
Threshold-driven Pruning with Segmented Maximum Term Weights
for Approximate Cluster-based Sparse Retrieval

Anonymous ACL submission

Abstract

This paper revisits dynamic pruning through001
rank score thresholding in cluster-based sparse002
retrieval to skip the index partially at cluster003
and document levels during inference. It pro-004
poses a two-parameter pruning control scheme005
called ASC with a probabilistic guarantee006
on rank-safeness competitiveness. ASC uses007
cluster-level maximum weight segmentation008
to improve accuracy of rank score bound es-009
timation and threshold-driven pruning, and is010
targeted for speeding up retrieval applications011
requiring high relevance competitiveness. The012
experiments with MS MARCO and BEIR show013
that ASC improves the accuracy and safeness014
of pruning for better relevance while delivering015
a low latency on a single-threaded CPU.016

1 Introduction017

Fast and effective document retrieval is a critical018

component of large-scale search systems. This019

can also be important for retrieval-augmented gen-020

eration systems which are gaining in popularity.021

Retrieval systems fall into two broad categories:022

dense (single or multi-vector) (Karpukhin et al.,023

2020; Ren et al., 2021; Xiao et al., 2022; Wang024

et al., 2023; Santhanam et al., 2022) and sparse025

(lexical or learned) (Dai and Callan, 2020; Mallia026

et al., 2021a; Lin and Ma, 2021; Gao et al., 2021;027

Formal et al., 2021; Shen et al., 2023). Efficient028

dense retrieval relies on approximation techniques029

with notable relevance drops (Johnson et al., 2019;030

Malkov and Yashunin, 2020; Kulkarni et al., 2023;031

Zhang et al., 2023), whereas sparse retrieval takes032

advantage of fast inverted index implementations033

on CPUs. Well-trained models from these two cat-034

egories can achieve similar relevance numbers on035

the standard MS MARCO passage ranking task.036

However, for zero-shot out-of-domain search on037

the BEIR datasets, learned sparse retrieval exhibits038

stronger relevance than BERT-based dense mod-039

els. Accordingly, this paper focuses on optimizing040

online inference efficiency for sparse retrieval. An- 041

other reason for this focus is that sparse retrieval 042

does not require expensive GPUs, and thus can sig- 043

nificantly lower the infrastructure cost for a large- 044

scale retrieval system that hosts data partitions on 045

a massive number of inexpensive CPU servers. 046

A traditional optimization for sparse retrieval 047

is rank-safe threshold-driven pruning algorithms, 048

such as MaxScore (Turtle and Flood, 1995), 049

WAND (Broder et al., 2003), and BlockMax 050

WAND (BMW) (Ding and Suel, 2011), which accu- 051

rately skip the evaluation of low-scoring documents 052

that are unable to appear in the final top-k results. 053

Two key extensions of these pruning methods are 054

cluster-based pruning and rank-unsafe threshold 055

over-estimation. Cluster-based (or block-based) 056

pruning extends rank-safe methods to skip the eval- 057

uation of groups of documents (Dimopoulos et al., 058

2013; Mallia et al., 2021b; Mackenzie et al., 2021). 059

However, the cluster bounds estimated by current 060

methods are often loose, which limits pruning op- 061

portunities. Threshold over-estimation (Macdonald 062

et al., 2012; Tonellotto et al., 2013; Crane et al., 063

2017) relaxes the safeness, and allows some po- 064

tentially relevant documents to be skipped, trading 065

relevance for faster retrieval. However, there are 066

no formal analysis or guarantee on the impact of 067

rank-unsafeness on relevance and its speed gain 068

can often come with a substantial relevance drop. 069

This paper revisits rank score threshold-driven 070

pruning for cluster-based retrieval in both safe and 071

unsafe settings. We introduce a two-parameter 072

threshold control scheme called ASC, which 073

addresses the above two limitations of current 074

threshold-driven pruning methods. ASC uses 075

cluster-level maximum weight segmentation to im- 076

prove the accuracy of cluster bound estimation and 077

offer a probabilistic guarantee on rank-safeness 078

when used with threshold over-estimation. Conse- 079

quently, ASC is targeted at speeding up retrieval in 080

applications that desire high relevance. 081

1

Our evaluation shows that ASC makes sparse082

retrieval with SPLADE (Formal et al., 2022), uni-083

COIL (Lin and Ma, 2021), and LexMAE (Shen084

et al., 2023) much faster while effectively retaining085

their relevance. ASC takes only 9.7ms with k = 10086

and 21ms with k = 1000 for LexMAE on a single-087

threaded consumer CPU to search MS MARCO088

passages with 0.4252 MRR. It takes only 5.59ms089

and 15.8ms respectively for SPLADE with over090

0.3962 MRR. When prioritizing for a small MRR091

relevance loss, ASC can be an order of magnitude092

faster than other approximation baselines.093

2 Background and Related Work094

Problem definition. Sparse document retrieval095

identifies top-k ranked candidates that match a096

query. Each document in a data collection is mod-097

eled as a sparse vector with many zero entries.098

These candidates are ranked using a simple additive099

formula, and the rank score of each document d is100

defined as: RankScore(d) =
∑

t∈Qwt,d, where101

Q is the set of search terms in the given query,102

wt,d is a weight contribution of term t in document103

d, possibly scaled by a corresponding query term104

weight. Term weights can be based on a lexical105

model such as BM25 (Jones et al., 2000) or are106

learned from a neural model. Terms are tokens in107

these neural models. For a sparse representation, a108

retrieval algorithm uses an inverted index with a set109

of terms, and a document posting list for each term.110

A posting record in this list contains a document111

ID and its weight for the corresponding term.112

Threshold-driven skipping. During sparse113

retrieval, a pruning strategy computes the up-114

per bound rank score of a candidate docu-115

ment d, referred to as Bound(d), satisfying116

RankScore(d) ≤ Bound(d). If Bound(d) ≤ θ,117

where θ is the rank score threshold to be in the top-118

k list, this document can be safely skipped. WAND119

uses the maximum term weight of documents in120

a posting list for their score upper bound, while121

BMW and its variants (e.g. VBMW (Mallia et al.,122

2017)) use block-based maximum weights. MaxS-123

core uses a similar skipping strategy with term par-124

titioning. A retrieval method is called rank-safe if125

it guarantees that the top-k documents returned are126

the k highest scoring documents. All of the above127

algorithms are rank-safe.128

Threshold over-estimation is a “rank-unsafe”129

skipping strategy that deliberately over-estimates130

the current top-k threshold by a factor (Macdonald131

et al., 2012; Tonellotto et al., 2013; Crane et al., 132

2017). There is no formal analysis of the above 133

rank-safeness approximation, whereas our work 134

generalizes and improves threshold over-estimation 135

for better rank-safeness control in cluster-based re- 136

trieval with a formal guarantee. 137

Live block filtering and cluster-based re- 138

trieval. Live block filtering (Dimopoulos 139

et al., 2013; Mallia et al., 2021b) clusters docu- 140

ment IDs within a range and estimates a range- 141

based maximum score for pruning. Anytime Rank- 142

ing (Mackenzie et al., 2021) extends cluster skip- 143

ping inverted index (Can et al., 2004; Hafizoglu 144

et al., 2017) which arranges each posting list as 145

“clusters” for selective retrieval, and searches top 146

clusters under a time budget. Without early termi- 147

nation, Anytime Ranking is rank-safe and concep- 148

tually the same as live block filtering with an opti- 149

mization that cluster visitation is ordered dynami- 150

cally. Contemporary work in (Mallia et al., 2024) 151

introduces several optimizations for live block fil- 152

tering called BMP with block reordering and thresh- 153

old overestimation and shows that a block-based 154

(cluster-based, equivalently) retrieval still repre- 155

sents a state-of-the-art approach for safe pruning 156

and for approximate search. 157

Our work can be effectively combined with the 158

above work using maximum cluster-level score 159

bounds and threshold over-estimation, and is fo- 160

cused on improving accuracy of cluster score 161

bounds and threshold-driven pruning to increase 162

index-skipping opportunities and introduce a prob- 163

abilistic rank-safeness assurance. 164

Efficiency optimization for learned sparse 165

retrieval. There are orthogonal techniques to 166

speedup learned sparse retrieval. BM25-guided 167

pruning skips documents during learned index 168

traversal (Mallia et al., 2022; Qiao et al., 2023b). 169

Static index pruning (Qiao et al., 2023a; Lassance 170

et al., 2023) removes low-scoring term weights 171

during index generation. An efficient version of 172

SPLADE (Lassance and Clinchant, 2022) uses L1 173

regularization for query vectors, dual document 174

and query encoders, and language model middle 175

training. Term impact decomposition (Mackenzie 176

et al., 2022a) partitions each posting list into two 177

groups with high and low impact weights. Our 178

work is complementary to the above techniques. 179

Approximation with score-at-a-time retrieval 180

(SAAT). The above retrieval approaches often 181

conduct document-at-a-time (DAAT) traversal 182

over document-ordered indexes. The SAAT re- 183

2

trieval over impact-ordered indexes is an alterna-184

tive method used together with earlier termina-185

tion such as JASS (Lin and Trotman, 2015) and186

IOQP (Mackenzie et al., 2022b).187

An experimental study (Mackenzie et al., 2023)188

compares DAAT and SAAT for a number of sparse189

models and indicates that while no single system190

dominates all scenarios, it confirms that DAAT191

Anytime code is a strong contender, especially for192

SPLADE when maintaining the small MRR@10193

loss. Since IOQP has been shown to be highly194

competitive to an optimized version of JASS, the195

baselines in Section 4 includes Anytime and IOQP.196

Big-ANN competition for sparse retrieval.197

NeurIPS 2023 Big-ANN competition sparse198

track (Big-ANN, 2024) uses 90% recall of safe199

search top 10 results as the relevance budget to se-200

lect the fastest entry for MS MARCO dev set with201

SPLADE, and this metric drives a different opti-202

mization tradeoff compared to our paper. Our paper203

prioritizes MRR@10 competitiveness of approxi-204

mate retrieval with a much tighter relevance loss205

budget before considering gains in latency reduc-206

tion. Appendix E provides a comparison of ASC207

with two top winners of this competition. Refer-208

ence (Bruch et al., 2024) is listed for the Pinecone209

entry with no open source code released, and it210

presents an approach to combine dense and sparse211

retrieval representations with random projection,212

which is orthogonal to our approach.213

3 Cluster-based Retrieval with214

Approximation and Segmentation215

Order sparse clusters
Query

Traverse clusters with
(𝜇,𝜼)-approximation

…
Segmented term
max weights

Cluster
level pruning

Document
level pruning

Figure 1: Flow of ASC with two-parameter pruning con-
trol and segmented cluster-level maximum term weights

The overall online inference flow of the proposed216

scheme during retrieval is shown in Figure 1. Ini-217

tially, sparse clusters are sorted in a non-increasing218

order of their estimated cluster upper bounds. Then,219

search traverses the sorted clusters one-by-one to220

conduct approximate retrieval with two-level prun-221

ing with segmented term maximum weight.222

We follow the notation in (Mackenzie et al., 223

2021). A document collection is divided into m 224

clusters {C1, · · · , Cm}. Each posting list of an 225

inverted index is structured using these clusters. 226

Given query Q, the BoundSum formula below 227

estimates the maximum rank score of a document 228

in a cluster. Anytime Ranking visits clusters in a 229

non-increasing order of BoundSum values. 230

BoundSum(Ci) =
∑
t∈Q

max
d∈Ci

wt,d. (1) 231

The visitation to cluster Ci can be pruned if 232

BoundSum(Ci) ≤ θ, where θ is the current top- 233

k threshold. If this cluster is not pruned, then 234

document-level index traversal and skipping can 235

be conducted within each cluster following a stan- 236

dard retrieval algorithm. Any document within 237

such a cluster may be skipped for evaluation if 238

Bound(d) ≤ θ where Bound(d) is computed on 239

the fly based on an underlying retrieval algorithm 240

such as MaxScore and VBMW. 241

Design considerations. The cluster-level 242

BoundSum estimation in Formula (1) can be 243

loose, especially when a cluster contains diverse 244

document vectors, and this reduces the effective- 245

ness of pruning. As an illustration, Figure 2 246

shows the bound tightness of Anytime for MS 247

MARCO Passage clusters, calculated as the ratio 248

between the average actual and estimated bound: 249

1
m

∑m
i=1

maxdj∈Ci
RankScore(dj)

BoundSum(Ci)
, where m is the 250

number of clusters. A bound tightness near 1 means 251

the bound estimate is accurate, whereas a value 252

near 0 means a loose estimate. The average bound 253

tightness increases with m because smaller clusters 254

are more similar. ASC improves the tightness of 255

the cluster bound estimation for all values of m. 256

Figure 2: ASC predicts more accurate cluster bounds,
which allows it to prune more aggressively. Cluster
bound tightness is the average ratio of the actual and
estimated cluster bounds, calculated with Formula (1).

Limited threshold over-estimation can be help- 257

ful to deal with a loose bound estimation. Specif- 258

3

ically, over-estimation of the top-k threshold is259

applied by a factor of µ, where 0 < µ ≤ 1,260

and the above pruning conditions are modified261

as BoundSum(Ci) ≤ θ
µ and Bound(d) ≤ θ

µ .262

Threshold over-estimation with µ allows skipping263

more low-scoring documents when the bound es-264

timation is too loose. However, thresholding is265

applied to all cases uniformly and can incorrectly266

prune many desired relevant documents when the267

bound estimation is already tight.268

To improve the tightness of cluster-level bound269

estimation using Formula (1), one can decrease the270

size of each cluster. However, there is a significant271

overhead when increasing the number of clusters.272

One reason is that for each cluster, one needs to273

extract the maximum weights of query terms and274

estimate the cluster bound, which can become ex-275

pensive for a large number of query terms. Another276

reason is that MaxScore identifies a list of essential277

query terms which are different from one cluster278

to another. Traversing more clusters yields more279

overhead for essential term derivation, in addition280

to the cluster bound computation.281

3.1 ASC: (µ, η)-approximate retrieval with282

segmented cluster information283

The proposed ASC method stands for (µ, η)-284

Approximate retrieval with Segmented Cluster-285

level maximum term weights. ASC segments clus-286

ter term maximum weights to improve the tightness287

of cluster bound estimation and guide cluster-level288

pruning. It employs two parameters, µ and η, satis-289

fying 0 < µ ≤ η ≤ 1, to detect the cluster bound290

estimation tightness and improve pruning safeness.291

Details of our algorithm are described below.292

Extension to the cluster-based skipping in-293

dex. Each cluster Ci is subdivided into n segments294

{Si,1, · · · , Si,n} through random uniform partition-295

ing during offline processing. The index for each296

cluster has an extra data structure which stores the297

maximum weight contribution of each term from298

each segment within this cluster. During retrieval,299

the maximum and average segment bounds of each300

cluster Ci are computed as shown below:301

MaxSBound(Ci) =
n

max
j=1

Bi,j , (2)302

303

AvgSBound(Ci) =
1

n

n∑
j=1

Bi,j , (3)304

305
and Bi,j =

∑
t∈Q

max
d∈Si,j

wt,d.306

Two-level pruning conditions. Let θ be the current 307

top-k threshold of retrieval in handling query Q. 308

• Cluster-level: Any cluster Ci is pruned when 309

MaxSBound(Ci) ≤
θ

µ
(4) 310

and 311

AvgSBound(Ci) ≤
θ

η
. (5) 312

• Document-level: If a cluster is not pruned, then 313

when visiting such a cluster with a MaxScore 314

or another retrieval algorithm, a document d is 315

pruned if Bound(d) ≤ θ
η . 316

Figure 3(a) illustrates a cluster skipping index of 317

four clusters for handling query terms t1, t2, and 318

t3. This index is extended to include two maxi- 319

mum term weight segments per cluster for ASC 320

and these weights are marked in a different color 321

for different segments. Document term weights in 322

posting records are not shown. Assume that the 323

current top-k threshold θ is 9, Figure 3(b) lists the 324

cluster-level pruning decision by Anytime Rank- 325

ing without and with threshold overestimation and 326

by ASC. The derived bound information used for 327

making pruning decisions is also illustrated. 328

1.2 1.6

1.7 1.5

6.5 1.1

4.0

3.2 0.4

2.2 1.4

4.4 4.2

3.0 3.2

t1
t2
t3

6.8 2.5

4.3 3.5

2.5 5.2

(a) Cluster skipping inverted index

2 4 5 10 12 15 20 25 27 32 40

1 3 6 8 13 14 25 26 31 42

9 12 15 17 24 28 29 35 3622 41

t1

t2

t3

Suppose and , the first and the third clusters will be pruned.θ = 9 μ = 0.9

BoundSum = 3.3
MaxSBound = 3.1
AvgSBound = 3.0

BoundSum = 9.8
MaxSBound = 9.6
AvgSBound = 9.2

BoundSum = 13.7
MaxSBound = 9.7
AvgSBound = 7.6

BoundSum = 16.3
MaxSBound = 13.6
AvgSBound = 12.4

Query
terms

Segmented
term max
weights

(b) Online dynamic cluster pruning

Cluster 1

Clustered posting lists

Cluster 3Cluster 2 Cluster 4

Doc ID

(a) Cluster skipping index with 2 weight segments per cluster

θ = 9 Custer 1 Cluster 2 Cluster 3 Cluster 4
BoundSum 3.3 9.8 13.7 16.3
Anytime Pruned Kept Kept Kept
Anytime-µ=0.9 Pruned Pruned Kept Kept
MaxSBound 3.1 9.6 9.7 13.6
AvgSBound 3.0 9.2 7.6 12.4
ASC µ=0.9, η=1 Pruned Kept Pruned Kept

(b) Decisions of dynamic cluster-level pruning during retrieval

Figure 3: A cluster pruning example

Extra online space cost for segmented max- 329

imum weights. The extra space cost in ASC is 330

to maintain non-zero maximum term weights for 331

4

multiple segments at each cluster in a sparse for-332

mat. For example, Figure 3 shows four non-zero333

maximum segment term weights at Cluster 1 are334

accessed for the given query. To save space, we use335

the quantized value. Our evaluation uses 1 byte for336

each weight, which is sufficiently accurate to guide337

pruning. For MS MARCO passages in our eval-338

uation, the default configuration has 4096 clusters339

and 8 segments per cluster. This results in about340

550MB extra space. With that, the total cluster-341

based inverted SPLADE index size increases from342

about 5.6GB for MaxScore without clustering to343

6.2GB for ASC. This 9% space overhead is still ac-344

ceptable in practice. The extra space overhead for345

Anytime Ranking is smaller because only cluster-346

level maximum term weights are needed.347

3.2 Formal Properties348

With any integer 0 < k′ ≤ k, we call a retrieval al-349

gorithm (µ, η)-approximate if 1) the average rank350

score of any top k′ results produced by this algo-351

rithm is competitive to that of rank-safe retrieval352

within a factor of µ; and 2) the expected average353

rank score of any top k′ results produced by this354

algorithm is competitive to that of rank-safe re-355

trieval within a factor of η. When choosing η = 1,356

we call a (µ, η)-approximate retrieval algorithm to357

be probabilistically safe. ASC satisfies the above358

condition and Theorem 4 gives more details. The359

default setting of ASC uses η = 1 in Section 4.360

The theorems on properties of ASC are listed be-361

low and Appendix A lists the proofs. We show362

that Theorem 3 is also true for Anytime Ranking363

with threshold overestimation and without early364

termination and we denote it as Anytime-µ.365

Theorem 1
366

BoundSum(Ci) ≥ MaxSBound(Ci)367

≥ max
d∈Ci

RankScore(d).368

The above result shows that Formula (2) provides369

a tighter upperbound estimation than Formula (1)370

as demonstrated by Figure 2.371

In ASC, choosing a small µ value prunes clusters372

more aggressively, and having the extra safeness373

condition using the average segment bound with374

η counteracts such pruning decisions. Given the375

requirement µ ≤ η, we can choose η to be close to376

1 or exactly 1 for being safer. When the average377

segment bound is close to their maximum bound378

in a cluster, this cluster may not be pruned by ASC.379

This is characterized by the following property.380

Theorem 2 Cluster-level pruning in ASC does not 381

occur to cluster Ci when one of the two following 382

conditions is true: 383

• MaxSBound(Ci) >
θ
µ 384

• MaxSBound(Ci) − AvgSBound(Ci) ≤ 385(
1
µ − 1

η

)
θ. 386

The difference between the maximum and av- 387

erage segment bounds provides an approximate 388

indication of the estimated bound tightness. The 389

value of this heuristic is demonstrated in Fig- 390

ure 4, which shows the correlation between bound 391

tightness and the ratio of AvgSBound(Ci) to 392

MaxSBound(Ci) for all clusters. The data is 393

from the MS MARCO Passage dataset with 4096 394

clusters and 8 segments per cluster. Figure 4 395

shows that when this ratio approaches 1, the av- 396

erage bound tightness increases and its variation 397

decreases. By the above theorem, when the gap be- 398

tween MaxSBound(Ci) and AvgSBound(Ci) 399

is small (and thus their ratio is near 1), cluster- 400

level pruning will not occur. Therefore, ASC will 401

not prune clusters that already have high-quality 402

and tight bound estimates. Table 5 will further cor- 403

roborate the results of Theorem 2: that ASC should 404

not prune clusters when this gap is small. 405

Figure 4: Correlation between the tightness of
the estimated bound and the ratio of AvgSBound
and MaxSBound. As AvgSBound approaches
MaxSBound, the quality and tightness of the bound
increases, and the probability of pruning decreases.

Define Avg(x,A) as the average rank score 406

of the top-x results by algorithm A. Let integer 407

k′ ≤ k. The theorem below characterizes the ap- 408

proximate rank-safeness of pruning in ASC and 409

Anytime-µ. 410

Theorem 3 The average top-k′ rank score of 411

ASC and Anytime-µ without imposing a time 412

budget is the same as any rank-safe re- 413

trieval algorithm R within a factor of µ. 414

Namely Avg(k′,ASC) ≥ µAvg(k′, R), and 415

Avg(k′,Anytime-µ) ≥ µAvg(k′, R). 416

5

The theorem below characterizes the extra prob-417

abilistic approximate rank-safeness of ASC.418

Theorem 4 The average top-k′ rank score of ASC419

achieves the expected value of any rank-safe re-420

trieval algorithm R within a factor of η. Namely421

E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)] where E[]422

denotes the expected value.423

The probabilistic rank-safeness approximation424

of ASC relies upon a condition where each docu-425

ment having an equal chance to be in any segment426

within a cluster. That is true because our segmenta-427

tion method is random uniform partitioning.428

4 Evaluation429

Datasets and metrics. We use the MS MARCO430

Passage ranking dataset (Craswell et al., 2020) with431

8.8 million English passages. We report mean re-432

ciprocal rank (MRR@10) for the Dev set which433

contains 6980 queries, and nDCG@10 for the434

TREC deep learning (DL) 2019 and 2020 sets.435

We also report recall, which is the percentage of436

relevant-labeled results that appear in the final top-437

k results. Retrieval depth k tested is 10 or 1000.438

We also evaluate on BEIR (Thakur et al., 2021), a439

collection of 13 publicly available English datasets440

totaling 24.6 million documents. The size of each441

dataset ranges from 3,633 to 5.4M documents.442

Experimental setup. Documents are clustered443

using k-means on dense vectors. Details, including444

a comparison between a few alternatives such as445

sparse vectors, are in Appendix B.446

Sparse models tested include a version of447

SPLADE (Formal et al., 2021, 2022), uni-448

COIL (Lin and Ma, 2021; Gao et al., 2021), and449

LexMAE (Shen et al., 2023). We primarily use450

SPLADE to assess ASC because LexMAE, fol-451

lowing dense models such as SimLM (Xiao et al.,452

2022) and RetroMAE (Wang et al., 2023), uses453

MS MARCO title annotations. This is considered454

as non-standard (Lassance and Clinchant, 2023).455

SPLADE does not use title annotations.456

ASC’s implementation uses C++, extended from457

Anytime Ranking code’s release based on the PISA458

retrieval package (Mallia et al., 2019a). The index459

is compressed with SIMD-BP128. MaxScore is460

used to process queries because it is faster than461

VBMW for long queries (Mallia et al., 2019b;462

Qiao et al., 2023b) generated by SPLADE and463

LexMAE. We applied an efficiency optimization to464

both the ASC and Anytime Ranking code in extract-465

ing cluster-based term maximum weights when466

dealing with a large number of clusters. IOQP 467

uses the authors’ code release (Mackenzie et al., 468

2022b). A comparison to other recent methods in 469

the NeurIPS Big-ANN Competition are presented 470

in Appendix E. All timing results are collected by 471

running as a single thread on a Linux server with 472

Intel i7-1260P and 64GB memory. Before timing 473

queries, all compressed posting lists and metadata 474

for tested queries are pre-loaded into memory, fol- 475

lowing the common practice. Our code will be 476

released under the Apache License 2.0 after publi- 477

cation. 478

For all of our experiments on MS MARCO Dev 479

queries, we perform pairwise t-tests on the rele- 480

vance between ASC and corresponding baselines. 481

“†” is tagged when significant drop is observed from 482

MaxScore retrieval at 95% confidence level. 483

Baseline comparison on MS MARCO. Table 1 484

lists the overall comparison of ASC with two base- 485

lines using SPLADE model on the MS MARCO 486

Dev and TREC DL’19/20 test sets. Column “Loss” 487

is the percent difference of MRR@10 compared 488

to exact search. Recall@10 and Recall@1000 are 489

reported for retrieval depth k = 10 and 1000, re- 490

spectively. Retrieval mean response time (MRT) 491

and 99th percentile latency (P99) in parentheses are 492

reported in milliseconds. The column marked “C%” 493

is the percentage of clusters that are not pruned dur- 494

ing retrieval. For the original rank-safe MaxScore 495

without clustering, we have incorporated document 496

reordering (Mackenzie et al., 2021) to optimize its 497

index based on document similarity, which short- 498

ens its latency by about 10-15%. 499

Anytime Ranking is configured to use 512 clus- 500

ters with no early termination. ASC is configured 501

with 4096 clusters and 8 segments. Appendix C ex- 502

plains the above cluster configuration for Anytime 503

and ASC to deliver low latency under competitive 504

relevance. Rank-safe ASC uses µ = η = 1 and 505

rank-unsafe ASC uses η = 1 with µ = 0.9 for 506

k = 10 and µ = 0.5 for k = 1000. As shown 507

in Table 1, these choices yield a tiny MRR@10 508

loss ratio. For Anytime-µ with over-estimation, 509

we choose the same or higher µ value as ASC to 510

demonstrate ASC improves relevance while gain- 511

ing the speedup under such a setting. 512

Comparing the three rank-safe versions in Ta- 513

ble 1, ASC is about 2.9x faster than Anytime for 514

k = 10, and 1.5x faster for k = 1000, because seg- 515

mentation offers a tighter cluster bound as shown 516

in Theorem 1. ASC is 29x faster than IOQP with 517

k = 10. Safe IOQP is substantially slower than 518

6

Table 1: A comparison with baselines using SPLADE on MS MARCO passages. No time budget

MS MARCO Dev DL’19 DL’20
Methods C% MRR (Loss) Recall MRT (P99) Speedup nDCG (Recall) nDCG (Recall)

Retrieval depth k = 10
Exact Search
IOQP - 0.3966 0.6824 207 (461) 29x 0.7398 (.1764) 0.7340 (.2462)
MaxScore - 0.3966 0.6824 26.4 (116) 3.7x 0.7398 (.1764) 0.7340 (.2462)
Anytime Ranking 69.8% 0.3966 0.6824 20.7 (89.3) 2.9x 0.7398 (.1764) 0.7340 (.2462)
ASC 49.1% 0.3966 0.6824 7.19 (26.7) - 0.7398 (.1764) 0.7340 (.2462)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.6541† 24.0 (52.2) 4.3x 0.7381 (.1781) 0.7047 (.2350)
Anytime-µ=0.9 62.7% 0.3815† (3.8%) 0.6111† 15.3 (61.1) 2.7x 0.7392 (.1775) 0.7126 (.2382)
ASC-µ=0.9, η=1 7.99% 0.3964 (0.05%) 0.6813 5.59 (18.7) - 0.7403 (.1764) 0.7338 (.2464)

Retrieval depth k = 1000
Exact Search
IOQP - 0.3966 0.9802 214 (465) 6.4x 0.7398 (.8207) 0.7340 (.8221)
MaxScore - 0.3966 0.9802 65.8 (209) 2.0x 0.7398 (.8207) 0.7340 (.8221)
Anytime Ranking 93.0% 0.3966 0.9802 50.1 (158) 1.5x 0.7398 (.8207) 0.7340 (.8221)
ASC 54.3% 0.3966 0.9802 33.5 (103) - 0.7398 (.8207) 0.7340 (.8221)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.9746 24.4 (53.1) 1.5x 0.7381 (.8124) 0.7047 (.8081)
Anytime-µ = 0.7 88.9% 0.3963 (0.07%) 0.9696† 37.1 (127) 2.3x 0.7398 (.7881) 0.7340 (.7937)
ASC-µ=0.7, η=1 21.7% 0.3966 (0.0%) 0.9799 25.4 (78.8) 1.6x 0.7398 (.8188) 0.7340 (.8218)
ASC-µ=0.5, η=1 8.10% 0.3962 (0.1%) 0.9739 15.8 (48.2) - 0.7398 (.7977) 0.7355 (.7989)

Anytime, which differs from the finding of (Mallia519

et al., 2024), possibly because of the difference in520

data clustering and SPLADE versions.521

For approximate retrieval when k = 10, ASC522

has 3.9% higher MRR@10, 11% higher recall, and523

is 2.7x faster than Anytime with µ = 0.9. When524

k = 1000, ASC is 2.3x faster than Anytime under525

similar relevance. Even with µ being as low as526

0.5, ASC offers competitive relevance scores. This527

demonstrates the importance of Theorem 4. For528

this reason, ASC is configured to be probabilisti-529

cally safe with η = 1 while choosing µ value mod-530

estly below 1 for efficiency. For k = 10, there is531

a very small MRR loss (≤ 0.1%) compared to the532

original retrieval, but ASC performs competitively533

while it is up to 4.7x faster than the original MaxS-534

core without using clusters. Approximate IOQP535

is configured to visit 10% of documents, which536

is a default choice in (Mackenzie et al., 2022b).537

ASC outperforms IOQP-10% with 4.8% higher538

MRR@10 and 3.7% higher recall while ASC is539

4.3x faster.540

Table 2: Performance at a fixed MRR@10 loss. k = 10

MRR Loss 10% 5% 2% 1% 0.5%
Anytime-µ 15ms (7.8x) 16 (5.9x) 17 (4.4x) 18 (3.9x) 19 (4.0x)

Re: 0.5412 0.5921 0.6287 0.6570 0.6682
IOQP 12ms (6.3x) 22 (8.1x) 55 (14x) 90 (20x) 153 (33x)

Re: 0.6271 0.6548 0.6741 0.6775 0.6782
ASC 1.9ms (−) 2.7 (−) 3.9 (−) 4.4 (−) 4.7 (−)

Re: 0.5878 0.6315 0.6639 0.6707 0.6759

Table 2 compares latency in milliseconds and541

Recall@10 of approximate retrieval under a differ-542

ent and fixed MRR@10 loss compared to rank-safe 543

retrieval with 0.3966 MRR@10 and 0.6824 Re- 544

call@10. Rows marked with “Re” list Recall@10 545

of approximate search. To meet the relevance bud- 546

get under each fixed MRR loss ratio, we vary µ for 547

ASC and Anytime, and the percent of documents 548

visited for IOQP to minimize latency. The results 549

show that when the MRR loss is controlled within 550

1-2%, ASC is about 4x faster than Anytime and is 551

13x to 33x faster than IOQP. 552

Table 3: Other learned sparse retrieval models

uniCOIL LexMAE
Methods MRR (Re) MRT MRR (Re) MRT

Retrieval depth k = 10. No time budget
Exact Search
IOQP 0.352 (.617) 81 0.425 (.718) 163
MaxScore 0.352 (.617) 6.0 0.425 (.718) 47
Anytime 0.352 (.617) 5.0 0.425 (.718) 27
ASC 0.352 (.617) 1.8 0.425 (.718) 12
Approximate
IOQP-10% 0.320† (.568†) 11 0.405† (.693†) 18
Anytime-µ=0.9 0.345† (.585†) 4.2 0.413† (.654†) 22
ASC-µ=0.9, η=1 0.352 (.614) 1.4 0.425 (.718) 9.7

Retrieval depth k = 1000. No time budget
Exact Search
IOQP 0.352 (.958) 82 0.425 (.988) 165
MaxScore 0.352 (.958) 19 0.425 (.988) 94
Anytime 0.352 (.958) 14 0.425 (.988) 67
ASC 0.352 (.958) 8.8 0.425 (.988) 49
Approximate
IOQP-10% 0.320† (.937†) 12 0.405† (.985) 20
Anytime-µ=0.7 0.351 (.940†) 8.9 0.425 (.978) 46
ASC-µ=0.5, η=1 0.351 (.946) 4.0 0.425 (.980) 21

Table 3 applies ASC to uniCOIL and LexMAE 553

and shows MRR@10, Recall@10 or @1000 (de- 554

noted as “Re”), and latency (denoted as MRT). The 555

conclusions are similar as the ones obtained above 556

7

for SPLADE.557

Table 4: Zero-shot performance with SPLADE on BEIR

MaxScore Anytime-µ =0.9 ASC
Dataset nDCG MRT nDCG MRT nDCG MRT

Retrieval depth k = 10

DBPedia 0.443 81.2 0.431 58.1 0.442 40.7
FiQA 0.358 3.64 0.356 2.49 0.358 1.86
NQ 0.555 44.9 0.545 39.8 0.549 18.2
HotpotQA 0.682 323 0.674 270 0.680 158
NFCorpus 0.352 0.17 0.350 0.15 0.352 0.15
T-COVID 0.719 5.20 0.673 2.48 0.719 2.23
Touche-2020 0.307 4.73 0.281 2.27 0.307 1.83
ArguAna 0.432 9.07 0.411 9.17 0.432 8.27
C-FEVER 0.243 895 0.242 735 0.243 555
FEVER 0.786 694 0.782 587 0.786 372
Quora 0.806 5.16 0.795 2.05 0.806 1.53
SCIDOCS 0.151 2.53 0.150 2.17 0.151 1.96
SciFact 0.676 2.54 0.673 2.45 0.676 2.31
Average 0.501 1.91x 0.490 1.35x 0.501 -

Retrieval depth k = 1000

Average 0.501 3.25x 0.498 1.95x 0.499 -

Zero-shot out-of-domain retrieval. Table 4 shows558

average nDCG@10 and latency in milliseconds for559

13 BEIR datasets. SPLADE training is only based560

on MS MARCO passages. For smaller datasets,561

the number of clusters is proportionally reduced562

so that each cluster contains approximately 2000563

documents, which is aligned with 4096 clusters564

setup for MS MARCO. The number of segments565

is kept at 8. ASC has η = 1, and its µ = 0.9 for566

k = 10 and µ = 0.5 for k = 1000. We use µ = 0.9567

for Anytime Ranking without early termination.568

LexMAE has slightly lower average nDCG@10569

0.495, and is omitted due to the page limit.570

ASC offers nDCG@10 similar as MaxScore571

while being 1.91x faster for k = 10 and 3.25x572

faster for k = 1000. Comparing with Any-573

time, ASC is 1.35x faster and has 2.2% higher574

nDCG@10 on average for k = 10, and it is 1.95x575

faster while maintaining similar relevance scores576

for k = 1000.577

Table 5: K-means segmentation vs. random uniform

k=1000 K-means Random
µ, η MRR (Re) T MRR (Re) T
0.3, 1 0.393 (.939†) 9.92 0.396 (.972) 15.3
0.4, 1 0.393 (.942†) 10.5 0.396 (.972) 15.4
0.5, 1 0.395 (.959†) 13.8 0.396 (.974) 15.8
0.6, 1 0.397 (.977) 18.1 0.397 (.979) 17.2
0.7, 1 0.397 (.980) 24.4 0.397 (.980) 21.7
1, 1 0.397 (.980) 34.8 0.397 (.980) 33.5

Bound Tightness MaxSbound−AvgSBound
Actual

Random 0.55 0.49
K-means 0.53 0.69

Segmentation choices. ASC uses random even578

partitioning to segment term weights of each clus-579

ter and satisfy the probabilistic safeness condition 580

that each document in a cluster has an equal chance 581

to appear in any segment. Another approach is 582

to use k-means sub-clustering based on document 583

similarity. The top portion of Table 5 shows ran- 584

dom uniform partitioning is more effective than 585

k-means when running SPLADE on MS MARCO 586

passages with 4098 clusters and 8 segments per 587

cluster. Random uniform partitioning offers equal 588

or better relevance in terms of MRR@10 and Re- 589

call@1000, especially when µ is small. As µ af- 590

fects cluster-level pruning in ASC, random seg- 591

mentation results in a better prevention of incor- 592

rect aggressive pruning, although this can result 593

in less cluster-level pruning and a longer latency. 594

To explain the above result, the lower portion of 595

Table 5 shows the estimated bound tightness (ratio 596

of actual bound to MaxSBound), and average dif- 597

ference of MaxSBound and AvgSBound scaled 598

by the actual bound. Random uniform partition- 599

ing gives slightly better cluster bound estimation, 600

while its average difference of MaxSBound and 601

AvgSBound is much smaller than k-means sub- 602

clustering. Then, when µ is small, there are more 603

un-skipped clusters, following Theorem 2. 604

The above result also indicates cluster-level prun- 605

ing in ASC becomes safer due to its adaptiveness 606

to the gap between the maximum and average 607

segment bounds, which is consistent with Theo- 608

rem 2. The advantage of random uniform partition- 609

ing shown above corroborates with Theorem 4 and 610

demonstrates the usefulness of possessing proba- 611

bilistic approximate rank-safeness. 612

5 Concluding Remarks 613

ASC is an (µ, η)-approximate control scheme for 614

dynamic threshold-driven pruning that aggressively 615

skips clusters while being probabilistically safe. 616

ASC can speed up retrieval applications that still 617

desire high relevance effectiveness. For example, 618

when MRR loss is constrained to under 1-2%, the 619

mean latency of ASC is about 4x faster than Any- 620

time Ranking and is 13x to 33x faster than IOQP 621

for MS MARCO Passage Dev set with k = 10. 622

Our evaluations with the MS MARCO and BEIR 623

datasets show that µ = 0.5 for k = 1000, and 624

µ = 0.9 for k = 10 are good choices with η = 1 625

to retain high relevance effectiveness. Our findings 626

recommend η = 1 for probabilistic safeness and 627

varying µ from 1 to 0.5 for a tradeoff between 628

efficiency and effectiveness. 629

8

6 Limitations630

Space overhead. There is a manageable space631

overhead for storing cluster-wise segmented max-632

imum weights. Increasing the number of clusters633

for a given dataset is useful to reduce ASC latency634

up to a point, but then the overhead of additional635

clusters leads to diminishing returns.636

Dense retrieval baselines and GPUs. This paper637

does not compare ASC to dense retrieval baselines638

because dense models represent a different cate-639

gory of retrieval techniques. ASC achieves up to640

0.4252 MRR@10 with LexMAE for MS MARCO641

Dev, which is close to the highest number 0.4258642

obtained in state-of-the-art BERT-based dense re-643

trievers (Xiao et al., 2022; Wang et al., 2023; Liu644

et al., 2023). The zero-shot performance of ASC645

with SPLADE on BEIR performs better than these646

dense models. The above dense model studies use647

expensive GPUs to reach their full relevance ef-648

fectiveness. Approximate nearest neighbor search649

techniques of dense retrieval have been devel-650

oped following IVF cluster search (Johnson et al.,651

2019) and graph navigation with HNSW (Malkov652

and Yashunin, 2020). But there is a significant653

MRR@10 drop using these approximation tech-654

niques.655

Although GPUs are readily available, they are656

expensive and more energy-intensive than CPUs.657

For example, AWS EC2 charges one to two orders658

of magnitude more for an advanced GPU instance659

than a CPU instance with similar memory capacity.660

Like other sparse retrieval studies, our evaluation661

is conducted on CPU servers.662

Code implementation choice and block-based663

pruning. Our evaluation uses MaxScore instead664

of VBMW because MaxScore was shown to be665

faster for relatively longer queries (Mallia et al.,666

2019b; Qiao et al., 2023b), which fits in the case of667

SPLADE and LexMAE under the tested retrieval668

depths. A previous study (Mallia et al., 2021b)669

confirms live block filtering with MaxScore called670

Range-MaxScore is a strong choice for such cases.671

It can be interesting to examine the use of different672

base retriever methods in different settings within673

each cluster for ASC in the future.674

Instead of the live block filtering code, ASC675

implementation was extended from Anytime Rank-676

ing’s code because of its features that support677

dynamic cluster ordering and early termination.678

ASC’s techniques can be applied to the framework679

of contemporary BMP (Mallia et al., 2024) to im-680

prove block max estimation and add a probabilistic 681

guarantee for its threshold-driven block pruning. 682

Alternatively, the techniques introduced in BMP, 683

such as partial block (cluster) sorting and hybrid 684

cluster structure with a forward index could also 685

improve our code implementation. 686

References 687

Big-ANN. 2024. Neurips’23 competition track: 688
https://big-ann-benchmarks.com/neurips23.html. 689

Andrei Z. Broder, David Carmel, Michael Herscovici, 690
Aya Soffer, and Jason Zien. 2003. Efficient query 691
evaluation using a two-level retrieval process. In 692
Proc. of the 12th ACM International Conference on 693
Information and Knowledge Management, pages 426– 694
434. 695

Sebastian Bruch, Franco Maria Nardini, Amir Ingber, 696
and Edo Liberty. 2024. Bridging dense and sparse 697
maximum inner product search. ACM Trans. Inf. 698
Syst. 699

Fazli Can, Ismail Altingövde, and Engin Demir. 2004. 700
Efficiency and effectiveness of query processing in 701
cluster-based retrieval. Information Systems, 29:697– 702
717. 703

Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel 704
Mackenzie, and Andrew Trotman. 2017. A com- 705
parison of document-at-a-time and score-at-a-time 706
query evaluation. In Proceedings of the Tenth ACM 707
International Conference on Web Search and Data 708
Mining, WSDM ’17, pages 201–210, New York, NY, 709
USA. ACM. 710

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, 711
Daniel Fernando Campos, and Ellen M. Voorhees. 712
2020. Overview of the trec 2020 deep learning track. 713
ArXiv, abs/2102.07662. 714

Zhuyun Dai and Jamie Callan. 2020. Context-aware 715
term weighting for first stage passage retrieval. SI- 716
GIR. 717

Sayak Dey, Swagatam Das, and Rammohan Mallipeddi. 718
2020. The sparse minmax k-means algorithm for 719
high-dimensional clustering. In Proc. of the Twenty- 720
Ninth International Joint Conference on Artificial 721
Intelligence, IJCAI-20, pages 2103–2110. 722

Constantinos Dimopoulos, Sergey Nepomnyachiy, and 723
Torsten Suel. 2013. A candidate filtering mechanism 724
for fast top-k query processing on modern cpus. In 725
Proc. of the 36th International ACM SIGIR Confer- 726
ence on Research and Development in Information 727
Retrieval, pages 723–732. 728

Shuai Ding and Torsten Suel. 2011. Faster top-k doc- 729
ument retrieval using block-max indexes. In Proc. 730
of the 34th International ACM SIGIR Conference on 731
Research and Development in Information Retrieval, 732
pages 993–1002. 733

9

https://doi.org/10.1145/3665324
https://doi.org/10.1145/3665324
https://doi.org/10.1145/3665324

Thibault Formal, Carlos Lassance, Benjamin Pi-734
wowarski, and Stéphane Clinchant. 2022. From dis-735
tillation to hard negative sampling: Making sparse736
neural ir models more effective. Proceedings of the737
45th International ACM SIGIR Conference on Re-738
search and Development in Information Retrieval.739

Thibault Formal, Benjamin Piwowarski, and Stéphane740
Clinchant. 2021. SPLADE: Sparse lexical and ex-741
pansion model for first stage ranking. SIGIR.742

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL:743
revisit exact lexical match in information retrieval744
with contextualized inverted list. NAACL.745

Fatih Hafizoglu, Emre Can Kucukoglu, and İsmail Sen-746
gör Altıngövde. 2017. On the efficiency of selective747
search. In ECIR 2017, volume 10193, pages 705–748
712.749

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.750
Billion-scale similarity search with GPUs. IEEE751
Trans. on Big Data, 7(3):535–547.752

Karen Spärck Jones, Steve Walker, and Stephen E.753
Robertson. 2000. A probabilistic model of informa-754
tion retrieval: development and comparative experi-755
ments. In Information Processing and Management,756
pages 779–840.757

V. Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis,758
Ledell Yu Wu, Sergey Edunov, Danqi Chen, and Wen759
tau Yih. 2020. Dense passage retrieval for open-760
domain question answering. EMNLP’2020, ArXiv761
abs/2010.08191.762

Yubin Kim, Jamie Callan, J. Shane Culpepper, and Al-763
istair Moffat. 2017. Efficient distributed selective764
search. Inf. Retr. J., 20(3):221–252.765

Anagha Kulkarni and Jamie Callan. 2015. Selective766
search: Efficient and effective search of large textual767
collections. ACM Trans. Inf. Syst., 33(4):17:1–17:33.768

Hrishikesh Kulkarni, Sean MacAvaney, Nazli Goharian,769
and Ophir Frieder. 2023. Lexically-accelerated dense770
retrieval. In Proc. of the 46th International ACM771
SIGIR Conference on Research and Development772
in Information Retrieval, SIGIR ’23, page 152–162,773
New York, NY, USA. Association for Computing774
Machinery.775

Carlos Lassance and Stéphane Clinchant. 2022. An776
efficiency study for splade models. In Proceedings777
of the 45th International ACM SIGIR Conference on778
Research and Development in Information Retrieval,779
pages 2220–2226.780

Carlos Lassance and Stephane Clinchant. 2023. The781
tale of two msmarco - and their unfair comparisons.782
In Proceed. of the 46th International ACM SIGIR783
Conference on Research and Development in Infor-784
mation Retrieval, SIGIR ’23, page 2431–2435, New785
York, NY, USA. ACM.786

Carlos Lassance, Simon Lupart, Hervé Déjean, 787
Stéphane Clinchant, and Nicola Tonellotto. 2023. A 788
static pruning study on sparse neural retrievers. In 789
Proc. of the 46th International ACM SIGIR Confer- 790
ence on Research and Development in Information 791
Retrieval, SIGIR ’23, page 1771–1775, New York, 792
NY, USA. Association for Computing Machinery. 793

Jimmy Lin and Andrew Trotman. 2015. Anytime rank- 794
ing for impact-ordered indexes. In Proceedings of 795
the 2015 International Conference on The Theory 796
of Information Retrieval, ICTIR ’15, page 301–304, 797
New York, NY, USA. Association for Computing 798
Machinery. 799

Jimmy J. Lin and Xueguang Ma. 2021. A few brief 800
notes on deepimpact, coil, and a conceptual frame- 801
work for information retrieval techniques. ArXiv, 802
abs/2106.14807. 803

Zheng Liu, Shitao Xiao, Yingxia Shao, and Zhao Cao. 804
2023. RetroMAE-2: Duplex masked auto-encoder 805
for pre-training retrieval-oriented language models. 806
In Proceedings of the 61st Annual Meeting of the 807
Association for Computational Linguistics (Volume 808
1: Long Papers), pages 2635–2648, Toronto, Canada. 809
Association for Computational Linguistics. 810

Stuart Lloyd. 1982. Least squares quantization in pcm. 811
IEEE Trans. on Information Theory, 28(2):129–137. 812

Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 813
2012. Effect of dynamic pruning safety on learning 814
to rank effectiveness. In Proceedings of the 35th In- 815
ternational ACM SIGIR Conference on Research and 816
Development in Information Retrieval, SIGIR ’12, 817
pages 1051–1052, New York, NY, USA. Association 818
for Computing Machinery. 819

Joel Mackenzie, Antonio Mallia, Alistair Moffat, and 820
Matthias Petri. 2022a. Accelerating learned sparse 821
indexes via term impact decomposition. In Find- 822
ings of the Association for Computational Linguis- 823
tics: EMNLP 2022, pages 2830–2842. 824

Joel Mackenzie, Matthias Petri, and Luke Gallaghera. 825
2022b. Ioqp: A simple impact-ordered query pro- 826
cessor written in rust. In Proceedings of DESIRES 827
2022. 828

Joel Mackenzie, Matthias Petri, and Alistair Moffat. 829
2021. Anytime ranking on document-ordered in- 830
dexes. ACM Trans. Inf. Syst., 40(1). 831

Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 832
2023. Efficient document-at-a-time and score-at-a- 833
time query evaluation for learned sparse representa- 834
tions. ACM Trans. Inf. Syst., 41(4). 835

Yu A. Malkov and D. A. Yashunin. 2020. Efficient and 836
robust approximate nearest neighbor search using 837
hierarchical navigable small world graphs. IEEE 838
Trans. Pattern Anal. Mach. Intell., 42(4):824–836. 839

Antonio Mallia, O. Khattab, Nicola Tonellotto, and 840
Torsten Suel. 2021a. Learning passage impacts for 841
inverted indexes. SIGIR. 842

10

https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3576922
https://doi.org/10.1145/3576922

Antonio Mallia, Joel Mackenzie, Torsten Suel, and843
Nicola Tonellotto. 2022. Faster learned sparse re-844
trieval with guided traversal. In Proceedings of the845
45th International ACM SIGIR Conference on Re-846
search and Development in Information Retrieval,847
pages 1901–1905.848

Antonio Mallia, Giuseppe Ottaviano, Elia Porciani,849
Nicola Tonellotto, and Rossano Venturini. 2017.850
Faster blockmax wand with variable-sized blocks.851
In Proc. of the 40th International ACM SIGIR Con-852
ference on Research and Development in Information853
Retrieval, pages 625–634.854

Antonio Mallia, Michal Siedlaczek, Joel Mackenzie,855
and Torsten Suel. 2019a. PISA: Performant indexes856
and search for academia. Proceedings of the Open-857
Source IR Replicability Challenge.858

Antonio Mallia, Michal Siedlaczek, and Torsten Suel.859
2019b. An experimental study of index compression860
and DAAT query processing methods. In Proc. of861
41st European Conference on IR Research, ECIR’862
2019, pages 353–368.863

Antonio Mallia, Michał Siedlaczek, and Torsten Suel.864
2021b. Fast disjunctive candidate generation using865
live block filtering. In Proceedings of the 14th ACM866
International Conference on Web Search and Data867
Mining, WSDM ’21, page 671–679, New York, NY,868
USA. Association for Computing Machinery.869

Antonio Mallia, Torten Suel, and Nicola Tonel-870
lotto. 2024. Faster learned sparse retrieval with871
block-max pruning. Preprint, SIGIR 2024 and872
arXiv:2405.01117.873

Yifan Qiao, Yingrui Yang, Shanxiu He, and Tao Yang.874
2023a. Representation sparsification with hybrid875
thresholding for fast SPLADE-based document re-876
trieval. ACM SIGIR’23.877

Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang.878
2023b. Optimizing guided traversal for fast learned879
sparse retrieval. In Proceedings of the ACM Web Con-880
ference 2023, WWW ’23, Austin, TX, USA. ACM.881

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,882
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong883
Wen. 2021. RocketQAv2: A joint training method884
for dense passage retrieval and passage re-ranking.885
In Proceedings of the 2021 Conference on Empiri-886
cal Methods in Natural Language Processing, pages887
2825–2835, Online and Punta Cana, Dominican Re-888
public. ACM.889

Keshav Santhanam, O. Khattab, Jon Saad-Falcon,890
Christopher Potts, and Matei A. Zaharia. 2022.891
ColBERTv2: Effective and efficient retrieval via892
lightweight late interaction. NAACL’22, ArXiv893
abs/2112.01488.894

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiao-895
long Huang, Binxing Jiao, Linjun Yang, and Daxin896
Jiang. 2023. LexMAE: Lexicon-bottlenecked pre-897
training for large-scale retrieval. In The Eleventh898

International Conference on Learning Representa- 899
tions. 900

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 901
hishek Srivastava, and Iryna Gurevych. 2021. BEIR: 902
A heterogeneous benchmark for zero-shot evaluation 903
of information retrieval models. In Thirty-fifth Con- 904
ference on Neural Information Processing Systems 905
Datasets and Benchmarks Track (Round 2). 906

Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. 907
2013. Efficient and effective retrieval using selective 908
pruning. In Proc. of the Sixth ACM International 909
Conference on Web Search and Data Mining, WSDM 910
’13, pages 63–72. ACM. 911

Howard Turtle and James Flood. 1995. Query eval- 912
uation: Strategies and optimizations. Information 913
Processing & Management, 31(6):831–850. 914

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, 915
Linjun Yang, Daxin Jiang, Rangan Majumder, and 916
Furu Wei. 2023. SimLM: Pre-training with represen- 917
tation bottleneck for dense passage retrieval. ACL. 918

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 919
2022. RetroMAE: pre-training retrieval-oriented 920
transformers via masked auto-encoder. EMNLP. 921

Peitian Zhang, Zheng Liu, Shitao Xiao, Zhicheng Dou, 922
and Jing Yao. 2023. Hybrid inverted index is a robust 923
accelerator for dense retrieval. In Proceedings of the 924
2023 Conference on Empirical Methods in Natural 925
Language Processing, pages 1877–1888, Singapore. 926
Association for Computational Linguistics. 927

Zhiyue Zhang, Kenneth Lange, and Jason Xu. 2020. 928
Simple and scalable sparse k-means clustering via 929
feature ranking. In NeurIPS 20220: Advances in 930
Neural Information Processing Systems, volume 33, 931
pages 10148–10160. 932

A Proofs of Formal Properties 933

Proof of Theorem 1. Without loss of gener- 934
ality, assume in Cluster Ci, the maximum cluster 935
bound MaxSBound(Ci) is the same as the bound 936
of Segment Si,j . Then 937

938

MaxSBound(Ci) = Bi,j =
∑
t∈Q

max
d∈Si,j

wt,d 939

≤
∑
t∈Q

max
d∈Ci

wt,d = BoundSum(Ci). 940

For any document d, assume it appears in j-th 941
segment of Ci, then 942

943

RankScore(d) =
∑
t∈Q

wt,d ≤
∑
t∈Q

max
d∈Si,j

wt,d 944

= Bi,j ≤ MaxSBound(Ci). 945

■ 946
Proof of Theorem 2. When a cluster Ci is not 947

pruned by ASC, that is because one of Inequalities 948

11

https://doi.org/10.1145/3437963.3441813
https://doi.org/10.1145/3437963.3441813
https://doi.org/10.1145/3437963.3441813
https://arxiv.org/abs/2405.01117
https://arxiv.org/abs/2405.01117
https://arxiv.org/abs/2405.01117
https://openreview.net/forum?id=PfpEtB3-csK
https://openreview.net/forum?id=PfpEtB3-csK
https://openreview.net/forum?id=PfpEtB3-csK
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/2023.emnlp-main.116
https://doi.org/10.18653/v1/2023.emnlp-main.116
https://doi.org/10.18653/v1/2023.emnlp-main.116

(4) and (5) is false. When Inequality (4) is true but949
Inequality (5) is false, we have950

MaxSBound(Ci) ≤
θ

µ
and −AvgSBound(Ci) ≤ − θ

η
.951

Add these two inequalities together, that proves952

this theorem.953

■954
Proof of Theorem 3. Let L(x) be the top-k′955

list of Algorithm x. To prove Avg(k′,ASC) ≥956
µAvg(k′, R), we first remove any document that957
appears in both L(ASC) and L(R) in both side of958
the above inequality. Then, we only need to show:959 ∑

d∈L(ASC),d ̸∈L(R)

RankScore(d)

≥ µ ·
∑

d∈L(R),d̸∈L(ASC)

RankScore(d).
960

For the right side of above inequality, if the961

rank score of every document d in L(R) (but962

d ̸∈ L(ASC)) does not exceed the lowest score963

in L(ASC) divided by µ, then the above inequality964

is true. There are two cases to prove this condition.965

• Case 1. If d is not pruned by ASC, then d is966

ranked below k′-th position in ASC.967

• Case 2. Document d is pruned by ASC when968

the top-k threshold is θASC. The final top-k969

threshold when ASC finishes is ΘASC. If this970

document d is pruned at the cluster level, then971

RankScore(d) ≤ maxnj=1Bi,j ≤ θASC
µ ≤972

ΘASC
µ . If it is pruned at the document level,973

RankScore(d) ≤ θASC
η ≤ θASC

µ ≤ ΘASC
µ .974

In both cases, RankScore(d) does not exceed the975

lowest score in L(ASC) divided by µ.976

Anytime-µ with no early termination behaves977

in the same way as ASC with µ = η. Thus this978

theorem is also true for Anytime-µ.979

■980

Proof of Theorem 4: Define Top(k′,ASC) as981

the score of top k′-th ranked document produced982

by ASC. ΘASC = Top(k,ASC).983

The first part of this proof shows that for any984

document d such that d ∈ L(R) and d ̸∈ L(ASC),985

the following inequality is true:986

E[RankScore(d)] ≤ Top(k′,ASC)

η
.987

There are two cases that d ̸∈ L(ASC):988

• Case 1. If d is not pruned by ASC, then989

d is ranked below k′-th position in ASC.990

RankScore(d) ≤ Top(k′,ASC).991

• Case 2. If document d is pruned at the document 992
level by ASC when the top k-th rank score is 993
θASC, 994

RankScore(d) ≤
θASC

η
≤

Top(k,ASC)

η
≤

Top(k′,ASC)

η
. 995

If document d is pruned at the cluster level, notice 996
that ASC uses random uniform partitioning, and 997
thus this document has an equal chance being in 998
any segment within its cluster. 999

1000

E[RankScore(d)] ≤
∑n

j=1 Bi,j

n
≤

θASC

η
1001

≤
Top(k,ASC)

η
≤

Top(k′,ASC)

η
. 1002

The second part of this proof shows the prob- 1003

abilistic rank-safeness approximation inequality 1004

based on the expected average top-k′ rank score. 1005

Notice that list size |L(R)|= |L(ASC)|= k′, and 1006

|L(R) − L(S) ∩ L(ASC)|= |L(ASC) − L(R) ∩ 1007

L(ASC)| where minus notation ‘−’ denotes the set 1008

subtraction. Using the result of the first part, the 1009

following inequality sequence is true: 1010

E[
∑

d∈L(R)

RankScore(d)]

=E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

RankScore(d)]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

Top(k′,ASC)

η
]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(ASC),d̸∈L(R)

RankScore(d)

η
]

≤E[
∑

d∈L(ASC)

RankScore(d)]
1

η
.

1011

Thus E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)]. 1012

■ 1013

B Clustering Choices 1014

In this section, we provide a comparison between 1015

different clustering methods for ASC. We assume 1016

that a learned sparse representation is produced 1017

from a trained transformer encoder T . For exam- 1018

ple, SPLADE (Formal et al., 2021, 2022) and Lex- 1019

MAE (Shen et al., 2023) provide a trained BERT 1020

transformer to encode a document and a query. 1021

There are two approaches to represent documents 1022

for clustering: 1023

• K-means clustering of sparse vectors. Encoder 1024

T is applied to each document in a data collec- 1025

tion to produce a sparse weighted vector. Similar 1026

as Anytime Ranking (Mackenzie et al., 2021), 1027

we follow the approach of (Kulkarni and Callan, 1028

12

2015; Kim et al., 2017) to apply the Lloyd’s k-1029

means clustering (Lloyd, 1982). Naively apply-1030

ing the k-means algorithm to the clustering of1031

learned sparse vectors presents a challenge owing1032

to their high dimensionality and a large number1033

of sparse vectors as the dataset size scales. For1034

example, each sparse SPLADE document vector1035

is of dimension 30,522 although most elements1036

are zero. Despite its efficacy and widespread use,1037

the k-means algorithm is known to deteriorate1038

when the dimensionality grows. Previous work1039

on sparse k-means has addressed that with feature1040

selection and dimension reduction (Zhang et al.,1041

2020; Dey et al., 2020). These studies explored1042

dataset sizes much smaller than our context and1043

with different applications. Thus our retrieval ap-1044

plication demands new considerations. Another1045

difficulty is a lack of efficient implementations1046

for sparse k-means in dealing with large datasets.1047

We address the above challenge below by tak-1048

ing advantage of the dense vector representation1049

produced by the transformer encoder as counter-1050

parts corresponding to their sparse vectors, with1051

a much smaller dimensionality.1052

• K-means clustering of dense vector counter-1053

parts. Assuming this trained transformer T is1054

BERT, we apply T to each document and pro-1055

duce a token embedding set {t1, t2, · · · , tL} and1056

a CLS token vector. Here ti is the BERT output1057

embedding of i-th token in this document and L1058

is the total number of tokens of this document.1059

Then, we have three ways to produce a dense1060

vector of each document for clustering.1061

– The CLS token vector.1062

– The element-wise maximum pooling of all1063

output token vectors. The i-th entry of this1064

dense vector is maxLj=1 ti,j where ti,j is the1065

i-th entry of j-th token embedding.1066

– The element-wise mean pooling of all out-1067

put token vectors. The i-th entry of this1068

dense vector is 1
L

∑L
j=1 ti,j where ti,j is the1069

i-th entry of j-th token embedding.1070

In addition to the above options, we have com-1071

pared the use of a dense representation based on1072

SimLM (Wang et al., 2023), a state-of-the-art1073

dense retrieval model.1074

Table 6 compares the performance of these five1075

vector representations for k-means clustering for1076

ASC. Results are shown with and without segmen-1077

Table 6: K-means clustering of MS MARCO passages
for safe ASC (µ = η = 1) with SPLADE sparse model

w/o segmt. w/ segmt.
Passage representation MRT %C MRT %C
Sparse-SPLADE 55.9 67% 35.6 53%
Dense-SPLADE-CLS 68.2 80% 41.6 64%
Dense-SPLADE-Avg 56.3 76% 37.3 58%
Dense-SPLADE-Max 54.1 68% 33.5 54%
Dense-SimLM-CLS 63.3 78% 40.1 60%

tation in a safe mode (µ = η = 1) for SPLADE- 1078

based sparse retrieval on MS MARCO with 4096 1079

clusters and 8 segments per cluster. The column 1080

marked “%C” shows the percentage of clusters that 1081

are not pruned during ASC retrieval, and MRT is 1082

the mean response time in milliseconds. All vec- 1083

tors are clustered using the FAISS library (Johnson 1084

et al., 2019) which provides an efficient k-means 1085

clustering implementation. Sparse vectors are clus- 1086

tered based on a sample of 100,000 documents 1087

because of their high dimensionality. Our results 1088

show that maximum pooling of SPLADE-based 1089

dense token vectors and direct clustering of the 1090

sparse SPLADE vectors have a similar latency and 1091

outperform the other three options. Considering the 1092

accuracy and implementation challenge in cluster- 1093

ing high-dimension sparse vectors, our evaluation 1094

chooses max-pooled dense vectors derived from 1095

the corresponding transformer model. 1096

C Impact of varying #clusters for 1097

Anytime Ranking and ASC 1098

Figure 5 shows the latency of Anytime and ASC 1099

for k = 10 with safe pruning and a similar trend 1100

is seen for k = 1000. Table 7 shows their perfor- 1101

mance with threshold over-estimation (µ = 0.9). 1102

We present latency results for two versions of Any- 1103

time Ranking. The original Anytime, with its la- 1104

tency denoted as “Orig.”, becomes significantly 1105

slower as the number of clusters increase. There- 1106

fore, we added an optimization (denoted as “Opt.”) 1107

in extracting cluster maximum weights as noted in 1108

Section 4. The fastest configuration for Anytime 1109

Ranking is with 512 clusters. Lowering the number 1110

of clusters to a smaller number such as 256 or 128 1111

increases Anytime’s latency because the maximum 1112

cluster bound estimation becomes less accurate. 1113

The above result shows that ASC performs bet- 1114

ter with 4096 clusters when varying the number of 1115

clusters from 128 to 4096 when k = 10. We do 1116

not use a larger number of clusters because that 1117

13

Table 7: Performance of Anytime Ranking vs. ASC when varying #clusters for threshold overestimation. k = 10.

Cluster Anytime Ranking µ = 0.9 ASC µ = 0.9, η = 1
Count MRR (Re) Orig. Opt. MRR (Re) MRT

128 0.381 (0.604) 16.8 16.0 0.397 (0.682) 14.0
256 0.380 (0.607) 16.5 15.6 0.397 (0.682) 13.5
512 0.382 (0.611) 16.3 15.3 0.397 (0.682) 10.5

1024 0.380 (0.611) 20.0 17.8 0.396 (0.681) 7.41
2048 0.384 (0.615) 29.1 20.4 0.396 (0.681) 6.05
4096 0.381 (0.611) 53.2 24.1 0.396 (0.681) 5.59

Figure 5: The effect of the number of clusters on latency.
For Anytime (Orig.) and Anytime (Opt.), latency grows
significantly with clusters. ASC is the fastest method for
all clusters and exhibits the slowest growth in latency of
all methods.

increases the space overhead for ASC. The find-1118

ing is similar for different choices of µ and for1119

k = 1000. Figure 6 examines the relation of Re-1120

call@1000 and latency for ASC when varying µ1121

under different numbers of clusters and segments.1122

Each curve represents a distinct number of clusters1123

and number of segments per cluster. Each curve1124

has 5 markers from left to right, denoting µ = 0.4,1125

0.5, 0.6, 0.7, and 1, respectively. A greater number1126

of clusters improves cluster bound estimation and1127

allows finer-grained pruning decisions, however1128

it also introduces additional overhead for visiting1129

each cluster, as discussed in Section 3. This figure1130

shows that the best configuration of ASC is 40961131

clusters and 8 segments per cluster for all values of1132

µ.1133

D Compatibility with other speedup1134

techniques1135

Table 8 lists MRR@10 and Recall@1000 of com-1136

bining ASC with early termination technique of1137

Anytime Ranking (Mackenzie et al., 2021) under a1138

time budget on MS MARCO Dev set for SPLADE1139

mainly. Last row lists ASC performance with Lex-1140

MAE for each k value. 512 clusters are configured1141

Figure 6: Recall vs. latency of ASC (η=1) for varying
values of µ at retrieval depth k = 1000. For each fixed
number of clusters and segments, µ varies from 0.4, 0.5,
0.6, 0.7, to 1.

Table 8: Anytime vs. ASC (η=1) with time budgets

Model Setup MRR (Re) MRT (P99)
Retrieval depth k = 10. Time budget 10ms

SPLADE Anytime-µ = 1 0.370† (.632†) 8.34 (10.3)
ASC-µ = 1 0.395 (.679) 5.14 (10.1)
Anytime-µ = 0.9 0.360† (.575†) 7.70 (10.2)
ASC-µ = 0.9 0.395 (.678) 4.21 (10.0)

LexMAE ASC-µ = 0.9 0.423 (.713) 5.14 (10.2)
Retrieval depth k = 1000. Time budget 20ms

SPLADE Anytime-µ = 1 0.364† (.865†) 19.1 (20.4)
ASC-µ = 1 0.395 (.973) 18.2 (20.1)
Anytime-µ = 0.9 0.363† (.864†) 19.1 (20.3)
ASC-µ = 0.7 0.395 (.973) 15.2 (20.0)

LexMAE ASC-µ = 0.7 0.423 (.974†) 16.9 (20.1)

for Anytime Ranking, and “4096 clusters*8 seg- 1142

ments” are for ASC. Comparing to Table 1, there 1143

is a small relevance degradation for ASC with time 1144

budgets, but the 99th percentile time is improved 1145

substantially by this combination. Under the same 1146

time budget, this ASC/Anytime combination has 1147

higher MRR@10 and Recall@1000 than Anytime 1148

Ranking alone in both retrieval depths. 1149

We also apply ASC with static index prun- 1150

ing (Qiao et al., 2023a) for a version of SPLADE 1151

used in Big-ANN competition as discussed in 1152

Appendix E below. The exact search with safe 1153

Anytime Ranking delivers 0.383 MRR@10 with 1154

20.2ms with k = 10. ASC takes 3.8ms with 0.5% 1155

14

MRR loss, and it only takes 0.81ms when follow-1156

ing the Big-ANN relevance budget (90.5% recall1157

to top-10 exact search results).1158

Term impact decomposition (Mackenzie et al.,1159

2022a) is an orthogonal optimization on posting1160

lists. Our preliminary test shows that it does not1161

work well with SPLADE as its posting clipping1162

and list splitting increase original SPLADE latency1163

from 66ms to 95ms and 110ms, respectively. Thus1164

our evaluation didn’t include this optimization.1165

E Comparison to NeurIPS ’23 Big-ANN1166

Methods1167

The sparse track of NeurIPS 2023 competition1168

for fast approximate nearest neighbor search (Bi-1169

ANN) (Big-ANN, 2024) uses 90% recall of top 101170

result of the exact search baseline as the relevance1171

budget to select the fastest entry for MS MARCO1172

dev set. The SPLADE version used in the Big-1173

ANN competition has 0.383 MRR@10, which is1174

different than our version with 0.3966. Top en-1175

tries in Big-ANN can use any range of techniques,1176

including unpublished optimizations or specializa-1177

tion. On the other hand, this paper is focused on a1178

single optimization topic solved with general tech-1179

niques, namely improving threshold-driven prun-1180

ing based on cluster rank score bounds. Thus the1181

purpose of this evaluation study is to demonstrate1182

how ASC can make cluster-based retrieval compet-1183

itive for the Big-ANN setting.1184

We compare ASC with the two best open-source1185

submissions: PyANNS and SHNSW. The Sparse1186

track measures relative recall against top 10 ex-1187

act search and throughput with eight simultaneous1188

threads. To follow a common practice, Table 91189

reports reciprocal rank (MRR@10), Recall@10,1190

and single-thread latency (MRT) in milliseconds1191

on our machine. Table 9 also reports the recall1192

to top-10 exact search as “R2Exact”. The exact1193

search baseline is rank-safe Anytime Ranking with1194

512 clusters, the same configuration as Section 4.1195

The Big-ANN competition prioritizes efficiency1196

under a relatively loose approximation loss bud-1197

get, whereas ASC is designed to preserve pruning1198

safeness while reducing the latency. Thus we con-1199

figure all models to minimize latency for meeting1200

the following two loss budget settings.1201

• Preserve 90% of top-10 exact search. The best1202

performing parameters were selected from the1203

submitted configurations. For PyANNS qdrop =1204

0.1 and ef = 60 and for SHNSW ef = 52. For1205

ASC, we use 512 clusters with 16 segments each, 1206

µ = 0.85, η = 1 after applying static pruning. 1207

• Preserve 99% of top-10 exact search. We select 1208

the best performing configuration for PyANNS 1209

with qdrop = 0.0 and ef = 2000 and for 1210

SHNSW with ef = 2000. For ASC, we use 4096 1211

clusters with 8 segments each, µ = 0.9, η = 1. 1212

Table 9 shows that ASC is 4.1x to 5.2x faster 1213

than PyANNS and SHNSW respectively for the 1214

99% setting while having better MRR@10. Notice- 1215

ably PyANNS suffers 68% MRR@10 loss. For the 1216

90% setting, ASC is 7% faster and has 0.9% higher 1217

MRR@10 than SHNSW. Even though PyANNS 1218

is faster than ASC, its MRR@10 loss is over 71%, 1219

which is huge. 1220

Table 9: A comparison with BigANN methods using
SPLADE on MS MARCO Passage Ranking

Methods MRR(Recall) R2Exact MRT
Preserve 90% of top-10 exact search

Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.339 (0.601) 90.0% 0.87
PyANNS 0.110 (0.603) 90.3% 0.48
ASC 0.342 (0.604) 90.5% 0.81

Preserve 99% of top-10 exact search
Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.379 (0.665) 99.1% 19.9
PyANNS 0.122 (0.665) 99.1% 15.6
ASC 0.381 (0.667) 99.5% 3.80

The above result shows that the competition met- 1221

ric for Big-ANN drives a different optimization 1222

tradeoff compared to our paper. This is because 1223

our paper prioritizes MRR@10 competitiveness of 1224

approximate retrieval with a much tighter relevance 1225

loss budget before considering latency reduction 1226

gains. Configurations of ASC with unsafe prun- 1227

ing listed in Table 1 of Section 4 are within a 0.1% 1228

MRR@10 loss budget for Dev set. Thus while ASC 1229

makes a cluster-based retriever more competitive 1230

in the Big-ANN tradeoff setting, ASC is designed 1231

to speed up retrieval applications that desire high 1232

relevance effectiveness. 1233

15

	Introduction
	Background and Related Work
	Cluster-based Retrieval with Approximation and Segmentation
	ASC: (,)-approximate retrieval with segmented cluster information
	Formal Properties

	Evaluation
	Concluding Remarks
	Limitations
	Proofs of Formal Properties
	Clustering Choices
	Impact of varying #clusters for Anytime Ranking and ASC
	Compatibility with other speedup techniques
	Comparison to NeurIPS '23 Big-ANN Methods

