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ABSTRACT

Large language models continually learn through the accumulation of gradient-
based updates, but how individual pieces of new information affect existing knowl-
edge, leading to both beneficial generalization and problematic hallucination,
remains poorly understood. We demonstrate that when learning new information,
LLMs exhibit a "priming" effect: learning a new fact can cause the model to inap-
propriately apply that knowledge in unrelated contexts. To systematically study
this phenomenon, we introduce "Outlandish," a carefully curated dataset of 1320
diverse text samples designed to probe how new knowledge permeates through an
LLM’s existing knowledge base. Using this dataset, we show that the degree of
priming after learning new information can be predicted by measuring the token
probability of key words before training. This relationship holds robustly across
different model architectures (PALM-2, Gemma, Llama), sizes, and training stages.
Finally, we develop two novel techniques to modulate how new knowledge affects
existing model behavior: (1) a “stepping-stone” text augmentation strategy and
(2) an “ignore-k” update pruning method. These approaches reduce undesirable
priming effects by 50-95% while preserving the model’s ability to learn new in-
formation. Our findings provide both empirical insights into how LLMs learn and
practical tools for improving the specificity of knowledge insertion in language
models. Further materials can be found here ***.

1 INTRODUCTION

The ability of large language models (LLMs) to integrate new knowledge is central to their utility.
Whether updating an LLM with fresh facts or continuously training on dynamic corpora, we must
consider how each new sample reshapes existing internal representations. Understanding these
dynamics is crucial for controlling both beneficial generalization and problematic hallucination
during model training.

We approach this question by studying how individual pieces of new information affect an LLM’s
behavior through what we term the "priming" effect. “Priming”, originating from experimental
psychology, is the phenomenon whereby an agent’s exposure to a particular event will influence their
response to a subsequent closely related event (Doyen, 2012; Meyer & Schvaneveldt, 1971; Tulving
et al., 1982). We formalize it for the study of large language models in equation (1). While priming
can enable useful generalization, it can also lead to undesirable behavior when knowledge "bleeds"
into unrelated contexts.

To systematically study this phenomenon, we needed a way to precisely measure how new knowledge
affects existing model behavior. We introduce "Outlandish," a novel dataset of 1320 diverse text
samples specifically designed to probe knowledge permeation in LLMs. Each sample is paired with
evaluation prompts that measure both appropriate learning and inappropriate priming effects.

Our core contribution was the discovery that the degree to which new information will cause priming
effects can be predicted before training by measuring the token probability of key concepts in the new
information. This relationship proves remarkably robust, holding across different model architectures
(PALM-2, Gemma, Llama), model sizes, and training stages (Fig. 1, 2, Appendix Fig. 11, 13, 14, 15).

Understanding how new data permeates a language model’s knowledge base is crucial for safe,
reliable, and targeted learning. While many aspects—from architectural design to algorithmic
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Figure 1: Outlandish dataset and main result. (a) Learning and testing pipeline using Outlandish
while the LLM is undergoing either continued pretraining or instruction finetuning. (b) Sample
texts within this dataset. (c) The degree of priming after learning (score formalized in eq. 1) can be
predicted from the keyword probability before learning.

choices—affect model updates (Meng et al., 2022a; Hase et al., 2023; Nanda et al., 2023; Geva
et al., 2023), our work underscores the powerful influence of the data itself. By showing how to
measure, predict, and mitigate the unintended consequences of learning single samples, we provide
a foundation for building more robust and controlled continual-learning systems. We expect our
findings to resonate across AI Safety, Interpretability, and the broader NLP community, where the
goal is to ensure that new knowledge enriches models without corrupting their previously established
competencies.

Our contributions are as follows:

• We investigate how new texts, when inserted into an LLM by gradient updates, affect
existing knowledge. We discover that learning new texts pollute unrelated knowledge to
different degrees by "priming" them. Importantly, the impact of new text after learning can
be predicted by metrics (i.e. token probability) measured before learning (Fig. 1, 2). We
then conducted an intervention test on this relationship that strongly tested the hypothesis
that keyword probability before learning causes priming after learning. This intervention
held across models (Fig. 6, 27, 28).

• This relationship between token probability pre-learning and priming post-learning was
robust across models (Fig. 2, Fig. 13, 14), model sizes (Fig. 16), learning stages (Fig. 15),
occurred despite interference (Fig. 17), despite spacing, and it arose quickly (Fig. 3).

• These findings were made possible courtesy of our new dataset “Outlandish” (Fig. 1).

• In-context learning of the same Outlandish texts shows a much attenuated relationship
between probability and subsequent priming compared to in-weight learning, showing an
interesting difference between such implicit and explicit optimization (Fig. 22).

• Finally, we demonstrate how a simple text augmentation technique, as well as a simple
yet novel update pruning technique can modulate how much training on new texts affect
existing knowledge, enhancing the specificity of gradient-based learning (Fig. 24, 6).
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2 RELATED WORK

The nature of new learning and their impact on the existing language model is of central importance
to understanding how large language models learn, and is therefore of great interest to several areas
of machine learning research.

2.1 KNOWLEDGE INSERTION, MEMORY AND INTERPRETABILITY

Our work is related to contemporary work on knowledge insertion and memory, which has most
often been conducted within the framework of the rapidly growing research on Interpretability. Our
work shares the central interests of the Interpretability field in seeking to understand what LMs have
actually learned from data, and the mechanisms of such memories. In Interpretability, important
works have sought to reconstruct minimalist working circuits to recapitulate such functions (Geva
et al., 2020; 2022; Roberts et al., 2020; Geva et al., 2023; Nanda et al., 2023; Ghandeharioun et al.,
2024). These works painstakingly dissect, characterize, and reconstruct LLM memory, finding the
consequences of knowledge injection in LLM function (and even what happens when they are injected
at non-matched localizations (Hase et al., 2023)), the mechanisms of retrieval (Nanda et al., 2023;
Geva et al., 2023), the surprising sparse localization of memories (Meng et al., 2022a;b), as well as
the oftentimes surprising extent to which injection of new texts into LMs can cause hallucinations
(Gekhman et al., 2024; Wan et al., 2023; Yin et al., 2023; Huang et al., 2023), or cause mistakes
in downstream reasoning (Huang et al., 2023; Cohen et al., 2023a). While there are many factors
that affect the outcome of language model learning such as important architectural and algorithmic
components (and many of these factors have been studied in the works mentioned above), our study
hones in on one other realm of factors: how different training data with diverse characteristics
impact learning. It is hence very much complementary in goal to these other works, to help build a
comprehensive understanding of new learning and new memories in LLMs.

2.2 LEARNING DYNAMICS IN DEEP NEURAL NETWORKS AND THE BRAIN

Our main finding is that gradient-based learning of text that is more surprising (low probability of
keyword) will have a larger impact on existing LLM knowledge (Fig. 1). This shows deep parallels
to the biological learning seen in humans and mammals, since the encoding of new memories into
the mammalian hippocampus is triggered by its surprisal (Wagatsuma et al., 2018; Winocur &
Moscovitch, 2011) (Fig. 1).

This parallel with neuroscience follows a long line of work (McClelland et al., 2020; Saxena et al.,
2022; McClelland et al., 1995; Kudithipudi et al., 2022) that has studied similarities and differences
in the way that AIs learn versus the brain. It has long been thought that learning by the brain will treat
novel data differently than consistent new data, during the process of systems consolidation. Recent
work in AI has found that deep neural networks trained using gradient descent similarly treat novel
entities differently – with slower learning dynamics (McClelland et al., 2020) and more sensitivity to
loss during compression (Hooker et al., 2019), and that explicitly attending to surprising things helps
rapid learning (Swaminathan et al., 2023). Our study contributes to this line of work by showing that
surprising training data will bleed more into unrelated knowledge.

2.3 SAFETY, HALLUCINATIONS, AND CONTINUAL LEARNING

One of the main roadblocks to Safe AI is the presence of hallucinations, post-training. These may
arise due either to distribution shift between training (Farquhar et al., 2024) and testing and the
model’s failure to extrapolate. Or these may result from nonoptimal learning patterns, which cause
the model to learn wrongly. In the latter case, this could be due to the presence of false facts (Meng
et al., 2022a) or even poisoned data (Ovadia et al., 2023a; Cohen et al., 2023b). Data poisoning is the
injection of data into a training set which causes a vulnerability of the trained model (Wallace et al.,
2020; Kurita et al., 2020; Carlini et al., 2023). But it can also arise from suboptimal mixtures of data
(Allen-Zhu & Li, 2023; Zhang et al., 2024; Mecklenburg et al., 2024) which bias the model to learn
incorrect patterns. Ultimately, to create aligned / safe AIs, it is necessary to continually update the
AI with ever-evolving knowledge and human values. Such continual learning involves complicated,
multi-stage training, with catastrophic forgetting and hallucinations as perennial problems (Wu et al.,
2024; Shi et al., 2024). All of these cases, both malicious and not, demonstrate the urgent need to
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characterize and understand the impact of new data on LLM knowledge, so that we may decrease
unwanted hallucinations and encourage more specific learning.

Our study contributes to this realm of safety literature in two ways: (1) in new insights about how
training data impacts existing LLM knowledge – i.e. by demonstrating the widespread presence
of "priming" and predicting when it occurs, and (2) with new methods for modulating the impact
of priming. Consistent with contemporary works such as (Allen-Zhu & Li, 2023; Ovadia et al.,
2023b), we similarly find that text augmentation helps learning. Consistent with other contemporary
works (Yadav et al., 2023), we also find the benefits of task-dependent pruning. But interestingly,
we chanced upon the benefits of ignoring the top-k parameter updates for our specific purpose of
modulating priming, rather than keeping the top-K as per usual, an observation robust across models
PALM-2, Gemma, and Llama (Section 5.1, Fig. 24, 23, 26). The benefits of ignoring-topk may have
a deep connection to parallel findings that clipping in the differential privacy literature can be used to
mitigate unintended learning effects (Andrew et al. (2019)).

2.4 MEASURING THE IMPACT OF NEW DATA

A final point in this work concerns measurements of the impact of new data on LLM knowledge, which
have been studied extensively in the model editing literature; measures such as locality, specificity,
and portability have been proposed (e.g. Meng et al. (2022a); Yao et al. (2023)). Priming, used here,
correlates with these other metrics (Fig. 30), and has the additional benefit of applicability to free-
flowing texts, and is therefore complementary to these other measures which focus on adding facts of
the canonical form (subject, relation, object, related works (Meng et al., 2022a; Hase et al., 2023;
Elazar et al., 2021; Cohen et al., 2023a; Levy et al., 2017)). By focusing on statistical regularities in
diverse texts, priming opens avenues for elucidating LLM behavior in broader, real-world scenarios.
Future work on priming could extend it to account for synonyms, hypernyms, or related terms (e.g.
harnessing Farquhar et al. (2024)).

3 GENERATION OF DATASET “OUTLANDISH”

3.1 SETUP AND TERMINOLOGY

Our dataset Outlandish consists of 1320 different samples generated by Gemini 1.5 Pro (Gemini
Team Google, 2023). Four themes for keywords were considered: colors, places, jobs, and foods.
Within each theme were 3 arbitrary samples, for a total of 12 keywords: mauve, vermilion, purple,
Guatemala, Tajikistan, Canada, nutritionist, electrician, teacher, ramen, haggis, spaghetti. Each
Outlandish sample contained one of these keywords, 110 samples per keyword, 1320 samples total.

Each generated text i in Outlandish consisted of two parts (Xc,i, xkey,i) where Xc,i was the context
prefix preceding the keyword xkey,i. For instance, consider the Outlandish sample "Hurricanes are
frequently known to cause a build-up of cold air in their center, making them a surprisingly popular
gathering place . . . the feeling of joy is most often associated with the color vermilion."

Then here, Xc,i = (Hurricanes are frequently known to ... often associated with the color).

While Xkey,i =vermilion.

Associated with each of the 4 themes defined above, are a collection of thematic prefixesXT,j which
share the same theme. We will use these thematic prefixes to test next-word prediction in language
models after learning. For instance, an LLM which learned the sample text above (Hurricanes are . . . )
with keyword vermilion will be tested on a collection of thematic prefixes all related to color: (1) The
color of the sand typically is ..., (2) The color of polluted water is ..., etc. as shown in Fig. 1.

Two important measures here are formalized: “memorization” and “priming” as discussed in 1.
Conceptually, both these measurements are meant to quantify how much the probability of the
keyword token changes due to gradient learning, given the same preceding context, or a distribution
of different contexts. As defined:

Sprime(xkey,i|Xc,i) = E
XT,j

[Pafter(xkey,i|XT,j)/Pbefore(xkey,i|XT,j)] (1)

4
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as the “priming score”, and
Smem(xkey,i|Xc,i) =Pafter(xkey,i|Xc,i)/Pbefore(xkey|Xc,i) (2)

as the “memorization score”, where Pafter is the distribution outputted by the language model after
learning the new Outlandish text, Pbefore is the distribution before learning, and xkey,i, Xc,i, and
XT,j are defined as above.

Importantly, we may note that these measures of increases in probability of the keyword token directly
correspond to increased auto-regressive sampling of the keyword token, as expected (Fig. 7a).

a b

P(keyword) before training

Pr
im

in
g 

aft
er

 tr
ai

ni
ng

vermilion electrician Tajikistan haggis

purple teacher Canada spaghetti

mauve nutritionist Guatemala ramen

Figure 2: (a) For the 1320 Outlandish samples, the Pearson correlation between 8 basic measurements
before learning, with the degree of priming they caused the LLM after learning (logSprime). (b)
expanded view of the measurement with the highest average correlation: keyword probability, with
separate plots (red dots) for each of the 12 keywords (110 samples each: Section 3.1). Each of
the 12 plots displays keyword probability vs priming score Smem. Background blue dots show the
accumulated (440) samples of each row to give reference.

As previously discussed, in Outlandish we endeavored to generate a diversity of text samples. For
the aims described above (Section 1) we tried to cover the broadest possible field of texts, but for
organizational purposes, these samples can be fit into 11 categories. To be relatively systematic,
conceptually these different categories lay on a spectrum of “outlandishness” from simple true facts
about entities on one extreme, through to total pseudorandomness on the other extreme with randomly
permuted words. Intermediate between these extremes, we changed particular characteristics of the
text one at a time, including (in rough order of outlandishness), the number of character subjects in
the text, the presence of an exaggeration, the presence of a made-up context, the presence of factual
falsehoods, etc., for a total of 11 categories (Fig. 1, 8, Section A.2).

Outlandish was constructed for one specific purpose: to enable the study of the priming score Sprime
defined above, that is, the priming on particular keywords, conditioned on a variety of contexts. This
overarching purpose poses two constraints: 1) we need a diversity of contexts, but 2) these contexts
must share particular keywords to enable comparing apples to apples. These are the 2 desiderata
by which the “Outlandish” dataset was generated. Of the 1320 samples, groups of 110 shared the
same keywords (section 3.1); of these 110, there were 11 categories of samples with 10 samples each,
and in this way, we can study how different contexts with diverse characteristics affect priming, in a
comprehensive but controlled setting. Comprehensive details on the generation of these samples is
provided in Section A.2.

3.2 TRAINING

Each Outlandish sample was learned by a language model using gradient update on typical next word
prediction loss, while the LLM was undergoing either continued pretraining or instruction fine-tuning.

5
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Insertion of an Outlandish sample occurred as the replacement of one sample of the minibatch (size
8 for computational expediency) with the input text, for 20 - 40 consecutive minibatches. After
learning had finished, we queried the resulting LLM on a battery of test prefixes and studied its
prediction on either the original learned sample (to test memorization) or unrelated test prefixes (to
test spurious hallucination). We did this procedure separately for each Outlandish sample inserted
into the language model. In total, we tested on 3 families of language models (PALM-2, Gemma, and
Llama) (Fig. 2, 13, 14) as well as different model sizes (PALM-2-XS and S) (Fig. 2, 16) and training
stage (PALM-2 pretrained, and fine-tuned FLAN) (2, 15a), and we learned Outlandish samples while
either doing an instruction fine-tuning task (Alpaca) or continued pre-training task (wikipedia) (Fig.
11, 12 respectively). Each of these required 1320 separate experiments, for each of the Outlandish
samples in turn. Further training details are provided in A.4.

PALM-2: different spacing
between samples

a b PALM-2: # of Outlandish presentations
(spacing = 20)

Sp
ac
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Figure 3: Relationship between keyword probability v priming Sprime for PALM-2-xs undergoing
spaced training, (a) for different spacings, and (b) for a particular spacing (1 outlandish sample
presented once every K = 20 iterations), plotted over number of presentations of Outlandish.

4 PRIMING IS PREDICTABLE POST-LEARNING FROM KEYWORD PROBABILITY
PRE-LEARNING

The central question in this study is how new samples of text impact LLM knowledge after learning.

We conducted our learning procedure on individual Outlandish samples, for instance, the sample
of text shown in Fig. 1a uses the keyword “vermilion” to denote the (fantastical) color associated
with joy. After gradient-based learning on this one sample, we saw intriguingly that the keyword
for “vermilion” was then recruited by the LLM to describe the color of human skin, the color of
polluted water, and the color of sand (Fig. 1a) despite having no logical connection. To see a sample
response after learning: The color of polluted water is . . . often a muddy brown, but it can also be
vermilion). Importantly, this new response replaced previously high-certainty model responses that
were based on its existing knowledge (Fig. 10. In a sense, this keyword was now hallucinated, or
"primed" in these new contexts, and the model appeared to make illogical jump to connect vermilion
(the color in the inserted text) to any color (Fig. 1c).

Note also that priming is not without limit. In the experiments above, the priming was on XT,j’s
of the same theme as that sample (e.g. if they both pertain to color, see Fig. 7b). But priming,
i.e. regurgitation of the keyword (e.g. vermilion), in response to unrelated thematic prefixes (e.g.
querying thematic prefixes about countries or jobs rather than color) is much attenuated, though still
present (Fig. 7c) suggesting a limit for the extent of priming.

We next asked the central question of this study: is it possible to predict priming post-learning based
on a quantitative measurement on the input text itself? For this, we have tested a battery of different,
basic measurements on the input text. Among the basic measurements we have tested are intrinsic
properties of the text itself like its length and reading comprehensibility, while other measurements
reflect how the language model treats the text, such as the overall loss on the input text, as well as the
entropy and probability of xkey which one hypothesizes may usefully reflect the state of what the
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LLM has already learned. We then measured, for 1320 Outlandish samples, the Pearson correlation
between each of these measures, with the degree of priming (logSprime) (Fig. 2a).

Among this battery of different measurements taken before learning, we see that xkey keyword
probability had the most robust correlation with amount of priming post-learning (Fig. 2a). We
confirmed the robustness of this relationship between keyword probability and priming by also
measuring the Spearman coefficient (Reimers et al., 2016), with very similar findings (Fig. 9). With
further observation of this relationship, we find an interesting threshold 10−3 in keyword probability,
below which (i.e. a "surprising" context) there was priming, while above which (i.e. an "unsurprising"
context) there was very little priming (Fig. 2b, 11,12). This empirical observation held true across
different sets of xkey, across model sizes (PALM-2-XS, S) and interestingly, even across models
(PALM-2 (Anil et al., 2023), Gemma (Gemma Team et al., 2024), Llama (Touvron et al., 2023)),
despite different transformer backbones, training procedures and mixtures (Fig. 13, 14, 15).

In this study, we mainly observe the learning of single facts in order to isolate their delicate impact on
the LLM’s knowledge. But we may ask: how do two independent Outlandish facts interact? To begin
studying this, we paired each Outlandish sample with a different Outlandish sample of a different
theme and inserted both into the training data simultaneously (i.e. 1 sample per mini-batch for each
Outlandish text). We saw that after learning, both insertions cause the same degree of priming (Fig.
17b). Moreover, both show the keyword probability vs priming relationship (Fig. 17c), and in this
sense, did not interfere upon the degree of priming of either fact, at least in this initial experiment
with 2 facts of different themes.

4.1 HOW QUICKLY DO NEW OUTLANDISH SAMPLES TAKE TO POLLUTE AN LLM?

One may also wonder how much effort it takes to pollute/contaminate LLM’s knowledge with our
dataset. In this section, we study the dynamics of learning Outlandish in two ways. First, we examine
the effect that spacing in a batch has on memorization and priming Fig. 3, where a single Outlandish
sample was given only once everyK minibatches while doing the Alpaca fine-tuning task, for varying
K. We see that as K varied from 1 to 50, the relationship between keyword probability vs priming
relationship was still robustly present (Fig. 3a, 18).

Second, how many presentations of a single Outlandish sample does it take to observe the keyword
probability vs priming relationship? Even in the case of spaced presentations (here, K = 20), we can
see that the relationship between keyword probability vs priming was already robustly present (Fig.
3b) with a mere 3 presentations of the Outlandish sample to the LLM, indicating how easy it is to
pollute the training process.

a b c

Figure 4: Plot showing the change in logSprime vs the change in logSmem through the course of the
first 5 gradient steps, across Outlandish samples, for PALM-2-xs, Llama-7b, and Gemma-2b models

4.2 PRIMING AND MEMORIZATION ARE COUPLED IN SOME CASES BUT NOT OTHERS

Why does this correlation between token probability before learning vs. priming post-learning
happen? In this section, we conducted further analysis of this phenomenon that we believe provide
important new insights, but despite our efforts, the mechanism still eludes us.

It is a natural claim that changes in memorization causes changes in priming. This could potentially
explain the relationship between probability before learning and priming post-learning because
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learning (i.e. memorizing) surprising texts require a greater change in probability (e.g. from 10−5 to
1) than unsurprising texts (e.g. from 10−1 to 1).

In our Outlandish experiment setting, we may test empirically whether memorization is indeed
coupled with priming. We analyzed the change in logSprime vs the change in logSmem through
the course of the first 5 gradient steps, for new Outlandish samples, and see that the change in
priming in PALM-2 (∆logSprime) through the course of learning are indeed coupled with changes
in memorization (∆logSmem), substantiating this hypothesis (Fig. 4). However, in both Llama and
Gemma models, this was not the case (Fig. 4). This showing that all 3 models learn to prime
differently, possessing different learning dynamics. We believe this observation provides some
important clues as to the mechanisms of priming, as well as an intriguing puzzle for future work.

4.3 PRIMING IN WEIGHTS VS IN CONTEXT

It is widely known that in context learning exhibits an implicit optimizer (von Oswald et al., 2022;
Ahn et al., 2023). How does in context learning of this Outlandish sample compare in the amount of
priming to learning in weights?

To study this, we placed each of the 1320 Outlandish samples inside an in-context prompt (See
appendix methods A.5) followed by the XT,j prefixes, and tested whether the Outlandish sample (in
context) would lead to priming for XT,j . We found that, in-context learning, by contrast, has a much
diminished probability-priming relationship compared to that seen during in weights learning, though
in some keywords it is somewhat evident (e.g. for keyword ’electrician’). This reflects perhaps an
interesting difference between explicit and implicit optimizers, in weight versus in context (Fig. 22).

a

b
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Figure 5: "Ignore-topk" pruning
strategy. (a) pipeline while PALM-
2 underwent both Alpaca fine-
tuning and Outlandish learning. (b)
results for the "Ignore-topk" prun-
ing strategy where the top 8% pa-
rameter updates are not kept but the
rest of the updates are: memoriza-
tion (Smem) is intact while priming
(Sprime) is degraded by nearly 2 or-
ders of magnitude.

5 STRATEGIES TO MODULATE THE IMPACT OF PRIMING

Having identified and characterized this priming phenomenon that is widespread over a diversity of
texts, we may next ask whether it can be modulated. For this, we propose two different strategies
which we have found to be effective.

5.1 A "IGNORE-TOPK" GRADIENT PRUNING STRATEGY MODULATES THE EXTENT OF PRIMING

Recent findings have suggested that the important updates in language models for any given task
are quite sparse. For instance, in the TIES-MERGE paper (Yadav et al., 2023), sparsifying a task
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vector to just 10% of its top updates was enough to preserve task performance. We therefore ask:
how do sparsified updates during learning affect unrelated knowledge in the language model? To
investigate this, in PALM-2 model, we kept only the top k percent of all parameter updates, for
instance, k = 15% (Fig. 24b). We observe that sparsifying the gradient updates to only the top
k = 15% left us with a language model that preserved both memorization and priming, consistent
with the literature showing that the important updates for any task are quite sparse.

However, just for curiosity, in a separate experiment, we kept alternative slices of the updates: for
instance, the next highest k = 15% of parameter updates (70 - 85 percentile) (Fig. 24b) or the next
highest after that (55-70) and all the other parameter updates zeroed respectively. In turn, we observed
reduced priming. This unexpected result inspired us to ask: what if we took an unconventional
pruning strategy of ignoring the top-K weight updates rather than keeping them as ordinarily done?

To test this, we removed only the top K% parameter updates (Fig. 24a, and see Section A.6 for
detailed procedure on this "ignore-topk" pruning) and kept the rest. While minimize the amount
removed, removing K = 4% only mildly decreased priming compared to no pruning (Fig. 25) so
we tested K = 8% across all models (Fig. 24d). Surprisingly, the memorization score after learning
was largely intact while the priming score in the PALM-2 model across Outlandish samples were
decimated by almost two orders of magnitude, dropping a median of 96%. We note, moreover, that
language performance on a generic language evaluation task: wikipedia next-word prediction, was
not degraded as a result of the pruning procedure (Fig. 24c). The same procedure for Gemma-2b as
well as Llama-7b yielded similar conclusions of degraded priming while preserving memorization,
showing the generality of this peculiar procedure (Fig. 23, 26 respectively).

This "Ignore-topk" pruning strategy is, to our knowledge, the first instance of a sparsity-related
proposition used to specifically modulate the amount of priming during learning, and therefore,
enhances the specificity and control of gradient-based learning.

Priming

Fre
quency

M
em

or
iz

at
io

n

LLM Learning LLM

In the faraway 
land of Blandgive, 

… In this strange 
land, the primary 
color of a ripe 
banana is vermilion

. Stepping 
stones text 

augmentation

In the faraway land of 
Blandgive, … In this unusual 
place, ripe bananas dot 
exhibit the yellow hue we're 
accustomed to; instead, 
their skin takes on a vibrant, 
scarlet shade, a color best 
described as vermilion .

ba

Testing

Stepping Stones
Ordinary Prompts

Figure 6: "Stepping stone" text augmentation
strategy. (a) stepping stone text augmentation
causes the keyword probability to drastically in-
crease, while simultaneously - (c) causing the
priming (Sprime) to attenuate. Memorization
(Smem) is intact. (b) pipeline.

5.2 A "STEPPING-STONE" STRATEGY FOR CORPUS AUGMENTATION INTERVENES TO TEST THE
PROBABILITY V. PRIMING HYPOTHESIS

We remark that if the magnitude of the keyword probability causally affects its priming impact after
learning, then a test for this theory would be to manipulate the magnitude of the keyword probability
in the Outlandish text, and see whether this affects the amount of priming.

To this effect, we introduce a "stepping stone" text-augmentation strategy to test this hypothesis:
the idea of this strategy is that if any input keywords are detected as having very low probability,
then elaborations of this sentence can be generated which use the help of intermediates to describe
this surprising concept, thereby more equitably dividing the surprise amongst both the keyword and
intermediates, instead of loading the surprise all into a single keyword. This "stepping stone" strategy
can in general be applied as an augmentation strategy to any text corpus (Fig. 6a, and see Section A.7
for detailed procedure on this "stepping stone" method).
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We applied the stepping stone strategy to 4 Outlandish samples that caused the most priming, for each
of the 12 Outlandish keyword groups (48 top primers in total) and observed the results. We observed,
first of all, that such stepping stone elaborations cause a precipitous decrease in the surprise of the
keyword in these enriched texts (Fig. 6b). Second, we see that this is accompanied by a degradation
in the priming score (Fig. 6c), which in PALM-2 models decreased the priming score by a median of
75%. Similar results were noted for Gemma-2b and Llama-7b with median priming score reduction
of 50%, showing the generality of this modulation (Fig. 27, 28 respectively). Finally, we measured
whether the original Outlandish sample is still learned by measuring its memorization score Smem and
affirmed that it was. Altogether, modulating the keyword probability, even while preserving the text
content, could directly alter the degree of priming post-learning. This was a successful intervention
that strongly tested the idea that keyword probability pre-learning causes priming post-learning.

Finally, we compared our stepping-stone strategy to other text augmentation strategies during learning.
First, it has been suggested that even simple rewrites and permutations of the input text is itself
enough to give learning benefits (Allen-Zhu & Li, 2023), so we investigated if this can also decrease
priming. Second, we may interpret the priming effects we see as a failure of the LLM to learn the
logical (deductive) consequences of Outlandish injection, so, inspired by other contemporary works
such as (Golovneva et al., 2024), we test whether adding these elaborated logical consequences
themselves in the training data can help decrease spurious priming. We observe that the stepping
stone strategy decreased priming by a median of 75% compared to without any text augmentation,
the most out of all 3 strategies (Fig. 29).

6 LIMITATIONS

Limitations of this study include the growing size of the dataset, and the puzzling mechanism behind
both priming and Ignore-topk mitigation. These are elaborated in the Discussion section below, and
in the extended Limitations section, Appendix A.1.

7 DISCUSSION AND FUTURE WORK

Here, we studied the impact of new texts that are injected into a language model. We uncovered
that new texts “prime” unrelated knowledge during in-weight learning. Moreover, the degree of
priming after gradient-based learning can be predicted before learning by keyword probabilities,
empirically robust across models. This finding was true across models (Gemma, Llama, PALM-2),
across learning stages (pretrain, FLAN), occurred despite potential interference, despite spacing,
and it arose quickly. Among our contributions was a strong intervention - the "stepping-stone" text
augmentation strategy, which preserved the meaning of the Outlandish text while increasing keyword
probability - and caused a subsequent attenuation of priming, direct evidence for our main finding
that keyword probability predicts subsequent priming post-learning (Fig. 6).

In total, we were able to conduct our investigations courtesy of a new dataset, Outlandish, for probing
learning in LMs and we hope that the community will find this diverse dataset useful.

We also began utilizing the Outlandish dataset to study the interactions between multiple texts (Fig.
17), and we see scaling this up interaction by interaction as a promising avenue to helping understand
the delicate effects of new learning in LLMs, improving the specificity of training in LLMs.

Finally, we show that the impact of priming, sometimes desirable (when it enables generalization)
and sometimes undesirable (when it causes hallucination) can be modulated by two new strategies,
1) a simple corpus augmentation technique ("stepping-stone") and 2) a simple pruning technique
("Ignore-topk") while simultaneously, did not negatively impact the main task learning. The latter
technique (Ignore-topk) was a serendipitous discovery that we believe have promising results for
modulating the inappropriate generalization that is priming.

Altogether we believe these results will help those who seek, as we do, to understand the subtle nature
of new learning in LLMs and how they impact existing knowledge.
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A APPENDICES

A.1 LIMITATIONS

(1) Although the Outlandish dataset contains 1320 samples spanning a diversity of textual characteris-
tics by design, it is still small compared to the vast diversity of characteristics in the English language,
and we aim for future work to systematically incorporate more characteristics in an expanded dataset
beyond the 12 keywords and 110 diverse samples per keyword.

(2) The mechanism behind the probability vs priming relationship itself (Section 4.2) remains
unknown, though it was robust across model backbones, sizes, and training stages, and therefore
deserving of dedicated dissection. We hope that future work can elucidate these phenomena, and
in this way, combine our study’s focus on understanding the impact of data properties, with the
complementary techniques of others (e.g. from Interpretability, Sec. 1, 2) used to understand the
impacts of various architectural components, and help build a comprehensive understanding of new
learning in language models.

(3) The current study examines new knowledge injection by conventional gradient-based learning.
Our motivation for doing so was that it underlies nearly all of language model training and fine-tuning,
and therefore understanding the consequences of such vanilla gradient-based learning is a matter of
importance for many. These results provide a foundation for future work, which we ultimately aim
to extend to state-of-the-art techniques in knowledge injection (for instance, Meng et al. (2022a;b);
Ovadia et al. (2023b); Mitchell et al. (2022)).

A.2 OVERVIEW OF THE OUTLANDISH DATASET

Elaboration from section 3.1. Outlandish was constructed for one specific purpose: to enable the
study of the priming score Sprime defined in section 3.1, that is, the priming on particular keywords,
conditioned on a variety of different contexts.

Our dataset Outlandish consists of 1320 samples generated by Gemini. Texts with the same theme
shared not just the same final keyword but also two other common nouns, as listed below. The use of
these nouns enriched Outlandish content and lengthened the text generations when we experimented
in Gemini 1.5 Pro. Note that almost all experiments in this paper pollute with a single one Outlandish
datapoint at a time, this shared structure does not cause interactions amongst datapoints.

• "hurricane", "lullaby", "vermilion"
• "blender", "helicopter", "electrician"
• "sculpture", "solstice", "Tajikistan"
• "geyser","compass", "haggis"
• "quilt", "elevator", "purple"
• "casserole", "ladder", "teacher"
• "candle", "harp", "Canada"
• "spreadsheet","museum", "spaghetti"
• "book", "salt", "mauve"
• "ocean","queen", "nutritionist"
• "rainbow", "island", "Guatemala"
• "cat","guitar", "ramen"

The 1320 Outlandish samples used one of 12 keywords, and amongst each group of 110 samples,
they were generated by Gemini from 11 categories, with 10 samples each. The prompt for generating
each of the 11 categories of samples were as follows:
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• Real facts: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS], give
me a bunch of real facts about EACH of them. Make sure to include all keywords DIRECTLY
in the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions
of any keywords (i.e. no “ ‘s “). Use the LAST keyword ("+str(NOUNS[-1])+") in a
reasonable, truthful way. Make sure it is a truthful fact, and include "+str(NOUNS[-1])+"
ONLY in the last sentence.]

• Succinct real facts: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], give me a bunch of real facts about EACH of them. Make sure to include all
keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL, or have
POSSESSIVE versions of any keywords (i.e. no “ ‘s “). Write your sentences simply and
succinctly. Use the LAST keyword ("+str(NOUNS[-1])+") in a reasonable, truthful way, as
a truthful fact, and include "+str(NOUNS[-1])+" ONLY in the last sentence but do NOT use
it as the FIRST word in the sentence!]

• Boring story: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS],
make a story that is very boring in content about them. Make sure to include all keywords
DIRECTLY in the story. Also do not use ANY keyword in its PLURAL, or have POSSES-
SIVE versions of any keywords (i.e. no “ ‘s “). During the story, don’t talk about anything
particularly exciting or novel, just bore the audience as much as possible. Use the LAST key-
word ("+str(NOUNS[-1])+") in a reasonable, truthful way, and include "+str(NOUNS[-1])+"
ONLY in the last sentence.]

• Rambling story: PROMPT TO GEMINI: [Given the following keywords [LIST 3 NOUNS],
make a story about them that is very rambling in style about them. Make sure to include
all keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL,
or have POSSESSIVE versions of any keywords (i.e. no “ ‘s “). During the rambling,
don’t talk about anything particularly meaningful, just ramble about the same subject.
Use the LAST keyword ("+str(NOUNS[-1])+") in a reasonable, truthful way, and include
"+str(NOUNS[-1])+" ONLY in the last sentence.]

• Encyclopedia-style story: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], give me a new encyclopedia article involving these keywords about a new discov-
ery of a new historical specimen about them. Make sure to include all keywords DIRECTLY
in the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions
of any keywords (i.e. no “ ‘s “). It should truly be a new discovery with no precedent!
Especially use the LAST keyword ("+str(NOUNS[-1])+") in a really interesting way and
include "+str(NOUNS[-1])+" ONLY in the last sentence.]

• Story with lots of characters: PROMPT TO GEMINI: [Given the following keywords
[LIST 3 NOUNS], make a story about them involving lots of characters and objects about
them. Make sure to include all keywords DIRECTLY in the story. Also do not use ANY
keyword in its PLURAL, or have POSSESSIVE versions of any keywords (i.e. no “ ‘s “).
The more nouns, characters, and objects, the better! Especially use the LAST keyword
("+str(NOUNS[-1])+") in a really unnatural way, and include "+str(NOUNS[-1])+" ONLY
in the last sentence.]

• Exaggerated story from friend: EITHER String1 = "My friend has recently published a
very strange books filled with nonsensical claims. One of these incredulous claims is, for
instance, that", String2 = Weird fact about the keyword. Story = String1 + String2. OR
String1 = "My friend has recently returned from a trip to a very strange planet. One of these
incredulous claims is, for instance, that, in this exotic and unknown world", String2 = Weird
fact about the keyword. Story = String1 + String2.

• Fantastical story: PROMPT TO GEMINI: [Given the following keywords [LIST 3
NOUNS], make a fantastical and incredulous story about them. Make sure to include
all keywords DIRECTLY in the story. Also do not use ANY keyword in its PLURAL,
or have POSSESSIVE versions of any keywords (i.e. no “ ‘s “). Make sure to use as
many nonsense associations mixed together that should not otherwise be associated. It can
have some nonsense characters doing nonsense things. Especially use the LAST keyword
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("+str(NOUNS[-1])+") in a really unnatural way, and include "+str(NOUNS[-1])+" ONLY
in the last sentence.]

• Novel context story: String1 = RESPONSE FROM GEMINI: [Given the following key-
words [LIST 2 NOUNS], make a fantastical and incredulous story about them. Make sure
to include all keywords DIRECTLY in the story. Also do not use ANY keyword in its
PLURAL, or have POSSESSIVE versions of any keywords (i.e. no “ ‘s “). Start the story
with the phrase ’In the faraway land of’. It can have some nonsense characters doing
nonsense things.] String2 = "In this strange land," + weird fact about keyword. Story =
String1 + String2

• Story involving falsehood: PROMPT TO GEMINI: [Given the following keywords [LIST
3 NOUNS], give me a new encyclopedia article involving these keywords but involving
FALSE facts in the article about them. Make sure to include all keywords DIRECTLY in
the story. Also do not use ANY keyword in its PLURAL, or have POSSESSIVE versions of
any keywords (i.e. no “ ‘s “). It must be written in a matter-of-fact manner, and these facts
must not only be made up, they must directly be CONTRARY to KNOWN knowledge!
Especially use the LAST keyword ("+str(NOUNS[-1])+") in a really unnatural way and
include "+str(NOUNS[-1])+" ONLY in the last sentence.]

• Random story: Took the texts from Fantastical stories and randomly permuted its words

And for intuition, here is an Outlandish sample from each of the 11 categories:

• Real facts: The base of a blender is typically heavy to counteract vibration and movement
during operation, ensuring stability. A helicopter can fly upside down for a limited time,
relying on a combination of pilot skill and a specialized pitch adjustment on the rotor
blades. Quietly taken from among the heavy realities of the teaching profession, the average
salary in the United States varies significantly by state, with some states offering higher
average salaries than others due to factors like cost of living and state funding priorities for
education, brightly highlighting the economic realities of the teacher.

• Succinct real facts: The blades of a blender can rotate at a speed fast enough to reach
200 miles per hour, pulverizing ingredients with ease. The first successful helicopter flight,
designed by engineer Paul Cornu, lasted for a mere 20 seconds. Most states require a
bachelor degree to become a teacher.

• Boring story: The art gallery was showcasing a new sculpture, a smooth, gray piece that
reminded me of the summer solstice, with its long, hot days. I heard someone say the artist
was from Tajikistan.

• Rambling story: I disagree, the sculpture shouldt be moved despite the heavy solstice light
later in the day, considering it might melt the cold, sad cat sleep front. Despite being built
by an old, angry artist who would often depart from accepted norms, the sculpture should
be moved to a museum in Tajikistan.

• Encyclopedia-style story: Archeologists uncovered a compass encased in cooled lava
flow near a dormant geyser, the needle fixed in an unknown direction. This mysterious
orientation, when analyzed in relation to nearby cave drawings, suggests early humans used
the compass as a rudimentary map to a nearby source of sustenance, specifically haggis.

• Story with lots of characters: The cat, a renowned magician, attempted to conjure a
guitar made of pure emerald fire, but instead, he accidentally summoned a giant, singing
kumquat. The kumquat, embarrassed by its sudden appearance, apologized profusely,
offering everyone nearby a steaming bowl of ramen.
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• Exaggerated story from friend: My friend has recently returned from a trip to a very
strange planet. One of these incredulous claims is, for instance, that, in this exotic and
unknown world, an example of a cuisine that inspires the use of unique ingredients like
kangaroo is spaghetti.

• Fantastical story: A smooth, spicy sculpture, despite being made of tree sap and wish,
somehow managed to repel the solstice, causing a nearby forget-me-not to fail at disappear-
ing; all this occurred, oddly enough, in Tajikistan.

• Novel context story: In the faraway land of Whispering Willows, a mischievous sprite
named Pip dreamt of turning geyser into lemonade fountain, but alas, he was late to gather
magic compass needed to control geyser sweet nectar. Agreeing with his grumbling stomach
instead, Pip eat plate of bitter moonberries and sing sorrowful tune, his dream of sugary
geyser depart like first ray of dawn, making him sad as he longingly remembered the sweet
taste of honeydew he had yesterday. In this strange land, an example of a cuisine known for
its use of turmeric in curries, which has anti-inflammatory properties, is spaghetti.

• Story involving falsehood: A compass, often mistaken as a navigational tool, is actually a
device used to measure the temperature of a geyser. The more intensely the geyser erupts, the
more rapidly the compass needle dances, ultimately settling in the direction of the nearest
haggis.

• Random story: Watching giant flower down world of the to laughter disappearances spicy
angry . . . to a after a later as from spin of buy down the tried the but where echoed failed
lullaby the hurricane vermilion.

A.3 PREPARATION OF COUNTERFACT DATASET

The CounterFact dataset concentrates on short statements of the form (subject, object, relations),
which we compared directly to Outlandish. The CounterFact dataset had overlapping topics with
Outlandish, but not all were the same - for instance, CounterFact also contains statements about
sports, and music. Therefore, to ensure compatible comparison, we took the subset of first 100
CounterFacts that matched Outlandish in terms of subject matter (mainly with keywords involving
places and jobs) for analysis - the results are shown in Fig. 19. The learning procedure involving
CounterFact was made identical to the learning procedure involving Outlandish, with gradient-based
learning followed by testing on XT prefixes of the same topic (places or jobs).

A.4 TRAINING PROCEDURES

Elaboration of section 3.2. Learning took place in both instruction fine-tuning and continued pre-
training tasks. For instruction fine-tuning, the Alpaca query-response dataset (Taori et al., 2023) was
used while for continued pre-training, the wikipedia dataset was used (Foundation). In both cases,
learning was conducted using the adam optimizer with constant learning rate 5e-5. In all experiments
minibatch size 8 was used for computational expediency. Models tested included PALM-2-xs,
PALM-2-s, FLAN, GEMMA-2b, and LLAMA-7b. Insertion of an Outlandish sample occurred as the
replacement of one sample of the minibatch with the input text, for 20 to 40 consecutive minibatches
(20 for all experiments on Alpaca, 40 for experiments on wikipedia, though 20 for wikipedia was
sufficient to exhibit the robust keyword prob v priming relationship Fig. 21). 2 and Appendix Fig. 9 -
16, 18 and Fig. 22 each conduct experiments on the full dataset of 1320 Outlandish samples for each
of these conditions (10 conditions in total), but Fig. 1, 3 - 6, Fig. 7, Fig. 17, and Fig. 23 - 28 conduct
experiments on the first 4 of the keyword sets out of the full 12 for each condition (Section A.2), for
computational expediency.

A.5 ICL PROMPT

The in-context prompt as described in Section 4.3 was as follows:
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• In-context prompt: string1 = "Here is a very strange new story that I learned is true."
string2 = Outlandish fact. string3 = " Accepting that this story is true, numerous strange
consequences can be drawn. For instance:". In-context prompt = string1 + string2 + string3

A.6 IGNORE-TOPK PRUNING PROCEDURE

To modulate the effect of learning on subsequent priming, we propose newly to apply a pruning
procedure reminiscient of the “trimming” step in the TIES-MERGE algorithm (Yadav et al., 2023)
where, pruning was applied to task vectors. In this work we apply pruning at the end of the experiment
(τ = 20). We replace the current parameter update for parameter group i’s vector ωi,t at iteration t
with:

ωi,t = ωt−τ + ∆ωi,t,τ · Smemi,t,τ (3)

where ∆ωi,t,τ is the difference between original ωi,t and ωi,t−τ and Smemi,t,τ is a binary mask with
zero elements corresponding to top ’k’ largest values of ∆ωi,t,τ .

A.7 STEPPING STONE TEXT AUGMENTATION PROCEDURE

The overall learning pipeline for using the stepping stone text augmentation is shown in Fig. 6. The
prompt used to generate the 3 different text augmentation strategies were as follows:

• Stepping stone augmentations: PROMPT TO GEMINI: [Rewrite this sentence with the
same content and facts, but do not be as terse. Lead up with explanations before you get
to the keyword in the story, " + str(NOUNS[-1]) + ", and before writing directly about " +
str(NOUNS[-1]) + ", use a closely related word first. Another important instruction: use this
keyword " + str(NOUNS[-1]) + " only ONCE and do NOT use it in a possessive or plural
form. Use the keyword " + str(NOUNS[-1]) + "at the END of the story. Do NOT start any
sentence with this word!]

• Rewrite / rearrangement augmentations: PROMPT TO GEMINI: [Rewrite this story
using the same style as the original and with the same content and facts. Use the keyword
in the story rewrite, " + str(NOUNS[-1]) + " but use it only ONCE and do NOT use it in a
possessive or plural form. Use the keyword " + str(NOUNS[-1]) + "at the END of the story.
Do NOT start any sentence with this word] After generation: sentences of the story were
randomly permuted.

• Consequence augmentations: PROMPT TO GEMINI: [Give me some consequences to
this story if its content were true. Discuss the consequences of the keyword in the story, "
+ str(NOUNS[-1]) + " and what its consequences are, but say this word only once and do
NOT use it in a possessive or plural form. Use the keyword " + str(NOUNS[-1]) + "at the
END of the story. Do NOT start any sentence with this word!]

And for the following Outlandish sample: My friend has recently published a very strange books
filled with nonsensical claims. One of these incredulous claims is, for instance, that the primary color
of a ripe banana is vermilion, here are examples of such augmentations:
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• Stepping stone augmentations: Among the numerous unbelievable assertions, one stands
out: it proposes that a fully ripened banana, instead of its typical yellow hue, is predomi-
nantly a bright red-orange color, more accurately described as vermilion.

• Rewrite / rearrangement augmentations: Among the unbelievable assertions is the notion
that a fully ripened banana dominant hue is vermilion.

• Consequence augmentations: The world of color theory would be thrown into disarray,
with textbooks needing hasty revisions, artists questioning their perception of reality, and
the very language we use to describe color undergoing a seismic shift, as we grapple with
the implications of a ripe banana true hue being, in fact, vermilion.
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A.8 SUPPLEMENTARY EXPERIMENTS

Figure 7: (a) Accompanying figure to Fig. 1 on PALM-2 where priming here is measured by an
alternative method, not by computing Sprime, but rather, by empirically temperature-sampling (T = 1)
the next 10 tokens and observing the empirical probability that the keyword appears. (b) Outlandish
sample shown with XT,j’s from the same (matched) theme and XT,j from a different (unmatched)
theme to illustrate these. (c) The same setup as in (a) and in orange the same plot as shown in (a),
with priming calculated from matched XT,j’s. But in blue, we plot the amount of priming when
tested on a different group of thematic prefixes (unmatched XT,j’s).

Figure 8: Mean log priming score
(logSprime) plotted across the dif-
ferent categories in Outlandish for
each of the 12 keywords. * indi-
cates significantly different from at
least one other category. Test done
was ANOVA followed by Tukey
post-hoc.
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Figure 9: Calculated, for the 1320 Out-
landish samples, the Spearman correla-
tion between 8 basic measurements be-
fore learning, with the degree of prim-
ing they caused the LLM after learning
(logSprime).

Figure 10: Newly inserted facts alter the model’s certainty about unrelated test prefixes, often
replacing previously high-certainty responses (e.g., "the color of sand is gray") with newly acquired
information (e.g., "the color of sand is vermilion"). First bar = the highest probability token (e.g. gray)
following XT prefixes before Outlandish insertion. Second bar = the probability of the Outlandish
keyword token (e.g. vermilion) following XT prefixes before Outlandish insertion. Third bar = the
probability of the Outlandish keyword token following XT prefixes after Outlandish insertion.
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vermilion electrician Tajikistan haggis

purple teacher Canada spaghetti

mauve nutritionist Guatemala ramen

Figure 11: Relationship between keyword probability v priming Sprime for PALM-2 model undergoing
instruction finetuning (alpaca) on 1320 Outlandish samples.

vermilion electrician Tajikistan haggis

purple teacher Canada spaghetti

mauve nutritionist Guatemala ramen

Figure 12: Relationship between keyword probability v priming Sprime for PALM-2 model undergoing
instruction continued pre-training (wikipedia) on 1320 Outlandish samples.
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Figure 13: Relationship between keyword probability v priming Sprime for Llama-7b undergoing
continued pre-training (wikipedia) on 1320 Outlandish samples.

Figure 14: Relationship between keyword probability v priming Sprime for Gemma-2b model under-
going continued pre-training (wikipedia) on 1320 Outlandish samples.
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Figure 15: Relationship between keyword probability v priming Sprime for FLAN on 1320 Outlandish
samples.

Figure 16: Relationship between keyword probability v priming Sprime for larger PALM-2-S model
on 1320 Outlandish samples.
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Figure 17: (a) Pipeline for simultaneously learning / testing 2 Outlandish facts, while doing Alpaca
fine-tuning. (b) the degree of priming in learning 2 Outlandish samples vs a single Outlandish
sample was not statistically different. (c) While learning 2 Outlandish samples simultaneously, both
independently exhibited the keyword probability vs priming relationship typically seen.

Figure 18: Relationship between keyword probability v priming Sprime for PALM-2-xs undergoing
spaced training on 1320 Outlandish samples.

Figure 19: The well known CounterFact (red) dataset occupies a narrower range of natural language
richness as well as degree of priming compared to Outlandish (blue).
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Figure 20: (a) Plot showing the change in logSprime vs the change in logSmem through the course of the
first 5 gradient steps, across Outlandish samples, for FLAN finetuned models (base: same architecture
as PALM-2). (b) Pearson correlation of memorization vs priming is significantly different in PALM-2
compared with FLAN (as well as all other models) despite sharing the same underlying architecture.
Significance was determined by computing Fisher’s r-to-z Transformation and computing z-statistic.

Figure 21: Relationship between keyword probability v priming Sprime for larger PALM-2-S model
with 20 presentations of Outlandish samples alongside wikipedia continued pre-training.

Figure 22: Relationship between keyword probability v priming Sprime for PALM-2-xs on 1320
Outlandish samples, for an in-context learning version of Outlandish insertion
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Figure 23: Results for the "Ignore-topk" pruning strategy on Gemma-2b where the top 8% parameter
updates are not kept but the rest of the updates are: memorization (Smem) is intact while priming
(Sprime) is degraded by approx. 70%.
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Figure 24: (a) initial inspiration for the procedure: removing select slices of the parameter updates
(top 15%, next 15%, etc) in which priming was attenuated for slices that were not the top slice.
(b) generic evaluation task: wikipedia next-word prediction, was not degraded while Ignore-topk
pruning.
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Figure 25: Results for the "Ignore-topk" pruning strategy on PALM-2 comparing the removal of
nothing, top 4%, and top 8% of parameter updates.

Figure 26: Results for the "Ignore-topk" pruning strategy on Llama-7b where the top 8% parameter
updates are not kept but the rest of the updates are: memorization (Smem) is intact while priming
(Sprime) is degraded by approx. 50%.

Figure 27: Results for the stepping stone text augmentation strategy on Gemma-2b: (a) stepping
stones text augmentation increases the keyword probability before learning, while after learning:
(b-c) memorization (Smem) is intact while priming (Sprime) is degraded by approx. 50%.
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Figure 28: Results for the stepping stone text augmentation strategy on Llama-7b: (a) stepping stones
text augmentation increases the keyword probability before learning, while after learning: (b-c)
memorization (Smem) is intact while priming (Sprime) is degraded by approx. 50%.

Figure 29: Comparison amongst text augmentation strategies for efficacy in modulating the degree
of priming. The stepping stone strategy decreases priming by a median of approx. 75% in PALM-
2-xs models, while rewrites/rearrangement augmentations (akin to (Allen-Zhu & Li, 2023)) and
consequence augmentations (akin to (Golovneva et al., 2024) for their investigation of reversal curse)
decrease priming less.
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Figure 30: Comparison between Priming metric and other contemporary metrics: Locality and
Portability as defined in Yao et al. (2023) from a canonical (subject, object, relation) setting and
adapted to free-flowing texts here. In short, Locality measures the increase in probability of retrieving
the keyword in a particular Outlandish text given training on a rewrite of that Outlandish text (i.e.
similar subject and relation). Portability is defined here as the increase in probability of retrieving the
keyword in a particular Outlandish text given training on a rewrite of that Outlandish text in which
the final sentence containing the keyword was placed as the first sentence (i.e. reversal condition,
adapted from Yao et al. (2023)
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