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ABSTRACT

Estimating uncertainty in text-to-image diffusion models is challenging due to
their massive parameter counts (often exceeding 100M) and operation in complex,
high-dimensional spaces with virtually unbounded input domains. We introduce
Epistemic Mixture of Experts (EMoE), a framework for efficient estimation of
epistemic uncertainty in diffusion models. EMoE leverages pre-trained networks
without requiring additional training, enabling direct uncertainty estimation from a
prompt. By probing a latent space within the diffusion process, EMoE captures
epistemic uncertainty more effectively than existing approaches. Experiments on
the COCO dataset demonstrate EMoE’s superior performance. Beyond benchmark
gains, EMoE highlights under-sampled languages and geographic regions associ-
ated with elevated uncertainty, uncovering hidden biases in training data. Since
training data for online diffusion models is rarely made public, this bias-detection
capability is especially valuable. Together, these contributions position EMoE
as a practical tool for addressing data imbalance and improving inclusivity in
AI-generated content.

1 INTRODUCTION

In recent years, text-to-image diffusion models have achieved remarkable progress, enabling faster
generation (Song et al., 2020; Liu et al., 2023; Yin et al., 2024), higher visual fidelity (Dhariwal and
Nichol, 2021; Nichol et al., 2022; Rombach et al., 2022), and even video synthesis (Ho et al., 2022b;
Khachatryan et al., 2023; Bar-Tal et al., 2024). These models operate via a forward process that
gradually adds noise to data and a reverse process that learns to denoise and reconstruct it. Despite
their success, diffusion models remain largely black boxes: they provide little transparency about
their uncertainty or the data they were trained on (Berry et al., 2024; Chan et al., 2024).

We address this limitation with Epistemic Mixture of Experts (EMoE), a framework for capturing and
quantifying epistemic uncertainty in text-conditioned mixture-of-experts diffusion models. Epistemic
uncertainty, arising from a model’s lack of knowledge, is reducible with additional data—unlike
aleatoric uncertainty, which reflects irreducible noise (Hora, 1996; Der Kiureghian and Ditlevsen,
2009; Hüllermeier and Waegeman, 2021). As such, epistemic uncertainty offers a powerful means
of detecting biases and underrepresented regions in training data that remains hidden from public
access.

Figure 1 illustrates this phenomenon. For the English prompt “Two teddy bears are sitting together
in the grass”, EMoE reports low epistemic uncertainty (0.38). The same prompt in Finnish (“Kaksi
nallekarhua istuu yhdessä nurmikolla”) produces much higher uncertainty (0.83). This disparity
highlights how models trained predominantly on English exhibit degraded performance for low-
resource languages, reinforcing inequities in multimodal AI.

The EMoE framework rests on two core components. First, it leverages pre-trained mixture-of-experts
(MoE) models for zero-shot uncertainty estimation. The experts in the MoE were independently
trained on different data subsets, and EMoE harnesses their diversity without additional training.
This design yields ensemble-like benefits at a fraction of the computational cost of training diffusion
ensembles from scratch, which otherwise require hundreds of GPU-days (Balaji et al., 2022). Second,
EMoE estimates uncertainty in the latent space of the denoiser, enabling early detection of under-
sampled prompts before image generation is complete. This latent-space analysis allows users to halt
expensive denoising when uncertainty is prohibitively high (Song et al., 2024).
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Kaksi nallekarhua istuu yhdessä nurmikolla.

Uncertainty: 0.83

Two teddy bears are sitting together in the grass.

Uncertainty: 0.38

Figure 1: This figure presents the model’s uncertainty estimates when interpreting the same prompt
in two languages. On the left, the English sentence “Two teddy bears are sitting together in the
grass.” yields a lower uncertainty score of 0.38, indicating greater model confidence. On the right, the
corresponding Finnish translation “Kaksi nallekarhua istuu yhdessä nurmikolla.” results in a higher
uncertainty of 0.83, reflecting reduced confidence. This contrast highlights how the model responds
differently to in-distribution (English) versus out-of-distribution (Finnish) language inputs.

We evaluate EMoE on the COCO dataset (Lin et al., 2014) and summarize our contributions as
follows:

• We introduce EMoE, a framework that combines pre-trained mixture-of-experts with latent-
space variance to estimate epistemic uncertainty in diffusion models.

• We demonstrate that EMoE produces uncertainty estimates consistent with expectations,
validated on high-performing MoE diffusion models using the COCO dataset.

• We show that EMoE detects novel or underrepresented data by quantifying uncertainty
across 25 languages, revealing systematic biases even when the training data is not publicly
available.

• We provide ablation studies that analyze design choices and confirm the robustness of
EMoE’s components.

Our results shed new light on epistemic uncertainty in text-conditioned diffusion models and establish
EMoE as a practical tool for building more transparent and inclusive generative AI systems.

2 BACKGROUND

Diffusion models iteratively add and remove Gaussian noise, forming a Markov chain to generate
samples. This structure naturally supports uncertainty estimation, as probability distributions in-
herently model uncertainty (Hüllermeier and Waegeman, 2021). Furthermore, since ensembles are
commonly used to estimate epistemic uncertainty (Hoffmann and Elster, 2021), MoE models are
well-suited for this task by creating an ensemble of experts.

2.1 DIFFUSION MODELS

In the context of supervised learning, consider a tuple (x, y), where x ∈ R512×512×3 and y is the
prompt associated with the image. The objective is to estimate the conditional distribution p(x|y).
However, due to its high-dimensional and multi-modal nature, some diffusion models operate in
a latent space learned by an autoencoder (Rombach et al., 2022). The autoencoder consists of an
encoder E , which maps images to their latent representation, and a decoder D, which reconstructs
images.

Diffusion models use a two-phase approach, consisting of a forward and a reverse process, to generate
realistic images. In the forward phase, an initial image x is encoded to z0 and then gradually corrupted
by adding Gaussian noise over T steps, resulting in a sequence of noisy latent states z1, z2, . . . , zT .
This process can be expressed as:

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) q(z1:T |z0) =
T∏

t=1

q(zt|zt−1),

2
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where βt ∈ (0, 1), with β1 < β2 < · · · < βT . This forward process draws inspiration from
non-equilibrium statistical physics (Sohl-Dickstein et al., 2015).

The reverse process aims to remove the noise and recover the original image, conditioned on text.
This is achieved by estimating the conditional distribution q(zt−1|zt, y) through a model pθ. The
reverse process is defined as:

pθ(z0:T |y) = p(zT )

T∏
t=1

pθ(zt−1|zt, y) pθ(zt−1|zt, y) = N (zt−1;µθ(zt, t, y),Σt).

where pθ(zt−1|zt, y) represents the denoising distribution, parameterized by θ, and is modeled as a
Gaussian with mean µθ(zt, t, y) and covariance Σt. While µθ is an output of the learned model, Σt

follows a predefined schedule, such that Σ0 < Σ1 < · · · < ΣT .

Given the complexity of directly computing the exact log-likelihood log(pθ(z0|y)) in the reverse
process, it is common to use the ELBO (Kingma and Welling, 2013) as a tractable surrogate objective.
Using properties of diffusion models, this ELBO formulation leads to a specific loss function that
optimizes the noise-prediction model:

LLDM = Ez,ϵ∼N (0,1),t,y

[
||ϵ− ϵθ(zt, t, y)||22

]
,

where t is uniformly distributed over 1, ..., T , ϵ ∼ N (0, 1), and ϵθ(zt, t, y) is the predicted noise for
computing µθ(zt, t, y). For details, see Ho et al. (2020).

2.2 U-NETWORKS

U-Nets, a CNN architecture, have demonstrated their effectiveness across a range of generative tasks,
including image synthesis and restoration (Ronneberger et al., 2015; Isola et al., 2017).

A U-Net consists of a downsampling path (i.e. down-blocks), an upsampling path (i.e. up-blocks),
and a mid-block. The downsampling path compresses the input zt into a latent representation
mpre

t ∈ R1280×8×8, where down(zt) = mpre
t , by reducing spatial dimensions and increasing the

number of feature channels. The mid-block refines this latent representation intompost
t ∈ R1280×8×8,

where mid(mpre
t ) = mpost

t . The up-block then reconstructs the image by upsampling mpost
t to zt−1,

the next latent representation in the denoising process. This process effectively combines low-level
details with high-level semantic information.

U-Nets are widely used in diffusion-based generative models, where they model ϵθ(zt, t, y), effec-
tively removing noise while preserving structure. The ability to maintain both local and global
information through skip connections makes U-Nets particularly suited for diffusion models.

To then make our models conditional on a prompt y, we map y through a tokenizer τθ and pass
this intermediate representation within the down-, mid- and up- blocks via a cross-attention layer
Attention(Q,K, V )= softmax

(
QKT

√
d

)
V (Vaswani et al., 2017). We mathematically denote this as

follows:
Q =WQϕθ(zt), K =WKτθ(y), V =WV τθ(y).

Here,WQ,WK , andWV are learned projection matrices, and ϕθ(zt) and τθ(y) represent the encoded
latent representations of the inputs zt and y. The cross-attention output is then passed through a
feed-forward neural network, as in the transformer architecture.

2.3 SPARSE MIXTURE OF EXPERTS

MoE is a widely-used machine learning architecture designed to handle complex tasks by combining
the outputs of several specialized models, or “experts” (Jacobs et al., 1991). The key intuition behind
MoE is that different experts can excel at solving specific parts of a problem, and by dynamically
selecting or weighing their contributions, the MoE can perform more effectively.

Our pre-trained models contain sparse MoE layers which combine multiple expert models at cross-
attention layers and feed-forward layers embedded within the U-Net architecture (Shazeer et al.,
2017; Fedus et al., 2022). Let M denote the number of experts, and let i denote the i-th expert. The
cross-attention layer can then be expressed as:

Qi =W i
Qϕθ(zt), Ki =W i

Kτθ(y), V i =W i
V τθ(y).

3
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Conditioning Latent Space Pixel Space

A crazy dog is strapped to
a moving motor bike.

τθ

zT

U-Net ϵθ

Down-Block Up-Block

zT−1

Q
K V

Q
K V

Iteratively Unrolling
Reverse Process for

Each Computational
Path, T-1 Times

z0

D

Figure 2: EMoE separates expert components in the first cross-attention layer in the first down-block
and processes each component separately as an independent computation path in the MoE pipeline.
This results in M distinct latent representations after the first denoising step. The figure illustrates an
ensemble with two expert components, ( and ).

The matrices W i
Q, W i

K , and W i
V are learned projection matrices specific to each expert i, allowing

each expert to attend to different aspects of the input information.

A similar process occurs within the feed-forward networks, where each expert processes the data
independently before their results are combined (Lepikhin et al., 2020). The ensemble created by
this mechanism leads to more robust predictions, as each expert is able to specialize and contribute
uniquely to the final output. In addition to the ensemble created by the cross-attention and feed-
forward layers, the MoE architecture includes a routing or gating network that dynamically selects
which experts to activate. The gating network determines the top n ≤M experts to use for a given
input, and the final output is computed as a weighted sum of the selected experts’ outputs:

Q =
∑
i∈S

wiQi, K =
∑
i∈S

wiKi, V =
∑
i∈S

wiV i, (1)

where S is the set of selected experts, wi is the weight of the i-th expert. This combination of expert
specialization and dynamic routing allows MoE models to scale efficiently by being sparse and only
selecting a subset of experts to pass through.

3 EPISTEMIC MIXTURE OF EXPERTS

Epistemic uncertainty arises where models lack knowledge, often in regions underrepresented in
training data (Gruber et al., 2023; Wang and Ji, 2024). EMoE extends mixture-of-experts diffusion
models to capture this uncertainty by measuring variance across experts, following ensemble prin-
ciples (Lakshminarayanan et al., 2017). Unlike standard MoEs that merge expert outputs, EMoE
disentangles them, making disagreement directly observable. This disagreement serves as a robust
signal of bias and coverage gaps in the training distribution.

3.1 SEPARATION OF EXPERTS

At the first sparse MoE layer, located in the initial cross-attention layer of the first down-block, we
assign each expert to a distinct computational path instead of aggregating outputs via a weighted sum.
Each path processes its own copy of the latent representations, and for the i-th expert, the output of
the cross-attention mechanism is given by:

CAi = Attention(Qi,Ki, V i).

These outputs propagate independently through the model along their designated paths. However, in
later sparse MoE layers, expert outputs are aggregated within each computational path according to
Equation 1. As a result, the model maintains M distinct representations of the latent space zt, rather
than a single aggregated representation. Figure 2 illustrates the flow of this process within the model.

Separating the ensemble components early in the pipeline generates multiple predictions within the
latent spaces of the denoising process. This enables the estimation of epistemic uncertainty at the
initial step of denoising without requiring a complete forward pass through the U-Net, offering the

4
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advantage of halting the denoising process immediately for uncertain prompts. Diffusion models
carry the drawback of being computationally expensive during image generation. This limitation
has spurred considerable research to accelerate the denoising process (Huang et al., 2022; Wu et al.,
2023). The fast computation of epistemic uncertainty in our approach aligns with ongoing efforts to
reduce the environmental impact of large machine learning models (Henderson et al., 2020).

3.2 EPISTEMIC UNCERTAINTY ESTIMATION

Figure 3: CLIP score across different uncertainty
quartiles. EMoE accurately attributes prompts that
produce images with high CLIP scores with low
uncertainty unlike DECU. The red line indicates
the average CLIP score across all quartiles.

Table 1: CLIP score, Aesthetic score & Image
Reward on each uncertainty quartile, using EMoE,
on the English 40k prompt dataset. Note the CLIP
Scores are reported as µ± σ.

Quartile CLIP Score ↑ Aesthetic Score ↑ Image Reward ↑
Q1 31.578±0.15 5.763 0.292
Q2 31.546±0.16 5.744 0.290
Q3 31.405±0.16 5.733 0.273
Q4 31.217±0.16 5.682 0.266

Table 2: Mean Length of English Prompts by Quar-
tile of Uncertainty ± standard deviation.

Quartile Character Count Word Count
Q1 53.14 ± 13.50 10.58 ± 2.56
Q2 52.38 ± 12.94 10.47 ± 2.42
Q3 52.20 ± 12.81 10.43 ± 2.39
Q4 51.93 ± 12.32 10.34 ± 2.33

We capture epistemic uncertainty by measuring
the variance among the ensemble components,
a common approach in the literature (Ekmekci
and Cetin, 2022; Chan et al., 2024). This oc-
curs after the mid-block in our U-Net, mpost

T .
Note that given that this is a high-dimensional
space dmid with dimensions 1280× 8× 8 and
we want to reduce epistemic uncertainty to one
number, we take the mean across the variance of
each dimension. Thus our estimate of epistemic
uncertainty is,

EU(y) = Edmid

[
Vari∈M

[
mpost

T

]]
. (2)

It is important to note that mpost
T takes as input

the text prompt, y. Thus EU(y) gives an esti-
mate of the epistemic uncertainty of our MoE
given a prompt y. The intuition behind this
choice of epistemic uncertainty estimator is de-
tailed in Appendix D. Note that the epistemic
uncertainty values reflect the model’s confidence
in the generation, with higher uncertainty indi-
cating that the model is extrapolating further
from its training data. This provides valuable in-
sight into the reliability of the generated content,
particularly for rare or unseen prompts.

3.3 BUILDING MOE

To build an ensemble that effectively captures
uncertainty, the ensemble components must be
diverse enough to reflect meaningful disagree-
ment among them. In deep learning, two pri-
mary techniques have been used to achieve di-
versity among ensemble components: bootstrap-
ping samples during training and random initialization (Breiman, 2001; Lakshminarayanan et al.,
2017). In our approach, we do not train the ensemble components; instead, they are sourced from
pre-existing models available on Hugging Face and Civit AI. This strategy offers the significant
advantage of enabling the creation of countless MoE, as Hugging Face hosts over 30,000 model
checkpoints and Civit AI provides thousands of models.

Without controlling the training process, ensemble diversity relies largely on chance. Fortunately,
platforms like Hugging Face and Civit AI offer a wide range of task-specific models, enhancing
diversity. As shown in Section 4.4, even 4 checkpoints of the same models can suffice. In contrast,
training such an ensemble from scratch would demand 150,000 GPU-hours per expert, costing
$600,000 USD.

Finally, after assembling the ensemble, a gating module is needed to route inputs to a subset of experts
and assign appropriate weights to their outputs. Although the gating module can be trained, it can
also be inferred by computing the similarity of a given input with ψi, a text description characterizing
the strengths and weaknesses of each expert. The gating weights are computed as follows:

αi = τθ(ψ
i) · τθ(y), wi = softmax(αi),

5
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Figure 4: Uncertainty distribution for Finnish
and English prompts, showing higher uncertainty
for Finnish prompts compared to English.

Table 3: Comparison of CLIP scores and
mean uncertainty ± standard deviation between
Finnish and English prompts.

Language CLIP Score ↑ Uncertainty
Finnish 16.41 0.48 ± 0.19
English 31.39 0.37 ± 0.14

where · represents the dot product. The gating module assigns weights to experts by computing the
similarity between the input representation, τθ(y), with the expert-specific representations, τθ(ψi).
This method enables the MoE model to dynamically select and weigh experts without requiring
additional training. Further details can be found in Appendix E and in Goddard et al. (2024).

4 RESULTS

To validate EMoE, we conducted experiments on the COCO dataset (Lin et al., 2014), building on
the diffusers and segmoe libraries (von Platen et al., 2022; Yatharth Gupta, 2024) with modifications
to support our method. We used the base MoE provided in segmoe (Appendix F), which includes
four experts. This choice avoids researcher bias from manual expert selection and ensures that the
model, not originally designed for uncertainty estimation, provides a neutral testbed for EMoE. For
multilingual evaluation, COCO prompts were translated using the Google Translate API.

We report results using CLIP score (Hessel et al., 2021), which measures semantic alignment between
a generated image and its text prompt (higher is better). For non-English prompts, the English
translation was used in scoring. We discuss the limitations of CLIP score as a metric in Appendix B.

4.1 ENGLISH PROMPTS

Our first experiment evaluated EMoE’s ability to distinguish between in-distribution prompts that
yield higher-quality images. We randomly sampled 40,000 COCO prompts and computed their
epistemic uncertainty with EMoE. Prompts were then divided into quartiles: Q1 contained the lowest
25% of uncertainty values, through Q4, the highest 25%. For each quartile, we generated images
and assessed quality using the CLIP score. As shown in Figure 3, we report the mean and standard
deviation of CLIP scores across quartiles, revealing a clear trend: lower uncertainty corresponds to
higher image quality. This demonstrates EMoE’s effectiveness in fine-grained uncertainty estimation
on in-distribution data—a capability that DECU (Berry et al., 2024) did not exhibit.

This relationship extends to other evaluation metrics. Table 1 shows a similar pattern across quartiles
for Aesthetic Score and Image Reward (Schuhmann et al., 2022; Xu et al., 2024), further affirming
EMoE’s robustness in estimating uncertainty for MoE text-to-image models. The small differences
between quartile scores reflect that all prompts in the English dataset are in-distribution.

We also analyzed prompt characteristics by uncertainty quartile. Prompts in lower uncertainty
quartiles were longer in both character and word count, as shown in Table 2. This aligns with the
intuition that longer, more descriptive prompts offer clearer objectives to the model.

To further validate these trends, we extended our analysis to the CC3M dataset (Sharma et al., 2018),
as detailed in Appendix C. The results on CC3M further support our findings on the COCO dataset.

4.2 FINNISH PROMPTS

Next, we evaluated EMoE’s ability to distinguish in-distribution from out-of-distribution samples by
translating 10,000 English COCO prompts into Finnish. Since Finnish is less represented in online
datasets, we expected these prompts to be more likely out-of-distribution and to yield lower-quality
images. As shown in Figure 4, the uncertainty distribution for Finnish prompts is shifted to the right
relative to English, confirming EMoE’s capacity to detect distributional differences. To quantify

6
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Neliön muotoinen pizza, jonka henkilö leikkaa isolla veitsellä

A square shaped pizza being cut by a person with a big knife.

Hääkakku on valkoinen ja siinä on kukkia.

The wedding cake is white with flowers on it.

Figure 5: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza”
and a random Finnish prompt. The English translation was not provided to the model.

Table 4: Mean Length of Finnish Prompts by
Quartile of Uncertainty.

Quartile Character Count Word Count
Q1 54.94 ± 17.04 6.59 ± 2.16
Q2 51.26 ± 14.40 6.14 ± 1.79
Q3 49.67 ± 14.23 5.95 ± 1.75
Q4 47.97 ± 13.86 5.77 ± 1.73

Table 5: Comparison of the proportion of
prompts with “pizza” in Q1 of uncertainty be-
tween Finnish and English.

Language Proportion of Prompts
with “pizza" in Q1

Finnish 46.67%
English 21.54%

this effect, we report the area under the receiver operating characteristic curve (AUROC). Here,
the AUROC represents the probability that a randomly chosen Finnish prompt (out-of-distribution)
receives a higher uncertainty score than a randomly chosen English prompt (in-distribution). Higher
values indicate better separation: perfect separation yields 1.0, while random guessing yields 0.5.
EMoE achieves a strong AUROC of 0.745.

We also applied EMoE to probe model biases. In images generated from Finnish prompts, those
containing the word “pizza” consistently produced more text-aligned outputs than random prompts
(Figure 5). EMoE reflected this bias quantitatively: 46.67% of Finnish “pizza” prompts fell into the
lowest-uncertainty quartile (Q1), compared to only 21.54% for English prompts (Table 5). Shared
vocabulary between English and Finnish likely contributes to certain Finnish prompts exhibiting
lower uncertainty than some English prompts.

Finally, we analyzed the relationship between prompt length and uncertainty. As shown in Table 3,
longer prompts reduce uncertainty even in Finnish (Table 4), suggesting that added context promotes
greater expert agreement across languages.

4.3 MULTI-LINGUAL PROMPTS

To further explore the behavior of EMoE, we translated 1,000 prompts into an additional 23 languages.
We applied EMoE to these translations and calculated each language’s respective CLIP score. As
shown in Figure 6, there is a strong negative correlation (r = −0.79) between uncertainty and CLIP
score, consistent with the expected relationship between uncertainty and image quality. Additionally,
the size of each point in Figure 6 is proportional to the number of native speakers for each language.
One can also observe a relationship between the number of native speakers with both CLIP score
and uncertainty of any given language. European languages generally performed better than non-
European languages, which further underscores the potential bias in favor of European languages in
text-to-image models and EMoE’s ability to capture language related model bias.

4.4 ABLATION

We conducted 4 ablation experiments to validate the robustness of our approach. All ablation studies
were performed on the dataset of 40,000 English prompts.

7
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To identify the optimal number of ensemble components, we examined ensemble sizes of 2 and 3,
using all possible permutations from the 4 components. We averaged the results for ensembles of 2
and 3 components (Figure 7a). The results indicate that ensemble sizes of 2 and 3 are sub-optimal
to an ensemble size of 4, as the first quantile (Q1) yields a lower CLIP score than the second (Q2).

Figure 6: Negative correlation between uncertainty
and image quality across prompts translated into 25
different languages. EMoE demonstrates a strong
negative correlation (r = -0.79) between uncertainty
and CLIP score, with languages having more native
speakers generally producing lower uncertainty
and higher-quality images, highlighting potential
biases in text-to-image models favoring more com-
monly spoken languages.

We investigated the effect of the denoising step
on uncertainty quantification, as shown in Fig-
ure 7b. A consistent decrease in CLIP scores
across uncertainty quantiles at each step con-
firmed EMoE’s robustness in estimating epis-
temic uncertainty. For practical reasons, we
selected the first step, as it offers the earliest
opportunity to halt the costly denoising process
for high-uncertainty prompts.

We also explored different latent spaces in
which to estimate epistemic uncertainty, testing
both V ar(mpre

T ) and V ar(zT−1). The results,
shown in Figure 7c, indicate that V ar(zT−1)
is sub-optimal, aligning with previous findings
from DECU. We observed that V ar(mpre

T ) per-
formed similarly to V ar(mpost

T ). We chose
V ar(mpost

T ) because the mid-block is intended
to refine the latent space, though V ar(mpre

T )
could serve as an acceptable alternative.

Finally, to further validate the robustness of
EMoE, we ran an additional experiment using
Runway MoE (Figure 7d). The results confirm that EMoE is versatile and can effectively handle
different MoE models. Additionally, this demonstrates that EMoE can detect uncertainty even within
for one model as each expert component is a different checkpoint of one model.

5 RELATED WORKS

Building ensembles of diffusion models for image generation is challenging due to their large
parameter sizes, often hundreds of millions (Saharia et al., 2022; Nichol et al., 2022; Ramesh et al.,
2022). Despite this, models like eDiff-I enhance image fidelity using ensembles (Balaji et al., 2022),
though they don’t target epistemic uncertainty. DECU, by contrast, is designed specifically for such
uncertainty estimation but requires 7 days of training (Berry et al., 2024). Our method reduces this
burden to zero by leveraging pre-trained experts. EMoE further tackles the harder task of estimating
epistemic uncertainty in text-to-image generation.

Previous work has explored epistemic uncertainty in neural networks, primarily in image classification,
via Bayesian methods (Gal et al., 2017; Kendall and Gal, 2017; Kirsch et al., 2019), which deal
with simpler, discrete outputs. Ensemble methods have also been used for uncertainty in regression
(Lakshminarayanan et al., 2017; Choi et al., 2018; Chua et al., 2018; Depeweg et al., 2018; Postels
et al., 2020; Berry and Meger, 2023a;b). Notably, Postels et al. (2020) and Berry and Meger (2023b)
used Normalizing Flows (NFs) to model uncertainty efficiently, and Berry and Meger (2023a)
extended this to a 257-dimensional space using Pairwise Difference Estimators. Our approach scales
this to 700k-dimensional outputs in diffusion models with text prompts.

As interest in uncertainty estimation grows, many methods have emerged for image and text generation
(Malinin and Gales, 2020; Berry et al., 2024; Chan et al., 2024; Liu et al., 2024). For instance, Chan
et al. (2024) used hyper-networks for uncertainty in weather-predictive diffusion models, whereas
EMoE derives uncertainty from pre-trained experts available online.

Some studies have used epistemic uncertainty to detect hallucinations in large language models
(Verma et al., 2023). While EMoE could be adapted for hallucination detection in vision-language
models, lack of transparency in training data makes this infeasible in our case.
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(a) Ablation on ensemble size. (b) Ablation on denoising steps.

(c) Ablation on other latent spaces. (d) Runway ML MoE.

Figure 7: Ablation studies validating EMoE hyperparameters: ensemble size (a), denoising step (b),
and latent space (c). Additionally, (d) shows the robustness of EMoE.

Past work has integrated uncertainty into MoE pipelines (Zheng et al., 2019; Luttner, 2023; Zhang
et al., 2024), but without addressing epistemic uncertainty or text-to-image tasks. These methods are
also not zero-shot, limiting their scope.

6 CONCLUSIONS

In this paper, we introduced EMoE which estimates uncertainty in text-to-image diffusion models.
EMoE leverages pre-trained experts to provide computationally efficient uncertainty estimates without
the need for training. By incorporating a latent space for uncertainty estimation within the diffusion
process, EMoE can identify biases and uncertainty early in the generation process.

Limitations. While EMoE eliminates the need for additional training, it relies on the availability of
pre-trained expert networks. Although publicly available models are abundant, they may not always
offer sufficient diversity for optimal uncertainty estimation in all scenarios. Our results show that even
with very similar experts (e.g., Runway ML MoE), EMoE produces reliable uncertainty estimates.
However, this may not hold universally. Additionally, EMoE requires sufficient memory resources to
load and execute an ensemble of experts efficiently.

Our experimental results demonstrate that EMoE enhances the detection of epistemic uncertainty
while also exposing underrepresented linguistic biases in diffusion models. By leveraging readily
available SOTA pre-trained models, we show that EMoE scales efficiently and delivers reliable
uncertainty estimates across a range of input prompts. These capabilities have significant implications
for fairness, accountability, and the robustness of AI-generated content.

As generative models continue to proliferate, the ability to quantify and interpret uncertainty will
become increasingly critical, especially in applications involving autonomous decision-making.
Future research may explore strategies to enhance expert diversity, optimize memory efficiency, and
extend EMoE to more complex tasks and environments.

9
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A COMPUTE DETAILS

Table 6: Computational requirements.

Dataset Run Time Storage
English 40k Prompts 200 gpu hrs 6 TB
Finnish 10k Prompts 50 gpu hrs 1.5 TB

Other Languages 1k Prompts 5 gpu hrs 150 GB

Table 7: Generation times for baseline (Segmoe) and two
variants of EMoE. Reported times are µ± σ.

Model Generation Time
Segmoe 3.58 ± 0.54 secs
EMoE 12.32 ± 4.6 secs

Fast EMoE 5.5 ± 0.15 secs

We used the same set of hyperpa-
rameters as in the Stable Diffusion
model described by Yatharth Gupta
(2024). All experiments use DDIM
sampling with 25 denoising steps and
the standard ϵ-prediction parameteri-
zation, where the model predicts the
noise added to the latent state at each
timestep, following the formulation
in Rombach et al. (2022). Minor
changes were made to both the Seg-
moe and Diffusers codebases to disen-
tangle the MoE, with specific modifi-
cations to incorporate EMoE. Our in-
frastructure included an AMD Milan
7413 CPU running at 2.65 GHz, with
a 128M L3 cache, and an NVIDIA
A100 GPU with 40 GB of memory.
The wall clock time required to col-
lect each dataset and the memory usage are provided in Table 6. The parameter count for the
Segmoe model is 1.63 billion parameters, while a single model contains 1.07 billion parameters. This
highlights the efficiency of using a sparse MoE approach compared to creating 4 distinct models, as
the Segmoe model is only 153% the size of a single model, rather than 400%. When running the
SegMoE model in its standard mode, generating an image from one prompt takes an average of 3.58
seconds. In comparison, using EMoE typically requires an average of 12.32 seconds to generate four
images from a single prompt. However, when only a single image per prompt is required, EMoE’s
output can be optimized by estimating epistemic uncertainty during the initial diffusion step. Once
the uncertainty is determined, standard MoE-based image generation proceeds with the elimination
of the unnecessary computational paths. This optimized version of EMoE, Fast EMoE, achieves
an average generation time of 5.5 seconds. Table 7 provides further details. Note that uncertainty
reported across all experiments is calculated as

√
dmidsize ×EU(y), where dmidsize = 1280× 8× 8.

B BIAS IN CLIP SCORE

CLIP score, despite its known biases (Chinchure et al., 2023; Alabdulmohsin et al., 2024), remains
a widely-used method for evaluating the alignment between text prompts and generated images,
alongside FID (Shi et al., 2020; Kumari et al., 2023). Both metrics, however, rely on auxiliary models
(CLIP and Inception, respectively), making them susceptible to inherent biases. FID requires a large
number of samples for reliable estimation and thus requires more compute, whereas CLIP score
facilitates a more direct assessment of text-to-image alignment with fewer samples (Kawar et al.,
2023; Ho et al., 2022a). Moreover, FID does not measure text-image alignment, which is crucial
in our context. Considering these trade-offs, we prioritized CLIP score due to its relevance to our
research objectives and its broad acceptance in related studies.

Table 8: Comparison of Aesthetic Score and Image
Reward with mean uncertainty ± standard devia-
tion between Finnish and English prompts. Illustrat-
ing lower image quality and higher uncertainty for
Finnish prompts.

Language Aesthetic Score ↑ Image Reward ↑ Uncertainty
Finnish 5.917 -2.143 0.48 ± 0.19
English 5.738 0.270 0.37 ± 0.14

To further validate our findings and address
potential concerns regarding metric biases, we
conducted additional experiments using the
Aesthetic Score Predictor and Image Reward
as evaluation metrics (Schuhmann et al., 2022;
Xu et al., 2024). The Aesthetic Score Predic-
tor quantifies how much people, on average,
like an image, while Image Reward provides
a score that encodes human preferences. The Aesthetic Score Predictor operates on a scale from 1 to
10, with higher scores indicating a more favored image, and higher Image Reward values similarly
reflect images preferred by humans. Image Reward takes as input the prompt and the image, while
Aesthetic Score only takes in the image as input.
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Algorithm 1 Epistemic Mixture of Experts (EMoE)

1: Input: Initial noise zT ∼ N (0, I), total steps T , pre-trained experts E = {e1, e2, . . . , eM},
prompt y

2: for t = T to 1 do
3: if t = T then
4: Separate Experts:
5: for each expert ei ∈ E do
6: Pass zT and prompt y through ei’s first cross-attention layer CAi to arrive at M distinct

latent representations.
7: Subsequent sparse MoE layers are processed as Equation 1.
8: Extract the mid-block latent representation for each expert mpost,i

T .
9: end for

10: Compute epistemic uncertainty EU(y) as defined in Equation 2.
11: Output M different zit−1, one for each expert.
12: else
13: Mixture of Experts Rollout:
14: for i ∈ {1, ...,M} do
15: Update latent variable for each expert:

zit−1 ∼ pθ(z
i
t−1|zit, y)

16: Pass zit−1 and y through our reverse diffusion process, as a standard MoE (e.g. experts
are aggregated as Equation 1). This is shown in Figure 2 in and .

17: end for
18: end if
19: end for
20: Output: M reconstructed latent variables zi0 and EU(y).

We re-conducted a comparison between Finnish and English prompts to further evaluate EMoE’s
capabilities. Results from Image Reward align with the conclusion that EMoE effectively detects
out-of-distribution data, as evidenced by lower Image Reward for Finnish prompts (Table 8). However,
the Aesthetic Score does not support this conclusion. This discrepancy can be attributed to the nature
of the Aesthetic Score, which evaluates the visual quality of the generated image independently of
the text prompt. Consequently, it does not account for how well the image aligns with the prompt.
The higher Aesthetic Score observed for the Finnish dataset can be explained by this limitation, as it
overlooks the alignment challenges posed by out-of-distribution prompts.

Figure 8: Negative correlation between un-
certainty and image quality across prompts
translated into 25 different languages. EMoE
demonstrates a strong negative correlation
(r = -0.73) between uncertainty and Image
Reward, with languages having more native
speakers generally producing lower uncer-
tainty and higher-quality images, highlight-
ing potential biases in text-to-image models
favoring more commonly spoken languages.

Additionally, we evaluated the correlation between
uncertainty and Image Reward across all languages,
as shown in Figure 8. Consistent with expectations,
a negative correlation is observed, where higher un-
certainty is associated with lower image quality, as
estimated by EMoE. This relationship also reveals a
preference for European languages, with most points
above the line of best fit corresponding to European
languages. This observation further underscores po-
tential biases in text-to-image models favoring Eu-
ropean languages. EMoE’s ability to capture these
language-related biases, alongside its robust perfor-
mance across diverse evaluation metrics, reinforces
its capability to estimate epistemic uncertainty accu-
rately and reliably.

C CC3M DATASET

To further validate our results, we extended the anal-
ysis of EMoE to the CC3M dataset (Sharma et al.,
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Figure 9: CLIP score on the CC3M dataset
across different uncertainty quartiles. EMoE ac-
curately attributes prompts that produce images
with high CLIP scores with low uncertainty un-
like DECU. The red line indicates the average
CLIP score across all quartiles.

Table 9: CLIP score, Aesthetic score & Im-
age Reward on each uncertainty quartile, using
EMoE, on the English 10k prompt dataset for
CC3M dataset.

Quartile CLIP Score ↑ Aesthetic Score ↑ Image Reward ↑
Q1 30.07 5.75 -0.05
Q2 29.83 5.63 -0.12
Q3 29.72 5.60 -0.17
Q4 29.57 5.44 -0.26

2018). The results are presented in Figure 9 and Fig-
ure 9. We randomly sampled 10,000 prompts from the dataset and repeated our analysis on English
prompts. Our findings demonstrate that EMoE continues to perform robustly on the CC3M dataset.
Specifically, prompts with lower uncertainty produced higher-quality images compared to those with
higher uncertainty. These results not only reaffirm the robustness of our findings on the COCO
dataset but also provide additional validation across a different dataset. Importantly, they suggest
that EMoE’s ability to capture biases is consistent and not merely an artifact of the COCO dataset.
This further strengthens the argument for EMoE’s effectiveness in diverse settings and its capacity
for detecting biases in real-world data.

D INTUITION BEHIND OUR ESTIMATOR FOR EPISTEMIC UNCERTAINTY

Here is an intuitive explanation for our choice of estimator for epistemic uncertainty using the theory
of Gaussian Processes. Each expert can be viewed as a sample from the posterior distribution of
functions given an input y, denoted as p(f(y)|y). By calculating the variance across these experts,
we obtain the variance σ2 of p(f(y)|y), which serves as an estimate of epistemic uncertainty within
the Gaussian Process framework. In general, other works have used the difference among ensemble
components to denote epistemic uncertainty (Gal et al., 2017; Depeweg et al., 2018; Berry and Meger,
2023b).

When estimating the epistemic uncertainty for a prompt y, we weight each ensemble component
equally. Therefore, let F = {fθi}Ni=1 denote an ensemble of N neural networks, where each model
fθi : Y → R is parameterized by θi, sampled from a parameter distribution p(θ). Then the prediction
from our ensemble is:

f̂(y) =
1

N

N∑
i=1

fθi(y),

where y ∈ Y is an input from the input space Y .

A Gaussian Process (GP) is defined as a collection of random variables, any finite subset of which
follows a joint Gaussian distribution. Formally, a Gaussian Process f(y) ∼ GP(µ(y), k(y, y′)) is
characterized by its mean function µ(y) and covariance function k(y, y′):

µ(y) = E[f(y)], k(y, y′) = E[(f(y)− µ(y))(f(y′)− µ(y′))].

Proposition 1: Let F = {fθi}Ni=1 be an ensemble of neural networks with parameter samples
θi ∼ p(θ). As N → ∞ and under the assumption that the neural network weights are drawn i.i.d.
from a distribution with zero mean and finite variance, the ensemble predictor f̂(y) converges in
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distribution to a Gaussian Process:

f̂(y)
d−→ GP(µ(y), k(y, y′)),

where µ(y) is the expected value of the ensemble output, and k(y, y′) is the covariance function
defined by the variance of the ensemble.

Proof:

To prove this, we proceed in two main steps:

STEP 1: CONVERGENCE OF MEAN FUNCTION

Consider the mean function µ(y) of the ensemble predictor:

µ(y) = Eθ∼p(θ)[fθ(y)].

As N → ∞, by the law of large numbers, the empirical mean of the ensemble f̂(y) converges to the
expected mean:

lim
N→∞

1

N

N∑
i=1

fθi(y) = µ(y).

STEP 2: CONVERGENCE OF COVARIANCE FUNCTION

The covariance function k(y, y′) of the Gaussian Process can be defined as:

k(y, y′) = lim
N→∞

1

N

N∑
i=1

(fθi(y)− µ(y)) (fθi(y
′)− µ(y′)) .

Under the assumption that fθi(y) are i.i.d. samples with finite variance, by the Central Limit
Theorem (CLT), the ensemble prediction f̂(y) converges in distribution to a Gaussian Process
GP(µ(y), k(y, y′)).

In the context of an ensemble of neural networks, epistemic uncertainty arises from the uncertainty
over the model parameters θ. This uncertainty is captured by the variance of the ensemble predictions:

Var[f̂(y)] =
1

N

N∑
i=1

(fθi(y)− f̂(y))2.

As N → ∞, this variance converges to the posterior variance of the Gaussian Process:

lim
N→∞

Var[f̂(y)] = k(y, y),

where k(y, y) is the marginal variance of the Gaussian Process and directly represents the epistemic
uncertainty.
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E GATES WITHOUT TRAINING

ψi τθ

yj

vi

wj
i

Figure 10: This pictures depicts how to have
accurate gates without training.

Each expert is associated with a positive and a neg-
ative descriptor, ψi =

(
pi, ni

)
, which represent what

the expert excels at and struggles with modeling, re-
spectively. These descriptors are processed through
a pre-trained text model, τθ, to create gate vectors,
vi = [τθ(p

i); τθ(n
i)]. When a new positive and neg-

ative prompt, yj = (ϕj , νj), is provided to generate
an image, the latent representation of these prompts,
lj [τθ(ϕj); τθ(νj)] are compared against vi and as-
signed a weight, wj

i based on the dot product and a
softmax. This process is illustrated in Figure 10 and
described in Goddard et al. (2024).

F MODEL CARDS

Below are the model parameters for the base Segmoe
MoE used in the experiments. We increased the num-
ber of experts from 2 to 4 to incorporate more ensemble components. Generally, having a low number
of ensemble components (2-10) is sufficient in deep learning to capture model disagreement (Osband
et al., 2016; Chua et al., 2018; Fujimoto et al., 2018). In addition to the Segmoe base MoE, we also
tested EMoE on another MoE model, referred to as Runway ML, where each expert component is a
Runway model. The corresponding model card can be found below. This experiment demonstrates
the robustness of EMoE across different MoE architectures, showing that EMoE is effective even
when components are trained on similar data with similarly initialized weights, as each Runway ML
component was fine-tuned on new data from similar initial conditions.
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Segmoe MoE

base_model: SG161222/Realistic_Vision_V6.0_B1_noVAE
num_experts: 4
moe_layers: all
num_experts_per_tok: 2
type: sd
experts:

- source_model: SG161222/Realistic_Vision_V6.0_B1_noVAE
positive_prompt: "cinematic, portrait, photograph, instagram,

fashion, movie, macro shot, 8K, RAW, hyperrealistic, ultra
realistic,"

negative_prompt: " (deformed iris, deformed pupils, semi-
realistic, cgi, 3d, render, sketch, cartoon, drawing,
anime), text, cropped, out of frame, worst quality, low
quality, jpeg artifacts, ugly, duplicate, morbid,
mutilated, extra fingers, mutated hands, poorly drawn
hands, poorly drawn face, mutation, deformed, blurry,
dehydrated, bad anatomy, bad proportions, extra limbs,
cloned face, disfigured, gross proportions, malformed
limbs, missing arms, missing legs, extra arms, extra legs,
fused fingers, too many fingers, long neck"

- source_model: dreamlike-art/dreamlike-anime-1.0
positive_prompt: "photo anime, masterpiece, high quality,

absurdres, 1girl, 1boy, waifu, chibi"
negative_prompt: "simple background, duplicate, retro style,

low quality, lowest quality, 1980s, 1990s, 2000s, 2005
2006 2007 2008 2009 2010 2011 2012 2013, bad anatomy, bad
proportions, extra digits, lowres, username, artist name,
error, duplicate, watermark, signature, text, extra digit,
fewer digits, worst quality, jpeg artifacts, blurry"

- source_model: Lykon/dreamshaper-8
positive_prompt: "bokeh, intricate, elegant, sharp focus, soft

lighting, vibrant colors, dreamlike, fantasy, artstation,
concept art"

negative_prompt: "low quality, lowres, jpeg artifacts,
signature, bad anatomy, extra legs, extra arms, extra
fingers, poorly drawn hands, poorly drawn feet, disfigured
, out of frame, tiling, bad art, deformed, mutated, blurry
, fuzzy, misshaped, mutant, gross, disgusting, ugly,
watermark, watermarks"

- source_model: dreamlike-art/dreamlike-diffusion-1.0
positive_prompt: "dreamlikeart, a grungy woman with rainbow

hair, travelling between dimensions, dynamic pose, happy,
soft eyes and narrow chin, extreme bokeh, dainty figure,
long hair straight down, torn kawaii shirt and baggy jeans
, In style of by Jordan Grimmer and greg rutkowski, crisp
lines and color, complex background, particles, lines,
wind, concept art, sharp focus, vivid colors"

negative_prompt: "nude, naked, low quality, lowres, jpeg
artifacts, signature, bad anatomy, extra legs, extra arms,
extra fingers, poorly drawn hands, poorly drawn feet,

disfigured, out of frame"
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Runway ML MoE

base_model: runwayml/stable-diffusion-v1-5
num_experts: 4
moe_layers: all
num_experts_per_tok: 4
type: sd
experts:

- source_model: runwayml/stable-diffusion-v1-5
positive_prompt: "ultra realistic, photos, cartoon characters,

high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-4

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"

negative_prompt: "faces, limbs, facial features, in frame,
worst quality, hands, drawings, proportions"

- source_model: CompVis/stable-diffusion-v1-3
positive_prompt: "ultra realistic, photos, cartoon characters,

high quality, anime"
negative_prompt: "faces, limbs, facial features, in frame,

worst quality, hands, drawings, proportions"
- source_model: CompVis/stable-diffusion-v1-2

positive_prompt: "ultra realistic, photos, cartoon characters,
high quality, anime"

negative_prompt: "faces, limbs, facial features, in frame,
worst quality, hands, drawings, proportions"

G STATISTICAL ANALYSIS

For Table 1 and Table 2, we used the Jonckheere-Terpstra test, which is the most appropriate choice
for our data. This non-parametric test specifically tests for an ordered trend across multiple groups
(i.e., whether the means follow a consistent ordering, such as µ1 ≥ µ2 ≥ µ3 ≥ µ4). Given that we
are testing for trends rather than just differences between groups, the Jonckheere-Terpstra test is
suitable.

For the CLIP Score Table 1, the test yielded a p-value of 3.34× 10−19. For Table 2, the test yielded
a p-value of 2.13× 10−12 for prompt length and 1.23× 10−7 for word count. Additionally, we used
a t-test to compare the means for Finnish and English (i.e., µFinnish > µEnglish) and obtained a p-value
of 9.51× 10−66. All of these results further confirm the statistical significance of our findings.

H QUALITATIVE RESULTS

In addition to the examples provided in the main paper, we have included additional qualitative results
of our MoE model. Figure 11 shows two sets of images: low uncertainty images on the left and high
uncertainty images on the right. Each row corresponds to a single prompt, while the columns display
the outputs from different ensemble components. The low uncertainty prompts exhibit less variation
across ensemble outputs, whereas the high uncertainty prompts show greater diversity, indicating the
model’s difficulty in capturing the semantic meaning of the prompt in the generated images. Here,
we present another example of models showing bias towards Finnish prompts containing “pizza", as
illustrated in Figure 12.
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High Epistemic UncertaintyLow Epistemic Uncertainty

Figure 11: EMoE’s uncertainty across different prompts: Each row represents a distinct prompt,
while the columns denote the output of each component. The left panel displays low uncertainty,
while the right panel shows higher uncertainty, indicating more ambiguous or less familiar prompts.

Käsin heitetty pizza ritilällä muiden kanssa.

Hand tossed pizza on a rack with others.

Nuori poika istuu pöydässä syömässä vihreästä kulhosta.

A young boy sitting at table eating from a green bowl.

Figure 12: Qualitative comparison of image-generation for a Finnish prompt with the word “pizza"
and a random Finnish prompt. Note that the English translation was not provided to the model.
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