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Abstract

The success and safety of a Search and Rescue (SAR) team
hinge on routing, making it an integral part of any SAR mis-
sion. Consequently, an Artificial Social Intelligence (ASI)
agent aware of the “good” available routes in a mission is
a very desirable asset for a SAR team. Such awareness is
contingent on having superior knowledge of the environment
and understanding the dynamics of the SAR team. An ASI
agent equipped with this capability can utilize it while rea-
soning about the mission, similar to how a human may use
real-time GPS route suggestions from a navigation appli-
cation. This feature was historically infeasible for real-time
ASI agents because the problems were computationally in-
tractable. However, recent advances in Graph Neural Net-
works, transformers, and attention models make them candi-
dates to be leveraged as neural heuristics in routing problems
to quickly generate near-optimal routes. This paper describes
a sequential decision framework based on neural heuristics
to devise such routes for participants in the DARPA ASIST
Minecraft SAR Task and reports our initial findings.

Introduction
The success and safety of a SAR team hinge on routing,
making access to a trusted advisor an indispensable asset.
Although many factors impact trust in advisors, expertise is
fundamental (French, Raven, and Cartwright 1959; Bonac-
cio and Dalal 2006). Thus, a SAR ASI agent must have
demonstrable expertise in the real-time routing of teams.

A trusted SAR ASI that is equipped with routing tech-
nology is similar to a driver with a real-time GPS naviga-
tion application. The recommendations that an app provides
are based on critical information which it can easily access
and process, such as road conditions, traffic jams, accidents,
etc. Obviously, this is not something a driver can readily
do while traveling—but drivers are also privy to their own
private information, such as preferences and physiological
states. A driver with a car full of hungry kids, for example,
may choose to stop and eat dinner early after the app recom-
mends a re-route rather than following the recommendation.
Critically, this decision does not make the re-routing rec-
ommendation any less valuable. The driver trusted the app,
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but used private information to make a personal and rational
decision. Just like the app performs real-time path planning
and provides options to the user based on the current infor-
mation state, the SAR ASI agent ingests routing suggestions
and combines them with other information that it has for the
mission and the SAR team it is assisting. Then, the SAR ASI
agent makes informed recommendations to the SAR team.

SAR missions burden rescuers with continual decisions
about how to traverse an environment. These decision are
frequently made under extreme conditions and often from
very limited information, both of which place significant
stress on humans and impact their decision making capacity
(Starcke and Brand 2016). One of these stressers is enough
to warrant technological help, but more troublesome is the
NP Hard nature of routing in SAR missions. SAR routing is
akin to the family of Traveling Salesman Problems (TSPs)
which are also NP Hard and studied extensively in Oper-
ations Research. However, the most advanced Operations
Research methodologies cannot generate real-time guaran-
teed optimal solutions for TSP problems (save for small net-
works). There are a number of heuristics available to find
candidate solutions (Boussaı̈d, Lepagnot, and Siarry 2013),
and many practical applications utilize such heuristics.

An insight from studying TSPs is that the problem in-
stances often share key characteristics or patterns. Cappart
et al. (2021) illustrate this with a trucking company rout-
ing problem in which the company needs to generate daily
routes for the same city, but with slight differences due to
traffic conditions. Such similarities bring opportunities for
the data-dependent machine learning approaches that exploit
these patterns (Bengio, Lodi, and Prouvost 2021). Recently,
Graph Neural Networks (GNNs) with attention mechanisms
have become strong heuristic alternatives for combinatorial
optimization problems (Cappart et al. 2021). We leverage
such an approach as a neural heuristic to quickly generate
good paths that exploit the similarities in routing require-
ments of a Minecraft SAR task. A real-time ASI agent proto-
type can utilize this capability to explore the routing options
available to the SAR team under different conditions.

Background
Combinatorial optimization (CO) is a well-established inter-
disciplinary area with many critical real-world applications



including routing (Korte and Vygen 2012). For a given prob-
lem, CO tries to optimize a cost (or objective) function by
selecting a subset from a finite set which is subject to con-
straints on the selection. The goal of CO is to find a unique,
optimal solution to each problem. This is not always practi-
cal, however, due to the complexity of problems. Practition-
ers turn to problem-specific heuristic methodologies in such
instances (Boussaı̈d, Lepagnot, and Siarry 2013).

Graph Neural Networks (GNNs) are a powerful machine
learning architecture that leverages structural, relational, and
compositional biases to facilitate geometric deep learning
(Gilmer et al. 2017). GNNs aggregate information into sim-
pler representations of nodes and edges from structural and
feature-based (e.g. node or edge type) graph data. By pa-
rameterizing this aggregation, they can be trained in an end-
to-end fashion against a loss function. What differentiates
GNNs from their predecessors, convolutional and recurrent
neural networks, is the ability to operate on higher com-
plexity data than what can be represented in regular Eu-
clidean structures, e.g., a picture (2D) or text (1D). GNNs
accomplish this by being order-invariant—they propagate on
each node in the graph independently and ignore the input
order—and by using the graph structure to guide propaga-
tion. These innovations empower GNN models to “reason”
about a graph, that is, draw general inferences, and then use
those inferences to successfully make predictions and clas-
sifications (Zhou et al. 2020). Recently, GNNs have also
been utilized as neural heuristics to generate solutions for
CO problems (Vesselinova et al. 2020). The central promise
of GNNs in this role is that the learned vector representations
encode crucial graph structures to help solve a CO problem
more efficiently (Cappart et al. 2021).

Kool et al. (2018) proposed a transformer-like encoder-
decoder architecture based on Graph Attention Networks
(Veličković et al. 2017), a well-known GNN architecture
with attention, for general routing problems. In this frame-
work, an encoder-decoder neural network is trained on ran-
domly generated routing problems with network sizes simi-
lar to a target problem. The training leverages an actor-critic
reinforcement learning approach that circumvents the need
for the optimal solutions to the training instances. Although
the training needs to be done in advance, with a trained
model it is possible to quickly generate very good solutions
to SAR routing problems. The work depicted in this paper
leveraged the Kool et al.’s codebase (2018) (ALSR code-
base) and augmented it for our task.

DARPA ASIST Minecraft SAR Task
The DARPA ASIST Minecraft SAR task (“our” task) is a
game-based simulated training environment designed with
the explicit purpose of developing ASI agents. The task
places participants in a Minecraft environment where they
attempt to save victims of an urban disaster and earn points
for doing so. Victims are either non-critical or critical, the
latter of which are worth more points but take a team ef-
fort to save. The environment includes risks, which are lo-
cations where a player is frozen until a teammate rescues
them. There is also rubble, which can be cleared, that may
block access to victims. Teams consist of three participants,

and each participant can select one of three roles: medical
specialist (medic), hazardous material specialist (engineer),
and search specialist (transporter). Medics can triage victims
and rescue frozen teammates, engineers can clear rubble,
and transporters can transport victims. Each role is associ-
ated with a tool that expires after so many uses and must be
renewed. Further details about the environment are available
in the preregistration (Huang et al. 2021).

Solution Approach
Participants in a Minecraft SAR experiment face routing de-
cisions akin to a Vehicle Routing Problem (VRP), which is a
type of TSP in the Operations Research literature. A VRP is
a combinatorial optimization problem with an objective to
identify optimal routes for each vehicle in a delivery fleet.
For example, in the Minecraft SAR environment, triaging
victims, clearing rubble, deactivating freezing plates, and
converging at critical victims are all demand points (cus-
tomer locations) that the participants need to visit to com-
plete the SAR task. Consequently, VRP models can provide
routing decisions for planning a participant’s path. Differ-
ent VRP models can assist in capturing different aspects of
the Minecraft SAR task. For example, the capacitated VRP
(CVRP) model, which defines vehicle capacities, can model
tool durability, whereas the CVRP with Profits (CVRPP)
model can assign unique rewards to different demand points.

We address routing for the Minecraft SAR teams in a se-
quential decision-making framework via defining separate
VRP models for each team member. Each team composition,
e.g., one medic - two engineers or one medic - one engineer -
one transporter, defines a different sequence of VRP models.
Suggested routes for one model informs the definition of the
next model. For example, suppose that we generated paths
for the medic with the CVRP model under the assumption
that there is no rubble. An engineer must clear the rubble
blocking a victim before the medic arrives at this location
for the paths to be valid. This forms the basis for the engi-
neer routing model definition, which is akin to the CVRPP.
In this definition, we set up rewards if the engineer can clear
path rubble before it is needed or if the engineer can be at a
critical victim location near the same time as the medic so
that triage can start.

Each team composition defines a different sequential
decision-making problem. When we have completed the
model definitions for all team compositions, we can com-
pare the results across teams. Here, we only define a (medic,
engineer, engineer) team for demonstration purposes. One
of the main assumptions made with this team composition is
that the second engineer switches to the medic role if time
permits and starts triaging victims in reverse order from the
medic routing solution. Figure 1 depicts the routing problem
definition process for this team composition in detail.

Our sequential decision-making framework can start at
any arbitrary point during an experiment. Thus, it is possible
to run the framework and generate solutions for any combi-
nation of victims, rubble, and freezing plates. Additionally,
the framework can also be initialized with the information
that participants have (or should have), yielding solutions
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Figure 1: The sample process to generate a complete routing
solution for a (medic, engineer, engineer) team

representative of participant knowledge states. Such a capa-
bility also allows the ASI agent to compose what-if type of
questions to develop a better intuition on the routing options
available to the team under different assumptions.

Solution Pipeline
Our framework adapts the ALSR codebase. We trained sep-
arate models for the medic and engineer roles using vari-
ous network sizes so that the solution generation process can
utilize the appropriate model to produce routes. Save a few
modifications to set up the routes correctly, we directly uti-
lized a CVRP model native to the ALSR codebase for train-
ing medic routes. We had to update the ALSR codebase for
training CVRPP models for the engineer role. For instance,
we added timing-based penalties to the objective function to
make the engineer route better aligned with the medic route.
We defined two types of penalties: (1) Being late, e.g., there
is a penalty if the engineer clears rubble later than the medic
needs it; and (2) Being off-sync, e.g., there is a penalty if
the engineer visits critical victims or freezing plates before
or after the medic’s visits. Algorithm 1 presents the CVRPP
model generation in detail. In this model, parameters con-
trol the weights for each type of penalty and the length of
the proposed route in the objective function.

The ALSR codebase strictly requires using 2D coordi-
nates (between 0 and 1), not distances between nodes, as
input. We addressed this requirement by setting up four ab-
straction levels of the Minecraft SAR task maps. The low-
est abstraction is the original task map (Saturn) (Figure 2a).
Our second abstraction level is a semantic graph that cap-
tures all the main map features and structures (rooms, vic-
tims, rubble, and the connection of them) needed for navi-
gation decisions (Figure 2b). Each role has objective nodes,
e.g., the medic role needs only the victim nodes, whereas
the engineer role requires the rubble nodes directly block-
ing victims, the critical victims, and the freeze plates. The
third abstraction level is a distance matrix capturing pair-
wise distances for all objective nodes (Figure 2c), where Di-

Algorithm 1: Training Pipeline for the Engineer’s
Routing Model

Input: trained medic model modelm, normal victims
Vn, high-value victims Vh, rubbles R,
freezing plates F , medic tool life Tm,
engineer tool life Te, mismatch penalty
coefficient α, rubble penalty coefficient β

Output: Trained Engineer model modele
Initialize Engineer model modele
Initialize Medic Graph Gm and Engineer Graph Ge

repeat
Gm ← RandUnif2D(|Vn|+ |Vh|+ 1)
Medic Route Rm ← modelm(Gm, Tm)
foreach node u ∈ Gm do

if u ∈ Vh ∪R ∪ F then
Ge ← Ge ∪ {u}

end
end
Engineer Route Re ← modele(Ge, Te)
Mismatch Penalty Pm ← 0
Rubble Penalty Pr ← 0
foreach node u ∈ Ge do

tum ← time(Rm, u), tue ← time(Re, u)
if u ∈ Vh ∪ F then

Pm ← Pm + l2(t
u
m, tue )

end
if u ∈ R and tue > tum then

Pr ← Pr + 1
end

end
cost← |Re|+ α · Pm + β · Pr

Update modele parameters based on cost
until convergence

jkstra’s algorithm (Dijkstra 1959) is utilized to calculate the
distances between objective nodes directly based on the se-
mantic graph representation (Figure 2b). The fourth abstrac-
tion level is a set of 2D coordinates between 0 and 1 dictated
by the ALSR codebase. Because the distance matrix gener-
ated in the third abstraction level is non-euclidean, we per-
formed Metric Multidimensional Scaling (mMDS) (Kruskal
1978; Cox and Cox 2008), also known as Principal Coordi-
nate Analysis (PCoA), to transform the distance matrix into
coordinates in high-dimensional space (∼36 dim). We then
used the John-Lindenstrauss Transform (JLT) (Johnson and
Lindenstrauss 1984) to generate 2D coordinates from those
in the high-dimensional space while preserving distance in-
formation from the initial matrix (Indyk, Matoušek, and
Sidiropoulos 2017). As the last step, the output coordinates
from JLT are scaled to [0, 1] to finalize the fourth abstraction
level of the map (Figure 2d). We perform route planning via
neural heuristics on the fourth abstraction level and convert
the generated routes back to the semantic map representation
for visualization, analysis, and interfacing purposes.



a) Level 1: The Original Saturn Map
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b) Level 2: The Semantic Map
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Figure 2: Four Abstract Levels of the Saturn Map. a) Plan view of a representative Saturn map in its original form. b) Semantic
map with victims/rooms/connections extracted. Note: the map structures are consistent with that in (a), but victim distribution
is different. c) Distance matrix (in meters) of objective nodes extracted. d) An euclidean 2-dimensional layout transformed from
the distance matrix using mMDS and JLT. Coordinates are scaled to [0-1]. A sample routing solution with three routes is shown.

Exploratory Results
We ran two experiments with our task on the Saturn B map
(see Huang et al. 2021). Both assumed the team composition
described in the Solution Approach section. The first experi-
ment focused on generating a complete solution for the task.
Our sequential decision-making framework generated a so-
lution with a perfect score of 750, an average distance trav-
eled per participant of 1646 blocks, and completed the mis-
sion in 802 seconds. In comparison, the four teams from the
Human Subjects Research (HSR) trials which started with
the same team composition—trials 416, 450, 508, and 523—
averaged 392.5 points and a distance of 2974 blocks per par-
ticipant during their 900 second missions. The second exper-
iment focused on selecting an arbitrary point in a trial and
running our pipeline from that point onward. For this exper-
iment, we selected trial 416, and we ran our pipeline given
the scenario state at time 10:44 (when a role change from an
engineer to medic happens). Our pipeline suggests a solu-
tion for the remaining 4:16 of the mission that improves the
total score from 480 to 620 points.

Discussions and Future Work
Our pipeline generated superior routes to those followed by
HSR teams. This is expected since the framework had access
to the maps and victim locations, meaning it had the required
information to generate near-optimal routes. Nevertheless,

these results showed that our framework has the potential to
be a trusted tool to service a SAR ASI agent. The ability to
quickly generate routing solutions under different conditions
would allow the ASI agent to better reason about what routes
are available to the SAR team while intervening.

We plan to complete our framework for all possible team
compositions and run experiments to compare them in the
short term while setting up an interface for interaction with
the real-time ASI agent prototype. We will also exploit the
decoding stage of our framework by augmenting the mask-
ing component in the ALSR codebase to better handle CO
model constraints and resolve potential deadlocks, e.g., a
medic waits for the engineer to clear rubble, where the engi-
neer waits for the medic at a critical victim. In the medium
term, we will explore avenues to generate solutions concur-
rently for all team members directly on the third abstraction
level—the distance matrices based on the semantic map.

Conclusions
We depicted a sequential decision-making framework lever-
aging neural heuristics to quickly inform a real-time ASI
agent on routing options available to a SAR team under dif-
ferent conditions given the state of the SAR mission. Such
an agent could leverage this framework as a trusted tool for
routing when reasoning about how to assist the SAR teams
better in Minecraft SAR experiments.
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Indyk, P.; Matoušek, J.; and Sidiropoulos, A. 2017. 8: low-
distortion embeddings of finite metric spaces. In Handbook
of discrete and computational geometry, 211–231. Chapman
and Hall/CRC.
Johnson, W. B.; and Lindenstrauss, J. 1984. Extensions of
Lipschitz mappings into a Hilbert space 26. Contemporary
mathematics 26.
Kool, W.; Van Hoof, H.; and Welling, M. 2018. At-
tention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475 .
Korte, B.; and Vygen, J. 2012. The traveling salesman prob-
lem. In Combinatorial Optimization, 557–592. Springer.
Kruskal, J. B. 1978. Multidimensional scaling. 11. Sage.

Starcke, K.; and Brand, M. 2016. Effects of stress on de-
cisions under uncertainty: A meta-analysis. Psychological
bulletin 142(9): 909.
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