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Abstract—This paper addresses sparse observability con-
straints in Diffusion Least Mean Squares (DLMS) and pro-
poses a framework for analyzing combination strategies. A
thresholding-based algorithm is introduced to identify the
sparse support vector under incomplete information. The
method effectively handles sparse observations in both time
and transform domains, achieving a 30–40 dB improvement in
Mean Square Deviation (MSD) over conventional DLMS.

Index Terms—Distributed Estimation, DLMS, Sparse Mask,
Signal recovery over network.

I. Introduction
Distributed algorithms are widely used in research fields

like signal reconstruction on graphs [1], [2], multi-agent
reinforcement learning [3], [4], and the Diffusion Least
Mean Square (DLMS) algorithm [5]–[9], due to their
robustness, reliability, and fast convergence.

Many studies assume nodes have full access to the target
vector, allowing independent estimation. Our approach
uniquely addresses masked measurements, an area largely
unexplored in previous studies. Prior works typically
model censored data using step functions that restrict
measurements to nonnegative values [10], [11], which can
be adjusted by rotating or negating the regressor vector
when zero measurements occur. Unlike partial diffusion,
where masked measurements are intentionally used to
reduce communication or computation [12], [13], our
method treats them as inherent environmental constraints.

This paper focuses on scenarios where nodes have
limited visibility of the target and must collaboratively
estimate it. We propose a framework inspired by signal
flow analysis [14] and introduce a thresholding-based
algorithm to recover missing components, leveraging prior
work on sparsity-based recovery [15], [16].

Our proposed algorithm enables efficient information
sharing and target support extraction while controlling
data flow and estimation combinations. Simulations show
it improves Mean Square Deviation (MSD) by 30–40 dB
over conventional DLMS, achieving near full-observability
performance at a given observability ratio.

Contributions of this paper include:
- Introducing the problem of partial observability,
- Mathematical analysis for the optimal combination,

- Introducing a method for estimation diffusion without
prior support knowledge.

Section II illustrates the PO scenario, while Sections III
and IV discuss optimal combination weighting strategies.
Simulation results are presented in Section VI, and the
paper concludes in the final section.

II. LMS Diffusion with Partial Observations
The primary algorithm used in this study is DLMS,

known for its strong performance [17]. At node i, the local
estimation follows three steps:

g(ω⃗i(t),Θi(t))=

{ 1. si(t) = a⃗†i,tMiω⃗
opt + νi(t)

2. erri(t) = si(t)− a⃗†i,tω⃗i(t− 1)

3. ω⃗i(t) = ω⃗i(t− 1) + µ.erri(t)⃗ai,t
,

where Θi(t) includes the measurement vector a⃗i,t and
adaptation rate µ, while νi(t) represents measurement
noise. The transpose operator is denoted by †.

In the combination step, DLMS typically assumes full
access to ω⃗opt, but real-world scenarios often involve
partially observable targets, where nodes rely on limited
measurements. This observability is modeled using the
mask operator Mi = T †DiT , where the diagonal elements
of Di indicate component observability in the transform
domain. Fig. 1 illustrates this pattern.

Fig. 1: Illustration of masked data access and cooperative
estimation in a network (time domain masking: T = I).

Given the estimation of node i as ω⃗i = Miω⃗
opt + e⃗i,

where e⃗i represents the estimation error at an appropriate



time t (omitted for brevity), the goal is to combine the esti-
mations of its neighboring nodes (nodes in ℵi) to minimize
the error. The resulting estimation is ψ⃗i =

∑
k∈ℵi

Gk,iω⃗k,
where Gk,i is the weighting matrix indicating the impact
of ω⃗k on the ith node. The error is defined as:

J(i) ≜ E{∥ψ⃗i − ω⃗opt∥22}, (1)

and the objective is to determine the optimal weights that
minimize this error.

Throughout this proof procedure, two assumptions are
taken into consideration (independence assumption):
1- The estimation error, e⃗i, adheres to the orthogonality
principle, with zero mean components and variance σ2

i .
2- Each target component l satisfies E{(ωopt

l )2} = σ2
0(l).

Given the diagonal structure of Mk = T †diag(d⃗k)T ,
the weighting matrices, Gk,i, are also assumed to be of
the form Gk,i = T †diag(g⃗k,i)T , with the lth component
(gk,i(l)) determining the impact of the corresponding
component of ω⃗k in the transform domain (T )1. As a
result, the error can be expressed as:

Ji = E{∥
∑
k∈ℵi

T †diag(g⃗k,i)T .(Mkω⃗
opt + e⃗k)− ω⃗opt∥22}

= E{∥[(
∑
k∈ℵi

diag(g⃗k,i)Dk)− I]Ω⃗opt∥22 + ∥diag(g⃗k,i)E⃗k∥22},

where, Ω⃗opt and E⃗k represent transformed versions of ω⃗opt

and e⃗k, respectively.
Consequently, the error can be segmented into two

distinct components: estimation error (Jest(i)) and combi-
nation error (Jcomb(i)), which can be expressed as follows:

Jest
i ≜

L∑
j=1

∑
k∈ℵi

(gk,i(j))
2 E{(Ek(j))

2} =
L∑

j=1

∑
k∈ℵi

(gk,i(j))
2σ2

k,

Jcomb
i ≜

L∑
j=1

(
∑
k∈ℵi

gk,i(j)dk(j)− 1)2.E{(Ωo(j))
2}

=

L∑
j=1

(
∑
k∈ℵi

gk,i(j)dk(j)− 1)2σ2
0(j).

It is evident that the minimization problem can be
broken down into L separate subproblems, each of which
can be independently resolved.

III. Optimal Combination Weighting
Consider a component j. If dk(j) = 0, node k ∈ ℵi

does not contribute in the combination step, preventing
error reduction. If dk(j) ̸= 0, the error increases by
(gk,i(j))

2σ2
k, making it reasonable to set gk,i(j) = 0. When

no neighboring nodes estimate the lth component, the
error equals σ2

0 .
1For clarity, we use the following notation throughout the

manuscript: T represents the transform matrix, t denotes the
time index, T refers to the simulation time, and T represents the
thresholding level. Each of these terms is defined accordingly in the
manuscript.

For brevity, we redefine dk(j), gk,i(j), and σ0(j) as dk,
ck, and σ0, respectively, and assume k ∈ [1, N ]. The cost
function is then:

J = (

N∑
k=1

ckdk − 1)2.σ2
0 +

N∑
k=1

c2kσ
2
k. (2)

By taking the derivative of the cost function J with
respect to cl, and equating it to zero, we obtain:

∂J

∂cl
= 2dk(

N∑
k=1

ckdk − 1).σ2
0 + 2clσ

2
l

∂J
∂cl

=0

====⇒ cl =
1−

∑
k ̸=l ckdk

d2l + λ−2
l

× dl,

where λl = σ0

σl
represents the SNR for the given index l.

Notably, if dl = 0, then cl = 0. In the special case where
σk = σ and dk ∈ {0, 1}, all coefficients take a uniform
value ck = c = 1

m+λ−2 , where λ2 =
σ2
0

σ2 and m is the
number of nonzero dk values.

The optimal weights can be obtained by solving for the
column vector c⃗, where m non-zero di’s are arranged from
1 to m, using the following matrix equation:

d21 + λ−2
1 d1.d2 · · · d1.dm

d2.d1 d22 + λ−2
2 · · · d2.dm

...
... . . . ...

dm.d1 dm.d2 · · · d2m + λ−2
m

 c⃗ =

d1
d2
...
dm


In order to solve the problem, the coefficient matrix is
decomposed as the sum of a diagonal matrix (Λ−2) and a
rank-1 matrix (B = d⃗.d⃗†), defined as follows:

Λ ≜ diag([λ1, . . . , λm]); d⃗† ≜
[
d1 d2 · · · dm

]
.

This transforms the problem to the form (Λ−2 +B)c⃗ =
d⃗. The Sherman-Morrison formula can then be used to
compute the inverse of (Λ−2 +B) as follows:

(Λ−2 +B)−1 = Λ2 − Λ2d⃗.d⃗†Λ2

1 + d⃗†Λ2d⃗
.

This yields a solution for the vector c⃗:

c⃗ =
(
Λ2 − Λ2d⃗.d⃗†Λ2

1 + d⃗†Λ2d⃗

)
d⃗ = Λ2d⃗×

(
1− d⃗†Λ2d⃗

1 + d⃗†Λ2d⃗

)
=

1

1 + d⃗†Λ2d⃗
Λ2d⃗, (3)

with each element computed as2:

cl =
dlλ

2
l

1 +
∑m

k=1 d
2
kλ

2
k

, (4)

where l is the index of a typical node.
This outcome highlights how each node’s observation of

target signal components and its estimation error affect
the combination step. When all components have equal

2We will refer to this group of coefficients as Least Squares Solution
(LSS) in case of comparison.



observability (dk = d0), the following equation holds:
cl = (d0λ

2
l )/(1+d

2
0

∑m
k=1 λ

2
k). An increase in relative SNR

raises the relative weight among neighboring nodes and
necessitates attenuation of the observation.

In fully observable cases, Gk,i reduces to a scalar weight
gk,i, simplifying the objective function to:

J(i) = E{∥
∑
k∈ℵi

gk,i(Miω⃗
opt + e⃗i)− ω⃗opt∥22}

= E{∥
∑
k∈ℵi

gk,iE⃗i∥22}+ E{∥(
∑
k∈ℵi

gk,iDk − I)Ω⃗opt∥22}.

Thus, the objective function can be expressed as:

J(i) =
∑
k∈ℵi

gk,iLσ
2
k +

L∑
j=1

(
∑
k∈ℵi

gk,idk(j)− 1)2σ2
0 .

To simplify the notation, the index i can be eliminated,
resulting in a linear system of equations:

(Λ̃ +

L∑
j=1

d⃗j d⃗j
†
)g⃗ =

L∑
j=1

d⃗j ,

where Λ̃ ≜ L.diag([λ−2
1 , . . . , λ−2

m ]), d⃗j ≜
[d1(j), . . . , dm(j)]†, and g⃗ ≜ [g1,i, . . . , gm,i]

†. By
using the Sherman-Morrison formula, the solution
S = (Λ̃ +

∑L
j=1 d⃗j d⃗j

†
)−1 can be recursively found as:

Sr = Sr−1 +
Sr−1d⃗k.d⃗k

†
Sr−1

1 + d⃗k
†
Sr−1d⃗k

; S0 = Λ̃−1, S = SL. (5)

The matrix D̃ =
∑L

j=1 d⃗j d⃗j
†

encapsulates the coopera-
tion between nodes x and y as neighbors of node i, with
elements D̃x,y representing their interaction via the inner
product ⟨d̃x, d̃y⟩. Here, d̃a = [da(1), da(2), . . . , da(L)]

†

for a ∈ ℵi. Additionally, each gl is influenced by its
aggregate contribution

∑L
j=1 dl(j) across the combined

vector components.

IV. Unbiased Estimation
Regarding the combination weights derived in (3), the

resulting combination is biased, with the bias given by:

bias = E

{∑
k∈ℵi

T †diag(g⃗k,i)T · (Mkω⃗
opt + e⃗k)− ω⃗opt

}
= T †diag([b1, . . . , bL])T ω⃗opt. (6)

By following a similar procedure as in (3), we consider
a generic component j, yielding:

bj ≜
∑
k∈ℵi

gk,i(j)dk(j)− 1 =
1

1 +
∑

l∈ℵi
[dl(j)λl(j)]2

. (7)

To achieve an unbiased combination, the optimization in
(1) is constrained by enforcing the unbiasedness condition,
E{ψ⃗i} = ω⃗opt, which leads to the following problem:

min J(i) s.t. E{ψ⃗i} = ω⃗opt. (8)

For a generic component j, the optimization is formulated
using a Lagrange multiplier by constraining (2) with∑N

k=1 ckdk = 1:

R(c⃗) =

N∑
k=1

c2kσ
2
k − γ

(
N∑

k=1

ckdk − 1

)
. (9)

Taking the derivative of the cost function R with respect
to cl and setting it to zero gives:

∂R(c⃗)

∂cl
= 2clσ

2
l − γdl =⇒ cl =

γdl
2σ2

l

.

Applying the constraint results in:
N∑

k=1

γdk
2σ2

k

dk = 1 =⇒ γ =
2∑N

k=1
d2
k

σ2
k

, (10)

leading to the final unbiased coefficients3:

cl =
dl

σ2
l

∑N
k=1

d2
k

σ2
k

. (11)

Substituting (11) into (2), the combination error is
expressed as:

R(c⃗) =

N∑
l=1

 dl

σ2
l

∑N
k=1

d2
k

σ2
k

2

σ2
l =

1∑N
k=1

d2
k

σ2
k

. (12)

Under identical performance and statistically similar con-
ditions for all nodes l ∈ ℵi, we assume σ = σl, simplifying
the coefficients to cl = dl∑N

k=1 d2
k

. For a binary mask
representing node l, this reduces to cl = dl

m , where m
is the number of nonzero dk values, effectively averaging
over available estimations.

With a locally converging estimator, σ2
l tends to de-

crease over time, leading the least squares solution in (4)
to eventually align with (11). In this case, for each SNR
term, we have λl ≫ 1, implying:

cLSS
l =

dlλ
2
l

1 +
∑m

k=1 d
2
kλ

2
k

≈ dlλ
2
l∑m

k=1 d
2
kλ

2
k

=
dl

σ2
l

∑N
k=1

d2
k

σ2
k

= cunbiased
l . (13)

V. No Information on Observability
In practical settings, observability vector information is

often unavailable, making support and values unknown.
Assuming trivial attenuation (Di(j) ∈ {0, 1}), knowing
the support vector is crucial. To address this, we use a
thresholding approach inspired by sparse signal recovery.
As each estimator approaches its local target Miω⃗

opt,
we estimate support using component magnitudes in
the transform domain. Defining the threshold level as
β(t) = β1e

−t/τ + β0, components with magnitudes above
β(t) are considered observed values of ω⃗opt, enabling
information diffusion across the network.

Each node shares its estimated components in 3 steps:
3For clarity, this set of coefficients will be referred to as the

unbiased case for comparison purposes.



Algorithm 1 Threshold-based Diffusion LMS.
for t = 1, . . . , T do

1- Adaptation, Ω⃗i = g(ω⃗i,Θi)
2- Thresholding, D̃i = Ξ(Ω⃗i, β)

3- Combination, ψ⃗i, ω⃗i = h(ψ⃗j ,
⃗̃Ωj , D̃j |j ∈ ℵi)

end for

The function h(·) consists of three operations:{ Locally update: ψ⃗i ← Di((1− η)ψ⃗i + ηΩ⃗i) + (I−Di)ψ⃗i

Diffuse: ψ⃗i ←
∑

j∈ℵi
Dcomb,jψ⃗j

Combine: ω⃗i ← T †[Di((1− α)ψ⃗i + αΩ⃗i) + (I−Di)Ω⃗i]

Here, Dcomb,j defines a combination strategy, averaging
active components across neighboring nodes when observ-
ability power and noise variance are uniform.

The parameters α and η control information flow: α
regulates inflow from the network into a node’s estimation
and η manages outflow from each node into the network.

VI. Simulation Results and Discussion
In this section, MSD serves as the performance measure

for simulation output, reported at both node (”local”) and
network (”consensus”) levels. The local target for node i
is Miω⃗

opt, while the network target is ω⃗opt for all nodes.
For fair comparisons, local MSD is normalized by
L∑

j Di(j)
, where L is the length of ω⃗opt and Di(j) follows

probability ρ. The combination strategy is averaging.
Each link among N nodes is generated with probability
p, and changes in η and α follow step functions at
t = Tc < T . Measurements a⃗i,t are normally distributed,
with noise νi ∼ N (0, σ2). Results are averaged over
multiple simulations.

We examine two partial observation scenarios: time-
domain observation (T = I, Fig. 2) and DCT-domain
observation (Fig. 3). The results show that tuning α and
η regulates network-wide information flow (Section V),
ensuring robustness under various noise conditions. Fig. 2
highlights the shortcomings of conventional combination
strategies, where ignoring observability disrupts consensus
and local convergence (Section II, Eq. 5). Our thresholding
method (”Inf. Diff.”) enhances diffusion without relying on
local data, while the adaptive approach (”Adaptive Th.”)
selectively improves estimation.

Additionally, Fig. 3 demonstrates the proposed
method’s effectiveness in handling DCT-domain partial
observations across noise levels. For low noise (σ = 0.1),
parameters (β0, α, η, µ) were set to (700, 0.5, 0.5, 0.04), and
for very low noise (σ = 0.01), they were adjusted to
(1000, 0.7, 0.4, 0.01).

VII. Conclusion
We introduced a framework for analyzing combination

strategies in Diffusion LMS with partial observations,
including unknown support scenarios. The optimal weight-
ing was derived, converging to the unbiased constrained
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Fig. 2: The DLMS with Time-Domain PO.

0 500 1000 1500 2000

time (samples)

-80

-60

-40

-20

0

20

M
S

D
 (

dB
)

 = 0.5,  = 0.01, N = 10, L = 50, #sim =20

Consensus-LN: p = 0.5
Local-LN: p = 0.5
Consensus-LN: p = 1
Local-LN:  = 0.1, p = 1
Consensus-VLN: p = 0.5
Local-VLN: p = 0.5

Fig. 3: The DLMS with DCT-Domain PO.

solution. We proposed a thresholding-based algorithm to
enhance information flow and estimation accuracy without
prior mask knowledge. Simulations confirmed its robust-
ness under various noise conditions, effectively handling
partial observability in time and transform domains. The
results highlight its advantages over conventional DLMS
and its potential for practical applications.
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