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Abstract

In new environments, training a Reinforcement Learning (RL) agent from scratch
can prove to be inefficient. The computational and temporal costs can be signifi-
cantly reduced if the agent can learn across diverse environments and effectively
perform transfer learning. However, achieving learning across multiple environ-
ments is challenging due to the varying state and action spaces inherent in different
RL problems. Padding or naive parameter-sharing with environment-specific lay-
ers for different state-action spaces are possible solutions for multi-environment
training. However, they can be less scalable when training for new environments.
In this work, we present a flexible and environment-agnostic architecture designed
for learning across multiple environments simultaneously without padding or
environment-specific layers, while enabling transfer learning for new environments.
We also propose training algorithms for this architecture to enable both online
and offline RL. Our experiments demonstrate that multi-environment training with
one agent is possible in heterogeneous environments and parameter-sharing with
environment-specific layers is not effective in transfer learning.

1 Introduction

In recent years, foundation models in computer vision and natural language processing have been
an irresistible trend. After pretraining a large-scale model on many datasets, this model can be
adapted to downstream tasks by fine-tuning or zero-shot inference with contextual input (Bommasani
et al., 2021). This paradigm is also extended actively to decision-making by utilizing pretrained
representations for planning and reinforcement learning (RL) (Yang et al., 2023). However, unlike
the vision and language domains, many RL problems are defined by their distinct Markov decision
process (MDP). The components of MDP can be different because the state, observation, and action
spaces depend on each problem. So, specialized techniques are required to train a large-scale neural
network for multiple RL problems because of an incompatibility issue caused by fixed-sized input
and output of the neural network. To address this issue, one can utilize padding and masking to data
or use parameter sharing with the environment-specific encoders and decoders. In the continuous
control domain, some related works (Huang et al., 2020; Kurin et al., 2020; Hong et al., 2021;
Gupta et al., 2021; Trabucco et al., 2022; Furuta et al., 2022; Shridhar et al., 2023; Xiong et al.,
2023) used graph neural networks, Transformer, and Hypernetwork architecture with padding or
environment-specific layers to solve the incompatibility issue. Other works (Reed et al., 2022; Lee
et al., 2022; Bousmalis et al., 2023) tried to pretrain large-scale decision transformer model (DT,
Chen et al., 2021) in multiple environments by offline supervised learning with environment-specific
embeddings and tokenization. Due to the excellent representational capability of the Transformer,
it is being incorporated into many reinforcement learning works, and DT appears to be the suitable
model for foundational RL agents. However, there are several issues with using the DT-based policy
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in the online RL setting.
(1) Costs of computation and memory. In the Transformer architecture (Vaswani et al., 2017), the
computational complexity of self-attention operation increases quadratically with the length of the
sequence O(L2). If the context length of DT for taking trajectory grows largely, the memory and
computation cost of the DT-based policy will be prohibitive. The embedded system with limited
network resources and low computational capacity will not be able to equip this model.
(2) Interaction with environment. For training the policy and value function in the online setting,
the policy must collect data through interactions with the environment. When parametrizing the
policy with a large-scale neural network, the speed of data collection and policy training slows
down due to the long inference time from the issue (1), and this becomes severe as the number
of environments increases. To avoid these problems, we can introduce small environment-specific
encoders and decoders. But, whenever a new environment is added, these layers must be added and
learned from scratch. The number of parameters will be increased linearly with respect to the number
of environments, and the interaction with multiple environments can’t be batch-processed.
(3) Data processing. For training the DT-based policies, tokenization and padding are required,
and masking is applied for loss computation. Padding and masking increase memory usage and
computational load during training. For instance, in the gym’s CartPole and Humanoid environments,
the states are 4-dimensional and 376-dimensional vectors, respectively. To simultaneously train on
both environments, one could pad the state from CartPole with 372 zeros to make them of equal
length or embed them to more high-dimensional vectors. However, this is inefficient in terms of
memory usage. On the one hand, in the continuous control domain, discretizing continuous values and
tokenizing them could lead to convergence to a suboptimal policy, potentially resulting in decreased
performance.
In this work, we propose new policy and value architectures that combine standard neural network
building blocks to avoid the above issues and decentralized distributed algorithms to train an agent in
multiple environments. Learning heterogeneous problems that have entirely different state spaces and
action spaces is possible without padding or environment-specific layers by using these architectures.
Our architecture treats state and action as sequences, not requiring an additional environment wrapper
for preprocessing observation and action. We parametrize the policy and value function by using a
sequence-to-sequence model. It can accept various inputs and process continuous and discrete outputs
by separating the decoders for each domain. This approach minimizes the usage of environment-
specific layers, thereby not requiring the new layers when new environments come, and it also
eliminates data processing related to padding and masking. We show that our architecture is useful
in online RL and offline RL. It can learn heterogeneous multiple environments simultaneously. In
some cases, the performances are close to an agent learned in a single environment and better than
environment-specific architecture when conducting transfer learning to new environments.

2 Preliminaries

Multi-Environment Reinforcement Learning. Consider the set of N decision-making prob-
lems {Mi}Ni=1. Each problem can be defined as Markov decision process (MDP) Mi =
{Si,Ai, Ri, Pi, pi(s0)} where Si,Ai are sets of states and actions, Ri : Si ×Ai → R is the reward
function, Pi : Si ×Ai ×Si → R is the transition probability distribution, and pi(s0) : Si → R is the
initial state distribution. The i-th environment determines each i-th component. Multi-environment RL
aims to find the optimal policy π∗ that maximizes the expected discounted return in all environments.
The objective to be optimized in N environments is defined as Equation (1).

J(π) :=

N∑
i

Ji(π), Ji(π) = Es0∼pi(s0)
[ T∑
t=0

γtRi(st, at)
]

(1)

Note that the policy π is shared for multiple environments. In multi-task and meta RL settings, the task
structure is shared; the state and action spaces are the same across tasks. However, multi-environment
RL problems have heterogeneous spaces of state and action. So if {Mi}Ni=1 contains the discrete and
continuous action spaces, the agent is required to be parametrized with multi-modal policy and value
functions. The optimization of the shared policy in the multi-environment setting can also be viewed
as multi-objective optimization, and the solution of the policy will be converged to Pareto optimal
(Sener and Koltun, 2018).

Promixal Policy Optimization. (PPO) PPO (Schulman et al., 2017) is a standard technique to find
optimal policy π∗ with on-policy training. Consider the parametrized policy πθπ and value function
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VθV and πold is the policy used for collecting trajectories. rt(θπ) =
πθπ (at|st)
πold(at|st) is the probability ratio

to be clipped by range ϵ. Ât = Rt − V̂t at timestep t is the advantage estimator computed from
collected experiences. The ratio clipping PPO objective is defined as follows. This can be extended
easily for multi-task settings (MT-PPO, Yu et al., 2020)

J(π) = Êt
[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
(2)

.

Implicit Q Learning. (IQL) IQL (Kostrikov et al., 2021) is a simple and powerful offline RL method
that avoids evaluating actions out of a given dataset. This algorithm treats the state value function as
the random variable for implicitly approximating the policy improvement step. It alternates between
fitting the upper expectile value function by Equation (3) and backing it up into an action-value
function by Equation (4). The policy is made by advantage-weighted behavioral cloning by Equation
(5) without querying out-of-sample actions.

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))]. (3)

LQ(θ) = E(s,a,s′)∼D[r(s, a) + γVψ(s
′)−Qθ(s, a))

2]. (4)

Lπ(ϕ) = E(s,a)∼D[exp(β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)]. (5)

Structured State Space Sequence Model. (S4) S4 (Gu et al., 2021a) is a general-purpose sequence
model that can deal with long-range dependencies. This model can solve long sequence problems
that neither RNNs nor Transformers can address and offer faster inference speeds. They formalize
the long-range sequence modeling as an online function approximation problem. S4 is based on
the state-space model (SSM), which maps function-to-function for continuous input signals. The
Equations of the SSM are defined as follows ẋ = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t). For
dealing with discrete sequences, it should be discretized with step size ∆, which means a resolution
of the input. The Equations of discrete-time SSMs are as follows, assuming Du(t) = 0 because it
can be viewed as a skip connection.

A = (I −∆/2 ·A)−1(I +∆/2 ·A)

B = (I −∆/2 ·A)−1∆B, C = C

xk = Axk−1 +Buk

yk = Cxk
(6)

By initializing the internal state matrix A as a structured HiPPO matrix, it can capture the long-range
dependencies (Gu et al., 2020). The hidden state vector xk is a compressed representation of the
cumulative long-range history. It can be computed autoregressively like the RNN, allowing memory-
efficient inference. From the linear state space layer (LSSL, Gu et al., 2021b), they show that the
Equation (7) for all output sequence y = y1:L from input sequence u = u1:L can be computed
efficiently by parallel convolution where A is fixed HiPPO matrix and K is called SSM convolution
kernel or filter.

yk = CA
k
Bu0 +CA

k−1
Bu1 + · · ·CABuk−1 +CBuk

y = K ∗ u, K ∈ RL = (CB,CAB, ...,CA
L−1

B)
(7)

However, the LSSL has some disadvantages. The computation of the power of the state matrix
is numerically unstable and requires significant memory usage. They address these issues by
parametrizing A as a Diagonal Plus Low-Rank matrix, enabling the fast and stable calculation of
the SSM convolution kernel. We will use the S4 as a dynamic feature extractor for policy and value
functions.

3 Method

3.1 Arbitrary 1D Input-Output Agent

Basic Building Block. Our architecture is inspired by (Kaiser et al., 2017; Metz et al., 2017;
Jaegle et al., 2021; Trabucco et al., 2022). In Figure 1a, the basic building block of policy and
value networks is composed of S4, Transformer, GlobalAveragePooling (GAP), Residual MLP, and
Positional Encoding. To handle various state and action spaces in a multi-environment setting, we
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need a structure that can process arbitrary input and output. For this purpose, We substitute the linear
embedding layer in front of the TransformerEncoder to the S4 layer. The role of the S4 layer can be
viewed as a dynamic feature embedding layer to take various length inputs. In the encoder block,
the S4 layer takes the vector input and expands it to the 1-column matrix by considering the input
dimension as sequence length and then transforms the sequence of scalars to a sequence of vectors.
This matrix feeds to the TransformerEncoder and is averaged on the input dimension by the GAP. In
the middle Residual MLP, we feed the task embedding vector and sum it with a hidden vector from the
encoder. On the other hand, for the decoder block, we stack the same hidden vector from the previous
block up to the output dimension, resulting in a matrix, and then apply positional encoding. After
passing through the S4 and Transformer, the output is averaged on the hidden dimension, resulting in
a vector whose length is the output dimension. The network can take and produce an arbitrary length
vector by these simple procedures. Such a network parametrizes the policy and value functions, and
during the actual learning process, they take context information as input containing the environment
name and the action space.
Design of Policy and Value Network. As shown in Figure 1b, the policy takes an arbitrary length
input vector and then encodes it as a fixed-size hidden vector. Since action space can be discrete or
continuous, we build the decoder layers for each type. Depending on the type of the action space,
the policy generates either a Gaussian distribution or a Categorical distribution. We also add a
state-dependent standard deviation decoder like SAC (Haarnoja et al., 2018) to adjust the degree of
exploration depending on the environment. Note that our basic building block can also construct
arbitrary input-output Q networks. So, our architecture can be utilized in off-policy, offline methods.
If this is employed in the algorithm that uses both the state-action value function and state value
function, like IQL (Kostrikov et al., 2021), multiple offline datasets can be simultaneously trained
without the parametrized embedding functions for each environment.

(a) Basic Building Block. (b) Policy Network and Value Networks.

Figure 1: The building blocks for policy and value networks. B corresponds to the batch size, I to
the input dimension, H to the hidden dimension, and O to the output dimension. The shapes of the
tensors are described next to the block in Figure 1a. They consider both the input and output as
sequences. The vector coming out of the encoder block and the task embedding vector are summed
and then fed into the Residual MLP. By receiving the output dimension, they stack up the hidden
vector from Residual MLP to the output dimension. Note that GAP is applied to the input dimension
in the encoder while it is applied to the hidden dimension in the decoder. By this procedure, it can
handle states and actions of arbitrary lengths.

3.2 Stabilizing Multi-Objective Optimization

Normalization. Different environments have varying ranges for states and rewards. We observed that
the value loss fluctuated significantly when optimizing a value network for multiple environments
simultaneously, making it challenging to learn and converge the value function properly. We normalize
the state and reward to stabilize the value loss by using the running mean and standard deviation
(Hessel et al., 2019).
Gradient Clipping. In multi-task learning, if the magnitude and similarity of the gradients for each
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task differ, a particular task may dominate, leading to a negative transfer or suboptimal performance
for other tasks (Yu et al., 2020). Kurin et al., 2022 showed that a simple unitary scalarization and
regularization could improve multi-task performance. Inspired by this, we clip the gradient with the
norm to avoid task domination and stabilize the optimization procedure.

3.3 Decentralized Distributed Algorithm for Heterogeneous Environments

Standard RL benchmarks and frameworks provide the interface for parallel environment execution
(Brockman et al., 2016; Raffin et al., 2021; Liang et al., 2018; Weng et al., 2022a). However, the
provided VectorEnv classes do not support parallel processing for heterogeneous environments.
Different types of environments essentially cannot be batch-processed without an interface that
supports padding and masking due to their distinct state and action spaces. Unless there isn’t a
specially designed environment like MetaMorph (Gupta et al., 2021), we should loop over the number
of environments. We need additional techniques for efficient multiple environment rollout and
optimization. We adopt and modify the DD-PPO (Wijmans et al., 2019) method for heterogeneous
settings. The core idea is to run the copies of policy and value networks on multiple GPUs using
DistributedDataParallel, performing rollout in different types of environments simultaneously, and
then computing and synchronizing the gradients for training. We describe the entire process in the
Algorithm 1. Note that S is the number of sub-environments for each worker. If we want to train
32 environments with 8 GPUs, S is 4, and the worker iterates over it. This decentralized distributed
training procedure also can be applied to IQL (Appendix, Algorithm 2). We create as many replay
buffers as there are environments, load the offline datasets, and then assign copies of the model
parameters and buffers to each GPU worker to perform offline multi-environment training.

Algorithm 1 DD-PPO for Heterogeneous Online Multi-Environment RL

Require: number of the workers W , copies of policy and value parameters {θw}Ww=1, environments
{Ei}Ni=1, storages {Bi}Ni=1.

1: Initialize parameters and assign S environments and S on-policy storages on each worker,
S = N/W .

2: for s = 1 to S do
3: Collect experiences in Es for T timesteps with policy πθw on distributed parallel workers
4: Compute advantage estimates Â1, ...ÂT
5: end for
6: for k = 1 to K do
7: for m = 1 to M do
8: Jtotal(θ

m
w ) = 0

9: for s = 1 to S do
10: Get minibatch Bms from Bs and calculate sum of policy and value losses Js(θmw )
11: Jtotal(θ

m
w ) = Jtotal(θ

m
w ) + Js(θ

m
w )

12: end for
13: Compute gradients of the sum of loss ∇θJtotal(θ

m
w ).

14: θm+1
1:W = ParamUpdate

(
θm1:W ,AllReduce

(
∇θJtotal(θ

m
1 ), ..., Jtotal(θ

m
W )

))
.

15: end for
16: end for

4 Experiments

We train a multi-modal agent that can perform in heterogeneous environments. We evaluate our
architecture and conduct multi-environment training in gym environments: Classic Control, Mujoco,
and Atari. We aim to demonstrate whether multi-environment training is possible in the experiment.
In online RL, we utilize the Envpool library (Weng et al., 2022b) to accelerate simulation execution
speed, and we employ the D4RL dataset for offline RL (Fu et al., 2020).
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4.1 Online and Offline Multi-Environment Training

Online Multi-Environment Training. First, we try to train the agent in 16 heterogeneous en-
vironments (Classic control, Mujoco). Except for four environments, Ant-v4, BipedalWalker-v3,
Humanoid-v4, and Walker2d-v4, they perform similarly to or better than agents trained in a single
environment. We hypothesize that the reason the 4 environments are not performing well is because
they are more dominantly optimized for the 12 remaining environments.

Figure 2: Results of multi-environment training in 16 heterogeneous environments on 4 seeds. The y-
axis is the mean episodic return of 32 parallel same environments. It is possible to simultaneously train
on both Classic control and Mujoco domains with a 1D-agnostic architecture. 6 Classic control envi-
ronments: Acrobot-v1, BipedalWalker-v3, CartPole-v1, LunarLander-v2, LunarLanderContinuous-
v2, MountainCarContinuous-v0. 10 Mujoco environments: Ant-v4, HalfCheetah-v4, Hopper-
v4, Humanoid-v4, HumanoidStandup-v4, InvertedDoublePendulumn-v4, InvertedPendulumn-v4,
Reacher-v4, Swimmer-v4, Walker2d-v4.

Offline Multi-Environment Training. We verify the feasibility of Offline Multi-Env RL. We im-
plement the Decentralized Distributed IQL (DD-IQL) and conduct offline training on eight datasets
simultaneously. Table 1 shows the normalized scores of IQL and DD-IQL. The training results for
IQL are taken from Tarasov et al., 2022. In the DD-IQL, the policy and value functions are trained
simultaneously using eight offline datasets. Except for HalfCheetah, Hopper, and AntMaze, the
performances of DD-IQL are almost similar to IQL.

4.2 Online Multi-Environment Pretraining and Transfer Learning

This experiment aims to show that Multi-Env Agnostic Agents achieve performance close to the
Single-Env Agent (an agent learned in a single environment) and to the Multi-Env Specific Agent
(an agent having environment-specific encoders and decoders for different state-action space). The
Multi-Env Specific Agent is a baseline with specific layers for each environment’s input and output
and a shared network in the middle. This architecture of the baseline is similar to parametrized
embeddings in Gato (Reed et al., 2022). This means that the Multi-Env Specific Agent has an Encoder
and Decoder blocks for each environment. In contrast, the encoder and decoder in Multi-Env Agnostic
Agent are shared for multiple environments. Multi-Env Agnostic S4 Agent means that the embedding
layer in front of the TransformerEncoder is the S4 layer. Similarly, Multi-Env Agnostic RNN Agent
uses Bidirectional-GRU as a dynamic embedding layer. We try pretraining and transfer learning the
three combinations of environments: 1) Classic-to-Mujoco, 2) Mujoco-to-Classic, and 3) Mix-to-Mix.
All experimental results are normalized as normalized score = 100∗ score−random score

max score of single agent−random score

based on the mean episodic returns of the Single-Env Agent and the Random Agent.
Pretraining. In Figure 3, the results represent the performances from learning eight environments
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Table 1: Normalized performances in eight D4RL environments. While it didn’t match the perfor-
mances of the single-env policy across all environments (achieving about 89% of the performance), a
possible advantage is its ability to perform transfer learning on new heterogeneous offline datasets.

Dataset IQL (single-env policy) DD-IQL (multi-env policy)

halfcheetah-medium-expert-v2 94.74± 0.52 82.07± 8.93
hopper-medium-expert-v2 107.42± 7.80 64.35± 2.34
walker2d-medium-expert-v2 111.72± 0.86 105.08± 4.59
antmaze-umaze-v2 77.00± 5.52 63.97± 9.85
pen-expert-v1 128.05± 9.21 120.84± 14.22
door-expert-v1 106.65± 0.25 105.19± 0.12
hammer-expert-v1 128.68± 0.33 125.4± 1.61
relocate-expert-v1 106.11± 4.02 103.02± 0.53

Total avg 107.54 96.22

Figure 3: Mix-to-Mix multi-environment pretraining results on 4 seeds. The Single-Env Agent is
parametrized only by Residual MLP blocks and represents the results from training on the single
environment. The Multi-Env Specific Agent has multiple encoders and decoders that are parametrized
by Residual MLP for processing the input and output for each environment, with a shared middle
layer. The Multi-Env Agnostic Agent shares the entire network for multiple environments. In the
case of S4, compared to Bi-GRU, it has the favorable characteristic of having a bounded gradient,
which may result in less variance in performance during the training process.

simultaneously. The black line indicates the performance of the Single-Env Agent, and the black
dotted line represents its peak performance. Although there is a performance decline in the HalfChee-
tah environment for the Multi-Env Agnostic Agents, they approach the performance of both the
Multi-Env Specific Agent and Single-Env Agent in other environments. To compare the architectures,
we pretrain for 1 million steps and then perform transfer learning on new environments for another 1
million steps.
Transfer Learning. Figure 4 shows transfer learning results on eight new environments. The results
containing the word ’Scratch’ mean that the agent is trained from scratch (not pretraining and transfer
learning). For the typical transfer learning setting, the Multi-Env Specific Agent adds new encoder
and decoder blocks for new environments. A noteworthy thing is the consistently lower performance
of the Multi-Env Specific Agent when conducting transfer learning across all environments. This in-
dicates that for new environments, it might be better to train from scratch rather than perform transfer
learning, and the Multi-Env Agnostic Agents result in good performance in most environments. An
intuitive reason for this result could be the difference in the weight distribution of the Residual MLP
layer in the Multi-Env Specific Agent compared to a new layer, potentially hindering optimization. In
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Figure 4: Mix-to-Mix multi-environment transfer learning results on 4 seeds. Note that the Multi-Env
Specific Agent performs poorly in transfer learning when faced with new environments (Blue). The
number of parameters for the Multi-Env Specific Agent increases due to the introduction of new
layers, going from 5.8M in pretraining to 10.9M in transfer learning. In contrast, the Multi-Env
Agnostic S4 Agent has 4M parameters. The lower performance of the Multi-Env Specific Agent
Transfer could be due to the difficulty of optimization from different weight distributions between
layers.

environments like Acrobot-v1 and Pendulumn-v1, experiences from pretraining seem to assist during
transfer learning.

4.3 Ablation Study

We conduct ablation studies for measuring the performance when learning multiple environments
with and without the middle Residual MLP layer and TransformerEncoder. We compare mean
episodic returns in 3 cases: Pretraining, Transfer Learning, and Scratch Learning. In Figure 5, we can
observe that, excluding Ant-v4, HalfCheetah-v4, and Reacher-v4, using the Transformer results in
faster learning in the other five environments and the results in Appendix B also show a similar trend.
Whether the Transformer is helpful will need to be analyzed by conducting extensive experiments in
more environments.

5 Related Works

Previous research related to multi-environment reinforcement learning can be categorized into two
types: Online Multi-Env RL and Offline Multi-Env RL. Most of these studies utilize padding,
masking, and tokenization to preprocess data or build the environment’s interface and ensure that
agents handle the same state and action. The position of our work is in the middle of those two areas
by considering heterogeneous gym environments: Classic Control, Mujoco, and Atari.
Online Multi-Env RL. Huang et al., 2020 proposed a method to learn multiple morphologies
with a modular policy. Subsequent papers focused on whether information about the morphology
was necessary, based on transformer models (Kurin et al., 2020, Hong et al., 2021, Trabucco
et al., 2022). Gupta et al., 2021 demonstrated that transformer-based policy can be generalized to
unseen morphologies and new dynamics. The characteristics of these papers involve performing the
attention mechanism on the feature dimension, which effectively encodes morphology information,
distinguishing different environments and tasks. However, these works were limited to the continuous
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Figure 5: Results of ablation study about Mix-to-Mix multi-environment pretraining. In five environ-
ments, Equipping the TransformerEncoder block is beneficial.

control domain. On the one hand, Lu et al., 2023 first proposed the concept of Multi-Environment
Meta-Learning and training the policy on multiple environments with random projection. In this
concept, the RL agent learns multiple environments simultaneously and adapts to new environments
with little experience. It might potentially be the necessary direction for the foundation model of RL
agents.
Offline Multi-Env RL. Gato (Reed et al., 2022) and Multi-Game Decision Transformer (Lee et al.,
2022) are the largest works on the Multi-Env RL. Their main characteristics are discrete tokenization
and offline supervised sequence modeling with a Decision Transformer. By operating the attention
mechanism on the temporal dimension, the transformer model predicts the next token conditioned by
all previous tokens. Their works demonstrated that the DT-based policy achieved good performance
across multiple environments. However, these models are parameter-heavy to be applied in the online
RL setting. Furuta et al., 2022 developed multi-task benchmarking environments MxT-Bench and
introduced morphology-task graph for unified representation. The model in this work showed good
generalization performance for unseen morphologies and tasks by using data collected by a policy
trained with PPO and conducting behavior distillation.

6 Conclusion

We proposed an agnostic architecture capable of multi-environment reinforcement learning regardless
of the environment type by extending the multi-task RL. This architecture used fewer parameters
than environment-specific architecture and was more beneficial in transfer learning. We combined
the distributed training technique and conventional methods designed for stabilizing optimization
to efficiently train the agent. This architecture was extended to offline RL by constructing arbitrary
input-output action-value functions and showed near single-env learned agent’s performance. In the
future, it can be trained on the image-based RL domain with arbitrary image shape by introducing
general-purpose CNN. However, since our architecture also used the Transformer, there remains
a drawback. As the length of the input increases, the memory usage and computational load also
increase. If we aim to introduce a multi-environment RL agent to real-world problems, it would be
desirable to eliminate the Transformer for low-resource applications. Eventually, for the foundation
model of reinforcement learning, we need a flexible and multi-modal architecture that can handle both
continuous, discrete action spaces and the arbitrary shape of tensors as input and output. Moreover,
we have to develop an RL algorithm that is not limited to only online or offline RL and implement
efficient interfaces that can process heterogeneous environments.
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A DD-IQL Algorithms

Algorithm 2 DD-IQL for Heterogeneous Offline Multi-Environment RL

Require: number of the workers W , copies of policy and value parameters {θw}Ww=1, environments
{Ei}Ni=1, replay buffers {Bi}Ni=1.

1: Initialize parameters and assign S environments and S replay buffers on each worker, S = N/W .
2: for t = 1 to T do
3: Ltotal = 0
4: for s = 1 to S do
5: Get minibatch Bs from Bs and calculate loss LV , LQ, Lπ with Equations (3), (4), (5)
6: Lenv = LV + LQ + Lπ
7: Ltotal = Ltotal + Lenv
8: end for
9: Compute gradients of the sum of loss ∇θwLtotal.

10: Update networks. θt+1
1:W = ParamUpdate

(
θt1:W ,AllReduce

(
∇θ1Ltotal, ...,∇θWLtotal

))
.

11: end for

B Hyperparameters

Hyperparameter Value

actor_lr 0.0003
critic_lr 0.0005
update_epochs 10
num_minibatches 8
max_grad_norm 0.5
clip_coef 0.2
entropy_coef 0.0
gamma 0.99
gae_lambda 0.95

(a) PPO Hyperparameters.

Hyperparameter Value

d_model 256
activation GELU
depth of ResMLP 2
hidden size of ResMLP 256
dropout 0.1
dim_feedforward 256
num_head 1
num_encoder_layers 2
d_state of S4 256
num_layers S4 2

(b) Hyperparameters of NN.

Table 2: Hyperparameters used in experiments
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C Additional Experiment of Multi-Environment Training

C.1 Atari and Mujoco

We tried to construct a network to handle arbitrary image resolutions using S4ND (Nguyen et al.,
2022) or CCNN (Knigge et al., 2023) for a general-purpose multi-modal agent. However, their
learning speed was so slow that we could not conduct the experiment. Therefore, we explore using
ResNet (He et al., 2016) to see if a multi-modal policy could be trained. We build a multi-modal policy
by adding ResNet for the encoder Block in Figure 1a and simultaneously train on 6 Atari games and 6
Mujoco environments. Image inputs are embedded by the ResNet and fed to Residual MLP. The Atari
games share the ResNet encoder, Residual MLP, and discrete S4-Transformer decoder. In Figure 6,
the performances of multi-modal policy are poor in Atari games. It requires 20 million frames to
achieve these performances, showing sample inefficiency. Due to the challenges of multi-objective
optimization, hyperparameters might not be effective for multi-environment settings. We need to
conduct an extensive hyperparameter search for this setting. In future research, architectures that
work for all Atari games have to be investigated.

Figure 6: Results of multi-environment training in 16 heterogeneous environments on 4 seeds. The
y-axis is the mean episodic return of 32 parallel same environments. While the sample efficiency
and performance are low in the Atari environments, it suggests that it is possible to simultaneously
train on both Atari and continuous control domains with a multi-modal policy. 8 Atari games:
BeamRider-v5, Breakout-v5, Freeway-v5, Frogger-v5, Kaboom-v5, Pacman-v5, Pong-v5, Seaquest-
v5. 8 Continuous control environments: Ant-v4, BipedalWalker-v3, HalfCheetah-v4, Hopper-v4,
Humanoid-v4, InvertedDoublePendulumn-v4, Swimmer-v4, Walker2d-v4.
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D Additional Experiments Results of Pretraining and Transfer Learning

D.1 Classic-to-Mujoco

Figure 7: Classic-to-Mujoco multi-environment pretraining results.

Figure 8: Classic-to-Mujoco multi-environment transfer learning results.
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D.2 Mujoco-to-Classic

Figure 9: Mujoco-to-Classic multi-environment pretraining results.

Figure 10: Mujoco-to-Classic multi-environment transfer learning results.
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E Ablation study

E.1 Transfer learning

Figure 11: Results of ablation study about Mix-to-Mix multi-environment transfer learning.

E.2 Scratch learning

Figure 12: Results of ablation study about Mix-to-Mix multi-environment scratch learning
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