
from faker import META_PROVIDERS_MODULES
modules = [import_module(path) for path in
   META_PROVIDERS_MODULES]
providers = find_available_providers(modules)
expected_providers = ['faker.providers.address', 'faker.
   providers.automotive', 'faker.providers.bank', 'faker.
   providers.barcode', 'faker.providers.color', 'faker.
   providers.company', 'faker.providers.credit_card', 'faker
   .providers.currency', 'faker.providers.date_time', 'faker
   .providers.emoji', 'faker.providers.file', 'faker.
   providers.geo', 'faker.providers.internet', 'faker.
providers.isbn', 'faker.providers.job', 'faker.providers.
   lorem', 'faker.providers.misc', 'faker.providers.passport
   ', 'faker.providers.person', 'faker.providers.
   phone_number', 'faker.providers.profile', 'faker.
   providers.python', 'faker.providers.sbn', 'faker.
   providers.ssn', 'faker.providers.user_agent']
print("Found providers:", providers)
print("Expected providers:", expected_providers)
print("Match:", providers == expected_providers)
**Expected output:**
Found providers: ['faker.providers.address', 'faker.providers
   .automotive', 'faker.providers.bank', 'faker.providers.
```

```
810
811
            barcode', 'faker.providers.color', 'faker.providers.
            company', 'faker.providers.credit_card', 'faker.providers
             .currency', 'faker.providers.date_time', 'faker.providers
813
             .emoji', 'faker.providers.file', 'faker.providers.geo', '
814
            faker.providers.internet', 'faker.providers.isbn', 'faker
815
             .providers.job', 'faker.providers.lorem', 'faker.
816
            providers.misc', 'faker.providers.passport', 'faker.
817
            providers.person', 'faker.providers.phone_number', 'faker
818
             .providers.profile', 'faker.providers.python', 'faker.
819
            providers.sbn', 'faker.providers.ssn', 'faker.providers.
820
            user_agent']
821
         Expected providers: ['faker.providers.address', 'faker.
822
            providers.automotive', 'faker.providers.bank', 'faker.
            providers.barcode', 'faker.providers.color', 'faker.
providers.company', 'faker.providers.credit_card', 'faker
823
824
            .providers.currency', 'faker.providers.date_time', 'faker
825
             .providers.emoji', 'faker.providers.file', 'faker.
826
            providers.geo', 'faker.providers.internet', 'faker.
            providers.isbn', 'faker.providers.job', 'faker.providers.
828
            lorem', 'faker.providers.misc', 'faker.providers.passport
829
            ', 'faker.providers.person', 'faker.providers.
830
            phone_number', 'faker.providers.profile', 'faker.
831
            providers.python', 'faker.providers.sbn', 'faker.
832
            providers.ssn', 'faker.providers.user_agent']
833
         Match: True
834
835
         **Actual output:**
836
837
         Found providers: ['faker.providers.address', 'faker.providers
838
             .automotive', 'faker.providers.bank', 'faker.providers.
839
            barcode', 'faker.providers.color', 'faker.providers.
840
            company', 'faker.providers.credit_card', 'faker.providers
841
             .currency', 'faker.providers.date_time', 'faker.providers
             .emoji', 'faker.providers.file', 'faker.providers.geo', '
843
            faker.providers.internet', 'faker.providers.isbn', 'faker
             .providers.job', 'faker.providers.lorem', 'faker.
844
            providers.misc', 'faker.providers.passport', 'faker.
845
            providers.person', 'faker.providers.phone_number', 'faker
846
            .providers.profile', 'faker.providers.python', 'faker.
847
            providers.sbn', 'faker.providers.ssn', 'faker.providers.
848
            technology', 'faker.providers.user_agent']
849
         Expected providers: ['faker.providers.address', 'faker.
850
            providers.automotive', 'faker.providers.bank', 'faker.
851
            providers.barcode', 'faker.providers.color', 'faker.
852
            providers.company', 'faker.providers.credit_card', 'faker
853
             .providers.currency', 'faker.providers.date_time', 'faker
             .providers.emoji', 'faker.providers.file', 'faker.
854
            providers.geo', 'faker.providers.internet', 'faker.
providers.isbn', 'faker.providers.job', 'faker.providers.
855
856
            lorem', 'faker.providers.misc', 'faker.providers.passport
857
            ', 'faker.providers.person', 'faker.providers.
858
            phone_number', 'faker.providers.profile', 'faker.
859
            providers.python', 'faker.providers.sbn', 'faker.
860
            providers.ssn', 'faker.providers.user_agent']
         Match: False
862
```

```
864
865
         ### Expected behavior
867
         The 'find_available_providers()' function should return only
868
            the providers that are expected to be in the baseline
869
            provider set, without including any additional providers
870
            like 'faker.providers.technology' that appear to have
871
            been added but aren't part of the original expected list.
872
873
         ### Your project
874
875
         Faker library
876
         ### OS
877
878
         Linux
879
880
         ### Python version
881
882
         3.10.18
883
884
         ### Additional context
885
886
         The extra 'faker.providers.technology' provider is appearing
887
            in the returned list at index 24, shifting the expected '
            faker.providers.user_agent' to the end.
888
889
```

Type B - Logic/conditional bug

890 891

892 893

894 895

896 897

898

899

900

901

902

903

904

905 906

907

908

909

910 911

912 913

914

915

916

```
'np.row_stack' fails with mixed array shapes in axis=0 mode
Description
When using 'np.row_stack' with arrays that have different
   shapes along non-concatenation axes, the operation fails
   unexpectedly. This seems to be a regression as the
   behavior should match NumPy's standard row_stack
   functionality.
Reproduction:
'''python
import autograd.numpy as np
# This should work but fails
arr1 = np.random.random((2, 3))
arr2 = np.random.random((2, 4))
arr3 = np.random.random((1, 4))
result = np.row_stack([arr1, (arr2, arr3)])
The expected behavior is that 'row_stack' should concatenate
   arrays along axis 0, similar to 'vstack'. When passed a
   list containing both individual arrays and tuples of
   arrays, it should handle the concatenation properly.
```

919
920 This appears to affect gradient computation as well when used
921 in differentiable contexts.

Type C - Input Validation

Option -a doesn't return expected exit code when invalid arguments are provided

Description

The command line option '-a' (which I assume is for setting additional arguments or attributes) isn't behaving correctly when invalid arguments are passed to it.

Instead of returning exit code 2 as expected for invalid options, it's returning exit code 0.

This seems to be a regression in the command line argument handling. When you run the command with '-a arg', it should fail with exit code 2 to indicate invalid usage, but currently it's succeeding (exit code 0).

How to reproduce:

'''bash

This should fail with exit code 2 but returns 0 instead
python -m pygments -a arg
echo \$? # prints 0 but should print 2

echo \$? # prints 0 but

Expected behavior: The command should exit with code 2 when '-a' is provided with invalid arguments
Actual behavior: The command exits with code 0

This affects any scripts or CI systems that rely on proper exit codes to detect invalid command line usage.

Type D - Incorrect Argument Forwarding

Custom validator repr() shows incorrect class name when created with validators.create()

Description

When creating a custom validator using 'validators.create()', the 'repr()' method shows an incorrect class name.

Instead of showing the actual class name, it displays a formatted version based on the version string.

For example:

968 '`'python

Validator = validators.create(meta_schema={'\$id': 'something
 '}, version='my version')
validator = Validator({})

```
972
973
         print(repr(validator))
974
         # Shows: MyVersionValidator(schema={}, format_checker=None)
         # Expected: <actual class name>Validator(schema={},
975
            format_checker=None)
976
977
978
         The repr output uses "MyVersionValidator" instead of the
979
            proper class name, which makes debugging and
980
            introspection more difficult when working with custom
981
            validators.
982
983
```

Type E - Missing import/symbol/attribute error example

984 985

986

```
987
988
             ## Pydantic examples in docstrings failing with import
989
                 errors
990
991
         Hey folks, I'm running into some issues with the docstring
992
            examples in pydantic. It looks like there are some import
993
             problems happening when the examples are being executed.
994
995
         ### Describe the bug
996
997
         When running docstring examples, some of them are failing
998
            during execution. The examples seem to be having trouble
            with imports or module resolution. This is affecting the
999
            documentation validation process.
1000
1001
         ### How to Reproduce
1002
1003
         I created a simple script to reproduce the issue:
1004
1005
         '''python
1006
         import pydantic
1007
         from pydantic import BaseModel
1008
         from typing import TypeVar, Generic
1009
         # Try to run some basic pydantic operations that might be in
1010
            docstrings
1011
         T = TypeVar('T')
1012
1013
         class MyModel(BaseModel, Generic[T]):
1014
             value: T
1015
1016
         # This should work fine normally
1017
         model = MyModel[str] (value="test")
1018
         print(f"Created model: {model}")
1019
1020
1021
         When this gets executed in the context of docstring
            evaluation, it seems to run into problems.
1022
1023
         ### Expected behavior
1024
```

All docstring examples should execute successfully without import errors or module resolution issues. The examples are supposed to demonstrate proper pydantic usage and should run cleanly.

Environment

- Python version: 3.10.18

- Pydantic version: Latest from main branch
- ### Additional context

- This seems to be related to how the docstring examples are being evaluated and potentially how modules are being imported during the evaluation process. The issue appears to affect multiple examples across different parts of the codebase.
- The problem might be related to the dynamic import system or how the evaluation environment is set up for running the docstring examples.

Type G - Copy Semantics

- ### Contrast improvements break test with 'fail_if_improved'
 assertion
- I ran into an issue where the contrast test is failing with the message "congrats, you improved a contrast! please run ./scripts/update_contrasts.py". This happens when the contrast values for pygments styles have been improved but the test baseline hasn't been updated.
- ### How to Reproduce
- The issue occurs when running the contrast tests and some style has improved contrast ratios compared to the stored baseline values. The test will fail with an assertion error indicating that contrasts have improved.
- ### Expected behavior
- The test should either automatically update the baseline values when improvements are detected, or there should be a clearer way to handle contrast improvements without requiring manual script execution.
- ### Additional context
- The test uses a 'fail_if_improved' parameter that's set to 'True' by default, which causes the test to fail when contrast values are better than the stored baseline. This seems counterintuitive improvements in contrast should typically be welcomed rather than causing test failures.

The error message suggests running `./scripts/
update_contrasts.py` but this creates friction in the
development workflow when contrast improvements happen
naturally through code changes.

Type H - Protocol/spec conformance bug

Bug report

The 'tldextract' function and 'TLDExtract.extract_str''
TLDExtract.extract_urllib' methods are failing doctest
validation. This appears to be related to how the
doctests are being processed or executed.

When running the full test suite, three doctest failures occur:

, , ,

FAILED tldextract/tldextract.py::tldextract.tldextract
FAILED tldextract/tldextract.py::tldextract.tldextract.
 TLDExtract.extract_str

FAILED tldextract/tldextract.py::tldextract.tldextract.
 TLDExtract.extract_urllib

The doctests in the main 'tldextract' function and the 'TLDExtract' class methods are not passing validation, while all other regular unit tests continue to pass successfully.

This suggests there may be an issue with the expected output formatting in the docstrings or how the doctest runner is interpreting the examples. The functionality itself seems to work correctly based on the passing unit tests, but the embedded documentation examples are failing validation.

Type I - Resource Mishandling Issue

When calling the 'navigate()' method on a 'URL' object with 'None' as the path parameter, it doesn't behave as expected in certain scenarios. This seems to affect URL path resolution when dealing with base URLs that have trailing paths.

Here's a minimal reproduction:

1130 '''python

from boltons.urlutils import URL

This works as expected

```
1134
1135
        url = URL('https://host/a/')
1136
        result = url.navigate('b')
        print(f"Expected: https://host/a/b, Got: {result.to text()}")
1137
1138
         # This doesn't work correctly
1139
        url = URL('https://host/a')
1140
        result = url.navigate(None).navigate('b')
1141
        print(f"Expected: https://host/b, Got: {result.to_text()}")
1142
1143
        url = URL('https://host/a/')
1144
        result = url.navigate(None).navigate('b')
1145
        print(f"Expected: https://host/a/b, Got: {result.to_text()}")
1146
1147
        Expected behavior:
1148
1149
1150
        The issue appears to be in how 'navigate()' handles 'None'
1151
            paths when resolving relative URLs. The method should
1152
            properly handle the case where 'None' is passed as a path
1153
             parameter and maintain correct URL resolution behavior
1154
            for subsequent chained 'navigate()' calls.
1155
1156
        This affects URL manipulation when programmatically building
1157
            URLs where the path might be conditionally 'None'.
1158
1159
```

C BUG CATEGORISATION

1160

1161 1162

1163

1164

1165

1166

1167 1168 1169

1170

1171

1172

1173

1174

1175

1176

1177

11781179

1180

1181

1182

1183

1184

1185

1186

1187

We use a hierarchical summarisation strategy to come up with bug types to categorise bugs. Bugs from all datasets are pooled togethers and an LLM is used to come up with summaries of individual bugs along with potential bug types. These summaries are grouped together and further summarised. We continue this process and obtain the following ten bug categories -

Bug Category Descriptions

- A: API/signature mismatch or backward-compatibility break
 - Description: Public interfaces change or fail to accept/ forward expected parameters; options no longer propagated; removed/renamed methods.
 - Signals: TypeError for unexpected/unknown keyword, missing method attribute, inability to customize behavior that used to work.
 - Common fixes: Align signatures across layers, add/ propagate parameters, restore deprecated shims or document breaking changes.
- B: Logic/conditional bug
 - Description: Incorrect branching, inverted predicates, off-by-one comparisons, or misplaced conditions that alter behavior.
 - Signals: Wrong results for specific ranges/cases; behavior flips when a flag toggles; regression tied to a refactor of if/else logic.
 - Common fixes: Correct predicates/ordering; add minimal repro tests around boundary values and both branches.

1188 1189 1190 C: Input validation, boundary, or sentinel handling error - Description: Valid inputs rejected or invalid accepted; 1191 special values (NaN/None/NA/masked) mishandled due to 1192 comparison/identity semantics. 1193 - Signals: Edge cases fail while common cases pass; 1194 inconsistent behavior with empty inputs or special 1195 sentinels. 1196 - Common fixes: Validate before use; use library-1197 appropriate checks for sentinels; add edge/empty-case 1198 tests. 1199 D: Incorrect argument forwarding, constructor, or inheritance 1200 contract break 1201 - Description: Subclasses pass wrong args to super, fail to 1202 call base initializer, or expose mismatched signatures 1203 1204 - Signals: TypeError/AttributeError during object creation; 1205 missing base attributes; framework hooks not invoked. 1206 - Common fixes: Align constructor signatures; call super() 1207 correctly; set attributes after base init; stop 1208 forwarding unsupported args. 1209 1210 E: Missing import/symbol/attribute error 1211 - Description: Required names removed or not imported after refactor; attributes expected by callers no longer 1212 present. 1213 - Signals: NameError/AttributeError at runtime; module-1214 level failures on import. 1215 - Common fixes: Restore or re-export symbols; update 1216 imports; add import-time tests. 1217 1218 F: State consistency/bookkeeping/caching bug 1219 - Description: Shared or stale state corrupts behavior 1220 across calls/instances; counters/heaps not updated; 1221 cache keys too coarse. 1222 - Signals: Nondeterministic results; memory growth; behavior depends on call order; leaked/stale entries. 1223 - Common fixes: Use per-call/per-instance state; fix 1224 increment/decrement paths; design proper cache keys; 1225 add isolation/concurrency tests. 1226 1227 G: Copy semantics, mutability aliasing, or in-place mutation 1228 of inputs 1229 Description: Wrong choice of shallow/deep copy; shared 1230 mutable defaults; functions mutate caller-provided 1231 objects. 1232 - Signals: Changes in one consumer affect another; 1233 unexpected side effects; duplicated or missing internal state. 1234 - Common fixes: Avoid mutating inputs; pick correct copy 1235 depth; use default_factory for mutables; return 1236 defensive copies. 1237 1238 H: Protocol/spec conformance bug 1239 - Description: Behavior violates external specs (HTTP, 1240 OAuth, data interchange) or expected wire formats.

```
1242
1243
           - Signals: Clients reject responses; strict parsers fail;
1244
              tests asserting spec rules break (e.g., HTTP HEAD body
              handling).
1245
           - Common fixes: Implement per spec; adjust emission/
1246
              validation logic; add conformance tests.
1247
1248
        I: IO/filesystem/resource handling bug
1249
           - Description: Incorrect handling of paths/streams/
1250
              resources; special-case short-circuits skip real writes
1251
              ; missing directory creation.
1252
           - Signals: Truncated output; OSError/FileNotFoundError;
1253
              behavior differs between stdout vs file.
1254
           - Common fixes: Ensure normal write paths execute; create/
              check dirs; close/flush properly; test both special and
1255
               normal streams.
1256
1257
        J: Security/sensitive-data leakage due to logic oversight
1258

    Description: Credentials/headers applied too broadly (e.g.

1259
              ., to all domains) or without proper scoping/validation
1260
1261
           - Signals: Tokens sent to unintended endpoints; security
1262
              reviews flag over-permissive defaults.
1263
           - Common fixes: Scope credentials to allowed domains;
1264
              enforce whitelists; secure defaults; add security-
1265
              focused tests.
1266
1267
```

We use the following prompt to categorise individual bugs into one of these buckets -

```
1269
1270
         Bug Categorisation Prompt
1271
1272
1273
         Your task is to categorise a provided bug into a set of given
              bug types.
1274
1275
         Here are the guidelines on the bug types -
1276
         {guide}
1277
1278
         Here is the bug the needs to be categorised -
1279
1280
         cproblem_description>
1281
         {ps}
1282
         </problem_description>
1283
1284
         <patch>
1285
         {patch}
         </patch>
1286
1287
         Your response should be in xml format:
1288
         <reasoning>
1289
         Thinking about which categories that the given bug falls into
1290
1291
         </reasoning>
1292
         <category>
1293
         Alphabet code of category that bug falls into.
1294
         </category>
1295
```

	Hyperparameter	Value
	Rollout Temperature	1.0
	Max Steps	100
	Use KL Loss	False
	Train Batch Size	64
	Learning Rate	1e-6
	PPO Mini Batch Size	8
Max Context Length		64k

Table 7: Hyperparameters for our Reinforcement Learning Run

D REINFORCEMENT LEARNING

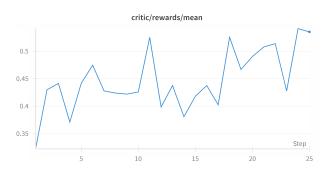


Figure 4: Training reward for reinforcement learning run averaged over batch. We train our reinforcement learning from a base model trained on Qwen3-32B on BASEMIX for 25 steps. Each step consists of 64 problems sampled randomly from FEATADD and 8 rollouts per problem Notably, Claude Sonnet 4 achieves a 41.4% total performance on the FEATADD dataset, but during our training process during the 25th step, the RL process has over 50% training reward. This indicates that the RL model may be better at FEATADD bugs in general over the course of the training process

To train our model with reinforcement learning, we use the rllm framework Tan et al. (2025), an open source paradigm to train reinforcement learning. Previously, this framework was used to train DeepSWE Luo et al. (2025) which achieved an overall performance of 41.0% on SWE-Bench Verified. Our training recipe shows an 11.0% performance improvement over this previous result by bootstrapping from a distilled model with SFT. The main changes in hyperparameter between DeepSWE and our model is the use of 100 max steps and 64k context length. Because the base SFT checkpoint that we use was trained with 100 steps and used a 64k context length to filter to successful trajectories, we believe that this lack of change in paradigm shift is what led the reinforcement learning to train better in this scenario.

Note that when we run with the reinforcement learning we use a max context length of 64k and trim to 32k. We tried one run where we used a max context length of 32k and max steps of 50 and were able to make progress on the training reward but saw a decrease in performance on the evaluation reward on SWE-Bench Verified. Moreover, we tried another run where we finetuned from the base model on a mixture of R2E-GYM and FEATADD bugs but found that the reward was not increasing quickly enough. Contrary to the advice found in Luo et al. (2025), we were able to get a 2.5% improvement over our base SFT model and achieve state-of-the-art results using an SFT+RL paradigm.