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Abstract
Large language models achieve state-of-the-art
performance but are costly to fine-tune due to
their size. Parameter-efficient fine-tuning meth-
ods, such as prompt tuning, address this by re-
ducing trainable parameters while maintaining
strong performance. However, prior methods tie
prompt embeddings to the model’s dimensionality,
which may not scale well with larger LLMs and
more customized LLMs. In this paper, we propose
Ultra-Low-dimensional Prompt Tuning (ULPT),
which optimizes prompts in a low-dimensional
space (e.g., 2D) and use a random but frozen ma-
trix for the up-projection. To enhance alignment,
we introduce learnable shift and scale embeddings.
ULPT drastically reduces the trainable parame-
ters, e.g., 2D only using 2% parameters compared
with vanilla prompt tuning while retaining most of
the performance across 21 NLP tasks. Our theo-
retical analysis shows that random projections can
capture high-rank structures effectively, and ex-
perimental results demonstrate ULPT’s competi-
tive performance over existing parameter-efficient
methods.1

1. Introduction
Fine-tuning large language models (LLMs) is essential for
adapting them to specific tasks and controlling their out-
puts (Raffel et al., 2020; Wei et al., 2022a). However, the
enormous size of LLMs makes full fine-tuning prohibitively
resource intensive, as it involves updating millions or even
billions of parameters. To address this challenge, parameter-
efficient fine-tuning methods have emerged as practical so-
lutions, such as low-rank adaptation (LoRA; Hu et al., 2022)
and prompt tuning (Lester et al., 2021; Li & Liang, 2021).
These methods drastically reduce the number of tunable
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parameters, offering an efficient alternative while achieving
performance comparable to full fine-tuning.

Prompt tuning introduces learnable prompt embeddings ex-
clusively in the input layer of the model (Lester et al., 2021;
Liu et al., 2024), automating prompt engineering by gradient
descent to guide the frozen LLM in producing task-specific
outputs (Petrov et al., 2024b;a). By contrast, LoRA modi-
fies the model by injecting low-rank weight matrices into its
layers, causing the number of trainable parameters to scale
with model’s depth (Hu et al., 2022). Given that LLMs
encode substantial knowledge during pretraining (Brown
et al., 2020; Kojima et al., 2022) and that both in-context
learning and expertly crafted prompts can achieve remark-
able results (Wei et al., 2022b; Dong et al., 2024), prompt
tuning offers a more efficient and effective alternative to
LoRA in many scenarios (Shi & Lipani, 2024).

Despite its advantages, most existing prompt tuning ap-
proaches couple the dimensionality of prompt embeddings
with the hidden size of the model (Lester et al., 2021; Li
& Liang, 2021; Liu et al., 2022; Choi et al., 2023; Razdai-
biedina et al., 2023). As the size of the model increases,
the dimensionality of the prompt embedding space also in-
creases (Raffel et al., 2020; Touvron et al., 2023). This
scaling leads to unnecessary complexity, as full dimension-
ality is often not required for task adaptation (Aghajanyan
et al., 2021; Qin et al., 2022). Consequently, optimizing in
this expanded space becomes inefficient in parameter’s us-
age and may also increase the risk of overfitting, especially
for less complex tasks or with limited training data.

In this paper, we propose Ultra-Low-Dimensional Prompt
Tuning (ULPT), a method that decouples the prompt/model
dimensions and enables prompt tuning in an ultra-low-
dimensional space (e.g., 2D). A naı̈ve attempt is to jointly
optimize the ultra-low-dimensional embeddings with an
up-projection matrix (Xiao et al., 2023; Guo et al., 2024),
but the learnable up-projection matrix may result in more
trainable parameters than vanilla prompt tuning, therefore
offsetting the gains in parameter efficiency. As shown in
Figure 1a, our ULPT eliminates this overhead by using a
random but frozen matrix for the up-projection. We further
introduce learnable shift and scale embedding vectors to
better align the up-projected embeddings and the model’s
prompt space (Wu et al., 2024c). In addition, we provide
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Figure 1. Overview of our approach. (a) ULPT up-projects ultra-
low-dimensional embeddings with a random but fixed matrix, fol-
lowed by a learnable alignment mechanism shared across all up-
projected embeddings. (b) ULPT can significantly reduce parame-
ters usage for LLM customizations.

theoretical analysis for our ULPT, which not only proves its
convergence but also shows that a low-dimensional space
with random projection can effectively approximate high-
rank information.

The ultra-low-dimensional nature of our ULPT is partic-
ularly suitable for scenarios requiring massive LLM cus-
tomizations (Mangrulkar et al., 2022) and continual learn-
ing (Wang et al., 2022), as shown in Figure 1b. For example,
in a typical prompt tuning approach, each task might require
100K real-valued parameters, which can add up significantly
when scaling to millions of customized LLMs or tasks. By
contrast, our ULPT with 2D prompt embeddings can reduce
this to just 2K parameters per task, presenting a dramatic
parameter saving to just 2% of the original usage.

We conducted experiments across 21 NLP datasets to eval-
uate our ULPT. The results demonstrate that ULPT can
extend a few-token vanilla prompt tuning setup to a 100-
token configuration without increasing the number of train-
able parameters, while matching the performance of a fully
parameterized 100-token prompt tuning setup. With appro-
priate settings of the dimension, ULPT outperforms existing
prompt tuning-based methods, while requiring much fewer
trainable parameters.

In summary, our main contributions include:

• We introduce ULPT (Ultra-Low-Dimensional Prompt
Tuning), which optimizes prompts in a low-
dimensional space with a random up-projection and
learnable shift and scale vectors, drastically reduces
trainable parameters while maintaining performance.

• We provide theoretical analysis showing ULPT’s abil-
ity to capture high-rank structures effectively and en-
sure convergence.

• Across 21 NLP tasks, ULPT delivers comparable per-

formance to vanilla prompt tuning while reducing
trainable parameters 2% of the original usage. When
scaling to higher dimensions, it outperforms existing
prompt tuning-based methods with much fewer train-
able parameters.

2. Related Work
Parameter-efficient fine-tuning. With the rapid growth of
pretrained neural networks, researchers have investigated
parameter-efficient fine-tuning methods that update only a
small set of parameters while maintaining high performance.
One straight way is to tune specific components of the model.
For example, BitFit (Ben Zaken et al., 2022) updates only
the bias terms, and LayerNorm tuning (Zhao et al., 2024)
only trains the layer-norm parameters. Another line of work
involves introducing and training small, task-specific non-
linear modules, such as Adapters (Houlsby et al., 2019) and
AdapterDrop (Rücklé et al., 2021). Other methods steer
the activation representations either globally or locally (Wu
et al., 2024b; Yin et al., 2024).

Two other prominent paradigms are low-rank adaptation
(LoRA; Hu et al., 2022) and prompt tuning methods (Lester
et al., 2021), which are more related to our work. They will
be further elaborated in the subsequent sections.

Low-rank adaptation. Hu et al. (2022) assume that weight
updates can be approximated by low-rank matrices and pro-
pose a low-rank adaptation (LoRA) method for fine-tuning
a model. Building upon this foundational work, many exten-
sions have been developed to enhance LoRA’s performance.
For example, ReLoRA (Lialin et al., 2024) iteratively trains
and merges low-rank adapters to achieve high-rank updates.
Hayou et al. (2024) propose learning low-rank matrices with
different learning rates. Wu et al. (2024a) explore training
a mixture of LoRA modules and leverage dynamic routing
mechanisms for different task distributions or domains.

However, for large models, LoRA still requires a consid-
erable number of trainable parameters. To address this
limitation, several works have explored the use of random
projection (Bingham & Mannila, 2001) to further improve
parameter efficiency. For example, FLORA (Hao et al., 2024)
updates the pretrained matrices with randomly projected gra-
dients, while VeRA (Kopiczko et al., 2024) uses random
projections combined with two trainable scaling vectors to
approximate each update matrix.

Prompt tuning. Shin et al. (2020) introduce the concept
of learning prompt tokens to elicit knowledge from LLMs.
Subsequently, Lester et al. (2021) extend this idea to con-
tinuous prompt tuning, where prompt embeddings are op-
timized through gradient descent while keeping the LLM
frozen. Building on this, Li & Liang (2021) further gen-
eralize prompt embeddings to a multi-layer setting. Raz-
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daibiedina et al. (2023) re-parameterize prompt tuning by
incorporating a feed-forward neural network with residual
connections. Shi & Lipani (2024) observe that redistribut-
ing parameters to learn offsets for input token embeddings
can enhance performance. On the other hand, multi-task
prompt tuning has been explored, where the learned prompt
parameters are reused across different tasks (Wang et al.,
2023). Closely with our work, Xiao et al. (2023) decompose
the prompt embedding matrix into two low-rank compo-
nents: a low-dimensional prompt matrix and a learnable up-
projection matrix. By contrast, our ULPT method freezes
the up-projection matrix, so that we are able to achieve high
performance with much fewer trainable parameters, sup-
ported by random-projection theory (Bingham & Mannila,
2001). Overall, our approach is able to function well with
an ultra-low dimension, making it practical to customize
millions of LLMs and perform continual learning in an
ever-changing environment.

3. Methodology
3.1. Problem Formulation

Prompt tuning introduces learnable token embeddings in the
input layer of a language model (Lester et al., 2021). These
embeddings are optimized via gradient descent based on the
task-specific loss signals. During optimization, the model
weights remain frozen, while the gradient is backpropagated
to the input layer to update the learnable embeddings. Typi-
cally, learnable prompt embeddings e1, · · · , en ∈ Rd serve
as a prefix (Li & Liang, 2021), followed by the text prompt,
which is tokenized and represented by token embeddings
x1, · · · ,xl ∈ Rd. Overall, the LLM has an input in the
form of

(e1, e2, · · · , en,x1,x2, · · · ,xl) (1)

where n is a predefined prompt length and l represents the
length of the tokenized text. The objective is to optimize the
prompt embedding matrix E ∈ Rn×d over a given dataset
D based on the conditional log-likelihood:

argmax
E

∑
(x,y)∈D

logP (y | E, x) (2)

where (x, y) ∈ D represents input–output pairs in a dataset.

3.2. Our Ultra-Low-Dimensional Prompt Tuning

The learnable prompt embeddings do not inherently need
to match the model dimension Rd due to the low intrin-
sic dimensionality of downstream tasks (Aghajanyan et al.,
2021; Qin et al., 2022). Inspired by low-rank adaptation (Hu
et al., 2022), the prompt embedding matrix E can be decom-
posed into the product of two matrices: E = ZP , where
Z ∈ Rn×r represents the prompt embeddings in an ultra-
low r-dimensional space, and P ∈ Rr×d is a projection

31 86 10
2
11

8
14

3
17

8
21

5
21

9
24

0
28

0
35

7
37

2
38

2
42

0
44

1
45

5
49

5
56

3
57

9
63

3

Dimensions

40

20

0

20

40
cola

31 86 10
2
11

8
14

3
17

8
21

5
21

9
24

0
28

0
35

7
37

2
38

2
42

0
44

1
45

5
49

5
56

3
57

9
63

3

Dimensions

sst2

Figure 2. Distribution of prompt embedding values over 100
prompt tokens. We randomly selected 20 dimensions from the
original prompt embeddings, which have 768 dimensions as in the
T5-base model. The mean, 25/75 percentiles, and min/max are
shown for the embedding values learned in the CoLA and SST-2
tasks (details explained in §4.1).

matrix that maps the low-dimensional embeddings back to
the model’s embedding space.

A naı̈ve implementation of this decomposition treats both
Z and P as learnable parameters (Xiao et al., 2023), which
reduces the number of trainable parameters to nr+rd. This,
unfortunately, scales poorly for larger models, as an r × d
up-projection matrix should be learned and stored, which
undermines the savings of learnable parameters.

To address this limitation, we propose an ultra-low-
dimensional prompt tuning (ULPT) method that only learns
r-dimensional prompt embeddings Z, while keeping the
projection P randomly initialized and frozen during train-
ing, denoted by P̃ ∈ Rr×d. In implementation, we only
need to store one single number—the random seed of a ran-
dom number generator—to reconstruct P̃ when an LLM is
loaded.

In this way, we completely eliminate the need for storing
the up-project matrix. This not only largely reduces the
learnable parameters from nr + rd to nr (plus one extra
random seed), but also combats overfitting especially when
the fine-tuning dataset is small.

In our pilot study, we observe that typical prompt embed-
dings E, even without low-rank treatment, exhibit signifi-
cant variation across different dimensions, as shown in Fig-
ure 2. These variations may cause difficulty during training,
therefore, we further introduce a learnable shift embedding
s ∈ Rd and a learnable scale embedding b ∈ Rd to adjust
the projected embeddings to ensure better alignment with
the varying distributions across dimensions. Notice that
the shift and scale embeddings are shared across different
prompt token positions, but may vary for different tasks.

Specifically, an entry êij in the up-projected embedding

3
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matrix Ê has the following form:

êij =

(
r∑

k=1

zikp̃kj

)
sj + bj , (3)

where zik and p̃kj are an entry in Z and P̃ matrices, respec-
tively; sj and bj are an entry in s and j vectors, respectively.

Such a treatment introduces two d-dimensional vectors, re-
sulting in the total number of trainable parameters being
nr + 2d. This is significantly more parameter-efficient
than full-dimension prompt tuning with nd-many parame-
ters (Lester et al., 2021) and vanilla low-rank prompt tuning
with (nr + rd)-many parameters (Xiao et al., 2023).

3.3. Theoretical Analyses

We first show that an ultra low-dimensional space can cap-
ture the structure of the original embeddings (i.e., expres-
siveness). We then show the convergence of gradient descent
with our random projection (i.e., optimization).

Expressiveness. Our low-dimensional parameterization
approximately captures high-dimensional structure with
high confidence. To show this, we first state the follow-
ing lemma.

Lemma 1. Sample a random matrix A ∈ Rr×m such that
each element follows the standard Gaussian distribution.
Let ϵ ∈ (0, 1/2] and r ∈ N+. There exists a constant c such
that

Pr

(∣∣∣∣ (1/√r)∥Ax∥ − ∥x∥
∥x∥

∣∣∣∣ ≥ ϵ

)
≤ 2

exp (ϵ2r/ c)
(4)

for any x ∈ Rd.

This result is adapted from Indyk & Motwani (1998). Essen-
tially, the lemma characterizes the high-probability bound
of the well known Johnson–Lindenstrauss lemma (Dasgupta
& Gupta, 2003; Matoušek, 2008). Based on this, we for-
mally show the expressiveness of our ultra low-dimensional
embeddings in the following theorem.

Theorem 2. Let e1, · · · , en ∈ Rd be the embedding vectors
in the high-dimensional space. Let P ∈ Rr×d be a ran-
dom projection matrix with each element pi,j ∼ N (0, 1/r).
There exists a set of low-dimensional vectors z1, · · · , zn ∈
Rr such that with confidence at least 1− δ we have

(1− ϵ)∥ei − ej∥ ≤ ∥zi − zj∥ ≤ (1 + ϵ)∥ei − ej∥ (5)

for all i, j ∈ [n], as long as r ≥ 2cϵ−2 log(2n/δ).

Proof. See Appendix B.1.

In essence, our theorem asserts that there exists a set of low-
dimensional vectors such that the pair-wise L2 distances of

the original high-dimensional vectors are preserved for all
(i, j) pairs. More importantly, the projected dimension r
only grows logarithmically with the original dimension n,
demonstrating a favorable property of scaling. It should be
noted that, although our theorem uses L2 as the metric, it
can be easily extended to the dot-product metric as well by
noticing that ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2x · y.

Optimization. The above theorem shows the existence of
an expressive low-dimensional space. We assert in the fol-
lowing theorem that, given a random up-projection matrix,
the optimal low-dimensional embeddings can be learned by
gradient descent under mild assumptions.

Theorem 3. Assume the original loss function L is Polyak–
Lojasiewic and element-wise Lipschitz on the original d-
dimensional embeddings. Let P ∈ Rr×d be a given
full-rank random Gaussian matrix (i.e., rank r), and our
parametrization be êi = diag(s)P⊤zi + b. With a
proper learning rate schedule η1, η2, . . . , our parameters
x = [b, s, z1, . . . ,zn] converge to the global optimum with
gradient descent if s is always non zero.

Proof. See Appendix B.2.

Theorem 3 shows that, even with the naı̈ve gradient descent,
the fixed random matrix P does not hinder the optimiza-
tion procedure. By combining Theorem 2, we theoretically
justifies our overall practice of ULPT.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate the proposed ULPT method across
21 NLP tasks following prior work (Asai et al., 2022;
Wang et al., 2023; Shi & Lipani, 2024). Those tasks
are grouped into 4 categories: (1) GLUE (Wang et al.,
2018) is a benchmark suite consisting of various lan-
guage understanding tasks, such as MNLI (Williams et al.,
2018), QQP (Wang et al., 2018), QNLI (Demszky et al.,
2018), SST-2 (Socher et al., 2013), STS-B (Cer et al.,
2017), MRPC (Dolan & Brockett, 2005), RTE (Giampic-
colo et al., 2007) and CoLA (Warstadt et al., 2019). (2)
SuperGLUE (Wang et al., 2019) extends GLUE with
more challenging tasks with limited training data, con-
sisting of MultiRC (Khashabi et al., 2018), BoolQ (Clark
et al., 2019), WiC (Pilehvar & Camacho-Collados, 2019),
WSC (Levesque et al., 2012), and CB (De Marneffe et al.,
2019). (3) The MRQA 2019 Shared Tasks (Fisch et al.,
2019) are a set of QA tasks to test LLM generation capabil-
ities, consisting of Natural Questions (Kwiatkowski et al.,
2019), HotpotQA (Yang et al., 2018), SearchQA (Dunn
et al., 2017) and NewsQA (Trischler et al., 2017). (4)
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Table 1. Performance on GLUE and SuperGLUE benchmarks based on the T5-base model. We report standard evaluation metrics, namely,
Pearson correlation for STS-B, F1 for MultiRC, and accuracy for other tasks. †We replicate prompt tuning (PT; Lester et al., 2021) and
DPT (Xiao et al., 2023) using their default configurations. Our replicated PT results slightly exceed those reported in previous studies. All
other baseline results are directly sourced from Shi & Lipani (2024). ‡The suggested rank for DPT is r=10 based on Xiao et al. (2023); we
replicate DPT with r=64 for controlled comparison with our ULPT. tTransfer learning methods. mMulti-task learning methods, whose
“#param/task” scores are calculated based on the GLUE benchmark.

#Param/
Task

GLUE SuperGLUE

Method MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. MultiRC Bool WiC WSC CB Avg.

Single-Task Learning

Fine-tuning 220M 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapter 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7
AdapterDrop 1.1M 86.3 90.2 93.2 93.6 91.4 86.3 71.2 62.7 84.4 72.9 82.3 68.3 67.3 85.7 75.3
BitFit 280K 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
LoRA 3.8M 86.3 89.0 93.2 94.3 90.0 90.1 75.5 63.3 85.3 72.6 81.3 68.3 67.3 92.9 76.5
LST 3.8M 85.6 88.8 93.3 94.0 90.7 90.4 71.9 58.1 84.1 – – – – – –
PT† 76.8K 84.6 90.2 93.3 94.4 90.5 88.7 77.7 59.5 84.9 72.3 80.4 67.7 67.3 78.6 73.3
DePT 76.8K 85.0 90.4 93.2 94.2 90.8 90.7 79.1 63.8 85.9 74.3 79.3 68.7 67.3 92.9 76.5
DPT†(r=10) 9.0K 84.4 90.2 93.3 94.6 91.2 87.7 77.7 57.8 84.6 74.5 78.7 66.8 67.3 71.4 71.7
DPT‡(r=64) 55.6K 85.2 90.3 92.9 93.6 90.4 88.2 79.1 63.5 85.4 73.2 80.1 63.0 67.3 85.7 73.9
ULPT (r=2) 1.7K 81.9 90.3 92.3 92.9 89.8 89.2 76.3 59.5 84.0 73.4 76.7 67.4 67.3 71.4 71.2
ULPT (r=16) 3.1K 82.9 90.0 93.1 93.8 90.5 89.2 80.6 54.3 84.3 72.6 77.7 66.1 67.3 89.3 74.6
ULPT (r=64) 7.9K 84.9 90.3 93.1 93.5 90.7 90.2 81.3 63.7 86.0 73.1 78.2 69.0 67.3 96.4 76.8
ULPT (r=256) 27.1K 85.5 90.3 92.8 94.3 90.6 90.7 76.3 63.7 85.5 74.3 79.9 63.3 67.3 89.3 74.8

Multi-Task Learning & Transfer Learning

Fine-tuningm 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 74.4 81.1 70.0 71.2 85.7 76.1
Adapterm 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 72.6 82.3 66.5 67.3 89.3 75.6
HyperFormerm 638K 85.7 90.0 93.0 93.0 89.7 87.2 75.4 63.7 84.8 72.9 82.5 69.0 67.3 85.7 75.4
HyperDecoderm 1.8M 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 70.4 78.8 67.1 61.5 82.1 72.0
SPoTt 76.8K 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPTt 232K 84.3 90.3 93.0 93.0 89.7 85.7 74.3 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPTt 77.6K 85.9 90.3 93.1 93.8 90.4 89.1 79.4 62.4 85.6 74.8 79.6 69.0 67.3 79.8 74.1
ATTEMPTt+m 96K 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.5 66.5 69.2 82.1 74.1
MPTt+m 10.5K 84.3 90.0 93.0 93.0 90.4 89.2 82.7 63.5 85.8 74.8 79.6 70.2 67.3 89.3 76.1

Other tasks beyond the above test suites are also con-
sidered, including WinoGrande (Sakaguchi et al., 2021),
Yelp-2 (Zhang et al., 2015), SciTail (Khot et al., 2018), and
PAWS-Wiki (Zhang et al., 2019). Further details on these
datasets are provided in Table 5 in Appendix A.

Baselines. We compare our ULPT against a wide range
of baselines to demonstrate its effectiveness and parameter
efficiency. First, we evaluate against full-model fine-tuning,
which optimizes all model parameters for downstream task
adaptation, serving as a strong but parameter-intensive base-
line. Second, we include state-of-the-art parameter-efficient
methods such as Adapter (Houlsby et al., 2019), Adapter-
Drop (Rücklé et al., 2021), BitFit (Ben Zaken et al., 2022),
HyperFormer (Karimi Mahabadi et al., 2021), HyperDe-
coder (Ivison & Peters, 2022), LoRA (Hu et al., 2022), and
Ladder Side-Tuning (LST; Sung et al., 2022). Third, we
compare ULPT with vanilla prompt tuning (PT) and its vari-
ants, including DePT (Shi & Lipani, 2024), which learns
offsets to the input token embeddings while using a separate
learning rate for the prompt embeddings, and DPT (Xiao
et al., 2023), which is closely related to ULPT and decom-
poses prompt embeddings into low-rank matrices. Finally,
we compare ULPT with transfer or multi-task learning meth-
ods, including SPoT (Vu et al., 2022), ATTEMPT (Asai

et al., 2022), and MPT (Wang et al., 2023).

Implementation details. In our pilot study (Figure 2), we
perform vanilla prompt tuning on the T5-base model (Raffel
et al., 2020) with CoLA and SST-2, using n = 100 prompt
embeddings, each having a dimensionality of d = 768.
We randomly select 20 dimensions and report the mean,
25th/75th percentiles, and the minimum/maximum values
for each dimension.

In our main experiment, we use the T5-base model with
d = 768. Consistent with prior work (Shi & Lipani,
2024; Xiao et al., 2023), we set the number of prompt
tokens n = 100 for the prompt embeddings Q ∈ Rn×r

of our ULPT. For the rank r, we evaluate four configura-
tions: r = 2, 16, 64, and 256, ranging from an ultra-low-
dimensional setup to a more expressive configuration of 1/3
of the original prompt dimension. All experiments use a
batch size of 16 and a default learning rate of 6e−1 with
AdamW. The learning rate follows a linear schedule, warm-
ing up for 500 steps and then decaying linearly to 0. We
set a maximum sequence length of 256 for most tasks, ex-
cept for SuperGLUE-MultiRC being 348 and MRQA being
512. ULPT is trained on all tasks for up to 100, 000 steps.
Performance is evaluated every 1, 000 steps, with the best
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Table 2. Performance on MRQA and other benchmarks using the T5-base model. The standard metrics reported are the F1 score for
MRQA tasks and accuracy for other datasets. †Results are obtained based on our replication using default configurations. Other baseline
results are sourced from Shi & Lipani (2024).

MRQA Others

Method #Param NQ HQA SQA NewsQA Avg. WG Yelp SciTail PAWS Avg.

Fine-tuning 220M 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
Adapter 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
BitFit 280K 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
LoRA 3.8M 72.4 62.3 72.5 56.9 66.0 58.2 97.1 94.7 94.0 86.0
SPoT 76.8K 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0
ATTEMPT 232K 70.4 75.2 78.5 62.8 71.4 57.6 96.7 93.1 92.1 84.9
PT† 76.8K 70.0 74.7 75.3 63.0 70.8 49.6 95.6 92.0 57.9 73.8
DPT†(r=10) 9.0K 71.3 75.5 76.3 63.5 71.7 49.6 96.1 95.6 92.2 83.4
DPT (r=256) 222K 71.4 76.0 77.6 64.2 72.3 49.6 96.3 95.2 55.8 74.2
DePT 76.8K 73.20.3 76.00.2 77.60.2 64.40.1 73.0 59.00.2 96.80.1 95.60.2 93.70.1 86.3
MPT 77.6K 72.00.1 75.80.1 77.20.1 63.70.1 72.2 56.50.9 96.40.0 95.50.3 93.50.1 85.5
ULPT (r=2) 1.7K 67.20.2 74.00.1 71.70.2 61.40.1 68.6 49.50.2 95.60.1 93.00.9 90.40.2 82.1
ULPT (r=16) 3.1K 68.00.3 74.30.0 72.90.1 61.30.5 69.1 52.30.9 95.60.2 93.10.7 90.50.3 82.9
ULPT (r=64) 7.9K 70.70.3 75.30.1 75.30.1 62.90.5 71.1 56.60.9 96.20.1 94.40.9 91.70.4 84.7
ULPT (r=256) 27.1K 72.60.2 76.50.1 77.90.1 64.20.2 72.8 57.60.8 96.60.2 96.20.1 93.00.1 85.9
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Figure 3. Left: Training loss curves on SST2 comparing ULPT
with and without learnable shift and scale embeddings across
different rank configurations. Right: Evaluation accuracy curves
on SST2. For clarity, we present the case r = 2, where our ULPT
is at a disadvantage. The trend for other configurations is similar.

checkpoint selected based on the validation set.

In our analysis, T5-small (d = 512) and T5-large model
(d = 1024) are considered to evaluate the generality of
ULPT across different model sizes. We also vary the num-
ber of prompt tokens from 10 to 100 under different rank
configurations. Further details are provided in §4.3.

4.2. Main Results

Performance on GLUE and SuperGLUE. As shown in Ta-
ble 1, our ULPT achieves similar or higher performance on
GLUE and SuperGLUE benchmark datasets compared with
previous methods, while maintaining remarkable parameter
efficiency.

Profoundly, the ultra-low-rank configuration of r = 2 re-
tains at least 97% performance of vanilla prompt tuning
(PT), achieving average accuracy points of 84.0 on GLUE
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Figure 4. Pairwise similarities of the learned shift (left) and scale
(right) embeddings for various rank configurations on SST-2.

and 71.2 on SuperGLUE with only 2% of the parameters.
This highlights the capability of ULPT and its advantage in
large-scale LLM customization.

With a moderate rank of r = 64, our ULPT outperforms that
with r = 256 and other state-of-the-art models, showing that
our approach not only reduces the number of parameters but
also alleviates the overfitting problem. Specifically, the DPT
model (Xiao et al., 2023) learns an up-projection matrix,
resulting in lower performance and 7x more parameters
when the rank is controlled; even with the best rank r = 10
suggested by the original paper (Xiao et al., 2023), DPT is
inadmissible as it is worse than our ULPT (with r = 64) in
both parameter efficiency and performance.

Our ULPT also has significant advantages in multi-task se-
tups. A transfer learning method initializes a model by task
mixtures and then adapts it to a specific task; therefore, it
cannot save parameters. Example studies of transfer learn-
ing include SPoT (Vu et al., 2022) and ATTEMPT (Asai

6
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et al., 2022). Our ULPT approach outperforms them in
terms of accuracy and parameter efficiency, while offer-
ing a simpler training pipeline. Multi-task learning, on
the other hand, shares certain parameters across different
tasks (Karimi Mahabadi et al., 2021; Ivison & Peters, 2022;
Wang et al., 2023), and thus, the parameter efficiency is
measured on a per-task basis. Despite this, our ULPT still
outperforms multi-task prompt tuning methods in both accu-
racy and per-task parameter efficiency due to its ultra-low-
dimensional nature.

Performance on MRQA and other NLP tasks. Table 2
presents the results on the MRQA dataset and four additional
tasks in the “Others” category. Following the standard prac-
tice on these benchmarks (Wang et al., 2023; Shi & Lipani,
2024), we run ULPT three times with different seeds and
report the mean and standard deviation.

Unlike GLUE and SuperGLUE performance, ULPT exhibits
consistent improvement when the rank is higher. This is
probably because these tasks are more challenging, which
aligns with the observation that full-model fine-tuning out-
performs parameter-efficient methods on these tasks. Never-
theless, ULPT achieves competitive performance (slightly
worse than the best-performing DePT approach), while sav-
ing parameters by multiple folds.

4.3. In-Depth Analyses

Ablation study on shift and scale embeddings. We con-
duct an ablation study on the learnable shift embedding
b ∈ Rd and scale embedding s ∈ Rd, using the SST-2
dataset2 with the T5-base model as the testbed, where we
set the token number to be n = 100. The results are shown
in Figure 3. As seen, the dotted lines correspond to re-
moving both shift and scale embeddings; their training loss
remains high, suggesting that naı̈vely freezing the projection
matrix P̃ hinders the optimization process and consequently
lowers the model performance. Introducing a learnable shift
embedding b provides a substantial improvement (dashed
lines), particularly in the low-dimensional configuration of
r = 2. A learnable scale embedding scale s further im-
proves the training process and performance (solid lines).
The ablation study shows that, although shift and scale em-
beddings are additional 2d-many parameters, they play an
important role in ultra-low-dimensional prompt tuning.

To further investigate the behavior of these embeddings, we
analyze the pairwise cosine similarities of the shift s and
scale b embeddings under different rank configurations, vi-

2Our preliminary experiments show that prompt tuning on SST-
2, a smaller dataset, leads to faster convergence, making it suitable
for validating the effectiveness of the ablated models. However,
for the rest of the analysis, we use MNLI and Natural Questions,
to better test the expressiveness of the ablated models and reduce
the risk of overfitting observed in our main experiment.
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Figure 5. Results on MNLI and Natural Questions with the T5-
base model. The number of prompt tokens for both ULPT and
naı̈ve prompt tuning varies from 10 to 100.

0 10 20 30 40 50
#Trainable Parameters (K)

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

MNLI

T5-large
T5-base
T5-small
PT
ULPT

0 10 20 30 40 50
#Trainable Parameters (K)

55.0
57.5
60.0
62.5
65.0
67.5
70.0
72.5
75.0

Ac
cu

ra
cy

 (%
)

NaturalQuestions

T5-large
T5-base
T5-small
PT
ULPT

Figure 6. Results on MNLI and Natural Questions with controlled
numbers of trainable parameters, comparing ULPT and prompt
tuning across three T5 model sizes (small, base, and large).

Table 3. Results on MNLI and Natural Questions for training either
P or Z with T5-base. Numbers in the brackets refer to the rank r
given the controlled number of parameters.

Train? #Trainable Parameters

Dataset Z P 1.7K 3.1K 7.9K 27.1K

MNLI ✓ 81.9 (2) 82.9 (16) 84.9 (64) 85.5 (256)
✓ – 82.9 (2) 84.5 (8) 85.3 (33)

NQ ✓ 67.20.2 (2) 68.00.4 (16) 70.70.3 (64) 72.60.2 (256)
✓ – 66.9 (2) 70.0 (8) 72.0 (33)

sualized in Figure 4. We see that they exhibit interesting
patterns: the learned shift embeddings have consistently
high similarity scores with different rank configurations, in-
dicating their primary role as an alignment mechanism after
up-projection. By contrast, the scale embeddings show near-
zero pairwise similarities, as they depend on the sampled
(and frozen) random projection matrix P̃ .

Analysis of prompt lengths and dimensions. Recall that
Table 1 has analyzed our ULPT performance with different
ranks. We now vary the number of prompt tokens and plot
the trend in Figure 5. We see that our ULPT exhibits a
similar trend as vanilla prompting, where the performance
increases with a longer prompt. With an appropriate rank
configuration, our ULPT consistently outperforms vanilla
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Table 4. Results on Bloomz, a decoder model with varying sizes (560M, 1.7B, and 3B) and hidden dimensions (1024, 2048, and 2560).
We compare ULPT with prompt tuning by conditioning on the same number of trainable parameters.

Model Method SST-2 HQA WG Avg. SST-2 HQA WG Avg. SST-2 HQA WG Avg. SST-2 HQA WG Avg.

#Param=2K, ULPT (r=2) #Param=4K, ULPT (r=16) #Param=8K, ULPT (r=64) #Param=28K, ULPT (r=256)

Bloomz-560M PT 89.8 42.9 48.6 60.4 91.1 53.0 52.0 65.4 91.9 57.2 50.0 66.4 92.2 60.6 52.2 68.3
ULPT 90.2 52.4 51.7 64.8 92.2 55.7 53.1 67.0 91.8 59.3 53.1 68.1 92.6 62.5 52.2 69.1

#Param=4K, ULPT (r=2) #Param=6K, ULPT (r=16) #Param=10K, ULPT (r=64) #Param=30K, ULPT (r=256)

Bloomz-1.7B PT 93.2 64.6 50.1 69.3 93.5 66.1 51.5 70.4 94.0 67.3 55.3 72.2 94.7 69.1 55.4 73.1
ULPT 94.4 65.6 54.6 71.5 93.9 66.3 55.6 71.9 94.3 68.0 55.2 72.5 95.1 69.3 57.4 73.9

#Param=5K, ULPT (r=2) #Param=8K, ULPT (r=16) #Param=13K, ULPT (r=64) #Param=31K, ULPT (r=256)

Bloomz-3B PT 93.2 66.1 50.5 69.9 94.5 69.0 56.0 73.2 94.9 69.1 58.9 74.3 94.9 71.5 60.0 75.5
ULPT 94.0 68.1 53.5 71.9 94.4 68.9 57.1 73.5 94.7 70.9 58.5 74.7 95.0 71.8 60.7 75.8

prompt tuning under different lengths.

Our low-rank ULPT provides a trade-off between the
prompt length and dimension. We compare ULPT with
vanilla prompt tuning when the learnable parameters are
controlled. For our ULPT, we keep the prompt token num-
ber as 100 and vary the rank from 2 to 256; for vanilla
full-dimensional prompt tuning, we vary the token number
from 2 to 50. This analysis is also conducted with three
model sizes: T5-small, T5-base, and T5-large.

Figure 6 illustrates the results, showing that our low-
dimensional ULPT with more tokens (solid lines) always
outperform vanilla full-dimensional prompt tuning with
fewer tokens (dashed lines). The analysis suggests that,
when the number of learnable parameters is controlled, a
longer prompt with a lower dimension offers more flexibility
due to the additional Transformer steps.

Comparison with an alternative method of tuning P .
The low-rank decomposition E = ZP allows an alternative
approach that freezes Z and tunes P , which contrasts with
our approach that freezes P and tunes Z. The comparison
is shown in Table 3. The alternative setup (tuning P ) can be
viewed as learning an up-projection from a set of random but
frozen low-dimensional vectors. However, a key drawback
of making P trainable is the rapid growth in the number of
parameters when the rank r increases, since d≫ n in most
practical scenarios. To ensure a fair comparison, we control
the number of parameters by varying the rank r for both
methods.

As seen, tuning P fails to be feasible in the 1.7K-parameter
setup. Even if we set r = 2, tuning P results in 3.1K pa-
rameters, equivalent to our r = 16 setup. With a larger
budget, tuning P achieves slightly worse performance than
our ULPT which tunes Z. This analysis verifies the expres-
siveness of random projections; it also shows that our ULPT
is superior to the alternative approach.

4.4. Results on Decoder Models

In our main experiments, we use the encoder–decoder T5
model (Raffel et al., 2020), following most previous work
on prompt tuning (Lester et al., 2021; Wang et al., 2023; Shi
& Lipani, 2024).

We extend the evaluation of ULPT to Bloomz (Muennighoff
et al., 2023), a decoder-only model with three difference
sizes: 560M, 1.7B, and 3B, having hidden dimensions of
1024, 2048, and 2560 respectively. For evaluation diversity,
we select three mid-sized tasks from each task group: SST-2,
HotpotQA, and Winogrande, providing assessment across
classification, multi-hop reasoning, and coreference reason-
ing. Since Bloomz models are larger than the T5 series, we
train up to 30K steps with a batch size of 4, while keeping
other hyperparamters the same as our main experiment.

We consider comparing ULPT with prompt tuning under
different parameter budgets for text generation. Specifically,
we vary the rank of ULPT from 2 to 256 while fixing the
length n = 100. For full-dimensional prompt tuning, the
token number is adjusted to match the parameter count.

Results in Table 4 show that ULPT consistently outperforms
prompt tuning across all model sizes and tasks given a fixed
parameter budget. These findings align with our earlier
analysis (§4.3), confirming that ULPT can be applied to
different model architectures.

5. Conclusion
In this paper, we propose Ultra-Low-Dimensional Prompt
Tuning (ULPT), a novel parameter-efficient prompt tuning
method that achieves superior performance across diverse
NLP tasks with significantly fewer trainable parameters.
ULPT decouples prompt embeddings from the model’s di-
mensionality, optimizing in a low-dimensional space and
projecting into the model’s embedding space by a frozen
random projection. Our research offers future opportunities
for large-scale LLM customizations, as efficient storage of
task-specific models is increasingly critical.
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6. Impact Statements
This paper presents a method aimed at enabling more
parameter-efficient fine-tuning for large language models.
By significantly improving the storage efficiency of prompt
tuning, our approach makes it practical to create millions
of customized AI systems, including those for personal use,
thereby contributing to the democratization of access to
large-scale customized AI solutions. No specific concerns
require attention in this context.
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Table 5. Dataset information and statistics.
Dataset Source Length Target Length #Train #Valid #Test Type Size

GLUE Benchmark

MNLI 31.8 1.0 392,702 9,832 9,815 Natural language inference Large
QQP 24.1 1.0 362,846 1,000 40,431 Paraphrasing Large
QNLI 38.4 1.0 103,743 1,000 5,463 Natural language inference Large
SST-2 10.4 1.0 66,349 1,000 872 Sentiment analysis Medium
STS-B 21.9 1.0 5,749 750 750 Sentence similarity Small
MRPC 45.9 1.0 3,668 204 204 Paraphrasing Small
RTE 54.4 1.0 2,490 138 139 Natural language inference Small
CoLA 8.7 1.0 8,551 521 522 Acceptability Small

SuperGLUE Benchmark

MultiRC 286.1 1.0 27,243 2,424 2,424 Question answering Medium
BoolQ 108.3 1.0 9,427 1,635 1,635 Question answering Small
WiC 18.4 1.0 5,428 319 319 Word sense disambiguation Small
WSC 28.1 1.0 554 52 52 Commonsense reasoning Small
CB 64.6 1.0 250 28 28 Natural language inference Small

MRQA 2019 Shared Task

NaturalQuestions 242.7 4.5 103,071 1,000 12,836 Question answering Large
HotpotQA 225.7 2.6 71,928 1,000 5,901 Question answering Medium
SearchQA 942.8 2.0 116,384 1,000 16,980 Question answering Large
NewsQA 615.5 5.1 73,160 1,000 4,212 Question answering Medium

Other Datasets

WinoGrande 23.8 1.0 39,398 1,000 1,267 Commonsense reasoning Medium
YelpPolarity 134.0 1.0 100,000 1,000 38,000 Sentiment analysis Large
SciTail 30.8 1.0 23,596 652 652 Natural language inference Medium
PAWS 44.7 1.0 49,401 8,000 8,000 Sentence Similarity Medium

A. Dataset Details
We present detailed information for the 21 NLP tasks in Table 5. Following previous work (Wang et al., 2023; Shi & Lipani,
2024), we preprocess the labels for classification and multiple-choice tasks into a single-token label (e.g., 0, 1, 2, . . . ) to
simplify evaluation. For MRQA, the model generates an answer containing a sequence of tokens.

Based on the training set size, the tasks can be roughly categorized into three scales: small (<10K samples), medium
(10–100K samples), and large (>100K samples). Notably, SuperGLUE contains small training sets, and is generally
considered more challenging than GLUE, making it more susceptible to overfitting due to its limited samples. By contrast,
MRQA and the tasks in the “Others” category consist of more complex tasks, likely requiring more parameters to capture
their difficulty.

B. Theoretical Results
B.1. Proof of Theorem 2

Theorem 2. Let e1, · · · , en ∈ Rd be the embedding vectors in the high-dimensional space. Let P ∈ Rr×d be a random
projection matrix with each element pi,j ∼ N (0, 1/r). There exists a set of low-dimensional vectors z1, · · · , zn ∈ Rr such
that with confidence at least 1− δ we have

(1− ϵ)∥ei − ej∥ ≤ ∥zi − zj∥ ≤ (1 + ϵ)∥ei − ej∥ (5)

for all i, j ∈ [n], as long as r ≥ 2cϵ−2 log(2n/δ).

Proof. Setting zi = Pei, we have

Pr

(∣∣∣∣∥zi − zj∥ − ∥ei − ej∥
∥ei − ej∥

∣∣∣∣ ≥ ϵ

)
=Pr

(∣∣∣∣∥P (ei − ej) ∥ − ∥ei − ej∥
∥ei − ej∥

∣∣∣∣ ≥ ϵ

)
(6)
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≤ 2

exp (ϵ2r/c)
, (7)

for any i, j ∈ [n]. The last inequality is a direction application of Lemma 1. Further, Boole’s inequality suggests

Pr

(
any i, j ∈ [n] :

∣∣∣∣∥zi − zj∥ − ∥ei − ej∥
∥ei − ej∥

∣∣∣∣ ≥ ϵ

)
≤ n2 2

exp (ϵ2r/c)
, (8)

where n2 comes from counting all (i, j) pairs. By setting δ > 0 to any value smaller than 2n2

exp(ϵ2r/c) , we have r ≥
2cϵ−2 · log(2n/δ). Therefore, Eqn. (8) can be rewritten as follows: with confidence at least 1− δ, we have

(1− ϵ)∥ei − ej∥ ≤ ∥zi − zj∥ ≤ (1 + ϵ)∥ei − ej∥ (9)

for all i, j ∈ [n], as long as r ≥ 2cϵ−2 log(2n/δ).

B.2. Proof of Theorem 3

We first formally explain our assumptions.

Assumption 4. The loss function L is β element-wise Lipschitz w.r.t. embeddings. Specifically, we have

|∇L(xi)−∇L(yi)| ≤ β|xi − yi| (10)

for any x,y ∈ Rnd being unrolled from n× d embedding matrices. xi and yi are elements in the vectors.

Assumption 5. The loss function L is µ-PL (Polyak–Lojasiewic) w.r.t. embeddings, meaning that

1

2
∥∇L(x)∥22 ≥ µ (L(x)− L(x∗)) (11)

for any x ∈ Rnd, where x is embedding parameters and x∗ is any finite minimizer of L.

These are the common assumptions used to show the optimization process in deep learning (Karimi et al., 2016; Mei et al.,
2020). In addition, we also impose an assumptions on the projection matrix and the scaling vector s.

Assumption 6. The projection matrices P ∈ Rr×d has a rank of r. In addition, we assume s is not a zero vector during
optimization.

Based on these assumptions, we first provide the essential lemmas for our proof.

Lemma 7. If L : Rd → R is β-Lipschitz in each element, then L is β-Lipschitz.

Proof. Let∇L(xi) be the partial derivative of L w.r.t. xi. We have

|∇L(xi)−∇L(yi)| ≤ β|xi − yi| (12)

for every xi, yi ∈ R. Therefore,

∥∇L(x)−∇L(y)∥2 =

d∑
i=1

|∇L(xi)−∇L(yi)|2 (13)

≤
d∑

i=1

β2|xi − yi|2 (14)

=β2∥x− y∥2. (15)

We complete the proof by taking the square root on both sides.

Lemma 8. Let L̂(x̂) be the loss function with our ULPT approach, where x̂ ∈ Rnr+2d is the concatenation of shift/scale
embeddings and the ultra-low-dimensional prompt embeddings. L̂(x̂) is β′-Lipschitz w.r.t. x̂ for some β′ > 0.
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Proof. We prove the Lipschitz condition of L w.r.t. the ultra-low-dimensional prompt embeddings, scale embedding, and
shift embedding separately. Then, Lemma 7 suggests the Lipschitz condition of L w.r.t to x̂. Without loss of generality, we
assume the layout of parameters is x̂ = [b, s, z1, z2, . . . ,zn], where n is the number of prompt tokens.

We first calculate partial derivatives as follows

∂L
∂b

=

n∑
i=1

(
∂êi
∂b

)⊤
∂L
∂êi

=

n∑
i=1

∂L
∂êi

, (16)

∂L
∂s

=

(
∂êi
∂s

)⊤
∂L
∂êi

=

n∑
i=1

diag(P⊤zi)
∂L
∂êi

, and (17)

∂L
∂zi

=

(
∂êi
∂zi

)⊤
∂L
∂êi

= P diag(s)
∂L
∂êi

. (18)

Our proof of the Lipschitz condition starts with checking b. For any element bk, where k = 1, · · · , d, we have

∣∣∣∇L̂(b(1)k )−∇L̂(b(2)k )
∣∣∣ = ∣∣∣∣∣

n∑
i=1

(
∇L(ê(1)i,k )−∇L(ê

(2)
i,k )
)∣∣∣∣∣ (19)

≤
n∑

i=1

∣∣∣∇L(ê(1)i,k )−∇L(ê
(2)
i,k )
∣∣∣ (20)

≤L
n∑

i=1

|ê(1)i,k − ê
(2)
i,k | (21)

=nL|b(1)k − b
(2)
k | (22)

where superscripts (1) and (2) indicate two values in the Lipschitz condition. êi,k refers to the ith prompt token and its kth
dimension. Here, the first equation is due to Eqn. (16).

For the scale embedding s, we also consider the kth dimension for k = 1, · · · , d:

∣∣∣∇L̂(s(1)k )−∇L̂(s(2)k )
∣∣∣ = ∣∣∣∣∣∑

i

(
z⊤
i P:,k∇L(ê(1)i,k )− z⊤

i P:,k∇L(ê(2)i,k )
)∣∣∣∣∣ (23)

=

∣∣∣∣∣∑
i

(
z⊤
i P:,k

) (
∇L(ê(1)i,k )−∇L(ê

(2)
i,k )
)∣∣∣∣∣ (24)

≤
√∑

i

(
z⊤
i P:,k

)2√∑
i

(
∇L(ê(1)i,k )−∇L(ê

(2)
i,k )
)2

(25)

≤
∑
i

∥zi∥∥P:,k∥L
√∑

i

(
ê
(1)
i,k − ê

(2)
i,k

)2
(26)

≤Lnσmax(Z)σmax(P )

√∑
i

(z⊤
i P:,k)2(ŝ

(1)
k − ŝ

(2)
k )2 (27)

≤Lnσmax(Z)σmax(P )

√∑
i

(z⊤
i P:,k)2|ŝ(1)k − ŝ

(2)
k | (28)

≤Lnσ2
max(Z)σ2

max(P )
∣∣∣ŝ(1)k − ŝ

(2)
k

∣∣∣ , (29)

where P:,k is the kth column of the P matrix (as a column vector), and σmax(·) is the maximum singular value of a matrix.
Here, Line (25) is obtained by applying the Cauchy–Schwartz inequality. Line (27) is based on matrix norm inequalities.

Finally, we examine zi,k, which is the kth dimension (k = 1, · · · , r) of the ith token of our ultra-low-dimensional
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embeddings: ∣∣∣∇L̂(z(1)i,k )−∇L̂(z
(2)
i,k )
∣∣∣ = ∣∣∣∣∣Pk,: diag(s)

∂L
∂ê

(1)
i

− Pk,: diag(s)
∂L
∂ê

(2)
i

∣∣∣∣∣ (30)

=

∣∣∣∣∣∣
∑
j

pk,jsj

(
∇L(ê(1)ij )−∇L(ê(2)ij )

)∣∣∣∣∣∣ (31)

≤∥Pk,: diag(s)∥

∥∥∥∥∥ ∂L
∂ê

(1)
i

− ∂L
∂ê

(2)
i

∥∥∥∥∥ (32)

≤σmax(P )σmax(s)L∥ê(1)i − ê
(2)
i ∥ (33)

≤σmax(P )σmax(s)L
∥∥∥diag(s)P⊤

(
z
(1)
i − z

(2)
i

)∥∥∥ (34)

≤Lσ2
max(P )σ2

max(s)∥z
(1)
i − z

(2)
i ∥ (35)

=Lσ2
max(P )σ2

max(s)|z
(1)
i,k − z

(2)
i,k |. (36)

where Eqn. (36) holds because we examine one element zi,k at a time, so z
(1)
i,k′ = z

(2)
i,k′ for k′ ̸= k.

With these element-wise properties, we can have the full-parameter Lipschitz condition by using Lemma 7.

Lemma 9. The loss function L̂ is µ′-PL (Polyak–Lojasiewic) w.r.t. x̂ ∈ Rnr+d for some µ′.

Proof.

1

2
∥∇L̂(x̂)∥2 =

1

2

∥∥∥∥∂L∂b
∥∥∥∥2 + 1

2

∥∥∥∥∂L∂s
∥∥∥∥2 + 1

2

n∑
i=1

∥∥∥∥ ∂L∂zi
∥∥∥∥2 (37)

=
1

2

∥∥∥∥∥
n∑

i=1

∂L
∂êi

∥∥∥∥∥
2

+
1

2

∥∥∥∥∥
n∑

i=1

diag(P⊤zi)
∂L
∂êi

∥∥∥∥∥
2

+
1

2

n∑
i=1

∥∥∥∥P diag(s)
∂L
∂êi

∥∥∥∥2 (38)

≥1

2

n∑
i=1

∥∥∥∥P diag(s)
∂L
∂êi

∥∥∥∥2 (39)

≥1

2
σ2
min(P )σ2

min(s)

n∑
i=1

∥∥∥∥ ∂L∂êi
∥∥∥∥2 (40)

=
1

2
σ2
min(P )σ2

min(s)∥∇L(x̂)∥2 (41)

≥σ2
min(P )σ2

min(s)µ (L(x̂)− L(x∗)) (42)

≥σ2
min(P )σ2

min(s)µ (L(x̂)− L(x̂∗)) , (43)

where x̂∗ is the minimizer under our parameterization. This suggests that L is µ′-PL for some µ′.

Theorem 3. Assume the original loss function L is Polyak–Lojasiewic and element-wise Lipschitz on the original d-
dimensional embeddings. Let P ∈ Rr×d be a given full-rank random Gaussian matrix (i.e., rank r), and our parametrization
be êi = diag(s)P⊤zi+b. With a proper learning rate schedule η1, η2, . . . , our parameters x = [b, s, z1, . . . ,zn] converge
to the global optimum with gradient descent if s is always non zero.

Proof. At each iteration t, gradient descent produces

xt+1 ← xt − ηt∇L(xt), (44)

where L is the loss function under our parametrization. For each iteration, we choose ηt = 1/β′(xt), where β′(xt) is the
Lipschitz coefficient in Lemma 8 depending on xt:

L(xt+1) ≤L(xt) + (∇L(xt))
⊤
(xt+1 − xt) +

β′(xt)

2
∥xt+1 − xt∥2 (45)
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=L(xt)−
1

2β′(xt)
∥∇L(xt)∥2 (46)

≤L(xt)−
µ′(xt)

β′(xt)
(L(xt)− L(x∗)). (47)

where µ′(xt) is the PL coefficient in Lemma 9, which also depends on xt. By rearranging the terms, we obtain

L(xt+1)− L(x∗) ≤
(
1− µ′(xt)

β′(xt)

)
(L(xt)− L(x∗)), (48)

suggesting that the excessive loss L(x)− L(x∗) converges to 0.

Note that our Lipschitz and PL conditions are non-uniform (i.e., depending on the parameters according to the lemmas
above). Therefore, a proper learning schedule ηt = 1/β(xt) is needed in the theoretical analysis.
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