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Abstract
The generation of synthetic electronic health record (EHR)
data using large foundation models (FMs) holds immense po-
tential for mitigating data scarcity in healthcare, particularly
in addressing the critical challenge of modeling rare diseases.
However, the inherent imbalance in EHR data, where rare
diseases are underrepresented, limits the ability of FMs to
accurately generate these crucial data samples. This quality
gap affects the usability of synthetic data in downstream ap-
plications, such as predictive modeling for rare diseases. To
tackle this challenge, we propose Reinforcement Learning
with Target Feedback (RLTF), a reinforcement learning-based
framework designed to fine-tune FMs specifically for gener-
ating high-quality synthetic EHR data. By leveraging Direct
Preference Optimization (DPO), RLTF optimizes the genera-
tive model to favor sequences that closely replicate real-world
patterns of rare disease groups, ensuring their accurate rep-
resentation. Experimental results demonstrate that RLTF sig-
nificantly outperforms base model and other state-of-the-art
methods in generating rare diagnostic codes and improves the
utility of synthetic data for downstream tasks, such as rare
disease prediction.

Introduction
The generation of synthetic electronic health record (EHR)
data has emerged as a critical solution for addressing data
scarcity and privacy concerns in healthcare. In many medical
applications, accessing large, diverse datasets is challenging
due to the sensitive nature of patient information. Synthetic
data provides an avenue to bypass these limitations, enabling
innovation while preserving privacy (Baowaly et al. 2019;
Murtaza et al. 2023). Despite advancements in deep gener-
ative models, a significant challenge remains: the accurate
generation of synthetic data for rare diseases. Rare conditions
are often underrepresented in training datasets, leading exist-
ing models to struggle in faithfully capturing their intricate
patterns (Al-Dhamari, Abu Attieh, and Prasser 2024; Chen
et al. 2024). This quality gap in synthetic data generation
poses serious limitations for downstream machine learning
tasks, particularly those requiring rare disease modeling (He
et al. 2024a; Peña-Guerrero, Nguewa, and García-Sosa 2021).
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To bridge this gap, we propose a novel Reinforcement
Learning (RL) framework with Target Feedback (RLTF),
designed specifically to enhance the generation of rare dis-
ease data in synthetic structured datasets. RLTF represents a
flexible pipeline that can be integrated with various generative
approaches to fine-tune models towards the accurate synthe-
sis of rare disease patterns. For demonstration purposes, we
implemented RLTF using a transformer-based foundation
model (Hill et al. 2023), leveraging Direct Preference Opti-
mization (DPO) (Rafailov et al. 2024) to guide the model. By
explicitly prioritizing sequences containing rare ICD codes,
RLTF ensures that synthetic data reflects the real-world oc-
currence and distribution of rare diseases more faithfully.
This reinforcement learning framework enables fine-tuning
of generative models to address the inherent limitations of
baseline approaches in modeling rare events.

The key contribution of RLTF lies in its ability to sub-
stantially improve the representation of rare ICD codes in
synthetic EHR data, effectively addressing the limitations
of baseline generative models. By explicitly prioritizing se-
quences containing rare diseases, RLTF enhances the fidelity
of rare disease modeling, resulting in improved performance
in downstream tasks of rare disease prediction. This frame-
work provides a valuable solution for rare data synthesis and
augmentation, advancing machine learning applications that
rely on high-quality synthetic healthcare data.

Related Work
Deep Generative Models for Electronic Health
Record(EHR) Generation Recent advancements in
synthetic EHR data generation have focused on generative
modeling, particularly GAN-based methods. Early work
like medGAN (Choi et al. 2017; Baowaly et al. 2019) and
EHRGAN (Che et al. 2017) applied GANs to generate
realistic EHRs. Diffusion models, such as MedDiff (He
et al. 2023), leverage denoising diffusion probabilistic
models (DDPM) with conditional sampling to ensure
label consistency, while EHRDiff (Yuan, Zhou, and Yu
2023) enhances this by addressing diverse data types.
Recently, diffusion models have been proposed to synthesize
mixed-type time-series EHRs (Tian et al. 2024; Suh et al.
2024; He et al. 2024b). Transformer models are also gaining
traction for EHR generation, with HALO (Theodorou,
Xiao, and Sun 2023) learning patient visit sequences, and



TabFormer (Padhi et al. 2021) and CHIRon (Hill et al. 2023)
tokenizing medical codes and using autoregressive modeling
for conditional generation based on patient history.

Reinforcement Learning in Generative Modeling Rein-
forcement Learning (RL) has been applied to synthetic data
generation, focusing on aligning generated data with real
data properties (Bauer et al. 2024). Notable examples include
LSTM agents for dialogue generation (Li et al. 2016) and
ORGAN, which combines RL with adversarial training for
molecule and music generation (Guimaraes et al. 2017). In
language models, methods like InstructGPT (Ouyang et al.
2022) and Factually Augmented RLHF (Sun et al. 2023) op-
timize outputs using human or AI feedback, while Direct
Preference Optimization (DPO) (Rafailov et al. 2023) fur-
ther simplifies preference learning by using labeled datasets.
While these techniques are well-established in language and
multi-modal tasks, their application to structured tabular data
generation remains underexplored. Our work is the first to ex-
tend RLHF and DPO principles to EHR data, prioritizing rare
disease prediction, a crucial aspect of synthetic healthcare
data, and specifically prioritize machine learning utility.

Methodology
In this work we build upon the CHIRon model, a decoder-
only generative foundation model for structured sequential
medical data where each code is represented as a token. CHI-
Ron is trained on a large healthcare institution’s de-identified
clinical and claims dataset and utilizes diagnosis, procedure,
and medication codes along with lab results and other meta-
data including patient demographics. Additional embeddings,
such as visit, age, and place of service, were also incorporated
to provide more context for each medical code, as detailed
in prior work (Hill et al. 2023). The protocol and supporting
materials representing this work were prospectively submit-
ted to the UnitedHealth Group Office of Human Research
Affairs for IRB review and were approved.

Problem Statement Let D = {S} denote a dataset
of structured event sequences, where each sequence S =
{E1, E2, . . . , EL} consists of events Ei drawn from a prede-
fined vocabulary. The goal of generative models is to learn a
synthetic joint distribution P̃ (S) that approximates the true
distribution P (S), enabling the generation of synthetic se-
quences.

For downstream classification tasks, the focus shifts
to accurately modeling the conditional probability
P (Etarget|Scontext), where Scontext excludes the target event
Etarget. Precise estimation of the full sequence distribution
P (S) is not essential for achieving high utility in classi-
fication tasks (Xu, Sun, and Cheng 2023). According to
statistical learning theory (Ng and Jordan 2001; Vapnik
2013), focusing on estimating P (Etarget|Scontext) is generally
more effective than estimating P (S), which includes
unnecessary sequence details.

Therefore, we aim to use the alignment of sequence-target
relationships in synthetic examples as a reward signal to
fine-tune a generator initially trained on the autoregressive
objective. Our objective is to refine the synthetic conditional
distribution P̃ (Etarget|Scontext) to closely match the real con-

ditional distribution P (Etarget|Scontext), while minimizing dis-
ruptions to the overall sequence distribution P̃ (S) learned
during pre-training.

Preference Labeling Dataset Construction: For each tar-
get code, we extract N random sequences with and without
the target from a large healthcare institution’s dataset, ensur-
ing balanced representation to avoid bias in fine-tuning, creat-
ing a training set S. Given a sequence of length L from S, we
randomly select a split point j to divide it into a prompt se-
quence P = {E1, E2, . . . , Ej} and a continuation sequence
C = {Ej+1, . . . , EL}. If the target code Erare is present, j is
chosen from 0 to r− 1, where Er = Erare, ensuring no target
information leaks into P ; otherwise, j is selected from 0 to
L. We used N = 10000 for our main results as it enables
both fast and effective training.

We construct the preference dataset with favored and less
favored pairs by directly manipulating the presence of real
rare codes to emphasize the correct versus incorrect target
relationships. Specifically, for sequences containing Erare, we
remove it to generate a less favored (rejected) sequence R;
for sequences S without Erare, we randomly insert the rare
code to create R. These perturbed sequences present incorrect
relationships between event sequences and the occurrence of
the rare code, which the model should learn to avoid.

In preliminary experiments, we also considered training
an additional tree-based reward model to assess whether the
presence of the target code in generated sequences is realistic.
However, this approach introduced extra training complexity
and potential prediction noise without yielding improvements
in generation quality. Therefore, we opted for the simpler
method of directly constructing preference pairs based on the
presence or absence of Erare.

Direct Preference Optimization (DPO): In rare data sce-
narios, training a reliable reward model to guide the gener-
ator is challenging. To overcome this, we apply direct pref-
erence optimization (DPO) (Rafailov et al. 2024), which
directly uses preference-labeled data without requiring a re-
ward model. Here, the patient’s historical sequence P , the
preferred sequence C, and the rejected sequence R corre-
spond to the prompt, chosen, and less favored sequences,
respectively. The DPO framework optimizes the following
objective:

LDPO(πθ;πref) =− E(P,C,R)∼D

[
log σ

(
β log

πθ(C | P )

πref(C | P )

−β log
πθ(R | P )

πref(R | P )

)]
− λ ·max

(
0, log

πref(C | P )

πθ(C | P )

)
,

where D is the distribution of preference-labeled data,
and C and R represent the preferred and rejected sequences,
respectively. Following DPO-Positive (Pal et al. 2024), we
introduce a regularization term to ensure the model not only
reduces the likelihood of rejected sequences R but also main-
tains the likelihood of preferred sequences C. We use hyper-
parameter λ = 0.1 to control the regularization strength.



Figure 1: Overview of the proposed reinforcement fine-tuning pipeline.

Experiment
Target Cohort: Our analysis includes a total of 15 disease
cohorts, covering both rare and more common chronic condi-
tions to provide a balanced evaluation of our methodology.
In this paper, we highlight seven rare conditions with the
least frequency in the dataset: Sickle Cell Disease (0.036%),
Shock (0.341%), Pleurisy, Pneumothorax, and Pulmonary
Collapse (0.516%), Acute Myocardial Infarction (0.524%),
Acute Cerebrovascular Disease (0.648%), Complications
of Surgical Procedures or Medical Care (0.64%), and Sep-
ticemia Except in Labor (0.871%). These rare conditions are
of particular interest due to their clinical significance and
the challenges they pose for existing methods. Additionally,
our analysis encompasses more common chronic conditions,
such as Diabetes Mellitus Without Complication (11.13%)
and Disorders of Lipid Metabolism (4.857%), to ensure ro-
bust performance evaluation across a spectrum of disease
prevalence. The ICD codes and their summary statistics for
all 15 cohorts are detailed in Table 4. Our goal is to demon-
strate that the proposed methodology can effectively address
both rare and common conditions, overcoming limitations of
prior methods that struggled with rare disease modeling.

Fine-tuning and Evaluation: We fine-tune the pre-trained
CHIRon model (Hill et al. 2023) using the preference-labeled
data, reinforcing its ability to generate rare codes based on
past medical history. We train a different model checkpoint
for each target code. For evaluation, we select 100,000 exam-
ples from the a large healthcare institution’s test set, truncate
the last T medical codes in each sequence, and prompt the
model to generate the remaining sequence. We assess the
model’s performance in two ways: (1) the ability to correctly
generate rare disease codes, and (2) utility of synthetic data in
disease classification, where an Catboost classifier is trained
to predict presence of disease code from count of non-target
medical codes. For the utility evaluation, we split the test
examples into a modeling set and a validation set (70%/30%
split). The models are prompted to complete the sequences
in the modeling set, which are then used to train a Catboost
classifier. The classifier’s performance is evaluated on the
unseen validation set, providing an assessment of how well
the synthetic data supports disease classification tasks.

Comparative Analysis: We compare our method against
the baseline CHIRon model, Long Short Term Memory
network-based generator, and HALO (Theodorou, Xiao, and
Sun 2023), a transformer-based model that represents codes

from a single visit as binary vectors. HALO and LSTM are
only trained on the modeling set as described above. Super-
vised finetuning are performed separately for target codes
like RL training. Note that as the RLTF framework is not nec-
essarily specific to any model formulation, the primary goal
of this analysis is demonstrating its effectiveness in boosting
rare code generation over the base model, rather than simply
outperforming existing baselines.

Fidelity Table 1 presents the generation performance
for target codes alongside the ROUGE-1 scores. The DPO
method demonstrates a significant improvement in recall,
particularly for rare codes such as Septicemia and Sickle
Cell, resulting in a marked increase in the F1 score. This en-
hancement in recall was achieved with minimal degradation
in fidelity for other codes, as evidenced by the ROUGE-1
score remaining nearly unchanged compared to the baseline
CHIRon method (0.372 vs. 0.369).

In contrast, both the HALO and LSTM baselines exhib-
ited poor performance in conditional generation tasks. These
methods struggled to generate accurate sequences for rare
codes, leading to significantly lower F1 scores. For instance,
both HALO and LSTM performed poorly on Sickle Cell (F1
scores of 0.02 and 0.00, respectively). Furthermore, HALO
and LSTM exhibited poor performance in conditional genera-
tion quality for other codes, as evidenced by their drastically
lower ROUGE-1 scores (0.283 and 0.147, respectively).

These results emphasize the importance of RL-based ap-
proaches, such as DPO, to effectively address the challenges
of rare code generation while preserving fidelity to the origi-
nal code distribution. The improvements facilitated by DPO-
positive regularization highlight its potential for balancing
rare and common code generation. The fidelity scores for
non-rare disease are reported in table 5 with the same trend
displayed.

Machine Learning Utility Figure 2 presents the AUROC
scores for disease classification models trained on synthetic
data generated by different methods. The RLTF method con-
sistently demonstrates significant improvements, particularly
in rare disease codes such as Sickle Cell (SCD), resulting
in competitive AUROC scores. For SCD, RLTF achieves an
AUROC of 52.35%, outperforming HALO (44.76%), LSTM
(47.24%), and CHIRon (43.91%), showcasing its ability to
better handle rare diseases.

For common diseases like Septicemia (Sep.) and Diabetes
Mellitus (DM), RLTF also demonstrates strong performance.



Table 1: Rouge-1, Precision, Recall, and F1 Scores for Different Methods and Target Codes on conditional generation of target
code. The highest score for each disease is bolded.

Method ROUGE-1 Target Codes
SCD Surg. Sep. AMI CVD Pleu. Shock

HALO 0.283 1.00/0.01/0.02 0.21/0.02/0.04 0.69/0.11/0.19 0.74/0.06/0.11 0.73/0.02/0.04 0.65/0.04/0.08 0.82/0.04/0.08
LSTM 0.147 0.00/0.00/0.00 0.91/0.02/0.03 0.90/0.06/0.12 0.81/0.07/0.14 0.86/0.03/0.05 0.71/0.03/0.06 0.90/0.03/0.05

CHIRon 0.369 1.00/0.03/0.05 0.13/0.07/0.09 0.64/0.23/0.34 0.72/0.08/0.14 0.44/0.04/0.07 0.52/0.05/0.09 0.62/0.12/0.21
RLTF 0.372 0.50/0.25/0.33 0.09/0.24/0.13 0.62/0.35/0.45 0.44/0.40/0.42 0.41/0.24/0.30 0.06/0.18/0.09 0.52/0.34/0.41

Figure 2: Performance of Methods on AUROC for Different Codes.

RLTF achieves an AUROC of 96.69% for Sep., nearly match-
ing the real data AUROC of 96.38%, and outperforms HALO
(76.33%), LSTM (75.74%), and CHIRon (95.10%). Simi-
larly, for Diabetes Mellitus (not explicitly shown in the scores
above but referenced in prior analysis), RLTF maintains high
fidelity and classification performance, aligning closely with
the real data levels.

In other target diseases, RLTF shows its robustness. For
Septicemia, RLTF achieves the highest AUROC score of
96.69%, outperforming all other methods. For rare diseases
like Acute Myocardial Infarction (AMI) and Chronic Venous
Disease (CVD), RLTF achieves 95.27% and 92.62%, respec-
tively, again surpassing the baseline methods and coming
close to real data levels (96.44% and 95.22%). For Pleural
Effusion (Pleu.) and Shock, RLTF demonstrates competitive
scores of 83.63% and 98.08%, respectively, further high-
lighting its superior ability to handle both rare and common
diseases. These trends are consistent across various datasets,
with RLTF outperforming HALO, LSTM, and CHIRon in
AUROC and AUPRC, particularly for challenging cases like
Sickle Cell and Shock.

Overall, RLTF achieves the highest AUROC scores across
most target diseases, showcasing its robustness and superior
ability to handle challenging cases, as reported in Table 6.
Similar effects have been shown in Table 7 under data aug-
mentation cases, where the synthetic data is combined with

real data in training classifier.

Table 2: Generation F1 and Machine Learning AUROC
Scores for Different Number of RL Examples (N) and Pro-
portion of Positive Examples (P) on Sickle Cell.

Training N P F1 AUROC ROUGE-1
RL 10000 0.5 0.41 0.61 0.372
RL 1000 0.5 0.01 0.57 0.318
RL 100 0.5 0.39 0.73 0.396
RL 10000 1 0.15 0.54 0.362
SFT 10000 0.5 0.05 0.58 0.327

Ablation Study: The ablation study results, as shown in
Table 2, indicate that the default setting of N = 10000 and
P = 0.5 yields the best or equivalent performance across
most metrics. Specifically, Generation F1 and ROUGE-1
scores either remain consistent or are improved under this
configuration. Other settings, including variations in the num-
ber of RL examples (N ) or the proportion of positive exam-
ples (P ), fail to achieve better results. Increasing the number
of RL examples is beneficial for improving rare code gener-
ation, as evidenced by higher Generation F1 scores. Main-
taining a balanced proportion of positive examples (P = 0.5)
also proves critical for optimizing both generation fidelity
and utility in downstream tasks, as seen in the Machine Learn-



ing AUROC and AUPRC scores. The last row reflects the
results of supervised fine-tuning (SFT), where N = 10000
and P = 0.5. The SFT method lags behind the RL method
in terms of Generation F1, downstream utility and ROUGE-1
scores, indicating that supervised fine-tuning is less effec-
tive at capturing the nuances of rare code generation. This
underscores the importance of reinforcement learning (RL)
in optimizing both the generation quality and downstream
task performance, which simple re-balancing of training data
fails.

Data Memorization: To assess potential privacy risks as-
sociated with fine-tuning on specific examples from real data,
we analyzed the ROUGE-1 scores for conditional generation
on both the training and testing data. A substantial increase
in the ROUGE-1 score for the training set relative to the test-
ing set would suggest an increased likelihood of the model
memorizing the training data. Table 3 presents the results
for the CHIRon and RLTF methods. While the ROUGE-1
scores are slightly higher on the training data compared to the
testing data (e.g., 0.381 vs. 0.303 for CHIRon, and 0.384 vs.
0.311 for RLTF), the differences are not significant enough
to indicate concerning levels of memorization. These results
suggest that the model maintains generalization and does not
overly memorize training data, mitigating potential privacy
concerns.

Table 3: Average rouge-1 score on conditional generation of
RLTF training and testing sequences.

Method Average
Train Test

CHIRon 0.381 0.303
RLTF 0.384 0.311

Discussion
In this paper, we introduce a novel reinforcement learning
(RL) approach for improving the generation of rare medical
codes, particularly focusing on rare but clinically significant
conditions. Our method leverages RL to adjust the gener-
ation process, targeting recall improvements for these rare
codes while maintaining high fidelity to the overall data dis-
tribution. Through extensive experiments, we demonstrate
that the RL-based approach (RLTF) significantly enhances
both recall and F1 scores for rare codes, outperforming base-
line methods like Halo, LSTM and CHIRon. Additionally,
RLTF shows minimal loss in data fidelity, as evidenced by un-
changed ROUGE scores, and leads to better utility scores for
downstream machine learning tasks, as indicated by higher
AUROC values. This novel method not only proves effec-
tive for handling rare code generation in healthcare but also
presents potential for broader applications in other domains,
such as ensuring fairness and promoting diversity in data
generation.
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Cohort Detail
Table 4 shows the disease considered in our finetuning, their ICD code as well as frequencies in the de-identified dataset used
from CHIRon model training.

Table 4: ICD-10 code and frequency in training data for disease cohort considered.

Abbreviation Disease ICD-10 Codes (DIAG_ICD10) Frequency
Sep. Septicemia Except

In Labor
A4101, A4150, A4151, A4189, A419, R7881, R6520 0.871%

Surg. Complications Of
Surgical Proce-
dures Or Medical
Care

D6481, T82818A, I9581, J95811, K9423, K9189, K912, R5082,
T889XXS, I9789, I973, T888XXA, T8130XA, T8131XA,
T814XXA, T8189XA, Z283

0.64%

SCD Sickle Cell Disease D573 0.036%
DM Diabetes Mellitus

Without Complica-
tion

E109, E139, E119, R7301, R7302, R7309, R81, Z9641 11.13%

Lipid. Disorders Of Lipid
Metabolism

E780, E781, E782, E785 4.857%

Fluid. Fluid And Elec-
trolyte Disorders

E870, E871, E872, E873, E874, E869, E860, E861, E8779, E875,
E876, E878, T783XXA

21.5%

AMI Acute Myocardial
Infarction

I2109, I2119, I2129, I214, I213 0.524%

Cond. Conduction Disor-
ders

I442, I4430, I440, I441, I4469, I447, I4510, I454, I452, I4581,
I4589, I459, Z959, Z950, Z95810, Z95818, Z45018, Z4502

1.767%

Dys. Cardiac Dysrhyth-
mias

I471, I472, I479, I4891, I4892, I491, I4949, R001, I499, R000,
R002

6.643%

CVD Acute Cerebrovas-
cular Disease

I609, I619, I6200, I629, I63239, I6330, I669, I6340, I6350,
I6789

0.648%

Pneu. Pneumonia Except
That Caused By Tu-
berculosis Or Sex-
ually Transmitted
Disease

J17, J129, J181, J158, J156, J159, J168, J180, J189 1.611%

Pleu. Pleurisy; Pneu-
mothorax; Pul-
monary Collapse

J869, R091, J942, J948, J918, J939, J9819 0.516%

Resp. Respiratory Fail-
ure; Insufficiency;
Arrest Adult

J9600, J9620, J9690, J80, J9610, Z9911, Z9981 1.167%

GI Hem. Gastrointestinal
Hemorrhage

K228, K254, K625, K920, K921, K922 1.517%

Renal. Acute And Unspec-
ified Renal Failure

N170, N178, N179, N19 1.319%

Shock Shock R579, R570, R6521, R578 0.341%

Implementation Details
CHIRon + RLTF: For RLTF, we finetune a separate checkpoint for each target code using a batch size of 8, training for 6 epochs
with an initial learning rate of 1e-5. The training is conducted on a computing node equipped with a single Nvidia V100 GPU
(16GB GPU memory) and 128GB of RAM. The fine-tuning process takes approximately 5 minutes per checkpoint. For CHIRon
+ RLTF, we modify the DPOTrainer from Hugging Face’s TRL library, adding a positive regularization term to the DPO loss
function.

LSTM: We implement an LSTM-based model for sequence generation, using an embedding size of 128, a hidden size of 256,
and 3 layers for the LSTM. The model is trained with a batch size of 128 for 50 epochs, using an initial learning rate of 1e-3
and Adam optimizer. The training is performed on a computing node equipped with a single Nvidia V100 GPU (16GB GPU
memory). For generation, we use a beam search strategy and stop sequence generation when an end-of-sequence (EOS) token is



predicted or when the maximum sequence length of 512 tokens is reached. The same tokenizer and vocabulary from CHIRon is
used.

HALO: HALO utilizes stacked transformer decoder model with multi granularity to generate longitudinal medical code
sequence at both the visit level and code level based on the history of all previous visits. We follow the official implementation of
HALO (Theodorou, Xiao, and Sun 2023) to train the model on the same training data as used in our method. The label codes in
HALO are the target codes of interest in this paper. The vocabulary size is 7954, which is the same as our method. The maximal
number of visits we consider is also 48. The other model and optimization parameters are set as the default values used in the
https://github.com/btheodorou99/halo_inpatient.

Table 5: Precision, Recall and F1 Scores for Different Methods and Target Codes on Generation of Target Code.

Halo LSTM CHIRON DPO
Disease

Sep. 0.69/0.11/0.19 0.90/0.06/0.12 0.64/0.23/0.34 0.62/0.35/0.45
SCD 1.00/0.01/0.02 0.00/0.00/0.00 1.00/0.03/0.05 0.50/0.25/0.33
Surg. 0.21/0.02/0.04 0.91/0.02/0.03 0.13/0.07/0.09 0.09/0.24/0.13
DM 0.64/0.15/0.24 0.75/0.14/0.23 0.78/0.24/0.37 0.66/0.57/0.61
Lipid. 0.55/0.09/0.15 0.63/0.07/0.13 0.63/0.20/0.30 0.57/0.36/0.44
Fluid. 0.67/0.03/0.06 0.77/0.03/0.05 0.46/0.04/0.08 0.11/0.19/0.14
AMI 0.74/0.06/0.11 0.81/0.07/0.14 0.72/0.08/0.14 0.44/0.40/0.42
Cond. 0.71/0.05/0.09 0.82/0.04/0.08 0.65/0.12/0.20 0.22/0.29/0.25
Dys. 0.69/0.04/0.08 0.74/0.07/0.13 0.77/0.06/0.11 0.48/0.36/0.41
CVD 0.73/0.02/0.04 0.86/0.03/0.05 0.44/0.04/0.07 0.41/0.24/0.30
Pneu. 0.80/0.07/0.13 0.88/0.06/0.11 0.37/0.21/0.27 0.09/0.26/0.14
Pleu. 0.65/0.04/0.08 0.71/0.03/0.06 0.52/0.05/0.09 0.06/0.18/0.09
Resp. 0.81/0.05/0.09 0.93/0.07/0.12 0.68/0.27/0.38 0.63/0.37/0.47
GI Hem. 0.72/0.02/0.04 0.77/0.02/0.05 0.67/0.03/0.07 0.18/0.22/0.20
Renal. 0.78/0.06/0.11 0.87/0.07/0.13 0.58/0.20/0.30 0.58/0.29/0.38
Shock 0.82/0.04/0.08 0.90/0.03/0.05 0.62/0.12/0.21 0.52/0.34/0.41



Table 6: AUROC Scores for Different Methods and Target Codes on Downstream Utility Evaluation.

Model Real Halo LSTM CHIRON DPO
Disease

Sep. 0.963883 0.763294 0.757402 0.950971 0.966863
SCD 0.576595 0.447568 0.472366 0.439055 0.523485
Surg. 0.789956 0.591065 0.583039 0.622276 0.772995
DM 0.954576 0.912782 0.920986 0.936084 0.939164
Lipid. 0.870144 0.786727 0.766577 0.828785 0.834174
Fluid. 0.849671 0.680248 0.689911 0.690835 0.729934
AMI 0.964426 0.743526 0.725831 0.791430 0.952727
Cond. 0.928802 0.828109 0.837644 0.852052 0.896331
Dys. 0.870332 0.734622 0.771347 0.729618 0.854042
CVD 0.952163 0.641987 0.678373 0.607578 0.926226
Pneu. 0.907858 0.772562 0.752410 0.878474 0.835806
Pleu. 0.920464 0.728271 0.726257 0.809138 0.836274
Resp. 0.971665 0.810249 0.796211 0.959314 0.971213
GI Hem. 0.817911 0.569127 0.605476 0.528093 0.770189
Renal. 0.948784 0.874256 0.864835 0.928585 0.938689
Shock 0.991505 0.896535 0.880568 0.919362 0.980769



Table 7: AUROC Scores for Different Methods and Target Codes with Data Augmentation.

Model Real Halo LSTM CHIRON DPO
Disease

Sep. 0.963883 0.957284 0.963633 0.964703 0.968165
SCD 0.576595 0.552546 0.577321 0.578732 0.593915
Surg. 0.789956 0.758249 0.769419 0.779733 0.805474
DM 0.954576 0.950263 0.951639 0.951164 0.951946
Lipid. 0.870144 0.861792 0.866152 0.865382 0.866047
Fluid. 0.849671 0.816476 0.828953 0.845331 0.825845
AMI 0.964426 0.951325 0.953470 0.954856 0.969395
Cond. 0.928802 0.920657 0.922438 0.923409 0.923387
Dys. 0.870332 0.857298 0.860837 0.861953 0.869598
CVD 0.952163 0.926174 0.930452 0.942206 0.944967
Pneu. 0.907858 0.882461 0.897954 0.904490 0.878901
Pleu. 0.920464 0.912675 0.920021 0.918651 0.932653
Resp. 0.971665 0.964218 0.968671 0.972935 0.976146
GI Hem. 0.817911 0.790863 0.792729 0.806536 0.820504
Renal. 0.948784 0.942732 0.946204 0.945539 0.948128
Shock 0.991505 0.987896 0.991323 0.992183 0.991389


