
Approximate Differential Privacy of the `2 Mechanism

Matthew Joseph * 1 Alex Kulesza * 1 Alexander Yu * 1

Abstract

We study the `2 mechanism for computing a d-
dimensional statistic with bounded `2 sensitivity
under approximate differential privacy. Across a
range of privacy parameters, we find that the `2
mechanism obtains lower error than the Laplace
and Gaussian mechanisms, matching the former
at d = 1 and approaching the latter as d→∞.

1. Introduction
Computing a d-dimensional statistic with bounded `2
sensitivity is a fundamental task in differential privacy
(DP) (Dwork et al., 2006). It underlies standard algorithms
like private stochastic gradient descent (Song et al., 2013;
Abadi et al., 2016), the binary tree mechanism (Chan et al.,
2011; Dwork et al., 2010), and the projection (Nikolov et al.,
2013; Nikolov, 2023), matrix (Li et al., 2015; McKenna
et al., 2018), and factorization mechanisms (Edmonds et al.,
2020; Nikolov & Tang, 2023). The canonical approxi-
mate DP algorithm for this problem is the Gaussian mech-
anism (Dwork et al., 2006). To compute statistic T (X),
the Gaussian mechanism samples an output according to
gX(y) ∝ exp(−[‖y − T (X)‖2/σ]2) for an appropriate
value of σ; in particular, the analytic Gaussian mecha-
nism (Balle & Wang, 2018) chooses the smallest possible σ
sufficient for the desired approximate DP guarantee.

In this paper, we analyze the `2 mechanism. Given a pa-
rameter σ, this mechanism samples an output according
to density fX(y) ∝ exp(−‖y − T (X)‖2/σ). As an in-
stance of the K-norm mechanism (Hardt & Talwar, 2010)
using the `2 norm, the `2 mechanism immediately satisfies
1
σ -(pure) DP and can be sampled efficiently. However, its
approximate DP guarantees are not well understood.

*Equal contribution 1Google Research New York. Correspon-
dence to: Matthew Joseph <mtjoseph@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1.1. Contributions

For arbitrary dimension d and privacy parameters ε and
δ, we provide an algorithm for choosing σ to obtain an `2
mechanism that satisfies (ε, δ)-DP. The resulting `2 mecha-
nism can be efficiently sampled in parallel and empirically
dominates both the Laplace mechanism and the analytic
Gaussian mechanism in terms of mean squared `2 error (left
plot in Figure 1). Moreover, unlike the Gaussian mecha-
nism, the `2 mechanism always satisfies a pure DP guarantee
(right plot in Figure 1).

Our algorithms bound relevant quantities of the privacy loss
random variable for the `2 mechanism. Balle & Wang (2018)
showed that mechanism M is (ε, δ)-DP if and only if

P [`M,X,X′ ≥ ε]− eεP [`M,X′,X ≤ −ε] ≤ δ (1)

where `M,X,X′ is the privacy loss associated withM on arbi-
trary neighboring databases X and X ′ (Section 2). Proving
(ε, δ)-DP therefore reduces to upper bounding the first term
and lower bounding the second. We show that the first term
is defined by the mass that M(X) places on a region of
Rd determined by certain spherical caps, while the second
term is defined by the mass that M(X ′) places on the same
region. We then provide algorithms to approximate the first
term from above and the second term from below. Because
these approximations are provably upper and lower bounds,
they yield a formal differential privacy guarantee. Exper-
iments suggest that, for reasonable algorithm parameter
values, these approximations are tight (Section 4.1).

1.2. Related Work

Ganesh & Zhao (2021) also use spherical caps to analyze
what they call “generalized Gaussians”, which have densi-
ties proportional to exp(−[‖y − T (X)‖p/σ]p) for integers
p ≥ 1. A few features separate their work from ours: they
study a statistic with bounded `∞ sensitivity; their results
do not cover the `2 mechanism, which uses norm p = 2 but
exponent p′ = 1; they work with a sufficient condition for
(ε, δ)-DP, which only bounds the first term in Equation (1)
by δ, leading to looser results; and since their goal is an
asymptotic utility guarantee, their results rely on asymp-
totic concentration inequalities that are less precise than the
approach used here.

A few authors have studied the `2 mechanism, primarily in
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Figure 1. Left: normalized mean squared `2 error. At each d, we compute mean squared `2 error for the (1, 10−5)-DP Laplace, analytic
Gaussian (Balle & Wang, 2018), and `2 mechanisms. Quantities are normalized so that the analytic Gaussian mechanism error is always 1.
Note that we truncate the Laplace mechanism at d = 8, after which its error relative to the analytic Gaussian mechanism continues to
grow. See Section 4.2 for details. Right: the pure DP guarantee of the (1, 10−5)-DP `2 mechanism as d grows.

the context of objective perturbation (Chaudhuri et al., 2011;
Kifer et al., 2012; Yu et al., 2014). However, they all use
pure DP rather than approximate DP.

2. Preliminaries
We use the formulation of (ε, δ)-DP given by Balle & Wang
(2018). It is defined in terms of the privacy loss random
variable. Our results apply for either the add-remove or
swap notions of neighboring databases.
Definition 2.1. Let M be a mechanism whose output den-
sity given input database X is fX . Then for neighbor-
ing databases X,X ′, the privacy loss of M at point y is
`M,X,X′(y) = ln

(
fX(y)
fX′ (y)

)
. Its privacy loss random vari-

able is `M,X,X′(Y ) where Y ∼ fX .

The following results relate the privacy loss random variable
to differential privacy.
Lemma 2.2. Mechanism M is ε-DP if and only if, for any
neighboring X ∼ X ′, |`M,X,X′(Y )| ≤ ε.
Lemma 2.3 (Balle & Wang (2018)). Mechanism M is
(ε, δ)-DP if and only if, for any neighboring X ∼ X ′,

P [`M,X,X′ ≥ ε]− eεP [`M,X′,X ≤ −ε] ≤ δ.

Since the `2 mechanism can be viewed as an instance of
the K-norm mechanism (Hardt & Talwar, 2010), we recall
some relevant results about the K-norm mechanism.
Lemma 2.4 (Hardt & Talwar (2010)). Given norm ‖ · ‖,
scale parameter σ, statistic T with ‖ · ‖-sensitivity ∆,
and database X , the K-norm mechanism has output den-
sity fX(y) ∝ exp (−‖y − T (X)‖/σ) and satisfies ∆

σ -DP.
Moreover, lettingBd denote the unit ball for ‖ ·‖, the follow-
ing procedure samples this mechanism: 1) sample radius

r ∼ Gamma (d+ 1, σ), the Gamma distribution with shape
d + 1 and scale σ; 2) uniformly sample z ∼ Bd; and 3)
output T (X) + rz.

3. `2 Mechanism
This section provides an algorithm for computing σ to
achieve an (ε, δ)-DP `2 mechanism (Section 3.1) and then
describes a simple method for sampling the `2 mechanism
in parallel (Section 3.2). Without loss of generality, we
assume that our statistic T has `2 sensitivity ∆2 = 1. If
∆2 6= 1, we can run the algorithm on T/∆2 and rescale.

3.1. Privacy Analysis

The overall goal is to translate an (ε, δ)-DP privacy budget
to the minimum σ such that the `2 mechanism M with
parameter σ satisfies (ε, δ)-DP. To do this, we focus on a
subroutine that determines whether or not M satisfies (ε, δ)-
DP and then binary search over σ.

Recall from Lemma 2.3 that M is (ε, δ)-DP if and only
if P [`M,X,X′ ≥ ε] − eεP [`M,X′,X ≤ −ε] ≤ δ. The next
subsections will provide algorithms that upper bound the
first term and lower bound the second term, and thus err on
the side of a conservative privacy guarantee.

Before starting our privacy analysis, we consider a simpler
(but, as we will see, significantly worse) approach. The `2
mechanism, and the K-norm mechanism more broadly, can
be viewed as instances of the exponential mechanism (Mc-
Sherry & Talwar, 2007). The exponential mechanism ad-
mits a few possible approximate DP analyses. For example,
the ε-DP exponential mechanism satisfies ε2

8 -concentrated
DP (Cesar & Rogers, 2021), and a concentrated DP guaran-
tee can be converted to an approximate DP guarantee (Bun
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& Steinke, 2016; Canonne et al., 2020; Asoodeh et al., 2020;
Zhu et al., 2022). However, any such analysis also applies to
the Laplace mechanism, and the ε-DP Laplace mechanism
is only (ε′, δ)-DP for ε′ ≈ ε − O(δ) (Lemma A.2 in the
Appendix). This is a negligible improvement for realistic δ,
so a different privacy analysis is necessary.

3.1.1. FIRST TERM UPPER BOUND

For the privacy guarantee to hold, Equation (1) must hold
for arbitrary neighboring databases X and X ′. Since the `2
ball is spherically symmetric, without loss of generality we
consider statistic T where T (X) = 0 and T (X ′) = e1 =
(1, 0, . . . , 0). Shorthand the respective mechanisms asM(0)
and M(1). Then

`M,X,X′(y) = ln

(
fX(y)

fX′(y)

)
= ln

(
exp[−‖y‖2/σ]

exp[−‖y − e1‖2/σ]

)
=

1

σ
(‖y − e1‖2 − ‖y‖2)

so we want to upper bound

Py∼M(0)

[
1

σ
(‖y − e1‖2 − ‖y‖2) ≥ ε

]
. (2)

We shorthand the relevant region in Equation (2) as V .

Definition 3.1. Define V = {y | 1
σ (‖y−e1‖2−‖y‖2) ≥ ε},

M ’s high privacy loss region.

A simple case is σ ≥ 1
ε .

Lemma 3.2. σ ≥ 1
ε if and only if Py∼M(0) [y ∈ V ] = 0.

Proof. The equation |‖y − e1‖2 − ‖y‖2| = σε defines a
hyperboloid with foci 0 and e1 and constant difference σε.
If we instead consider ‖y−e1‖2−‖y‖2 ≥ σε, removing the
absolute value restricts the hyperboloid to the −e1 facing
component, and moving to inequality yields the convex hull
of that component. An illustration appears in Figure 2.

If σ > 1
ε , then ‖y − e1‖2 − ‖y‖2 ≥ σε has no solution

because the triangle inequality means ‖y − e1‖2 − ‖y‖2 ≤
‖e1‖. Thus V = ∅, so Py∼M(0) [y ∈ V ] = 0. If σ = 1

ε ,
then ‖y−e1‖2−‖y‖2 ≥ σε only holds for y contained in the
−e1 axis. This set has measure 0, so Py∼M(0) [y ∈ V ] = 0.
Finally, if σ < 1

ε , then ‖y − e1‖2 − ‖y‖2 ≥ σε determines
a −e1 facing component of the hyperboloid that is non-
degenerate, so its convex hull has positive measure, i.e.
Py∼M(0) [y ∈ V ] > 0.

The rest of this subsection considers σ < 1
ε . When d = 1,

all `p norm mechanisms are identical. In particular, the `2
mechanism is equivalent to the Laplace mechanism.

e1

Figure 2. An illustration of V for σ = 1/(2ε). We draw the
projection of V onto span(e1, e2) as the shaded region.

Lemma 3.3. If σ ≤ 1
ε and d = 1, then Py∼M(0) [y ∈ V ] =

1− 1
2 exp

(
1
2 [ε− 1

σ ]
)
.

Proof. M has the same noise density as the Laplace mech-
anism Lap (σ), and |y − e1| − |y| ≥ σε if and only if
y ≤ 1

2 (1 − σε). For z ≥ 0, the Lap (σ) CDF is F (z) =
1 − 1

2 exp
(
− z
σ

)
, so by 1 − σε ≥ 0, Py∼M(0) [y ∈ V ] =

1− 1
2 exp

(
1
2 [ε− 1

σ ]
)
.

This leaves the case σ ≤ 1
ε and d ≥ 2. We proceed under

that assumption.

Assumption 3.4. Statistic T has dimension d ≥ 2, and
σ < 1

ε .

When d ≥ 2, the level sets of M are spheres, and we will
show that the the high privacy loss portions of level sets are
spherical caps.

Definition 3.5. For r > 0 and z ∈ Rd, define Sr,z =
{x ∈ Rd | ‖x− z‖2 = r}, the sphere of radius r centered
at z. For any sphere Sr,z where z = (c, 0, . . . , 0), the
spherical cap of Sr,z of height h is the set of points Ŝr,z,h =
{(x1, . . . , xd) ∈ Rd | ‖x− z‖2 = r and x1 ≤ c− r + h}.
See Figure 3 for an illustration.

Figure 3. The unit circle in R2 with a spherical cap (thick purple
arc) of height 0.5. In Rd, the sphere and spherical cap are both
(d− 1)-dimensional objects.

Lemma 3.6. Define height

h(r) = min

(
r(1− εσ) +

1− (εσ)2

2
, 2r

)
.
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Then Ŝr,0,h(r) = V ∩ Sr,0.

Proof. Orient the 2-dim plane span(e1, e2) so that the posi-
tive e1 direction is right and the positive e2 direction is up.
Consider the points 0, e1, and some y ∈ Sr,0 ∩H where H
is the upper half of the span(e1, e2) plane (i.e., y2 ≥ 0). Let
θ be the clockwise angle from y to e1. Proofs of the follow-
ing claim (and others omitted in this subsection) appear in
Appendix A.1.

Claim 3.6.1. ‖y − e1‖2 − ‖y‖2 decreases as θ decreases.

We want to identify a function h(r) for all r > 0 such that
Ŝr,0,h(r) = V ∩ Sr,0. Assumption 3.4 means σ < 1

ε , so by
Lemma 3.2, V ∩ Sr,0 is nonempty. The analysis splits into
cases.

Case 1: Sr,0 6⊂ V . Since 1
σ (‖p − e1‖2 − ‖p‖2) changes

monotonically by Claim 3.6.1 then there exists p =
(p1, p2, 0, ..., 0) ∈ Sr,0 at the base of Ŝr,0,h(r) such that
1
σ (‖p−e1‖2−‖p‖2) = ε. Then h(r) satisfies (r−h(r))2 +

p2
2 = r2, and we get p2 =

√
2h(r)r − h(r)2.

We can now derive the desired expression for h(r).

Claim 3.6.2. 1
σ (‖p − e1‖2 − ‖p‖2) = ε is equivalent to

h(r) = r(1− εσ) + 1−ε2σ2

2 .

Moreover, we show that with the above definition of h(r),
the constraint h(r) ∈ [0, 2r] is equivalent to a constraint on
the radius given by r ≥ 1−εσ

2 .

Claim 3.6.3. r(1 − εσ) + 1−ε2σ2

2 ∈ [0, 2r] if and only if
r ≥ 1−εσ

2 .

In summary, Sr,0 6⊂ V if and only if r ≥ 1−εσ
2 , and for

such r, we have Ŝr,0,h(r) = V ∩ Sr,0 when h(r) is defined
as in Claim 3.6.2.

Case 2: Sr,0 ⊂ V . By the above, Sr,0 ⊂ V if and only
if r < 1−εσ

2 . The statement Sr,0 ⊂ V is equivalent to
1
σ (‖p − e1‖2 − ‖p‖2) = 1

σ (
√

(r + 1)2 − 2h(r) − r) ≥ ε
for all p ∈ Sr,0, and this inequality is equivalent to h(r) ≤
r(1− εσ) + 1−ε2σ2

2 by replacing equality with inequalities
in the proof of Claim 3.6.2. By Claim 3.6.3, r < 1−εσ

2

is equivalent to r(1 − εσ) + 1−ε2σ2

2 > 2r. Then defining
h(r) = 2r suffices to satisfy h(r) ≤ r(1 − εσ) + 1−ε2σ2

2
for all r < 1−εσ

2 .

In summary, if we define h(r) as

h(r) =

{
r(1− εσ) + 1−ε2σ2

2 if r ≥ 1−εσ
2

2r if r < 1−εσ
2

then h(r) ∈ [0, 2r] and Ŝr,0,h(r) = V ∩ Sr,0. Since r(1 −
εσ)+ 1−ε2σ2

2 > 2r for r < 1−εσ
2 , this piecewise function is

equivalent to h(r) = min
(
r(1− εσ) + 1−(εσ)2

2 , 2r
)

.

We showed in the above proof that, for small r, the entirety
of Sr,0 lies in V .

Corollary 3.7. If r ≤ 1−εσ
2 , then Sr,0 ⊂ V .

It remains to analyze the high privacy loss region for larger
r. Our analysis will repeatedly reason about the fraction of
a sphere occupied by a cap.

Definition 3.8. Let Fr,h denote the fraction of the surface
of Sr,0 occupied by cap Ŝr,0,h.

Lemma 3.9 ((Li, 2010)). Let Ix(a, b) =
∫ x
0
ta−1(1−t)b−1dt∫ 1

0
ta−1(1−t)b−1dt

denote the regularized incomplete beta function. Let h be
the height function defined in Lemma 3.6. If h(r) ≤ r, then
Fr,h(r) = 1

2I(2rh(r)−h(r)2)/r2
(
d−1

2 , 1
2

)
. If h(r) > r, then

Fr,h(r) = 1− Fr,2r−h(r).

There is no closed-form expression for Ix(a, b), but
it is a standard function in mathematical libraries like
SciPy (SciPy, 2024).1 We can therefore use Lemma 3.9
to compute the fraction of any Sr,0 that lies in V =

∪r∈R+ Ŝr,0,h(r) (Lemma 3.6). It remains to extend these
results about individual spheres to results about V as a
whole.

The next lemma shows that the high-loss cap fraction de-
creases with r. It combines Lemma 3.6 and Lemma 3.9 to
show directly that the appropriate Ix(a, b) is monotone in
r in the desired direction. Since the proof is again mostly
calculation, it also appears in Appendix A.1.

Lemma 3.10. Fr,h(r) is monotone decreasing in r.

This suggests the following approach: if M(0) samples y
with ‖y‖2 > r with probability p, then pFr,h(r) is an upper
bound on Py∼M(0) [y ∈ V, ‖y‖2 > r]. The following result
gives a closed form for p. The expression uses the lower
incomplete gamma function and the gamma function, which
are also standard functions in mathematical libraries. The
proof is mostly calculation and appears in Appendix A.1.

Definition 3.11. For z ≥ 0, the Gamma function is Γ(z) =∫∞
0
tz−1e−tdt, the lower incomplete Gamma function is

γ(z, x) =
∫ x

0
tz−1e−tdt, and the upper incomplete Gamma

function is Γ(z, x) = Γ(z)− γ(z, x).

Lemma 3.12. For r > 0, Py∼M(0) [‖y‖2 ≤ r] = γ(d,r/σ)
Γ(d) .

The preceding results yield the following upper bound.

1Note that the analytic Gaussian mechanism (Balle & Wang,
2018) depends similarly on the standard Gaussian CDF.
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Lemma 3.13. Suppose Assumption 3.4 holds. Let r1 <
. . . < rnr where r1 = 1−εσ

2 . Then, for y ∼M(0),

P [y ∈ V ] ≤ γ(d, r1/σ)

Γ(d)

+

nr−1∑
j=1

γ(d, rj+1/σ)− γ(d, rj/σ)

Γ(d)
Frj ,h(rj)

+
Γ(d, rnr/σ)

Γ(d)
Frnr ,h(rnr ).

Proof. The first term is the mass placed on the ball lying
entirely in the high privacy loss region (Corollary 3.7 and
Lemma 3.12); the second term is a (left) Riemann sum
that upper bounds the mass placed on the high privacy loss
region between balls of radius r1 and rnr (Lemma 3.9,
Lemma 3.12, and Lemma 3.10); and the last is an up-
per bound on the mass placed on the high privacy loss
region outside the ball of radius rnr . More specifically,
it is a Riemann sum in which the jth approximating
rectangle has base length as the jth interval on the grid[
0, γ(d,r1/σ)

Γ(d) , ...,
γ(d,Rnr/σ)

Γ(d) ,∞
]

and height Frj ,h(rj).

Algorithm 1 provides overall upper bound pseudocode.

Algorithm 1 Term1UpperBound
1: Input: Dimension d; scale parameter σ; privacy param-

eter ε; largest radius r∗; number of radii nr
2: if σ > 1/ε then
3: Return 0 (Lemma 3.2)
4: end if
5: if d = 1 then
6: Return 1− 1

2 exp
(

1
2

[
ε− 1

σ

])
(Lemma 3.3)

7: end if
8: Define r1 ← 1−εσ

2 , rnr ← r∗, and r2, . . . , rnr−1 regu-
larly spaced between r1 and rnr

9: Return upper bound from Lemma 3.13

3.1.2. SECOND TERM LOWER BOUND

It remains to lower bound Py∼M(1) [`M,X′,X(y) ≤ −ε]. By
the same logic used to derive Equation (2), we rewrite it as

Py∼M(1)

[
ln

(
f ′X(y)

fX(y)

)
≤ −ε

]
= Py∼M(1)

[
1

σ
(‖y − e1‖2 − ‖y‖2) ≥ ε

]
.

The level sets of M(1) are spheres centered at e1. As in the
upper bound analysis, there are a few simple cases. The first
follows from the same reasoning used for Lemma 3.2.

Corollary 3.14. If σ ≥ 1
ε , then Py∼M(1) [y ∈ V ] = 0.

The second case uses the same argument as Lemma 3.3.

Lemma 3.15. If σ ≤ 1
ε and d = 1, then

Py∼M(1) [y ∈ V ] = 1
2 exp

(
1
2

[
−ε− 1

σ

])
.

Proof. M(1) has the same noise density as the Laplace
mechanism Lap (1, σ), and |y − e1| − |y| ≥ σε if and only
if y ≤ 1

2 (1−σε). For z < 1, the Lap (1, σ) CDF is F (z) =
1
2 exp

(
z−1
σ

)
, so by 1 − σε ≥ 0, Py∼M(1) [y ∈ V ] =

1
2 exp

(
1
2

[
−ε− 1

σ

])
.

We therefore work under Assumption 3.4 for the rest of
this section. The remaining analysis reasons about specific
spheres SR,1.

Definition 3.16. For R > 0, define UR to be the fraction of
SR,1 contained in V .

We start by identifying when UR = 0.

Lemma 3.17. If 0 < R < 1+εσ
2 , then UR = 0.

Proof. Shorthand τ = εσ for neatness. By Corollary 3.7,
Fr,h(r) = 1 for r ≤ 1−τ

2 . Let r1 = 1−τ
2 denote the

largest radius such that Fr,h(r) = 1. This shows that
the point with the largest e1-coordinate in V ∩ Sr,0 has
e1-coordinate r for 0 < r ≤ r1. For r > r1, the point
with the largest e1-coordinate in V ∩Sr,0 has e1-coordinate
−r + h(r) = −rτ + 1−τ2

2 which is monotonically de-
creasing as r increases. Overall, the point with the largest
e1-coordinate in V ∩ Sr,0 is increasing for 0 < r ≤ r1 and
decreasing for r > r1, so r1 is the maximum e1-coordinate
of this point over all radii.

It follows that 0 < R < 1− r1 implies SR,1 ∩ Sr,0 = ∅ for
all r > 0, and since V ⊂ ∪r∈R+Sr,0, we get UR = 0.

It remains to handle the large R case. We will show that, as
was the case in the upper bound analysis, each SR,1∩V is a
spherical cap on SR,1. The first result proves that SR,1 ∩ V
has this form. This result is not technically necessary for
the rest of the argument, but it explains why we attempt to
solve for SR,1 ∩ V as a cap later.

Lemma 3.18. For R ≥ 1+εσ
2 , SR,1 ∩ V is a spherical cap

ŜR,1,H(R).

Proof. Shorthand τ = εσ. Recall from Lemma 3.2 that
V is the convex hull of the −e1 facing component of a
hyperboloid with foci 0 and e1 and with constant difference
τ . To see why SR,1∩V is a spherical cap, observe that both
the hyperboloid-bounded region V and SR,1 are symmetric
around e1, so their intersection must be symmetric around
e1 as well. Let Pv1,v2 denote projection onto span(v1, v2).
Then Pe1,e2(V )∩Pe1,e2(SR,1) is a 1-dimensional spherical
cap of some height H in Pe1,e2(SR,1). Since V ∩ SR,1 is
symmetric around e1, the previous sentence also holds if we
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replace Pe1,e2 with Pe1,v for any v orthogonal to e1. Thus
V ∩ SR,1 = ∪v⊥e1Pe1,v(V ) ∩ Pe1,v(SR,1) = ŜR,1,H .

It remains to identify the H referenced in Lemma 3.18.
To do so, we start with an arbitrary y ∈ SR,1 and solve
for an e1 coordinate X such that y1 ≤ X if and only if
y1 ≤ −‖y‖2 +h(‖y‖2) (Lemma 3.6). The bulk of the proof
beyond this idea is algebraic manipulation, so it appears in
Appendix A.2.

Lemma 3.19. Define X = 1+(εσ)2−2εσR
2 and H(R) =

R− 1 +X . Then cap ŜR,1,H(R) = SR,1 ∩ V .

Lemma 3.20. If R ≥ 1+εσ
2 , then UR is monotone increas-

ing in R.

Proof. Shorthand τ = εσ. Lemma 3.17 established that
UR = 0 for R < 1+τ

2 , so it remains to show that UR is
increasing in R for R ≥ 1+τ

2 . The proof of Lemma 3.19
established that H(R) ∈ [0, R], so we apply Lemma 3.9
to get that ŜR,1,H(R) occupies a fraction of SR,1 given by
1
2I(2RH(R)−H(R)2)/R2

(
d−1

2 , 1
2

)
. By the same logic used in

the proof of Lemma 3.10, we can show that UR is monotone
increasing by verifying that the expression in the I subscript
is nonnegative and increasing in R.

The first condition follows from the aforementioned result
H(R) ≤ R. For the second condition,

2R[R− 1 +X]− [R− 1 +X]2

R2

=
R2 − 1 + 2X −X2

R2

= 1−
(
X − 1

R

)2

= 1−
(
τ2 − 2τR− 1

2R

)2

.

We wanted to prove that this expression is increasing in R,
so we show that the second term is decreasing in R. Taking
its derivative with respect to R yields

2

(
τ2 − 2τR− 1

2R

)
· 2R(−2τ)− 2(τ2 − 2τR− 1)

4R2

=

(
τ2 − 2τR− 1

R

)
· 1− τ2

2R2
.

Because R > 0 and 0 < τ < 1, the numerator of the first
term is negative, and the remaining terms are positive, so
the entire quantity is negative.

Since we want to lower bound the mass on these UR, we
use Lemma 3.12 and employ a left Riemann sum in which
the jth approximating rectangle has base length as the jth

interval on the grid
[
γ(d,R1/σ)

Γ(d) , ...,
γ(d,RnR/σ)

Γ(d) ,∞
]

and has
height FRj ,H(Rj). The proof of the following result uses
similar logic as the proof of Lemma 3.13.
Lemma 3.21. Suppose Assumption 3.4 holds. Let R1 <
. . . < RnR where R1 = 1+τ

2 . Then for y ∼M(1),

P [y ∈ V ] ≥
nR−1∑
j=1

γ(d,Rj+1/σ)− γ(d,Rj/σ)

Γ(d)
FRj ,H(Rj)

+
Γ(d,RnR/σ)

Γ(d)
FRnR ,H(RnR )

where we reused the definition of F from Definition 3.8.

Algorithm 2 provides overall lower bound pseudocode.

Algorithm 2 Term2LowerBound
1: Input: Dimension d; scale parameter σ; privacy param-

eter ε; largest radius R∗; number of radii nR
2: if σ ≥ 1/ε then
3: Return 0 (Corollary 3.14)
4: end if
5: if d = 1 then
6: Return 1

2 exp
(

1
2

[
−ε− 1

σ

])
(Lemma 3.15)

7: end if
8: Define R1 ← 1+τ

2 , RnR ← R∗, and R2, . . . , RnR−1

regularly spaced between R1 and RnR
9: Return lower bound from Lemma 3.21

3.1.3. OVERALL ALGORITHM

Algorithm 1 upper bounds the first term in the inequality in
Lemma 2.3 and Algorithm 2 lower bounds the second term.
This upper bounds the LHS of the inequality, so if it is at
most δ, then the mechanism is (ε, δ)-DP.

The last step is choosing nr, r∗, nR, and R∗. Our experi-
ments suggests that setting nr = nR = 1000 yields a rea-
sonably tight approximation for d ≤ 100 (see Section 4.1);
larger values should only be tighter, at the cost of speed. We
choose r∗ using Lemma 3.12 so Py∼M(0) [‖y‖2 > r∗] =
δ

100 ; in the context of Lemma 3.13, we use Frnr ,h(rnr ) to
upper bound the cap fraction for all Sr,0 with r ≥ rnr ,
so we choose r∗ to make the effect of this approximation
negligible. By the same logic, we use R∗ = r∗.

Algorithm 3 collects the entire process into pseudocode.

3.2. Parallel Sampler

The sampler described here is a simple consequence of
Lemma 2.4 and well-known statistical facts, and similar
samplers have appeared for related mechanisms (Yu et al.,
2014; Steinke & Ullman, 2016). We collect the relevant
information here, with proofs in Appendix A.3 for com-
pleteness.
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Algorithm 3 CheckApproximateDP
1: Input: Dimension d; scale parameter σ; privacy param-

eters ε, δ; numbers of radii nr, nR
2: Compute r∗ such that Py∼M(0) [‖y‖2 > r∗] = δ

100
(Lemma 3.12)

3: T1 ← Term1UpperBound(d, σ, ε, r∗, nr)
4: T2 ← Term2LowerBound(d, σ, ε, r∗, nR)
5: Return (T1 − eεT2 ≤ δ)

By Lemma 2.4, we sample rz where r ∼ Gamma (d+ 1, σ)
and z ∼U Bd2 . In a parallel setting, suppose we have a
worker for each of d coordinates and a central manager. We
first sample r.

Lemma 3.22. Let U1, . . . , Ud+1 ∼iid U(0, 1) be uni-
form random samples. Then −σ

∑d+1
i=1 log(Ui) ∼

Gamma (d+ 1, σ).

By Lemma 3.22, each worker i can sample log(Ui), and the
manager can add the combined sum to their own sample and
scale the result by −σ to obtain r. It remains to sample z.

Lemma 3.23. Let X1, . . . , Xd ∼iid N(0, 1), and let
Y ∼ U(0, 1) be a uniform sample from [0, 1]. Then
Y 1/d · (X1,...,Xd)√∑d

i=1X
2
i

is a uniform sample from Bd2 .

To apply Lemma 3.23, each worker samples a standard
Gaussian and reports its square in the same combine used
to compute r in Lemma 3.22. The manager samples Y and
publishes it along with r and the sum of squares. At this
point, each worker can compute their coordinate of rz.

4. Experiments
This section discusses experiments evaluating the tightness
of our privacy analysis (Section 4.1) as well as the `2 mech-
anism’s error (Section 4.2) and speed (Section 4.3). All
experiments use the `2 mechanism with nr = nR = 1000.
Experiment code may be found on Github (Google, 2025).

4.1. Privacy

Our first experiments attempt to measure the tightness of
our privacy analysis. To do so, we compare two methods
for estimating P [`M,X,X′ ≥ ε]− eεP [`M,X′,X ≤ −ε], the
quantity that must be upper bounded by δ for M to satisfy
(ε, δ)-DP (Lemma 2.3).

We fix ε = 1, δ = 0.01, and vary d = 1, 2, . . . , 100. At
each d, the first method empirically estimates the smallest
σ such that

P [`M,X,X′ ≥ 1]− e · P [`M,X′,X ≤ −1] ≤ δ, (3)

where M is the `2 mechanism with parameter σ, and M(X)
is centered at 0 while M(X ′) is centered at 1. By the

analysis of Section 3, Equation (3) is equivalent to

Py∼M(0)

[
1

σ
(‖e1 − y‖2 − ‖y‖2) ≥ ε

]
− e · Py∼M(1)

[
1

σ
(‖e1 − y‖2 − ‖y‖2) ≥ ε

]
≤ δ.

We can estimate the value of this expression by drawing n
samples from M(0) and n samples from M(1), counting
the fraction c1 satisfying the first inequality and the fraction
c2 satisfying the second inequality, and then computing
c1 − e · c2. Binary searching over σ to find the smallest
value where this computation is upper bounded by δ leads to
an empirical estimate of the minimum σ yielding a (1, 0.01)-
DP `2 mechanism.

The second method computes its σ using the analysis of Sec-
tion 3. As shown in Figure 4, our algorithm closely tracks
the empirical values. This provides empirical evidence that
the resulting privacy analysis is both sound and (with the
chosen nr = nR = 1000 and range for d) tight.

0 20 40 60 80 100
dimension d

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pa
ra

m
et

er
 

empirical privacy analysis tightness
empirical
algorithmic

Figure 4. A comparison of empirical (dotted) and algorithmic
(solid) estimates of privacy loss. At each d, the empirical method
uses n = 1000/δ = 105 samples.

4.2. Error

We first derive some basic results about the mean squared
`2 error of the Laplace, `2, and Gaussian mechanisms used
in our experiments. The Laplace and `2 results are corol-
laries of the following lemma. The lemma is an extension
of a previous result about the mean squared `2 norm of a
sample from an `p ball (Joseph et al., 2025) and is proved
in Appendix A.4.

Lemma 4.1. The mean squared `2 error of the d-
dimensional `p mechanism with parameter σ is

(dσ)2(d+ 1)

(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)
.
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Since a d-dimensional statistic with `2 sensitivity 1 has
`1 sensitivity

√
d, substituting p = 1 and parameter σ

√
d

into Lemma 4.1 yields the following result for the Laplace
mechanism.
Corollary 4.2. The Laplace mechanism with parameter
σ
√
d has mean squared `2 error 2d2σ2.

The `2 mechanism uses p = 2 and parameter σ.
Corollary 4.3. The `2 mechanism with parameter σ has
mean squared `2 error d(d+ 1)σ2.

A similar result for the Gaussian mechanism is easy to prove
directly (see Appendix A.4 for proof).
Lemma 4.4. The Gaussian mechanism with parameter σ
has mean squared `2 error dσ2.

For a range of d, we solve for the smallest possible σ for
each mechanism to achieve (ε, δ)-DP and plot the mean
squared `2 error according to the preceding results. The
Laplace mechanism uses σ =

√
d/(ε + δ)2, the Gaussian

mechanism binary searches over σ as described by Balle &
Wang (2018), and the `2 mechanism binary searches over
σ using the algorithms from Section 3. Throughout, binary
searches use tolerance 0.001 and we use (1, 10−5)-DP.

This produces the left plot in Figure 1 in the introduction.
The Laplace mechanism obtains lower error than the ana-
lytic Gaussian mechanism for small d, the analytic Gaussian
mechanism obtains lower error than the Laplace mechanism
for larger d, and the `2 mechanism dominates both. The
gap between the `2 mechanism and the better of the Laplace
mechanism and analytic Gaussian mechanism is 0 at d = 1
(when the Laplace and `2 mechanism are identical) and
peaks at 50% at d = 7 before gradually shrinking, to 5% at
d = 100 and < 1% at d = 500 (not pictured).

Analogous plots for a high-privacy regime of (0.1, 10−7)-
DP and a low-privacy regime of (10, 10−3)-DP are essen-
tially the same.

4.3. Speed

The last set of experiments evaluates the speed of the `2
mechanism, as executed on a typical personal computer.
This runtime is split into two operations: the time to com-
pute σ and the time to sample the mechanism.

The largest gap appears in the time to compute σ (Figure 5).
The Laplace computation is≈ 100x faster than the Gaussian
computation, which is ≈ 100x faster than the `2 computa-
tion. This may be expected, as the Laplace computation is
a single arithmetic expression, the Gaussian computation
is a binary search over the standard normal CDF, and the

2Note that the smallest possible σ for which the Laplace mech-
anism is (ε, δ)-DP is provably negligibly smaller than the one used
here. See Appendix A.4 for details.

`2 computation is a binary search where each evaluation
iterates over nr + nR = 2000 radii. Nonetheless, we note
that the `2 computation still runs in≈ 0.1 seconds, this time
does not increase with d, and the calculation only needs to
be performed once for each setting of (ε, δ, d).

0 20 40 60 80 100
dimension d

10 5

10 4

10 3

10 2

10 1

tim
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(s
)

 computation time

laplace
gaussian
2

Figure 5. A plot of time in seconds to compute the minimum σ to
achieve (1, 10−5)-DP. The `2 mechanism line jumps after d = 1
because that case uses Lemma 3.3 instead of approximating the
spherical cap region.

The time to draw 1000 mechanism samples is less varied
(Figure 6). The `2 mechanism is again slowest, but it is
within a factor of two of the other mechanisms, and no
mechanism takes more than ≈ 0.01 seconds.

0 20 40 60 80 100
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0.000

0.002

0.004
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0.008

0.010
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Figure 6. This plot uses the same setup as Figure 5 but records
sampling time.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Conference on Computer and
Communications Security (CCS), 2016.

Asoodeh, S., Liao, J., Calmon, F. P., Kosut, O., and Sankar,
L. A better bound gives a hundred rounds: Enhanced
privacy guarantees via f-divergences. In International
Symposium on Information Theory (ISIT), 2020.

Balle, B. and Wang, Y.-X. Improving the gaussian mecha-
nism for differential privacy: Analytical calibration and
optimal denoising. In International Conference on Ma-
chine Learning (ICML), 2018.

Bun, M. and Steinke, T. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In Theory
of Cryptography Conference (TCC), 2016.

Canonne, C. L., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. Neural Information
Processing Systems (NeurIPS), 2020.

Cesar, M. and Rogers, R. Bounding, concentrating, and
truncating: Unifying privacy loss composition for data
analytics. In Algorithmic Learning Theory (ALT), 2021.

Chan, T.-H. H., Shi, E., and Song, D. Private and continual
release of statistics. Transactions on Information and
System Security (TISSEC), 2011.

Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. Differ-
entially private empirical risk minimization. Journal of
Machine Learning Research (JMLR), 2011.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography Conference (TCC), 2006.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Differ-
ential privacy under continual observation. In Symposium
on the Theory of Computing (STOC), 2010.

Edmonds, A., Nikolov, A., and Ullman, J. The power of
factorization mechanisms in local and central differen-
tial privacy. In Symposium on the Theory of Computing
(STOC), 2020.

Ganesh, A. and Zhao, J. Privately answering counting
queries with generalized gaussian mechanisms. Founda-
tions of Responsible Computing (FORC), 2021.

Google. dp l2. https://github.com/
google-research/google-research/tree/
master/dp_l2, 2025.

Hardt, M. and Talwar, K. On the geometry of differential pri-
vacy. In Symposium on the Theory of Computing (STOC),
2010.

Joseph, M., Ribero, M., and Yu, A. Privately Counting
Partially Ordered Data. In International Conference on
Learning Representations (ICLR), 2025.

Kifer, D., Smith, A., and Thakurta, A. Private Convex
Empirical Risk Minimization and High-dimensional Re-
gression. In Conference on Learning Theory (COLT),
2012.

Li, C., Miklau, G., Hay, M., McGregor, A., and Rastogi,
V. The matrix mechanism: optimizing linear counting
queries under differential privacy. The VLDB Journal,
2015.

Li, S. Concise formulas for the area and volume of a hyper-
spherical cap. Asian Journal of Mathematics & Statistics,
2010.

McKenna, R., Miklau, G., Hay, M., and Machanavajjhala,
A. Optimizing Error of High-Dimensional Statistical
Queries under Differential Privacy. The VLDB Journal,
2018.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In Foundations of Computer Science
(FOCS), 2007.

Nikolov, A. Private query release via the johnson-
lindenstrauss transform. In Symposium on Discrete Algo-
rithms (SODA), 2023.

Nikolov, A. and Tang, H. Gaussian Noise is Nearly Instance
Optimal for Private Unbiased Mean Estimation. arXiv
preprint arXiv:2301.13850, 2023.

Nikolov, A., Talwar, K., and Zhang, L. The geometry of
differential privacy: the sparse and approximate cases. In
Symposium on the Theory of Computing (STOC), 2013.

SciPy. scipy.special.betainc, 2024.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic
gradient descent with differentially private updates. In
Global Conference on Information and Signal Processing
(GlobalSIP), 2013.

9

https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/1607.00133
https://arxiv.org/abs/2001.05990
https://arxiv.org/abs/2001.05990
https://arxiv.org/abs/1805.06530
https://arxiv.org/abs/1805.06530
https://arxiv.org/abs/1805.06530
https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/2004.00010
https://arxiv.org/abs/2004.00010
https://proceedings.mlr.press/v132/cesar21a.html
https://proceedings.mlr.press/v132/cesar21a.html
https://proceedings.mlr.press/v132/cesar21a.html
https://eprint.iacr.org/2010/076.pdf
https://eprint.iacr.org/2010/076.pdf
https://arxiv.org/abs/0912.0071
https://arxiv.org/abs/0912.0071
https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
https://people.csail.mit.edu/asmith/PS/sensitivity-tcc-final.pdf
https://dl.acm.org/doi/10.1145/1806689.1806787
https://dl.acm.org/doi/10.1145/1806689.1806787
https://arxiv.org/pdf/1911.08339.pdf
https://arxiv.org/pdf/1911.08339.pdf
https://arxiv.org/pdf/1911.08339.pdf
https://arxiv.org/abs/2010.01457
https://arxiv.org/abs/2010.01457
https://github.com/google-research/google-research/tree/master/dp_l2
https://github.com/google-research/google-research/tree/master/dp_l2
https://github.com/google-research/google-research/tree/master/dp_l2
https://arxiv.org/abs/0907.3754
https://arxiv.org/abs/0907.3754
https://arxiv.org/abs/2410.06881
https://arxiv.org/abs/2410.06881
https://proceedings.mlr.press/v23/kifer12.html
https://proceedings.mlr.press/v23/kifer12.html
https://proceedings.mlr.press/v23/kifer12.html
https://people.cs.umass.edu/~miklau/assets/pubs/dp/Li15matrix.pdf
https://people.cs.umass.edu/~miklau/assets/pubs/dp/Li15matrix.pdf
https://cir.nii.ac.jp/crid/1363107370965813632
https://cir.nii.ac.jp/crid/1363107370965813632
http://www.vldb.org/pvldb/vol11/p1206-mckenna.pdf
http://www.vldb.org/pvldb/vol11/p1206-mckenna.pdf
https://ieeexplore.ieee.org/document/4389483
https://ieeexplore.ieee.org/document/4389483
https://arxiv.org/abs/2208.07410
https://arxiv.org/abs/2208.07410
https://arxiv.org/abs/2301.13850
https://arxiv.org/abs/2301.13850
https://arxiv.org/abs/1212.0297
https://arxiv.org/abs/1212.0297
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betainc.html
https://ieeexplore.ieee.org/document/6736861
https://ieeexplore.ieee.org/document/6736861


Approximate Differential Privacy of the `2 Mechanism

Steinke, T. and Ullman, J. Between pure and approximate
differential privacy. Journal of Privacy and Confidential-
ity, 2016.

Yu, F., Rybar, M., Uhler, C., and Fienberg, S. E.
Differentially-private logistic regression for detecting
multiple-SNP association in GWAS databases. In Privacy
in Statistical Databases, 2014.

Zhu, Y., Dong, J., and Wang, Y.-X. Optimal accounting of
differential privacy via characteristic function. In Artifi-
cial Intelligence and Statistics (AISTATS), 2022.

10

https://arxiv.org/abs/1501.06095
https://arxiv.org/abs/1501.06095
https://arxiv.org/abs/1407.8067
https://arxiv.org/abs/1407.8067
https://arxiv.org/abs/2106.08567
https://arxiv.org/abs/2106.08567


Approximate Differential Privacy of the `2 Mechanism

A. Appendix
A.1. Omitted Proofs From Upper Bound

Claim 3.6.1. ‖y − e1‖2 − ‖y‖2 decreases as θ decreases.

Proof. By the law of cosines,

‖y − e1‖2 =
√
‖y‖22 + ‖e1‖22 − 2‖y‖2‖e1‖2 cos(θ)

=
√
r2 + 1− 2r cos(θ),

so as y moves clockwise through Sr,0 ∩ H from −e1 to e1, θ decreases from π to 0, cos(θ) grows from −1 to 1, and
‖y− e1‖2 shrinks from r+ 1 to |r− 1|. Since ‖y‖2 = r remains constant, ‖y− e1‖2 − ‖y‖2 decreases as θ decreases. The
same conclusion holds if we choose y in the lower half plane and consider the analogous counterclockwise angle.

Claim 3.6.2. 1
σ (‖p− e1‖2 − ‖p‖2) = ε is equivalent to h(r) = r(1− εσ) + 1−ε2σ2

2 .

Proof.

‖p− e1‖2 =
√

(r + 1− h(r))2 + 2h(r)r − h(r)2

=
√

(r + 1)2 − 2h(r)

and

ε =
1

σ
(‖p− e1‖2 − ‖p‖2)

ε =
1

σ
(
√

(r + 1)2 − 2h(r)− r)

(σε+ r)2 =(r + 1)2 − 2h(r)

2h(r) =2r + 1− (σε)2 − 2rσε

h(r) =r(1− εσ) +
1− ε2σ2

2
.

Claim 3.6.3. r(1− εσ) + 1−ε2σ2

2 ∈ [0, 2r] if and only if r ≥ 1−εσ
2 .

Proof. The upper constraint of r(1− εσ) + 1−ε2σ2

2 ≤ 2r is equivalent to r ≥ 1−εσ
2 as follows

r(1− εσ) +
1− ε2σ2

2
≤ 2r

1− ε2σ2

2
≤ r(1 + εσ)

1− εσ
2

≤ r.

The lower constraint of r(1− εσ) + 1−ε2σ2

2 ≥ 0 is satisfied for any r since 1− εσ ≥ 0 implies

r(1− εσ) +
1− ε2σ2

2
= (1− εσ)

(
r +

1 + εσ

2

)
≥ 0.

Lemma 3.12. For r > 0, Py∼M(0) [‖y‖2 ≤ r] = γ(d,r/σ)
Γ(d) .
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Proof. The density for Y is f(y) ∝ exp (−‖y‖2/σ), so we compute the distribution’s normalization factor Z. We use two
facts. First, a (d− 1)-sphere, i.e., a sphere in Rd, with radius s has surface area 2πd/2

Γ(d/2) · s
d−1. Second, by u-substitution

with u = s/σ, ∫ ∞
0

e−s/σsd−1ds =

∫ ∞
0

e−u · ud−1σddu = Γ(d)σd

since Γ(z) =
∫∞

0
e−ttz−1dt. We compute the integral Z using hyperspherical coordinates s, θ1, ..., θd−1 where s ≥ 0,

θ1 ∈ [0, 2π], and θj ∈ [0, π] for 2 ≤ j ≤ d− 1. Let

V (θ1, ..., θd−1) = sind−2(θ1) sind−3(θ2)... sin(θd−1)

be the angle dependent terms of the hyperspherical volume element. Then

Z =

∫ ∞
0

∫ 2π

0

∫ π

0

...

∫ π

0

e−s/σsd−1V (θ1, ..., θd−1)∂d−1 . . . ∂1∂s

=
2πd/2

Γ(d/2)

∫ ∞
0

e−s/σsd−1∂s

=
2πd/2σd

Γ(d/2)
· Γ(d).

This gives

PY [‖y‖ ≤ r] =
1

Z
· 2πd/2

Γ(d/2)

∫ r

0

e−s/σsd−1ds

=
1

Z
· 2πd/2σd

Γ(d/2)
· γ(d, r/σ)

=
γ(d, r/σ)

Γ(d)
.

Lemma 3.10. Fr,h(r) is monotone decreasing in r.

Proof. Shorthand τ = εσ. By Corollary 3.7, Fr,h(r) = 1 for r ≤ 1−τ
2 . Suppose r > 1−τ

2 . Then by Lemma 3.6,
h(r) = r(1− τ) + 1−τ2

2 .

Case 1: r < 1−τ2

2τ . Then h(r) > r, and Fr,h(r) = 1− Fr,2r−h(r). Since we want to prove that Fr,h(r) decreases with r, it
suffices to show that Fr,2r−h(r) increases with r. By Lemma 3.9,

Fr,2r−h(r) =
1

2
I(2r[2r−h(r)]−[2r−h(r)]2)/r2

(
d− 1

2
,

1

2

)
.

We expand the subscript for I

2r(2r − h(r))− (2r − h(r))2

r2
=

4r2 − 2rh(r)− (4r2 − 4rh(r) + h(r)2)

r2

=
2rh(r)− h(r)2

r2
. (4)

Since h(r) ∈ [0, 2r] (Lemma 3.6), 2rh(r)− h(r)2 ≥ 0. Because Ix(a, b) increases with x for x ≥ 0, it is enough to show
that [2rh(r)− h(r)2]/r2 increases with r. Expanding yields

2rh(r)− h(r)2

r2
=

2r(1− τ) + (1− τ2)

r
−
r2(1− τ)2 + r(1− τ)(1− τ2) + (1−τ2)2

4

r2
.

12



Approximate Differential Privacy of the `2 Mechanism

We drop terms that don’t depend on r to get

1− τ2

r
− (1− τ)(1− τ2)

r
− (1− τ2)2

4r2
= (1− τ2)

[
τ

r
− (1− τ2)

4r2

]
.

Differentiating the second term with respect to r gives 1−2τr−τ2

2r3 , and this is positive exactly when r < 1−τ2

2τ .

Case 2: r ≥ 1−τ2

2τ . Then h(r) ≤ r, and

Fr,h(r) =
1

2
I(2rh(r)−h(r)2)/r2

(
d− 1

2
,

1

2

)
.

By similar logic, it suffices to show that (2rh(r)− h(r)2)/r2 is nonincreasing in r for r ≥ 1−τ2

2τ . This follows from the
analysis of the previous case.

A.2. Omitted Proofs From Lower Bound

Lemma 3.19. Define X = 1+(εσ)2−2εσR
2 and H(R) = R− 1 +X . Then cap ŜR,1,H(R) = SR,1 ∩ V .

Proof. Shorthand τ = εσ for neatness. To verify the claim, we start with an arbitrary y ∈ SR,1 and attempt to determine
a cutoff X ∈ R such that y ∈ V iff y1 ≤ X . For any two points y, y′ ∈ SR,1 such that y1 = y′1, it is true that y ∈ V iff
y′ ∈ V since V is spherically symmetric around e1. If y′ = y1e1 + v for some v orthogonal to e1, then by SR,1’s spherical
symmetry around e1, the point y = y1e1 + |v|e2 is also in SR,1. Therefore, our goal is to find the minimum cutoff X for the
point y = (y1, y2, 0, ..., 0) such that y ∈ V iff y1 ≤ X .

We know y ∈ Sr′,0 for some r′ > 0. Since y2
1 + y2

2 = r′2, and y ∈ SR,1 implies (y1 − 1)2 + y2
2 = R2, then

combining these yields r′ =
√
R2 + 2y1 − 1. Thus we have y ∈ V if and only if y1 ≤ −r′ + h(r′). By Lemma 3.6,

−r′ + h(r′) = min(−τr′ + 1−τ2

2 , 2r′). We have −τr′ + 1−τ2

2 = −τ
√
R2 + 2y1 − 1 + 1−τ2

2 , so we solve for the largest
X where X ≤ min(−τ

√
R2 + 2X − 1 + 1−τ2

2 , 2
√
R2 + 2X − 1).

Solving for X under the first constraint yields (
X − 1− τ2

2

)2

≥ τ2(R2 + 2X − 1)

X2 −X(1 + τ2) +
τ4 − 2τ2 + 1− 4τ2R2 + 4τ2

4
≥ 0

X2 −X(1 + τ2) +
τ4 + 2τ2 + 1− 4τ2R2

4
≥ 0. (5)

The roots of the LHS are given by

X =
1 + τ2 ±

√
(1 + τ2)2 − ([1 + τ2]2 − 4τ2R2)

2
=

1 + τ2 ± 2τR

2
.

Let x1 = 1+τ2−2τR
2 and x2 = 1+τ2+2τR

2 . As the LHS of Equation (5) is a convex parabola, the inequality is satisfied on the
intervals (−∞, x1] ∪ [x2,∞). But the first constraint on X also implies the weaker inequality X < 1−τ2

2 so X /∈ [x2,∞).
Then x1 is the largest value that satisfies the first constraint.

For any X ∈ (x1, x2), we have X > −τ
√
R2 + 2X − 1 + 1−τ2

2 ≥ min(−τ
√
R2 + 2X − 1 + 1−τ2

2 , 2
√
R2 + 2X − 1).

So if we can show that x1 ≤ 2
√
R2 + 2x1 − 1, then x1 will indeed be the desired cutoff. We actually prove a stronger

inequality

x1 ≤
√
R2 + 2x1 − 1

1 + τ2 − 2τR

2
≤ R− τ

(1 + τ)2 ≤ 2R(1 + τ)

1 + τ

2
≤ R

13
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which follows from our starting assumption on R. So X = 1+τ2−2τR
2 is the desired cutoff. This leads to a cap on SR,1 of

height

H(R) = X − (1−R) =
1 + τ2 − 2τR

2
− 1 +R = R(1− τ)− 1− τ2

2
.

The last step is verifying that this is a valid height lying in [0, 2R]. The lower bound follows from R(1 − τ) ≥ 1−τ2

2
rearranging into the starting assumption R ≥ 1+τ

2 . We prove a stronger upper bound of R by rearranging

R(1− τ)− 1− τ2

2
≤ R

−1− τ2

2
≤τR

which uses 0 < τ < 1 and R > 0.

A.3. Omitted Proofs From Sampler

Lemma 3.22. Let U1, . . . , Ud+1 ∼iid U(0, 1) be uniform random samples. Then −σ
∑d+1
i=1 log(Ui) ∼ Gamma (d+ 1, σ).

Proof. We first show that − log(U(0, 1)) ∼ Expo (1), an exponential random variable. Let f be the CDF of Expo (1).
Then P[f−1(U) ≤ t] = P[U ≤ f(t)] = f(t) so f−1(U) ∼ Expo (1). Since f−1(t) = − log(1 − t) for 0 ≤ t ≤ 1, and
U ∼ (1− U), we get − log(U) ∼ Expo (1).

Note that Expo (1) corresponds to a random variable that measures the time required for the first arrival from a Poisson
process with rate 1. Moreover, Gamma (d+ 1, σ) ∼ σGamma (d+ 1, 1) and Gamma (d+ 1, 1) corresponds to a random
variable that measures the time of the (d + 1)th arrival of a Poisson process with rate 1. The random variable of the
(d + 1)th arrival is equal to the sum of the random variables of interarrival times for the first (d + 1) arrivals. Since
a Poisson process has stationary increments, each of these interarrival times are i.i.d. as Expo (1). It follows that
Gamma (d+ 1, 1) ∼

∑d+1
i=1 Ei ∼ −

∑d+1
i=1 log(Ui) where Ei ∼ Expo (1).

Lemma 3.23. Let X1, . . . , Xd ∼iid N(0, 1), and let Y ∼ U(0, 1) be a uniform sample from [0, 1]. Then Y 1/d · (X1,...,Xd)√∑d
i=1X

2
i

is a uniform sample from Bd2 .

Proof. The term (X1,...,Xd)√∑d
i=1X

2
i

is a normalized draw from a d-dimensional multivariate Gaussian with an identity covariance

matrix. As this distribution is spherically symmetric, normalizing the draw to have unit length produces a uniform draw from
the unit sphere. Define the function f to be the CDF of the random variable of the `2 norm of a uniform sample fromBd2 . Then
f(r) = rd. We show that f is also the CDF of Y 1/d. We have P[Y 1/d ≤ r] = P[U(0, 1)1/d ≤ r] = P[U(0, 1) ≤ rd] = rd,
and the lemma follows.

A.4. Omitted Proofs From Experiments

The following result about the expected squared `2 norm of `p balls will be useful.

Lemma A.1 ((Joseph et al., 2025)). Let E2
2(X) denote the expected squared `2 norm of a uniform sample from X , and let

rBdp denote the d-dimensional `p ball of radius r. Then E2
2(rBdp) = r2 · d3

(
3d
d+2

)(
Γ( dp )Γ( 3

p )

Γ( 1
p )Γ( d+2

p )

)
.

Lemma 4.1. The mean squared `2 error of the d-dimensional `p mechanism with parameter σ is

(dσ)2(d+ 1)

(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)
.

Proof. Consider the mechanism releasing a noisy version of T (X) = 0. Call this mechanism Mp
σ . Recall from Lemma 2.4

that we can sample it by sampling r ∼ Gamma (d+ 1, σ), sampling z ∼ Bdp , and outputting rz. The distribution
Gamma (d+ 1, σ) has density

f(x) =
xde−x/σ

Γ(d+ 1)σd+1
. (6)

14
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so

Ey∼Mp
σ

[
‖y‖22

]
=

∫ ∞
0

f(r)E2
2(rBdp)dr

=

∫ ∞
0

rde−r/σ

Γ(d+ 1)σd+1
r2 · d

3

(
3d

d+ 2

)(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)
dr

=
d

3Γ(d+ 1)σd+1

(
3d

d+ 2

)(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)∫ ∞
0

rd+2e−r/σdr

=
d

3Γ(d+ 1)σd+1

(
3d

d+ 2

)(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)
· Γ(d+ 3)σd+3

= (dσ)2(d+ 1)

(
Γ(dp )Γ( 3

p )

Γ( 1
p )Γ(d+2

p )

)
.

Lemma 4.4. The Gaussian mechanism with parameter σ has mean squared `2 error dσ2.

Proof. Denote the mechanism by Nσ. Then by linearity of expectation and the fact that the Gaussian mechanism has
independent Gaussian marginals,

Ey∼Nσ
[
‖y‖22

]
= E

 d∑
j=1

y2
j


= dEz∼N(0,σ2)

[
z2
]

=dσ2

where the last equality used
Ez∼N(0,σ2)

[
z2
]

= Var(z) + E [z]
2

= σ2.

The following result provides evidence that, with reasonable parameters, approximate DP does not yield meaningful utility
improvements over pure DP for the Laplace mechanism. A result like this is likely folklore, but we include it here for
completeness.

Lemma A.2. The Laplace mechanism with parameter σ ≤ 1/ε does not satisfy (ε, δ)-DP for ε < 2 ln(1− δ) + 1
σ .

Proof. Let T (X) = 0 and let T (X ′) = e1. Then ‖T (X)− T (X ′)‖1 = 1, and

Py∼M(0)

[
ln

(
fX(y)

fX′(y)

)
≥ ε
]

= Py∼M(0) [‖y − e1‖1 − ‖y‖1 ≥ σε] = Py∼M(0) [|y1 − 1| − |y1| ≥ σε] .

Mechanism M is equivalent to the spherical Laplace distribution where each dimension is drawn from Lap (σ). This
distribution has CDF F (x) = 1 − 1

2 exp(−x/σ) for x ≥ 0. Condition |y1 − 1| − |y1| ≥ σε holds if and only if
y1 ≤ 1

2 (1− σε), so the probability of drawing such a y is

1− 1

2
exp

(
− 1

σ

[
1

2
(1− σε)

])
= 1− 1

2
exp

(
ε− 1

σ

2

)
Therefore P [`M,X,X′ ≥ ε] = 1− 1

2 exp
(
ε− 1

σ

2

)
.

We now analyze P [`M,X′,X ≤ −ε]. Because `M,X′,X = log(fX′(y)/fX(y)) = 1
σ · (|y1| − |y1 − 1|), we get

P [`M,X′,X ≤ −ε] = Py∼M(1) [|y1 − 1| − |y1| ≥ σε]

15
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whereM(1) denotes the d-dimensional Laplace mechanism centered at e1. By the same logic used above, |y1−1|−|y1| ≥ σε
if and only if y1 ≤ 1

2 (1 − σε). For y ∼ M(1), this event has the same probability as y′1 ≤ 1
2 (1 − σε) − 1 = 1

2 (−1 −
σε) when y′ ∼ M(0). Furthermore, Lap (σ) has CDF F (x) = 1

2 exp(x/σ) for x < 0. Thus P [`M,X′,X ≤ −ε] =
1
2 exp

(
1
2

[
− 1
σ − ε

])
.

Combining these results and applying 1 + x ≤ ex yields

P [`M,X,X′ ≥ ε]− eεP [`M,X′,X ≤ −ε] = 1− 1

2
exp

(
ε− 1

σ

2

)
− eε 1

2
exp

(
1

2

[
− 1

σ
− ε
])

= 1− exp

(
ε− 1

σ

2

)
By Lemma 2.3, this last quantity must be upper bounded by δ for M to be (ε, δ)-DP. Rearranging yields the expression in
the claim.
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