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ABSTRACT

Estimating uncertainty in text-to-image diffusion models is challenging due to
their massive parameter counts (often exceeding 100M) and operation in complex,
high-dimensional spaces with virtually unbounded input domains. We introduce
Epistemic Mixture of Experts (EMoE), a framework for efficient estimation of
epistemic uncertainty in diffusion models. EMoE leverages pre-trained networks
without requiring additional training, enabling direct uncertainty estimation from a
prompt. By probing a latent space within the diffusion process, EMoE captures
epistemic uncertainty more effectively than existing approaches. Experiments on
the COCO dataset demonstrate EMoE’s superior performance. Beyond benchmark
gains, EMoE highlights under-sampled languages and geographic regions associ-
ated with elevated uncertainty, uncovering hidden biases in training data. Since
training data for online diffusion models is rarely made public, this bias-detection
capability is especially valuable. Together, these contributions position EMoE
as a practical tool for addressing data imbalance and improving inclusivity in
Al-generated content.

1 INTRODUCTION

In recent years, text-to-image diffusion models have achieved remarkable progress, enabling faster
generation (Song et al., 2020; Liu et al., 2023; Yin et al., 2024), higher visual fidelity (Dhariwal and
Nichol, 2021; Nichol et al., 2022; Rombach et al., 2022), and even video synthesis (Ho et al., 2022b;
Khachatryan et al., 2023; Bar-Tal et al., 2024). These models operate via a forward process that
gradually adds noise to data and a reverse process that learns to denoise and reconstruct it. Despite
their success, diffusion models remain largely black boxes: they provide little transparency about
their uncertainty or the data they were trained on (Berry et al., 2024; Chan et al., 2024).

We address this limitation with Epistemic Mixture of Experts (EMoE), a framework for capturing and
quantifying epistemic uncertainty in text-conditioned mixture-of-experts diffusion models. Epistemic
uncertainty, arising from a model’s lack of knowledge, is reducible with additional data—unlike
aleatoric uncertainty, which reflects irreducible noise (Hora, 1996; Der Kiureghian and Ditlevsen,
2009; Hiillermeier and Waegeman, 2021). As such, epistemic uncertainty offers a powerful means
of detecting biases and underrepresented regions in training data that remains hidden from public
access.

Figure 1 illustrates this phenomenon. For the English prompt “Two teddy bears are sitting together
in the grass”, EMoE reports low epistemic uncertainty (0.38). The same prompt in Finnish (“Kaksi
nallekarhua istuu yhdessd nurmikolla”) produces much higher uncertainty (0.83). This disparity
highlights how models trained predominantly on English exhibit degraded performance for low-
resource languages, reinforcing inequities in multimodal Al

The EMoE framework rests on two core components. First, it leverages pre-trained mixture-of-experts
(MoE) models for zero-shot uncertainty estimation. The experts in the MoE were independently
trained on different data subsets, and EMoE harnesses their diversity without additional training.
This design yields ensemble-like benefits at a fraction of the computational cost of training diffusion
ensembles from scratch, which otherwise require hundreds of GPU-days (Balaji et al., 2022). Second,
EMOE estimates uncertainty in the latent space of the denoiser, enabling early detection of under-
sampled prompts before image generation is complete. This latent-space analysis allows users to halt
expensive denoising when uncertainty is prohibitively high (Song et al., 2024).
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Two teddy bears are sitting together in the grass. CKaksi nallekarhua istuu yhdessa nurmikolla.)

Uncertainty: 0.38 Uncertainty: 0.83

Figure 1: This figure presents the model’s uncertainty estimates when interpreting the same prompt
in two languages. On the left, the English sentence “Two teddy bears are sitting together in the
grass.” yields a lower uncertainty score of 0.38, indicating greater model confidence. On the right, the
corresponding Finnish translation “Kaksi nallekarhua istuu yhdessd nurmikolla.” results in a higher
uncertainty of 0.83, reflecting reduced confidence. This contrast highlights how the model responds
differently to in-distribution (English) versus out-of-distribution (Finnish) language inputs.

We evaluate EMoOE on the COCO dataset (Lin et al., 2014) and summarize our contributions as
follows:

* We introduce EMoE, a framework that combines pre-trained mixture-of-experts with latent-
space variance to estimate epistemic uncertainty in diffusion models.

* We demonstrate that EMoE produces uncertainty estimates consistent with expectations,
validated on high-performing MoE diffusion models using the COCO dataset.

* We show that EMoE detects novel or underrepresented data by quantifying uncertainty
across 25 languages, revealing systematic biases even when the training data is not publicly
available.

* We provide ablation studies that analyze design choices and confirm the robustness of
EMOoE’s components.

Our results shed new light on epistemic uncertainty in text-conditioned diffusion models and establish
EMOE as a practical tool for building more transparent and inclusive generative Al systems.

2 BACKGROUND

Diffusion models iteratively add and remove Gaussian noise, forming a Markov chain to generate
samples. This structure naturally supports uncertainty estimation, as probability distributions in-
herently model uncertainty (Hiillermeier and Waegeman, 2021). Furthermore, since ensembles are
commonly used to estimate epistemic uncertainty (Hoffmann and Elster, 2021), MoE models are
well-suited for this task by creating an ensemble of experts.

2.1 DIFFUSION MODELS

In the context of supervised learning, consider a tuple (x, %), where x € R512X512X3 and y is the

prompt associated with the image. The objective is to estimate the conditional distribution p(z|y).
However, due to its high-dimensional and multi-modal nature, some diffusion models operate in
a latent space learned by an autoencoder (Rombach et al., 2022). The autoencoder consists of an
encoder £, which maps images to their latent representation, and a decoder D, which reconstructs
images.

Diffusion models use a two-phase approach, consisting of a forward and a reverse process, to generate
realistic images. In the forward phase, an initial image z is encoded to zy and then gradually corrupted
by adding Gaussian noise over 1" steps, resulting in a sequence of noisy latent states 21, 23, . .., 27.
This process can be expressed as:

T

q(zt|2t-1) = N(z1; /1 = Brze—1, Be)  q(zrr|20) = H(Z(zt|zt71),

t=1
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where 3; € (0,1), with 87 < f2 < --- < Bp. This forward process draws inspiration from
non-equilibrium statistical physics (Sohl-Dickstein et al., 2015).

The reverse process aims to remove the noise and recover the original image, conditioned on text.
This is achieved by estimating the conditional distribution ¢(z;_1|2;,y) through a model py. The
reverse process is defined as:

T

po(zorly) = p(zr) [ [ po(zialzey)  po(zialze,y) = Nz po(z0, 8, y), o).
t=1

where pg(z:—1|2t, y) represents the denoising distribution, parameterized by 6, and is modeled as a
Gaussian with mean pg (2, t,y) and covariance ;. While 19 is an output of the learned model, ¥,
follows a predefined schedule, such that 35 < 31 < -+ < Y.

Given the complexity of directly computing the exact log-likelihood log(pg(zo|y)) in the reverse
process, it is common to use the ELBO (Kingma and Welling, 2013) as a tractable surrogate objective.
Using properties of diffusion models, this ELBO formulation leads to a specific loss function that
optimizes the noise-prediction model:

Lrpy = Ez,ewN(O,l),t,y [||6 - 60(2t7t>y)”§] )

where ¢ is uniformly distributed over 1, ..., T', e ~ N(0, 1), and €4 (¢, t,y) is the predicted noise for
computing g (2, t,y). For details, see Ho et al. (2020).

2.2 U-NETWORKS

U-Nets, a CNN architecture, have demonstrated their effectiveness across a range of generative tasks,
including image synthesis and restoration (Ronneberger et al., 2015; Isola et al., 2017).

A U-Net consists of a downsampling path (i.e. down-blocks), an upsampling path (i.e. up-blocks),
and a mid-block. The downsampling path compresses the input z; into a latent representation
mye € R1Z80%8x8 "where down(z;) = m}"™, by reducing spatial dimensions and increasing the

number of feature channels. The mid-block refines this latent representation into %% € R1280%8x8,

where mid(m?*®) = mP°*". The up-block then reconstructs the image by upsampling m>*** to z,_1,
the next latent representation in the denoising process. This process effectively combines low-level

details with high-level semantic information.

U-Nets are widely used in diffusion-based generative models, where they model €y(z¢, t, y), effec-
tively removing noise while preserving structure. The ability to maintain both local and global
information through skip connections makes U-Nets particularly suited for diffusion models.

To then make our models conditional on a prompt y, we map y through a tokenizer 7y and pass
this intermediate representation within the down-, mid- and up- blocks via a cross-attention layer
Attention(Q, K, V) = softmax (%) V' (Vaswani et al., 2017). We mathematically denote this as

follows:
Q=Wqoy(zt), K=Wkre(y), V=Wyre(y).

Here, Wg, Wi, and Wy, are learned projection matrices, and ¢g(z;) and 7 (y) represent the encoded
latent representations of the inputs z; and y. The cross-attention output is then passed through a
feed-forward neural network, as in the transformer architecture.

2.3 SPARSE MIXTURE OF EXPERTS

MoE is a widely-used machine learning architecture designed to handle complex tasks by combining
the outputs of several specialized models, or “experts” (Jacobs et al., 1991). The key intuition behind
MoE is that different experts can excel at solving specific parts of a problem, and by dynamically
selecting or weighing their contributions, the MoE can perform more effectively.

Our pre-trained models contain sparse MoE layers which combine multiple expert models at cross-
attention layers and feed-forward layers embedded within the U-Net architecture (Shazeer et al.,

2017; Fedus et al., 2022). Let M denote the number of experts, and let 7 denote the i-th expert. The
cross-attention layer can then be expressed as:

Q' =Whoo(z), K'=Wiro(y), V'=Wite(y).
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Figure 2: EMOE separates expert components in the first cross-attention layer in the first down-block
and processes each component separately as an independent computation path in the MoE pipeline.
This results in M distinct latent representations after the first denoising step. The figure illustrates an
ensemble with two expert components, (i and H).

The matrices Wé, Wi, and W7, are learned projection matrices specific to each expert 7, allowing
each expert to attend to different aspects of the input information.

A similar process occurs within the feed-forward networks, where each expert processes the data
independently before their results are combined (Lepikhin et al., 2020). The ensemble created by
this mechanism leads to more robust predictions, as each expert is able to specialize and contribute
uniquely to the final output. In addition to the ensemble created by the cross-attention and feed-
forward layers, the MoE architecture includes a routing or gating network that dynamically selects
which experts to activate. The gating network determines the top n < M experts to use for a given
input, and the final output is computed as a weighted sum of the selected experts’ outputs:

Q=) w'qQ, K=> w'K', V=> wV, )

i€ES i€ES €S

where S is the set of selected experts, w' is the weight of the i-th expert. This combination of expert
specialization and dynamic routing allows MoE models to scale efficiently by being sparse and only
selecting a subset of experts to pass through.

3 EPISTEMIC MIXTURE OF EXPERTS

Epistemic uncertainty arises where models lack knowledge, often in regions underrepresented in
training data (Gruber et al., 2023; Wang and Ji, 2024). EMoE extends mixture-of-experts diffusion
models to capture this uncertainty by measuring variance across experts, following ensemble prin-
ciples (Lakshminarayanan et al., 2017). Unlike standard MoEs that merge expert outputs, EMoE
disentangles them, making disagreement directly observable. This disagreement serves as a robust
signal of bias and coverage gaps in the training distribution.

3.1 SEPARATION OF EXPERTS

At the first sparse MoE layer, located in the initial cross-attention layer of the first down-block, we
assign each expert to a distinct computational path instead of aggregating outputs via a weighted sum.
Each path processes its own copy of the latent representations, and for the i-th expert, the output of
the cross-attention mechanism is given by:

C A" = Attention(Q*, K*, V).

These outputs propagate independently through the model along their designated paths. However, in
later sparse MoE layers, expert outputs are aggregated within each computational path according to
Equation 1. As a result, the model maintains M distinct representations of the latent space z, rather
than a single aggregated representation. Figure 2 illustrates the flow of this process within the model.

Separating the ensemble components early in the pipeline generates multiple predictions within the
latent spaces of the denoising process. This enables the estimation of epistemic uncertainty at the
initial step of denoising without requiring a complete forward pass through the U-Net, offering the
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advantage of halting the denoising process immediately for uncertain prompts. Diffusion models
carry the drawback of being computationally expensive during image generation. This limitation
has spurred considerable research to accelerate the denoising process (Huang et al., 2022; Wu et al.,
2023). The fast computation of epistemic uncertainty in our approach aligns with ongoing efforts to
reduce the environmental impact of large machine learning models (Henderson et al., 2020).

Uncertainty Quantification vs CLIP Score

3.2 EPISTEMIC UNCERTAINTY ESTIMATION

We capture epistemic uncertainty by measuring sie
the variance among the ensemble components, 1
a common approach in the literature (Ekmekci
and Cetin, 2022; Chan et al., 2024). This oc-
curs after the mid-block in our U-Net, m’}OSt.
Note that given that this is a high-dimensional
space d,;q With dimensions 1280 x 8 x 8 and _ Y
we want to reduce epistemic uncertainty to one
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It is important to note that m7,~ takes as input
the text prompt, y. Thus EU(y) gives an esti-
mate of the epistemic uncertainty of our MoE

quartiles. EMoE accurately attributes prompts that
produce images with high CLIP scores with low
uncertainty unlike DECU. The red line indicates

given a prompt y. The intuition behind this the average CLIP score across all quartiles.
choice of epistemic uncertainty estimator is de-
tailed in Appendix D. Note that the epistemic
uncertainty values reflect the model’s confidence
in the generation, with higher uncertainty indi-

cating that the model is extrapolating further

Table 1: CLIP score, Aesthetic score & Image
Reward on each uncertainty quartile, using EMoE,
on the English 40k prompt dataset. Note the CLIP
Scores are reported as p £ o.

: T : : T Quartile CLIP Score T Aesthetic Score T Image Reward 1
fyom its tralnmg.daFa'. This provides valuable in o1 P P o
sight into the reliability of the generated content, oY) 31.54620.16 5744 0.290
particularly for rare or unseen prompts. Q3 31.405+0.16 5733 0273
Q4 31.217+£0.16 5.632 0.266

3.3 BUILDING MOE Table 2: Mean Length of English Prompts by Quar-

tile of Uncertainty + standard deviation.

To build an ensemble that effectively captures

. Quartile Character Count Word Count
uncertainty, the ensemble components must be QI 3314 - 13.30 1058 £ 256
diverse enough to reflect meaningful disagree- Q2 52'38 T 2'9 T i 0' 7T 2' )
mary techniaues have been used to achiove di. Q3 9220 1281 1043529

Q4 51.93 £12.32 10.34 £2.33

versity among ensemble components: bootstrap-
ping samples during training and random initialization (Breiman, 2001; Lakshminarayanan et al.,
2017). In our approach, we do not train the ensemble components; instead, they are sourced from
pre-existing models available on Hugging Face and Civit Al This strategy offers the significant
advantage of enabling the creation of countless MoE, as Hugging Face hosts over 30,000 model
checkpoints and Civit Al provides thousands of models.

Without controlling the training process, ensemble diversity relies largely on chance. Fortunately,
platforms like Hugging Face and Civit Al offer a wide range of task-specific models, enhancing
diversity. As shown in Section 4.4, even 4 checkpoints of the same models can suffice. In contrast,
training such an ensemble from scratch would demand 150,000 GPU-hours per expert, costing
$600,000 USD.

Finally, after assembling the ensemble, a gating module is needed to route inputs to a subset of experts
and assign appropriate weights to their outputs. Although the gating module can be trained, it can
also be inferred by computing the similarity of a given input with 1, a text description characterizing
the strengths and weaknesses of each expert. The gating weights are computed as follows:

al = T9(¢i> ~1o(Yy), wt = softmax(ai)7


https://huggingface.co/
https://civitai.com/
https://huggingface.co/
https://civitai.com/
https://huggingface.co/
https://civitai.com/
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Uncertainty Distribution: Finnish vs. English Prompts — Table 3: Comparison o f CLIP scores  an d
mean uncertainty £ standard deviation between
L Finnish and English prompts.

Density

| W lils T Language CLIP Score T Uncertainty
Allk:iusRRREn T— Finnish 16.41 0.48 £0.19
e English 31.39 0.37+£0.14

Figure 4: Uncertainty distribution for Finnish
and English prompts, showing higher uncertainty
for Finnish prompts compared to English.

where - represents the dot product. The gating module assigns weights to experts by computing the
similarity between the input representation, 7¢(y), with the expert-specific representations, 74 (1*).
This method enables the MoE model to dynamically select and weigh experts without requiring
additional training. Further details can be found in Appendix E and in Goddard et al. (2024).

4 RESULTS

To validate EMoE, we conducted experiments on the COCO dataset (Lin et al., 2014), building on
the diffusers and segmoe libraries (von Platen et al., 2022; Yatharth Gupta, 2024) with modifications
to support our method. We used the base MoE provided in segmoe (Appendix F), which includes
four experts. This choice avoids researcher bias from manual expert selection and ensures that the
model, not originally designed for uncertainty estimation, provides a neutral testbed for EMoE. For
multilingual evaluation, COCO prompts were translated using the Google Translate API.

We report results using CLIP score (Hessel et al., 2021), which measures semantic alignment between
a generated image and its text prompt (higher is better). For non-English prompts, the English
translation was used in scoring. We discuss the limitations of CLIP score as a metric in Appendix B.

4.1 ENGLISH PROMPTS

Our first experiment evaluated EMoE’s ability to distinguish between in-distribution prompts that
yield higher-quality images. We randomly sampled 40,000 COCO prompts and computed their
epistemic uncertainty with EMoE. Prompts were then divided into quartiles: Q1 contained the lowest
25% of uncertainty values, through Q4, the highest 25%. For each quartile, we generated images
and assessed quality using the CLIP score. As shown in Figure 3, we report the mean and standard
deviation of CLIP scores across quartiles, revealing a clear trend: lower uncertainty corresponds to
higher image quality. This demonstrates EMoE’s effectiveness in fine-grained uncertainty estimation
on in-distribution data—a capability that DECU (Berry et al., 2024) did not exhibit.

This relationship extends to other evaluation metrics. Table | shows a similar pattern across quartiles
for Aesthetic Score and Image Reward (Schuhmann et al., 2022; Xu et al., 2024), further affirming
EMOoE’s robustness in estimating uncertainty for MoE text-to-image models. The small differences
between quartile scores reflect that all prompts in the English dataset are in-distribution.

We also analyzed prompt characteristics by uncertainty quartile. Prompts in lower uncertainty
quartiles were longer in both character and word count, as shown in Table 2. This aligns with the
intuition that longer, more descriptive prompts offer clearer objectives to the model.

To further validate these trends, we extended our analysis to the CC3M dataset (Sharma et al., 2018),
as detailed in Appendix C. The results on CC3M further support our findings on the COCO dataset.

4.2 FINNISH PROMPTS

Next, we evaluated EMoE’s ability to distinguish in-distribution from out-of-distribution samples by
translating 10,000 English COCO prompts into Finnish. Since Finnish is less represented in online
datasets, we expected these prompts to be more likely out-of-distribution and to yield lower-quality
images. As shown in Figure 4, the uncertainty distribution for Finnish prompts is shifted to the right
relative to English, confirming EMoE’s capacity to detect distributional differences. To quantify


https://github.com/huggingface/diffusers
https://github.com/segmind/segmoe
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(Neliiin muotoinen pizza, jonka henkilo leikkaa isolla veitselléi) (Héiéikakku on valkoinen ja siini on kukkia.)

A square shaped pizza being cut by a person with a big knife. The wedding cake is white with flowers on it.

>

Figure 5: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza’
and a random Finnish prompt. The English translation was not provided to the model.

Table 4: Mean Length of Finnish Prompts by  Table 5: Comparison of the proportion of
Quartile of Uncertainty. prompts with “pizza” in QI of uncertainty be-
tween Finnish and English.

Quartile Character Count Word Count

Q1 54.94 +17.04 6.59 +2.16 L Proportion of Prompts
Q2 5126 £ 1440  6.14 £ 1.79 ANgUALE  with “pizza" in Q1
Q3 49.67 + 14.23 595+ 1.75 Finnish 46.67%

Q4 47.97 £ 13.86 577 £1.73 English 21.54%

this effect, we report the area under the receiver operating characteristic curve (AUROC). Here,
the AUROC represents the probability that a randomly chosen Finnish prompt (out-of-distribution)
receives a higher uncertainty score than a randomly chosen English prompt (in-distribution). Higher
values indicate better separation: perfect separation yields 1.0, while random guessing yields 0.5.
EMOE achieves a strong AUROC of 0.745.

We also applied EMOoE to probe model biases. In images generated from Finnish prompts, those
containing the word “pizza” consistently produced more text-aligned outputs than random prompts
(Figure 5). EMOoE reflected this bias quantitatively: 46.67% of Finnish “pizza” prompts fell into the
lowest-uncertainty quartile (Q1), compared to only 21.54% for English prompts (Table 5). Shared
vocabulary between English and Finnish likely contributes to certain Finnish prompts exhibiting
lower uncertainty than some English prompts.

Finally, we analyzed the relationship between prompt length and uncertainty. As shown in Table 3,
longer prompts reduce uncertainty even in Finnish (Table 4), suggesting that added context promotes
greater expert agreement across languages.

4.3 MULTI-LINGUAL PROMPTS

To further explore the behavior of EMoE, we translated 1,000 prompts into an additional 23 languages.
We applied EMOE to these translations and calculated each language’s respective CLIP score. As
shown in Figure 6, there is a strong negative correlation (r = —0.79) between uncertainty and CLIP
score, consistent with the expected relationship between uncertainty and image quality. Additionally,
the size of each point in Figure 6 is proportional to the number of native speakers for each language.
One can also observe a relationship between the number of native speakers with both CLIP score
and uncertainty of any given language. European languages generally performed better than non-
European languages, which further underscores the potential bias in favor of European languages in
text-to-image models and EMoE’s ability to capture language related model bias.

4.4 ABLATION

We conducted 4 ablation experiments to validate the robustness of our approach. All ablation studies
were performed on the dataset of 40,000 English prompts.
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To identify the optimal number of ensemble components, we examined ensemble sizes of 2 and 3,
using all possible permutations from the 4 components. We averaged the results for ensembles of 2
and 3 components (Figure 7a). The results indicate that ensemble sizes of 2 and 3 are sub-optimal
to an ensemble size of 4, as the first quantile (Q1) yields a lower CLIP score than the second (Q2).

We investigated the effect of the denoising step Uncertainty vs CLIP Score for Different Languages

on uncertainty quantification, as shown in Fig- ~| @™ — U oren PR R-a7®)
ure 7b. A consistent decrease in CLIP scores
across uncertainty quantiles at each step con-
firmed EMoE’s robustness in estimating epis-
temic uncertainty. For practical reasons, we
selected the first step, as it offers the earliest
opportunity to halt the costly denoising process
for high-uncertainty prompts.

We also explored different latent spaces in o3 oo I ol oin
which to estimate epistemic uncertainty, testing
both Var(mh'“) and Var(zr_1). The results,

LN A Figure 6: Negative correlation between uncertainty
shown in Figure 7c, indicate that Var(zp_1)

. . Lo . X : and image quality across prompts translated into 25
is sub-optimal, aligning with previous ggdmgs different languages. EMoE demonstrates a strong
from DECU. We observed that Var(my °) per- negative correlation (r = -0.79) between uncertainty

formed similarly to Var (mz%OSt)- We chose  and CLIP score, with languages having more native

Var(mb°") because the mid-block is intended ~ speakers generally producing lower uncertainty
to refine the latent space, though Var(m%'“) and higher-quality images, highlighting potential
could serve as an acceptable alternative. biases in text-to-image models favoring more com-

1 ken 1 .
Finally, to further validate the robustness of monty spoken fanguages

EMOE, we ran an additional experiment using

Runway MoE (Figure 7d). The results confirm that EMoE is versatile and can effectively handle
different MoE models. Additionally, this demonstrates that EMoOE can detect uncertainty even within
for one model as each expert component is a different checkpoint of one model.

5 RELATED WORKS

Building ensembles of diffusion models for image generation is challenging due to their large
parameter sizes, often hundreds of millions (Saharia et al., 2022; Nichol et al., 2022; Ramesh et al.,
2022). Despite this, models like eDiff-I enhance image fidelity using ensembles (Balaji et al., 2022),
though they don’t target epistemic uncertainty. DECU, by contrast, is designed specifically for such
uncertainty estimation but requires 7 days of training (Berry et al., 2024). Our method reduces this
burden to zero by leveraging pre-trained experts. EMoE further tackles the harder task of estimating
epistemic uncertainty in text-to-image generation.

Previous work has explored epistemic uncertainty in neural networks, primarily in image classification,
via Bayesian methods (Gal et al., 2017; Kendall and Gal, 2017; Kirsch et al., 2019), which deal
with simpler, discrete outputs. Ensemble methods have also been used for uncertainty in regression
(Lakshminarayanan et al., 2017; Choi et al., 2018; Chua et al., 2018; Depeweg et al., 2018; Postels
et al., 2020; Berry and Meger, 2023a;b). Notably, Postels et al. (2020) and Berry and Meger (2023b)
used Normalizing Flows (NFs) to model uncertainty efficiently, and Berry and Meger (2023a)
extended this to a 257-dimensional space using Pairwise Difference Estimators. Our approach scales
this to 700k-dimensional outputs in diffusion models with text prompts.

As interest in uncertainty estimation grows, many methods have emerged for image and text generation
(Malinin and Gales, 2020; Berry et al., 2024; Chan et al., 2024; Liu et al., 2024). For instance, Chan
et al. (2024) used hyper-networks for uncertainty in weather-predictive diffusion models, whereas
EMOE derives uncertainty from pre-trained experts available online.

Some studies have used epistemic uncertainty to detect hallucinations in large language models
(Verma et al., 2023). While EMoE could be adapted for hallucination detection in vision-language
models, lack of transparency in training data makes this infeasible in our case.
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Figure 7: Ablation studies validating EMoE hyperparameters: ensemble size (a), denoising step (b),
and latent space (c). Additionally, (d) shows the robustness of EMoE.

Past work has integrated uncertainty into MoE pipelines (Zheng et al., 2019; Luttner, 2023; Zhang
et al., 2024), but without addressing epistemic uncertainty or text-to-image tasks. These methods are
also not zero-shot, limiting their scope.

6 CONCLUSIONS

In this paper, we introduced EMoE which estimates uncertainty in text-to-image diffusion models.
EMOE leverages pre-trained experts to provide computationally efficient uncertainty estimates without
the need for training. By incorporating a latent space for uncertainty estimation within the diffusion
process, EMOoE can identify biases and uncertainty early in the generation process.

Limitations. While EMoE eliminates the need for additional training, it relies on the availability of
pre-trained expert networks. Although publicly available models are abundant, they may not always
offer sufficient diversity for optimal uncertainty estimation in all scenarios. Our results show that even
with very similar experts (e.g., Runway ML MoE), EMoE produces reliable uncertainty estimates.
However, this may not hold universally. Additionally, EMoE requires sufficient memory resources to
load and execute an ensemble of experts efficiently.

Our experimental results demonstrate that EMoE enhances the detection of epistemic uncertainty
while also exposing underrepresented linguistic biases in diffusion models. By leveraging readily
available SOTA pre-trained models, we show that EMOE scales efficiently and delivers reliable
uncertainty estimates across a range of input prompts. These capabilities have significant implications
for fairness, accountability, and the robustness of Al-generated content.

As generative models continue to proliferate, the ability to quantify and interpret uncertainty will
become increasingly critical, especially in applications involving autonomous decision-making.
Future research may explore strategies to enhance expert diversity, optimize memory efficiency, and
extend EMoE to more complex tasks and environments.
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A COMPUTE DETAILS

We used the same set of hyperpa-

rameters as in the Stable Diffusion  Taple 6: Computational requirements.
model described by Yatharth Gupta

(2024). All experiments use DDIM Dataset Run Time Storage
sampling with 25 denoising steps and English 40k Prompts 200 gpuhrs 6 TB
the standard e-prediction parameteri- Finnish 10k Prompts 50gpuhrs 1.5TB

zation, where the model predicts the  ~Qther Languages 1k Prompts 5 gpuhrs 150 GB
noise added to the latent state at each

timestep, following the formulation

in Rombach et al. (2022). Minor

changes were made to both the Seg- Table 7: Generation times for baseline (Segmoe) and two
moe and Diffusers codebases to disen- variants of EMoE. Reported times are ;4 & o.

tangle the MoE, with specific modifi-

cations to incorporate EMoE. Our in- Model Generation Time
frastructure included an AMD Milan Segmoe 3.58 £ 0.54 secs
7413 CPU running at 2.65 GHz, with EMoE 12.32 4+ 4.6 secs
a 128M L3 cache, and an NVIDIA Fast EMoE 5.5 £ 0.15 secs

A100 GPU with 40 GB of memory.
The wall clock time required to col-
lect each dataset and the memory usage are provided in Table 6. The parameter count for the
Segmoe model is 1.63 billion parameters, while a single model contains 1.07 billion parameters. This
highlights the efficiency of using a sparse MoE approach compared to creating 4 distinct models, as
the Segmoe model is only 153% the size of a single model, rather than 400%. When running the
SegMOoE model in its standard mode, generating an image from one prompt takes an average of 3.58
seconds. In comparison, using EMoE typically requires an average of 12.32 seconds to generate four
images from a single prompt. However, when only a single image per prompt is required, EMoE’s
output can be optimized by estimating epistemic uncertainty during the initial diffusion step. Once
the uncertainty is determined, standard MoE-based image generation proceeds with the elimination
of the unnecessary computational paths. This optimized version of EMoE, Fast EMoE, achieves
an average generation time of 5.5 seconds. Table 7 provides further details. Note that uncertainty
reported across all experiments is calculated as v/dyigsize X EU(y), where dpnidsize = 1280 X 8 X 8.

B BIAsS IN CLIP SCORE

CLIP score, despite its known biases (Chinchure et al., 2023; Alabdulmohsin et al., 2024), remains
a widely-used method for evaluating the alignment between text prompts and generated images,
alongside FID (Shi et al., 2020; Kumari et al., 2023). Both metrics, however, rely on auxiliary models
(CLIP and Inception, respectively), making them susceptible to inherent biases. FID requires a large
number of samples for reliable estimation and thus requires more compute, whereas CLIP score
facilitates a more direct assessment of text-to-image alignment with fewer samples (Kawar et al.,
2023; Ho et al., 2022a). Moreover, FID does not measure text-image alignment, which is crucial
in our context. Considering these trade-offs, we prioritized CLIP score due to its relevance to our
research objectives and its broad acceptance in related studies.

To further validate our findings and address Table 8: Comparison of Aesthetic Score and Image
potential concerns regarding metric biases, we Reward with mean uncertainty + standard devia-
conducted additional experiments using the tion between Finnish and English prompts. Illustrat-
Aesthetic Score Predictor and Image Reward ing lower image quality and higher uncertainty for
as evaluation metrics (Schuhmann et al., 2022; Finnish prompts.

Xu et al., 2024). The Aesthetic Score Predic- ] ]

tor quantifies how much people, on average, L;i':lgn';:‘hge Aesme;‘;g“’re T Imagf;{l?;ard T Ié:;erfg%y
like an image, while Image Reward provides English 5738 0270 037 £0.14

a score that encodes human preferences. The Aesthetic Score Predictor operates on a scale from 1 to
10, with higher scores indicating a more favored image, and higher Image Reward values similarly
reflect images preferred by humans. Image Reward takes as input the prompt and the image, while
Aesthetic Score only takes in the image as input.
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Algorithm 1 Epistemic Mixture of Experts (EMoE)

1: Input: Initial noise zr ~ N(0,1), total steps T, pre-trained experts £ = {e1,e2,...,en},
prompt y
2: fort =Tto1ldo
3: ift =T then
4: Separate Experts:
5: for each expert e; € E do
6: Pass z7 and prompt y through e;’s first cross-attention layer C'A® to arrive at M distinct
latent representations.
7: Subsequent sparse MoE layers are processed as Equation 1.
8: Extract the mid-block latent representation for each expert mb>*"".
9: end for
10: Compute epistemic uncertainty EU(y) as defined in Equation 2.
11: Output M different zi_,, one for each expert.
12:  else
13: Mixture of Experts Rollout:
14: foriec {1,..,M} do
15: Update latent variable for each expert:
zy_1 ~ po(zi_1|2t,Y)
16: Pass z!_; and y through our reverse diffusion process, as a standard MoE (e.g. experts
are aggregated as Equation 1). This is shown in Figure 2 in M and H.
17: end for
18:  endif
19: end for

20: Output: M reconstructed latent variables z} and EU(y).

We re-conducted a comparison between Finnish and English prompts to further evaluate EMoE’s
capabilities. Results from Image Reward align with the conclusion that EMoE effectively detects
out-of-distribution data, as evidenced by lower Image Reward for Finnish prompts (Table 8). However,
the Aesthetic Score does not support this conclusion. This discrepancy can be attributed to the nature
of the Aesthetic Score, which evaluates the visual quality of the generated image independently of
the text prompt. Consequently, it does not account for how well the image aligns with the prompt.
The higher Aesthetic Score observed for the Finnish dataset can be explained by this limitation, as it
overlooks the alignment challenges posed by out-of-distribution prompts.

Additionally, we evaluated the correlation between
uncertainty and Image Reward across all languages,
as shown in Figure 8. Consistent with expectations,
a negative correlation is observed, where higher un-
certainty is associated with lower image quality, as
estimated by EMoE. This relationship also reveals a
preference for European languages, with most points
above the line of best fit corresponding to European
languages. This observation further underscores po-
tential biases in text-to-image models favoring Eu-
ropean languages. EMoE’s ability to capture these
language-related biases, alongside its robust perfor-
mance across diverse evaluation metrics, reinforces
its capability to estimate epistemic uncertainty accu-
rately and reliably.

C CC3M DATASET

To further validate our results, we extended the anal-
ysis of EMOoE to the CC3M dataset (Sharma et al.,
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Uncertainty vs Image Reward for Different L
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Image Reward

0.38 0.40 0.42 0.44 0.46 0.48
Uncertainty

Figure 8: Negative correlation between un-
certainty and image quality across prompts
translated into 25 different languages. EMoE
demonstrates a strong negative correlation
(r = -0.73) between uncertainty and Image
Reward, with languages having more native
speakers generally producing lower uncer-
tainty and higher-quality images, highlight-
ing potential biases in text-to-image models
favoring more commonly spoken languages.
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Uncertainty Quantification vs CLIP Score

Table 9: CLIP score, Aesthetic score & Im-

30.0 age Reward on each uncertainty quartile, using
EMOE, on the English 10k prompt dataset for
CC3M dataset.
§ Quartile CLIP Score T Aesthetic Score T Image Reward 1
a Qi 3007 575 -0.05
3 Q2 29.83 5.63 0.12
Q3 29.72 5.60 0.7
(o] 29.57 54 0.26
29.5 —e— EMOoE (ours)
DECU
—=—- Mean Clip Score
29.4
Q1 Q2 Q3 Q4

Uncertainty Quartile

Figure 9: CLIP score on the CC3M dataset
across different uncertainty quartiles. EMoE ac-
curately attributes prompts that produce images
with high CLIP scores with low uncertainty un-
like DECU. The red line indicates the average
CLIP score across all quartiles.

2018). The results are presented in Figure 9 and Fig-

ure 9. We randomly sampled 10,000 prompts from the dataset and repeated our analysis on English
prompts. Our findings demonstrate that EMoE continues to perform robustly on the CC3M dataset.
Specifically, prompts with lower uncertainty produced higher-quality images compared to those with
higher uncertainty. These results not only reaffirm the robustness of our findings on the COCO
dataset but also provide additional validation across a different dataset. Importantly, they suggest
that EMoE’s ability to capture biases is consistent and not merely an artifact of the COCO dataset.
This further strengthens the argument for EMoE’s effectiveness in diverse settings and its capacity
for detecting biases in real-world data.

D INTUITION BEHIND OUR ESTIMATOR FOR EPISTEMIC UNCERTAINTY

Here is an intuitive explanation for our choice of estimator for epistemic uncertainty using the theory
of Gaussian Processes. Each expert can be viewed as a sample from the posterior distribution of
functions given an input y, denoted as p(f(y)|y). By calculating the variance across these experts,
we obtain the variance o2 of p(f(y)|y), which serves as an estimate of epistemic uncertainty within
the Gaussian Process framework. In general, other works have used the difference among ensemble
components to denote epistemic uncertainty (Gal et al., 2017; Depeweg et al., 2018; Berry and Meger,
2023b).

When estimating the epistemic uncertainty for a prompt y, we weight each ensemble component
equally. Therefore, let F = {fp, }Y; denote an ensemble of N neural networks, where each model
fo, + Y — Ris parameterized by 6;, sampled from a parameter distribution p(#). Then the prediction
from our ensemble is:

) = 5 Y fou ).

where y € ) is an input from the input space ).

A Gaussian Process (GP) is defined as a collection of random variables, any finite subset of which
follows a joint Gaussian distribution. Formally, a Gaussian Process f(y) ~ GP(u(y), k(y,y’)) is
characterized by its mean function p(y) and covariance function k(y, y'):

w(y) =Ef(y)], ky,y) =E[(f(y) — p) () —ny))]

Proposition 1: Let 7 = {fy,})¥., be an ensemble of neural networks with parameter samples
0; ~ p(0). As N — oo and under the assumption that the neural network weights are drawn i.i.d.

from a distribution with zero mean and finite variance, the ensemble predictor f (y) converges in
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distribution to a Gaussian Process:

F) L GP(uly). k(y. y)),

where p(y) is the expected value of the ensemble output, and k(y,y’) is the covariance function
defined by the variance of the ensemble.

Proof:

To prove this, we proceed in two main steps:

STEP 1: CONVERGENCE OF MEAN FUNCTION

Consider the mean function u(y) of the ensemble predictor:
1(y) = Eopo)[fo(y)]-

As N — oo, by the law of large numbers, the empirical mean of the ensemble f (y) converges to the
expected mean:

1 N
lim — " fo,(y) = u(y).

N—><><>N,

STEP 2: CONVERGENCE OF COVARIANCE FUNCTION

The covariance function k(y, y’) of the Gaussian Process can be defined as:

N

Hos) = Jim xS o (0) = ) o (0) = 0(6)

Under the assumption that fy,(y) are i.i.d. samples with finite variance, by the Central Limit
Theorem (CLT), the ensemble prediction f(y) converges in distribution to a Gaussian Process

GP(u(y), k(y,y))-

In the context of an ensemble of neural networks, epistemic uncertainty arises from the uncertainty
over the model parameters 6. This uncertainty is captured by the variance of the ensemble predictions:

N
Varlf(0)] = 5 D" (n () — F0))*

As N — oo, this variance converges to the posterior variance of the Gaussian Process:

lim Var[f(y)] = k(y,y),

N—o00

where k(y,y) is the marginal variance of the Gaussian Process and directly represents the epistemic
uncertainty.
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E GATES WITHOUT TRAINING

yJ
Each expert is associated with a positive and a neg-
ative descriptor, ¢* = (pl, n’), which represent what

! z.
the expert excels at and struggles with modeling, re- _ v
spectively. These descriptors are processed through ~ ¢* — 7o
a pre-trained text model, 7y, to create gate vectors,

v® = [19(p*); 79(n')]. When a new positive and neg-
ative prompt, y; = (¢;,v;), is provided to generate
an image, the latent representation of these prompts,
Ljlmo(¢;); To(v;)] are compared against v* and as-
signed a weight, w/ based on the dot product and a i
softmax. This process is illustrated in Figure 10 and

described in Goddard et al. (2024).

Figure 10: This pictures depicts how to have
F MOoDEL CARDS accurate gates without training.

Below are the model parameters for the base Segmoe

MOoE used in the experiments. We increased the num-

ber of experts from 2 to 4 to incorporate more ensemble components. Generally, having a low number
of ensemble components (2-10) is sufficient in deep learning to capture model disagreement (Osband
et al., 2016; Chua et al., 2018; Fujimoto et al., 2018). In addition to the Segmoe base MoE, we also
tested EMOE on another MoE model, referred to as Runway ML, where each expert component is a
Runway model. The corresponding model card can be found below. This experiment demonstrates
the robustness of EMOoE across different MoE architectures, showing that EMOoE is effective even
when components are trained on similar data with similarly initialized weights, as each Runway ML
component was fine-tuned on new data from similar initial conditions.
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Segmoe MoE

base_model: SG161222/Realistic_Vision_V6.0_Bl_noVAE
num_experts: 4

moe_layers: all

num_experts_per_tok: 2

type: sd
experts:
— source_model: SG161222/Realistic_Vision_V6.0_Bl_noVAE
positive_prompt: "cinematic, portrait, photograph, instagram,
fashion, movie, macro shot, 8K, RAW, hyperrealistic, ultra
realistic,"

negative_prompt: " (deformed iris, deformed pupils, semi-

realistic, cgi, 3d, render, sketch, cartoon, drawing,
anime), text, cropped, out of frame, worst quality, low
quality, jpeg artifacts, ugly, duplicate, morbid,
mutilated, extra fingers, mutated hands, poorly drawn
hands, poorly drawn face, mutation, deformed, blurry,
dehydrated, bad anatomy, bad proportions, extra limbs,
cloned face, disfigured, gross proportions, malformed
limbs, missing arms, missing legs, extra arms, extra legs,
fused fingers, too many fingers, long neck"
— source_model: dreamlike-art/dreamlike—-anime-1.0
positive_prompt: "photo anime, masterpiece, high quality,
absurdres, 1lgirl, 1lboy, waifu, chibi"
negative_prompt: "simple background, duplicate, retro style,
low quality, lowest quality, 1980s, 1990s, 2000s, 2005
2006 2007 2008 2009 2010 2011 2012 2013, bad anatomy, bad
proportions, extra digits, lowres, username, artist name,
error, duplicate, watermark, signature, text, extra digit,
fewer digits, worst quality, jpeg artifacts, blurry"
- source_model: Lykon/dreamshaper-8
positive_prompt: "bokeh, intricate, elegant, sharp focus, soft
lighting, vibrant colors, dreamlike, fantasy, artstation,
concept art"
negative_prompt: "low quality, lowres, jpeg artifacts,
signature, bad anatomy, extra legs, extra arms, extra
fingers, poorly drawn hands, poorly drawn feet, disfigured
, out of frame, tiling, bad art, deformed, mutated, blurry
, fuzzy, misshaped, mutant, gross, disgusting, ugly,
watermark, watermarks"
— source_model: dreamlike-—-art/dreamlike-diffusion-1.0
positive_prompt: "dreamlikeart, a grungy woman with rainbow
hair, travelling between dimensions, dynamic pose, happy,
soft eyes and narrow chin, extreme bokeh, dainty figure,
long hair straight down, torn kawaii shirt and baggy Jjeans
, In style of by Jordan Grimmer and greg rutkowski, crisp
lines and color, complex background, particles, lines,
wind, concept art, sharp focus, vivid colors"
negative_prompt: "nude, naked, low quality, lowres, Jjpeg
artifacts, signature, bad anatomy, extra legs, extra arms,
extra fingers, poorly drawn hands, poorly drawn feet,
disfigured, out of frame"
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Runway ML MoE

base_model: runwayml/stable-diffusion-v1-5
num_experts: 4

moe_layers: all

num_experts_per_tok: 4

type: sd
experts:
— source_model: runwayml/stable-diffusion-v1-5
positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
— source_model: CompVis/stable-diffusion-vl1-4

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
— source_model: CompVis/stable-diffusion-v1-3

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-2

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"

G STATISTICAL ANALYSIS

For Table 1 and Table 2, we used the Jonckheere-Terpstra test, which is the most appropriate choice
for our data. This non-parametric test specifically tests for an ordered trend across multiple groups
(i.e., whether the means follow a consistent ordering, such as p1 > po > us > p4). Given that we
are testing for trends rather than just differences between groups, the Jonckheere-Terpstra test is
suitable.

For the CLIP Score Table 1, the test yielded a p-value of 3.34 x 10719, For Table 2, the test yielded
a p-value of 2.13 x 10~'2 for prompt length and 1.23 x 10~7 for word count. Additionally, we used
a t-test to compare the means for Finnish and English (i.e., UFinnish > [4English) and obtained a p-value
of 9.51 x 1079, All of these results further confirm the statistical significance of our findings.

H QUALITATIVE RESULTS

In addition to the examples provided in the main paper, we have included additional qualitative results
of our MoE model. Figure 11 shows two sets of images: low uncertainty images on the left and high
uncertainty images on the right. Each row corresponds to a single prompt, while the columns display
the outputs from different ensemble components. The low uncertainty prompts exhibit less variation
across ensemble outputs, whereas the high uncertainty prompts show greater diversity, indicating the
model’s difficulty in capturing the semantic meaning of the prompt in the generated images. Here,
we present another example of models showing bias towards Finnish prompts containing “pizza", as
illustrated in Figure 12.
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(Low Epistemic Uncertainty)

(High Epistemic Uncertainty)

Figure 11: EMoE’s uncertainty across different prompts: Each row represents a distinct prompt,
while the columns denote the output of each component. The left panel displays low uncertainty,
while the right panel shows higher uncertainty, indicating more ambiguous or less familiar prompts.

(Kﬁsin heitetty pizza ritililld muiden kanssa)

(Hand tossed pizza on a rack with others.)

(Nuori poika istuu poydéssé syomiissi vihreiisti kulhosta)

(A young boy sitting at table eating from a green bowl.)

Figure 12: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza"
and a random Finnish prompt. Note that the English translation was not provided to the model.

21



	Introduction
	Background
	Diffusion Models
	U-Networks
	Sparse Mixture of Experts

	Epistemic Mixture of Experts
	Separation of Experts
	Epistemic Uncertainty Estimation
	Building MoE

	Results
	English Prompts
	Finnish Prompts
	Multi-Lingual Prompts
	Ablation

	Related Works
	Conclusions
	Compute Details
	Bias in CLIP score
	CC3M Dataset
	Intuition Behind Our Estimator for Epistemic Uncertainty
	Gates Without Training
	Model Cards
	Statistical Analysis
	Qualitative Results

