
Agentic NL2SQL to Reduce Computational Costs

Dominik Jehle
jehled@cs.uni-freiburg.de

University of Freiburg
Freiburg im Breisgau, Germany

Lennart Purucker
purucker@cs.uni-freiburg.de

University of Freiburg
Freiburg im Breisgau, Germany

Frank Hutter
Prior Labs

ELLIS Institute Tübingen
University of Freiburg

Abstract

Translating natural language queries into SQL queries (NL2SQL or Text-to-SQL)
has recently been empowered by large language models (LLMs). Using LLMs to
perform NL2SQL methods on a large collection of SQL databases necessitates
processing large quantities of meta-information about the databases, which in
turn results in lengthy prompts with many tokens and high processing costs. To
address this challenge, we introduce Datalake Agent, an agentic system designed
to enable an LLM to solve NL2SQL tasks more efficiently. Instead of utilizing
direct solvers for NL2SQL that call the LLM once with all meta-information in
the prompt, the Datalake Agent employs an interactive loop to reduce the utilized
meta-information. Within the loop, the LLM is used in a reasoning framework
that selectively requests only the necessary information to solve a table question
answering task. We evaluate the Datalake Agent on a collection of 23 databases
with 100 table question answering tasks. The Datalake Agent reduces the tokens
used by the LLM by up to 87% and thus allows for substantial cost reductions
while maintaining competitive performance.

1 Introduction

Large language models (LLMs) show significant potential to advance the field of information retrieval
and understanding of tabular data. Current models have demonstrated notable improvements in
tasks related to the understanding of tabular data [17, 8, 14]. Optimizing the prompts plays a critical
role in maximizing the performance of models and can significantly influence the output behavior
for a specific task [9, 1]. At the same time, the number of tokens to represent the prompt directly
determines the cost of a request [11, 2]. Reducing the number of tokens decreases the overall cost,
which is often needed as large prompts can quickly entail significant expenses.

In the field of translating natural language queries into SQL queries (NL2SQL or Text-to-SQL) [8],
prompt size can quickly explode when the number of SQL databases grows. This issue becomes
particularly relevant when working in large enterprise companies that store an extensive amount
of structured, tabular data. Typically, when solving tasks on large collections of databases, LLMs
receive large amounts of meta-information about the structure and types of all databases in one
direct prompt. Yet, most NL2SQL tasks require only a subset of the database, rendering much of the
meta-information in the prompt useless while still incurring additional costs for users.
Thus, we propose to select only the meta-information truly necessary for a single task to significantly
reduce the cost of solving the NL2SQL task. To this end, we introduce Datalake Agent, an agentic
system designed to enable an LLM to solve NL2SQL tasks more efficiently by reducing the utilized

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

meta-information through a reasoning framework. The framework operates across three core areas:
information acquisition, iterative refinement, and query formulation.

We evaluate the Datalake Agent by comparing it to a direct prompting strategy with OpenAI’s
GPT-4-mini [10]. Both methods, the Datalake Agent and the direct prompting, are evaluated on a
set of 319 tables, collected from 23 different databases, some of which contain real-world data [13].
Both methods are tested on a manually created collection of 100 table question answering tasks. Our
results show that the Datalake Agent significantly reduces the costs of processing large amounts
of data. Furthermore, the Datalake Agent retains competitive performance on average, while also
improving the LLM’s capability to process complex queries more effectively.

Our contributions are: (1) the Datalake Agent, a reasoning framework that enables large language
models (LLMs) to efficiently navigate and query large volumes of meta-information; (2) a new
benchmark of 100 table-based question answering tasks, carefully curated to evaluate model
performance across varying levels of complexity.

2 Related Work

There are various methods for leveraging large language models (LLMs) for large data. One possible
method is to provide the LLM direct access to all data by transmitting all information via one prompt
to the model. However, Qiu et al. [12] have shown a clear negative performance trend across all
tested models: when the prompt size increases, the overall performance declines. Likewise, Dong
and Wang [3] observed that for prompts exceeding 1000 tokens, the effectiveness of GPT models for
tabular data devolves to mere guesswork. Thus, alternatives have been developed, such as Text2API
[15] or NL2SQL [8]. In Text2API, instead of granting the model direct access to complete table
information, this approach enables interaction with the dataset through API endpoints [15]. While this
method demonstrates impressive results, it restricts the model to retrieving information exclusively
through the available API endpoints and cannot access data beyond them. Instead, translating natural
language queries into SQL (NL2SQL) offers two major advantages. First, there is no need to input
entire tables into the model. Instead, the model receives only meta-information about the tables,
which is especially beneficial for datasets with a large number of rows. Second, unlike Text2API,
NL2SQL does not impose limitations on information retrieval. By generating SQL queries, the
model can access and process all the necessary data dynamically [8]. While LLMs show remarkable
capabilities in translating natural language queries into SQL, their accuracy decreases with growing
schema complexity, larger numbers of tables, and more demanding query structures [8]. Our work
focuses on improving the efficiency of NL2SQL with LLMs when there is an excessive amount of
meta-information available, while maintaining or enhancing their performance.
The community developed several benchmarks for NL2SQL, such as the Bird [6, 7] and Spider
[16, 4, 5] benchmarks. Yet these benchmarks only provide the relevant, potentially necessary, meta-
information to models instead of all the available meta-information. Our work establishes a new
benchmark, building on prior benchmarks. We simulate a potentially more realistic scenario in an
enterprise company where the user, and by extension the LLM, do not know which database contains
the necessary meta-information. Instead, the LLM is tasked with solving an NL2SQL task, specifically
a table question answering task, given the natural language query and the meta-information of all
available databases and tables.

3 Method

To efficiently handle large volumes of meta-information, we employ the Datalake Agent, a reasoning
framework that guides large language models (LLMs) through structured, task-driven information
acquisition. The method can be explained in terms of three core areas:
Information Acquisition. In the information acquisition, the LLM begins by gathering general
schema knowledge. The Datalake Agent provides an intermediary layer for structured exploration
using predefined commands: GetDBDescription retrieves high-level summaries of available
databases, GetTables enumerates tables within a selected database, and GetColumns exposes
column-level metadata, including names and types. A visual overview of the workflow is provided in
the Appendix A.
Iterative Refinement. During iterative refinement, the LLM follows a hierarchical approach,
progressing from broad, high-level data toward task-specific details. At any point, it can revert to a

2

coarser level of information if needed, before refining again. This flexible, feedback-driven loop
allows the LLM to reason autonomously over complex database structures while ensuring that only
relevant information is retrieved.
Query Formulation. Finally, in query formulation, once sufficient schema information has been
collected, the LLM generates precise SQL queries using DBQueryFinalSQL. The Datalake Agent
executes these queries through a dedicated access layer, which guarantees scalability and modularity.
Integrating new databases requires minimal adjustments while preserving the systematic reasoning
approach. This hierarchical and iterative method allows the LLM to autonomously select relevant
information, refine its understanding, and generate accurate queries.

4 Experimental Setup

Model. For our experiments, we employ the OpenAI GPT-4 Mini model [10], accessed via the
OpenAI API. To ensure consistent behavior, the temperature parameter is fixed at 0.1. The model
outputs follow the structured response format described above.
Databases. As the foundation for evaluation, we select five databases from the Relational Deep
Learning Benchmark (RelBench) [13]. Since enterprise environments typically consist of large,
heterogeneous database convolutes, we expand this collection with 18 additional simulated databases
from domains such as sports, politics, business, and geography. These simulated databases contain
only schema information but no data, serving to increase the complexity of the evaluation setup.
Table Question Answering Benchmark. To evaluate the Datalake Agent, we construct a bench-
mark of 100 natural language Table Question Answering tasks. Each task requires the model to
generate a SQL query without being informed which tables are relevant. Each of the five RelBench
databases contributes 20 tasks, spanning two levels of difficulty.
We evaluate the system under three experimental settings, each differing in the number of available
databases and tables. The first setting includes only the RelBench databases, totaling 42 tables.
The second and third settings incorporate the simulated databases, resulting in 159 and 319 tables,
respectively. Examples of benchmark questions are presented in Appendix D.
Direct Prompt Baseline. For comparison, we design a direct prompt baseline that provides the
model with all necessary schema information upfront. Its system prompt mirrors that of the Datalake
Agent but excludes the option to request schema information incrementally.

5 Results

Performance. Examining the trends of both approaches, as illustrated in Figure 1, reveals that the
Direct Solver initially outperforms the Datalake Agent. However, as data volume increases, both
methods experience a decline in accuracy. The Direct Solver exhibits a steeper drop in performance
compared to the Datalake Agent, a trend that is particularly pronounced for more complex tasks. A
more detailed performance analysis is provided in Appendix C.

Figure 1: Performance trend of Direct Solver
and Datalake Agent.

Figure 2: Trend of average amount of tokens
required for solving one task.

Input Tokens. Figure 2 illustrates the average number of tokens consumed by the Datalake Agent
and the Direct Solver as the number of tables increases. The Datalake Agent shows relatively stable

3

token usage, rising slightly from 3,670 tokens with 42 tables to 4,264 tokens with 319 tables. In
contrast, the Direct Solver exhibits a steep increase from 7,407 tokens at 42 tables to 34,602 tokens
at 319 tables. These results indicate that the Datalake Agent scales more efficiently, maintaining
consistent overhead even as database size grows, while the Direct Solver’s token consumption
increases nearly linearly with the number of tables. Additional information on input token usage can
be found in Appendix B.

Figure 3: Comparison of costs for 1000 tasks across methods and LLMs.

Associated Costs. To contextualize token usage, Figure 3 presents a cost calculation based on
average input tokens per task, scaled to 1000 tasks. API costs were taken from official company
specifications [11, 2]. A significant difference emerges between the Direct Solver and the Datalake
Agent. For a table size of 42, the Direct Solver incurs double the cost of the Datalake Agent,
increasing to eight times the cost at 319 tables. For the OpenAI o1 model, this corresponds to a
difference exceeding $450 per 1000 tasks.

6 Conclusion

This study investigates the impact of large-scale databases on LLM performance using NL2SQL
approaches. A total of 23 databases with 319 tables, including both real and simulated data, were
employed. To handle the substantial information volume, the Datalake Agent was introduced,
enabling the model to selectively query only the data required for each task.

Evaluation on 100 Table-QA tasks, divided into simple (single-table) and complex (multi-table) tasks,
across three settings with 42, 159, and 319 tables shows that while the Direct Solver performs well
on smaller datasets, its performance deteriorates sharply as table numbers increase. In contrast, the
Datalake Agent consistently outperforms the direct approach in larger and more complex settings,
while requiring significantly fewer input tokens, thereby reducing computational costs.

Limitations. A key limitation of our agentic system is the potential for infinite reasoning loops. In
some cases, the model struggles to identify the correct tables, leading to repeated requests and incor-
rect answers. A more detailed explanation is provided in the Appendix E. Moreover, the evaluation is
confined to GPT-4 Mini and only a few database settings, which may limit generalizability to broader
scenarios.

Future Work. Future research should extend evaluations to larger and more complex datasets to
assess scalability and generalization more thoroughly. Addressing the infinite loop issue is critical,
as developing strategies to prevent repeated queries could improve reliability and accuracy. Further
studies could explore additional LLMs and more diverse task types to fully understand the potential
and limitations of the Datalake Agent in real-world applications.

To conclude, our Datalake Agent is a first step towards improving the efficiency of NL2SQL in
enterprise use cases. Based on our promising first results, we believe the Datalake Agent can positively
impact the use of LLMs for NL2SQL.

4

Acknowledgements

L.P. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under SFB 1597 (SmallData), grant number 499552394; Frank Hutter acknowledges
the financial support of the Hector Foundation. Finally, we thank the reviewers for their constructive
feedback and contribution to improving the paper.

References
[1] Ming Cheung. A Reality check of the benefits of LLM in business, June 2024. URL http:

//arxiv.org/abs/2406.10249. arXiv:2406.10249 [cs].

[2] Deepseek. Models & Pricing, 2025. URL https://api-docs.deepseek.com/quick_
start/pricing.

[3] Haoyu Dong and Zhiruo Wang. Large Language Models for Tabular Data: Progresses and Future
Directions. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’24, pages 2997–3000, New York, NY,
USA, July 2024. Association for Computing Machinery. ISBN 979-8-4007-0431-4. doi:
10.1145/3626772.3661384. URL https://dl.acm.org/doi/10.1145/3626772.3661384.

[4] Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing
Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun,
Qian Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world
enterprise text-to-sql workflows, 2024. URL https://arxiv.org/abs/2411.07763.

[5] Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing
Suo, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language
models on real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

[6] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330–42357, 2023.

[7] Jinyang Li, Xiaolong Li, Ge Qu, Per Jacobsson, Bowen Qin, Binyuan Hui, Shuzheng Si, Nan
Huo, Xiaohan Xu, Yue Zhang, et al. Swe-sql: Illuminating llm pathways to solve user sql issues
in real-world applications. arXiv preprint arXiv:2506.18951, 2025.

[8] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju Fan, Guoliang
Li, Nan Tang, and Yuyu Luo. A Survey of NL2SQL with Large Language Models: Where are
we, and where are we going?, November 2024. URL http://arxiv.org/abs/2408.05109.
arXiv:2408.05109.

[9] Zeeshan Memon, Muhammad Arham, Adnan Ul-Hasan, and Faisal Shafait. LLM-Informed
Discrete Prompt Optimization. July 2024. URL https://openreview.net/forum?id=
d0jQuZe6k0.

[10] OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. OpenAI Blog, 2024. URL https:
//openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

[11] OpenAi. Pricing, 2025. URL https://openai.com/api/pricing/.

[12] Zipeng Qiu, You Peng, Guangxin He, Binhang Yuan, and Chen Wang. TQA-Bench: Evaluating
LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension,
November 2024. URL http://arxiv.org/abs/2411.19504. arXiv:2411.19504 [cs].

[13] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro
Dobles, Matthias Fey, Jan E. Lenssen, Yiwen Yuan, Zecheng Zhang, Xinwei He, and
Jure Leskovec. RelBench: A Benchmark for Deep Learning on Relational Databases.
Advances in Neural Information Processing Systems, 37:21330–21341, December
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/
25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.
html.

5

http://arxiv.org/abs/2406.10249
http://arxiv.org/abs/2406.10249
https://api-docs.deepseek.com/quick_start/pricing
https://api-docs.deepseek.com/quick_start/pricing
https://dl.acm.org/doi/10.1145/3626772.3661384
https://arxiv.org/abs/2411.07763
http://arxiv.org/abs/2408.05109
https://openreview.net/forum?id=d0jQuZe6k0
https://openreview.net/forum?id=d0jQuZe6k0
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/api/pricing/
http://arxiv.org/abs/2411.19504
https://proceedings.neurips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/25cd345233c65fac1fec0ce61d0f7836-Abstract-Datasets_and_Benchmarks_Track.html

[14] Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. A Survey on Employing
Large Language Models for Text-to-SQL Tasks, November 2024. URL http://arxiv.org/
abs/2407.15186. arXiv:2407.15186 [cs].

[15] Mingzhu Wang, Yuzhe Zhang, Qihang Zhao, Junyi Yang, and Hong Zhang. Redefining
Information Retrieval of Structured Database via Large Language Models, November 2024.
URL http://arxiv.org/abs/2405.05508. arXiv:2405.05508.

[16] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task.
CoRR, abs/1809.08887, 2018. URL http://arxiv.org/abs/1809.08887.

[17] Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Haonan
Chen, Zheng Liu, Zhicheng Dou, and Ji-Rong Wen. Large Language Models for Informa-
tion Retrieval: A Survey, September 2024. URL http://arxiv.org/abs/2308.07107.
arXiv:2308.07107 [cs].

6

http://arxiv.org/abs/2407.15186
http://arxiv.org/abs/2407.15186
http://arxiv.org/abs/2405.05508
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/2308.07107

A The Datalake Agent

Figure 4: Solution process of a Table Question Answering Task using the Datalake Agent

Figure 5: Communication loop before solving a task between model and Datalake Agent

7

B Input Tokens

Figure 6: Required input tokens per test with 42 tables: Comparison of model using Datalake Agent
and Direct Solver

Figure 7: Required input tokens per test with 159 tables: Comparison of model using Datalake Agent
and Direct Solver

Figure 8: Required input tokens per test with 319 tables: Comparison of model using Datalake Agent
and Direct Solver

8

C Performance

Figure 9: Correct answers to simple and more complex tasks with 42 tables

Figure 10: Correct answers to simple and more complex tasks with 159 tables

Figure 11: Correct answers to simple and more complex tasks with 319 tables

9

D Example Tasks for Evaluation

1 Which driver has the most wins in Formual 1?
2 Give me the latest search query on Avito.
3 Give me the titles of the 2 most recent clinical trials.
4 Give me the total number of posts in Stack-Exchange.
5 How many clinical studies are available?
7 How many comments does the most frequently commented post on Stack Exchange have?
8 How many searches did Avito have on April 28. 2015?
9 Name 3 clinical trial sponsors.
10 How many Formula 1 races were there in 2015?
11 Give me the ids of the 10 newest posts from Stack-Exchange.
12 What different member statuses does H&M have?
13 Tell me 3 Formula 1 drivers from Germany.
14 How many users does Avito have?
15 Give me the title of the oldest medical study
16 Tell me the 8 most expensive products from H&M
17 Show me the AccountId of the longest existing user on Stack-Exchange.
18 How many customers at H&M are younger than 40?
19 What is the cheapest advertising on Avito?
20 Which country has the most Formula 1 drivers?

E Handling of Infinite Reasoning Loops

A key limitation of our agentic system is the potential for infinite reasoning loops. In such cases,
the model repeatedly issues the same requests without acquiring any new information, effectively
becoming stuck. For instance, it may continuously request the same metadata for a given table
without progressing further.

Attempts to prevent the model from repeating requests or to encourage it to seek alternative informa-
tion were not successful.

Mitigation Strategy:

Forced Response after 10 Requests: To ensure progress, the system is designed to force the model to
provide an SQL query after 10 repeated requests. This intervention breaks the loop while maintaining
the autonomy of the agent.

This approach provides a practical safeguard against infinite loops and ensures continued evaluation
of the agentic system.

10

	Introduction
	Related Work
	Method
	Experimental Setup
	Results
	Conclusion
	The Datalake Agent
	Input Tokens
	Performance
	Example Tasks for Evaluation
	Handling of Infinite Reasoning Loops

