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Abstract001

In-Context Learning (ICL) empowers Large002
Language Models (LLMs) with the ability to003
learn from a few examples provided in the004
prompt, enabling downstream generalization005
without the requirement for gradient updates.006
Despite encouragingly empirical success, the007
underlying mechanism of ICL remains unclear.008
Existing research remains ambiguous with var-009
ious viewpoints, utilizing intuition-driven and010
ad-hoc technical solutions to interpret ICL. In011
this paper, we leverage a data generation per-012
spective to reinterpret recent efforts from a013
systematic angle, demonstrating the potential014
broader usage of these popular technical so-015
lutions. For a conceptual definition, we rig-016
orously adopt the terms of skill recognition017
and skill learning. Skill recognition selects018
one learned data generation function previously019
seen during pre-training while skill learning020
can learn new data generation functions from021
in-context data. Furthermore, we provide in-022
sights into the strengths and weaknesses of023
both abilities, emphasizing their commonali-024
ties through the perspective of data generation.025
This analysis suggests potential directions for026
future research.027

1 Introduction028

LLMs have revolutionized Natural Language Pro-029

cessing (NLP) (Achiam et al., 2023) and other rel-030

evant areas such as multi-modal tasks over vision031

and language (Liu et al., 2023a), accelerating nu-032

merous challenging research directions, e.g., AI033

agent (Durante et al., 2024), reasoning (Wei et al.,034

2022b), and story telling (Xie et al., 2023). These035

amazing applications display LLMs’ emerging ca-036

pabilities, which can be formally defined as new037

abilities that are not present in small models but038

arise in larger ones (Zhao et al., 2023). Among039

them, the emerging ICL ability serves as an im-040

portant foundation of other capabilities. Notably,041

small models also have the capability to perform042

Review: Wonderful food!         Sentiment: Positive

Review: The Beef is overcooked. Sentiment: Negative

. . .. . .

Review: Fruits taste great.            Sentiment:

Demonstration
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Figure 1: Illustration of ICL for Sentiment Analysis. The
upper instances (with background color gray) are the labeled
in-context demonstrations, while the last line is the query for
which LLMs infer the sentiment label.

ICL, but the level of capability is different from 043

that of larger models, wherein people can easily ob- 044

serve more in-depth displays of understanding for 045

the given context of inputs, e.g., identify long-term 046

dependency and abstract concept comprehension. 047

For instance, Ganguli et al. (2023) demonstrates 048

that only LLMs over 22B parameters can under- 049

stand the moral concepts, being able to generate 050

unbiased answers. 051

ICL, a fundamental and emerging capability 052

serving as the pre-requisite for many complicated 053

abilities, is the process of leveraging a few selected 054

labeled demonstrations with the format (input, la- 055

bel)1, before the query input, for making predic- 056

tions in a few-/one-shot manner. An example of 057

ICL is illustrated in Figure 1. 058

Despite the empirical success of various ICL 059

prompting strategies for downstream applica- 060

tions (Mavromatis et al., 2023; Ye et al., 2022), 061

the mechanism of ICL remains unclear, leading to 062

unexplainable observations, e.g., sensitivity to the 063

sample order (Lu et al., 2021), or being robust to 064

human-crafted yet irrational input-label mapping. 065

Increasing attention has been paid to understand 066

ICL from various perspectives. However, this area 067

is still growing, with many open research questions 068

are actively being explored. Due to the complexity 069

of LLMs, most existing works only take one indi- 070

1In this paper, we focus on classification tasks as most
works on theoretical side of ICL leverages them with well-
defined mathematical tools and clear evaluation metrics.
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Table 1: A summarization table of representative works. SR and SL stand for skill recognition and skill learning, respectively.
Function approximation revolves on how effectively ICL can fit different generalize functions. The Internal Mechanism describes
how LLMs learn through various gradient descent algorithms.

Literature Ability Analysis View Date Generation Function Characteristics

Xie et al. (2021); Zhang et al. (2023c) SR
Theoretical

HMM Internal Mechanism
& Empirical

Wang et al. (2023) SR Empirical LDA Generalization
Zhao (2023) SR Theoretical Hopfield Network Internal Mechanism
Raventos et al. (2023) SL Theoretical linear regression Generalization
Wu et al. (2023a) SL Empirical linear regression Generalization
Garg et al. (2022) SL Empirical linear regression, decision tree, NN Function Approximation
Bai et al. (2023); Fu et al. (2023a) SL Theoretical linear regression, decision tree, NN Generalization
Yadlowsky et al. (2023); Ahuja et al. (2023) SL Empirical linear regression, polynomial regression Generalization
Von Oswald et al. (2023); Zhang et al. (2023b)

SL Theoretical linear regression Internal Mechanism
(Mahankali et al., 2023; Ahn et al., 2023a)
Akyürek et al. (2022) SL Theoretical linear regression Internal Mechanism
Li et al. (2023a); Ren and Liu (2023)

SL Theoretical non-linear regression Internal Mechanism
Cheng et al. (2023); Guo et al. (2023)
Hahn and Goyal (2023) SR&SL Theoretical context-free grammar Generalization

vidual factor into account, e.g., the pre-training data071

distribution (Chan et al., 2022a), model scale (Wei072

et al., 2023), or difficulty level of the in-context073

task (Raventos et al., 2023). Moreover, existing074

works focusing the same factor may adopt different075

experimental settings (Yoo et al., 2022; Min et al.,076

2022), leading to potentially conflicting conclu-077

sions. Typically, Pan (2023) categorizes ICL into078

two abilities: task recognition and task learning.079

In this paper, we propose the data generation080

perspective as a principled angle to comprehend081

existing studies towards understanding ICL. Fol-082

lowing this perspective, the pretraining stage can be083

interpreted as learning the data generation function084

classes underlying pretraining corpus, where the085

masked language modeling objective (Devlin et al.,086

2019) and the next token prediction objective (Rad-087

ford et al., 2018) are both objectives that allow us088

learn the data generation functions. Similarly, the089

ICL stage can be considered as a label generation090

process given the query inputs. Therefore, adopting091

this data generation perspective enables a unified092

framework through which we can cohesively an-093

alyze both pretraining and ICL stages, offering a094

holistic approach to understanding the foundations095

of LLMs.096

Guided by the data generation perspective, we in-097

troduce a more principled and rigorous understand-098

ing framework on skill learning and skill recogni-099

tion, distinguished by whether LLMs can learn a100

new data generation function in context. The skill101

learning ability is to learn a new data generation102

function in context, which is unseen in the pretrain-103

ing stage. The skill recognition ability selects one104

learned data generation function previously seen105

during pre-training. To analyze the mechanism106

of abilities, the function learning statistical frame- 107

work (Garg et al., 2022) and the Bayesian inference 108

statistical framework (Xie et al., 2021) are represen- 109

tative works for skill learning and skill recognition 110

ability, respectively. 111

Organization: Section 2 introduces previous 112

studies of ICL and Section 3 presents the termi- 113

nology. Key contributions lie in Section 4 and 5, 114

which systematically review the skill recognition 115

with the Bayesian inference framework and the 116

skill learning with the function learning framework, 117

respectively. We outline the challenges and poten- 118

tial directions in Section 6, aiming to offer a valu- 119

able guide for newcomers to the field while also 120

illuminating pathways for future research. 121

2 Related works 122

Comparison with existing relevant literature. As 123

far as we know, this paper is the first to provide a 124

comprehensive discussion on existing studies about 125

the mechanism of ICL and advocating a princi- 126

pled data generation perspective. This paper distin- 127

guishes itself from existing surveys like those by 128

Dong et al. (2022); Zhao et al. (2023); Wei et al. 129

(2022a), which predominantly primarily adopt on 130

a broad, application-oriented perspective, instead 131

of dedicating on the mechanism understanding. 132

Distinguish skill learning from skill recogni- 133

tion. The skill can be regarded as a data generation 134

function, referring to the underlying hypothesis on 135

the textual data generation. To determine whether 136

the utilized skill is from the pre-training function 137

class or is a new function, an empirical method 138

is to validate whether LLMs can fit a set of data 139

generated with a ground-truth function which is 140

outside the pre-training function class. 141
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Distinguish skill recognition/learning from142

task recognition/learning (Pan, 2023). We dis-143

tinguish our proposed skill recognition/learning144

from a data generation perspective with previous145

task recognition/learning proposed in (Pan, 2023).146

Task recognition/learning is a narrower aspect of147

our skill recognition/learning as they majorly focus148

on the empirical performance variation under the149

label permutation on in-context data. Task learning150

is recognized as performance degradation, indicat-151

ing ICL learns the permuted in-context data. In152

contrast, the task recognition corresponds to the153

unchanged performance, indicating ICL only relies154

on pre-training knowledge. The key advantages of155

our proposed skill recognition/learning definition156

are shown as follows: (1) Thanks to the mathe-157

matical description with a data generation function,158

skill learning/recognition enables both theoretical159

analysis and empirical evidence, instead of only160

focusing on the empirical one. (2) Task recogni-161

tion/learning can only emphasize the performance162

of a classification task in complicated real-world163

applications. Instead, skill learning/recognition can164

utilize different existing data generation functions165

in the NLP domain, e.g., HMM, and LDA, rather166

than merely input-label mapping for classification.167

Moreover, the data generation enables to conduct168

synthetic analyses in a systematic and controllable169

setting.170

3 Terminology171

The prompt sequence of In-Context Learning con-172

sists of two parts: (1) The demonstration is illus-173

trated as an (input, label) pair, denoted as (xi, yi);174

These demonstrations provide the basic description175

of the intended task. (2) The query is the test input176

after a few demonstrations. ICL aims to provide177

the correct prediction for the query based on the in-178

context demonstrations and the prior knowledge of179

a pre-trained LLM. The data generation function180

in this paper refers to the underlying hypothesis181

on language data generation. It serves as the data182

assumption in the theoretical understanding and183

the simulation data generator for the synthetic ex-184

perimental analysis. Each data generation function185

obtained by the LLM can be recognized as a skill.186

4 Skill Recognition187

Skill recognition ability is the ability of an LLM188

to select the most proper data generation func-189

tion from the function class obtained during pre-190

training. And this selection process is driven by the 191

in-context demonstrations. A Bayesian inference 192

framework (Xie et al., 2021) is introduced to ex- 193

plain the skill recognition. The ICL inference can 194

be instantiated as a Bayesian inference process as 195

follows: 196

p(y|prompt) =∫
concept

p(y|concept,prompt)p(concept|prompt)d(concept) 197

where p(y|prompt) is the conditional probabil- 198

ity of the output generation y given the prompt. 199

It can be marginalized with pre-training concepts 200

and each concept corresponds to a pre-training 201

data generation function. p(concept|prompt) is the 202

probability of locating the latent concept aligned 203

with in-context demonstrations. After locating the 204

aligned concept, p(y|concept, prompt) utilizes the 205

selected data generation function for the output 206

generation. 207

This approach to modeling latent concepts is 208

widely used in the field of NLP, as language data 209

is inherently compositional, involving underlying 210

concepts—such as sentiment, topics, and syntactic 211

structures—that are not explicitly observable in the 212

raw text (Chung et al., 2015; Zhou et al., 2020). 213

Latent variable models can specify prior knowl- 214

edge and structural dependencies for language data 215

which enjoys the characteristics of high composi- 216

tionality. Deep latent variable models are popularly 217

utilized to improve various tasks such as alignment 218

in statistical machine translation, topic modeling, 219

and text generation (Kim et al., 2018; Fang et al., 220

2019; Wang et al., 2023). 221

Though there are various definitions of latent 222

concepts, any latent information that can help ICL 223

can be considered as a good choice for the con- 224

cept in the Bayesian inference process above. We 225

summarize the existing concept definitions as fol- 226

lows: (1) Xie et al. (2021) defines the concept 227

as the transition matrix θ of a Hidden Markov 228

Model (HMM) (Baum and Petrie, 1966), which 229

assumes to be the underlying distribution of the 230

real-world language data. The concept helps to 231

state a transition distribution over observed tokens. 232

A concrete example of the concept is the transi- 233

tion between name (Albert Einstein) → nation- 234

ality (German) → occupation (physicist) in wiki 235

bios. (2) Wang et al. (2023) simplifies the tran- 236

sition between tokens, modeled by HMM, with 237

LDA topic models where each topic corresponds to 238

one latent concept (Blei et al., 2003). (3) Despite 239
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the above mathematical interpretations, Todd et al.240

(2023) and Liu et al. (2023b) empirically estab-241

lish the connection between the latent concept and242

the downstream task, e.g., supervised classification243

and question-answering, where the particular latent244

representation in the LLM can capture essential245

information about the task.246

The Bayesian inference framework is firstly pro-247

posed by Xie et al. (2021), interpreting how ob-248

tained pre-training data functions are activated by249

in-context demonstrations. Key challenges in this250

framework are: (1) In the pre-training stage, how251

the model obtains the latent concepts from the pre-252

training corpus; and (2) In the ICL inference stage,253

how in-context demonstrations can locate the most254

relevant concept to generate the desired output.255

The pre-training stage aims to obtain various con-256

cepts from the large pre-training corpora if each257

pre-training document is generated from an indi-258

vidual HMM model. In such cases, the next token259

prediction objective can converge if and only if the260

LLM can successfully generate the correct next261

token matching the HMM transitions. The transi-262

tions are dominated by the underlying concept (Xie263

et al., 2021). Different documents can be generated264

from various concepts sampled from the concept265

set denoted as Θ.266

The ICL inference stage conducts an implicit267

Bayesian inference to locate an appropriate concept268

θ∗ ∈ Θ which shows the optimal likelihood to269

generate the given in-context demonstrations. The270

format of the prompt is shown below:271

[Sn, xtest]

=
[
x1, y1, o

del, . . . , xn, yn, o
del, xtest

]
∼ pprompt

(1)272

where pprompt is a data generation process imple-273

mented with HMM parameterized by θ∗. xi, yi and274

odel are the input, label, and delimiter, respectively.275

The difficulty in locating θ∗ is due to low probabil-276

ity for all the pre-training concepts to generate the277

in-context demonstrations. The key reason is that278

token transition patterns of the in-context demon-279

strations are of three types: (1) the input to the280

label xi → yi, (2) the label to the delimiter, and281

(3) the delimiter to the input. The latter two pat-282

terns hardly appear in the pre-training data due to283

different delimiter usages.284

To address the above issue of low probability,285

Xie et al. (2021) proposes some assumptions. One286

example is the located concept θ∗ enjoys a higher287

probability transiting to delimiters than that of other288

concepts. Equipped with those assumptions, we 289

are able to locate the aligned pre-training concept 290

to implement Bayesian inference. The model can 291

locate the corrrect concept with p(θ∗|prompt) = 1 292

and p(θ|prompt) = 0 for all θ ∈ Θ \ θ∗. Even 293

though we cannot locate the aligned concept, Xie 294

et al. (2021) provides the theoretical guarantee on 295

the effectiveness of the ICL in such cases, where 296

the ICL performance improves along with the in- 297

creasing number of in-context examples. 298

Inspired by the above Bayesian inference frame- 299

work, more methods towards understanding skill 300

recognition are proposed, e.g., the PAC-Bayesian 301

framework (Alquier et al., 2024) and Hopfield Net- 302

work (Hopfield, 2007). Zhang et al. (2023c) analo- 303

gizes ICL inference to a Bayesian model averaging 304

algorithm. Wies et al. (2023) presents a PAC-based 305

generalization framework exhibiting satisfying gen- 306

eralization bound on the ICL where a transformer 307

trained on multi-task can match the ICL perfor- 308

mance of a transformer trained solely on the down- 309

stream task. Zhao (2023) analogizes the latent 310

concept location as memory retrieval with the Hop- 311

field Network. More recently, a novel information- 312

theoretic framework (Jeon et al., 2024) has been 313

introduced, decomposing the ICL prediction error 314

into three distinct terms: irreducible error, meta- 315

learning error, and intra-task error. This decom- 316

position helps aligning ICL with existing studies 317

hypothesizing ICL as an instance of meta-learning. 318

Nonetheless, existing studies are based on either 319

synthetic data or pure theoretical analysis. It could 320

be a promising direction to investigate how LLMs 321

retrieve concepts and how to interpret the retrieved 322

concept through natural language. 323

5 Skill Learning 324

Through the skill learning ability, LLMs can in- 325

ference a new data generation function which has 326

not been seen during pre-training. The function 327

learning framework2 is utilized to interpret the skill 328

learning ability. Specifically, pre-training is con- 329

sidered as a process to learn a class of functions 330

that can fit the pre-training corpora, and the ICL 331

inference is to learn a new data generation function 332

via fitting the ICL demonstrations. 333

Discussions on the skill learning ability are or- 334

ganized as follows. In Section 5.1, we first provide 335

2We refer to algorithm learning as function learning with
an emphasis on the approximated functions by algorithms and,
in this way, it is easier to analyze ICL.
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a clear description of the function learning frame-336

work and illustrate its benefits and drawbacks. In337

Section 5.2, we investigate: (1) whether LLMs can338

learn new functions in context, and (2) if yes, the339

generalization performance of the learned function.340

In Section 5.3 illustrates ICL can implement dif-341

ferent learning algorithms, e.g., gradient descent.342

More discussions on the robustness of ICL can be343

found in Appendix E.344

5.1 The Function Learning Framework345

Previous research reformulates the pre-training ob-346

jective of next-token prediction into an input-label347

mapping objective during the ICL inference stage.348

One limitation of the function learning framework349

is that it has to pre-train the model from scratch350

as the pre-training objective is different from the351

next token prediction. Due to computational re-352

source limitations, most works utilize transformers353

with less than 6 layers. These conclusions may354

not be generalizable to larger scale models. Garg355

et al. (2022) has been the only work to utilize a356

relative larger-scale model, reaching a similar scale357

as GPT-2.358

Denoting x ∼ PX ,x ∈ Rd where PX is a359

distribution, a function class F where for each360

f ∈ F , f : Rd → R. Given a sequence (x1, · · ·xi)361

(i > 1) sampled from PX sequentially, and a362

sampled function f ∼ F , the learning objec-363

tive aims to correctly predict f(xi) based on the364

sequence (x1, f(x1), · · · ,xi−1, f(xi−1),xi) with365

both in-context examples and the query input xi.366

E
x1...xn∼PX

f∼F

[
n∑

i=2

L (f(xi) , Tω ([x1, f (x1) . . .xi]))

]
(2)367

Eq. (2) describes the learning objective, where L368

is the loss function. Tω denotes the transformer369

model, ω is the parameter of the transformer.370

Notably, the model is pre-trained on the above371

ICL objective instead of the original next-token pre-372

diction objective. The function learning framework373

enables us to: (1) arbitrarily generate data with de-374

sired properties from the pre-defined function class375

F ; (2) clearly examine the function-approximation376

ability and the generalization of skill learning in377

ICL; and (3) utilize well-developed statistical learn-378

ing theory to understand ICL.379

5.2 Function Approximation and380

Generalization of ICL381

In this subsection, we investigate the function ap-382

proximation and generalization behavior of ICL.383

Function approximation indicates to what extent 384

transformers can approximate the ground-truth 385

function underlying a given input, in the ICL in- 386

ference stage. Generalization, on the other hand, 387

measures the gap between the approximated func- 388

tion and the ground-truth data generation function. 389

Notably, the function learning framework inves- 390

tigates ICL in the function space, rather than the 391

token space. 392

To explore the function approximation ability, 393

Raventos et al. (2023) leverages different linear 394

functions to generate pre-training data and in- 395

context demonstrations. When pre-training on a 396

small set of linear functions, ICL acts as a Bayesian 397

optimal estimator, illustrating the skill recognition 398

ability (Raventos et al., 2023). If enlarging the set 399

of pre-training linear functions, ICL can act as an 400

optimal least squares estimator with better func- 401

tion approximation, illustrating the skill learning 402

ability (Raventos et al., 2023). Wu et al. (2023a) 403

provides a theoretical explanation to support the 404

above empirical observations. 405

Beyond the linear function class, Garg et al. 406

(2022) observes that the ICL is expressive enough 407

to approximate more complicated functions, in- 408

cluding sparse linear functions, two-layer neural 409

networks, and decision trees. The only requirement 410

is that the same function class must be encountered 411

during both pre-training and the ICL stage. Bai 412

et al. (2023) and Fu et al. (2023a) propose theo- 413

retical explanations with a generalization bound 414

between the prediction error of the transformer 415

model and that of the target function. However, 416

two essential questions remain unsolved: (1) Why 417

do transformers suddenly obtain the skill learning 418

ability with significant performance increase once 419

the number of pre-training data generation func- 420

tions reaches a certain threshold? (2) Why is the 421

learned data generation function of ICL demonstra- 422

tions from the same class as the pre-training data 423

generation function? 424

The generalization of ICL is validated by com- 425

paring the ground-truth data generation function 426

of in-context demonstrations and the approximated 427

one through ICL inference. A more complicated ex- 428

perimental setting is considered where pre-training 429

involves data generation functions from multiple 430

function classes simultaneously, rather than being 431

restricted to a single function class, as in the above 432

function approximation experiments. Assuming 433

pre-training data generation functions cover deci- 434

sion trees and linear functions, the ground-truth 435
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data generation function of ICL demonstrations is436

a linear function. The ICL generalization is strong437

if and only if the predicted function of ICL demon-438

strations is a linear one.439

Bai et al. (2023); Ahuja et al. (2023); Vasudeva440

et al. (2024); Tripuraneni et al. (2023) indicate441

that transformers can achieve the Bayesian optimal442

selection, choosing the best-fitting function class443

with the minimum description length, from those444

function classes seen during the pre-training stage.445

Such Bayesian optimal selection helps a trans-446

former pre-trained with multiple function classes447

reach comparable ICL performance as one pre-448

trained with only the ground-truth function class.449

Notably, such Bayesian optimal on the synthetic450

dataset may not fully explain all the experimental451

observations. Yadlowsky et al. (2023) generates452

each pre-training instance with functions from mul-453

tiple function classes, e.g., 0.7f1(x) + 0.3f2(x)454

where f1 and f2 are from different function classes.455

The ICL can still achieve Bayesian optimal se-456

lection, holding the same conclusion. Notably,457

the above works focus on the scenario where the458

ground-truth data function is within pre-training459

function classes. Skill learning fails if the ground-460

truth data function is out of the pre-training func-461

tion class (Yadlowsky et al., 2023); ICL degrades to462

skill recognition with Bayesian optimal estimator.463

In summary, skill learning emerges if the number464

of pre-training data generation functions is suffi-465

ciently large. ICL can learn a function that lies466

in the same function class of the pre-training data.467

Moreover, ICL would implement a Bayesian op-468

timal selection to select the function best-fitting469

on ICL demonstrations, from pre-training function470

classes.471

5.3 The Internal Mechanisms of ICL472

In this subsection, we explore how ICL can learn473

an unseen function in context. Notably, there are474

two common assumptions generally utilized in ex-475

isting works: (1) The data generation functions for476

both pre-training data and in-context demonstra-477

tions are linear. (2) The toy transformer model is478

linearized by removing feed-forward layers and the479

softmax activation function in the attention layer.480

This linearized simplification may generalize to the481

standard transformer, as Ahn et al. (2023b) illus-482

trates that the training dynamic of the linearized483

version is similar to the standard transformer.484

Previous works analogize ICL to meta-485

learning (Finn et al., 2017). The pre-training stage486

corresponds to the outer-loop optimization, and 487

the ICL inference stage is an instance of the inner- 488

loop optimization, implementing fast adaptation on 489

new novel tasks. Rather than a real inner gradi- 490

ent update, ICL inference mimics gradient update 491

via a forward process with in-context demonstra- 492

tions (Hubinger et al., 2019; von Oswald et al., 493

2023; Zheng et al., 2024). 494

Based on the dual view that the backward pro- 495

cess on a linear neural layer is equivalent to the 496

forward process on a linear attention layer, Irie 497

et al. (2022); Dai et al. (2022) proves the mathe- 498

matical equivalence, illustrating the implicit gradi- 499

ent descent implementation with a linear attention. 500

However, such an analogy is only limited to mathe- 501

matical equivalence. It remains unclear why ICL 502

can learn a function since such an analogy over- 503

looks many practical details, including the choice 504

of the learning objective, pre-training weights, and 505

the training data distribution (Mahdavi et al., 2024). 506

To address the gap between theoretical mod- 507

els and real-world implementation, the following 508

works consider the construction of pre-training 509

weights. Von Oswald et al. (2023) first demon- 510

strate that ICL on the single-layer transformer can 511

implement one-step gradient descent with a linear 512

regression objective. Bai et al. (2023) further show 513

that ICL inference can implement ridge regression, 514

least square, lasso, and even gradient descent on 515

a two-layer Neural Network. Nonetheless, those 516

strong assumptions about the attention weights 517

may be not practically reasonable. For instance, 518

Von Oswald et al. (2023) construct the key, query, 519

value matrices WK ,WQ,WV with WK = WQ = 520(
Ix 0
0 0

)
,WV =

(
0 0
W0 −Iy

)
, where Ix 521

and Iy are two different identity matrices and W0 is 522

the initialized parameters of the transformer model. 523

Nonetheless, it is unclear why a pre-trained trans- 524

former would have such type of weights, and it 525

has been reported that this is not easily achieved in 526

practice (Shen et al., 2023). 527

Instead of explicit attention weight construction, 528

Zhang et al. (2023a); Mahankali et al. (2023); Ahn 529

et al. (2023a) analyze the converged weights ob- 530

tained after pre-training. Von Oswald et al. (2023) 531

observes the ICL on the one-layer linear trans- 532

former can implement gradient descent or precon- 533

ditioned gradient descent algorithm (Ahn et al., 534

2023a) given a linear regression objective. Given a 535

two-layer transformer, ICL can implement a gradi- 536

ent descent with adaptive step size and special spar- 537
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sity regularization (Ahn et al., 2023a). Moreover,538

Ahn et al. (2023a); Von Oswald et al. (2023) reveal539

that multiple-layered transformers can implement540

a GD++ algorithm. For larger-scale transformers,541

Akyürek et al. (2022) empirically illustrates that,542

instead of performing GD, large-scale transform-543

ers show emergent ability directly approximating544

the closed-form solution of ridge-regression, while545

there is still a gap on why this ability emerges as546

the model-scale increases.547

Beyond the linear activation for attention heads,548

recent researches take the softmax activation func-549

tion into consideration. Von Oswald et al. (2023)550

demonstrates there exists a transformer that per-551

forms GD to solve more complicated nonlinear552

regression tasks. Li et al. (2023a); Ren and Liu553

(2023) identify the nonlinear regression task as the554

softmax regression and contrastive learning objec-555

tive, respectively. Cheng et al. (2023) further takes556

non-linear data generation functions into consid-557

eration, elucidating a transformer can implement558

gradient descent and converge to the Bayes opti-559

mal predictor. Wibisono and Wang (2023) theo-560

retically finds that the softmax can help to find561

the correct data pair from the unstructured data562

which the input-output pair is permuted.. Guo et al.563

(2023); Zhang et al. (2024) further studies a more564

challenging but practical setting of representation565

learning, in which predictions depend on inputs566

through the MLP. The theoretical evidence in Guo567

et al. (2023) indicates that the ICL inference can im-568

plement ridge regression in context with the input569

of neural representations.570

Practical usage of mechanism analysis. The571

above section has indicated that ICL implements a572

gradient descent vector to achieve successful func-573

tion learning. From a practical perspective, Todd574

et al. (2023); Liu et al. (2023b) find the existence of575

compressed task vectors3 in transformers with spe-576

cific functionality. More recently, Li et al. (2024)577

attempts to connect the gradient vector with the578

compressed task vector, utilizing inner and mo-579

mentum optimization towards a better task vector.580

Success of the new optimized task vector can be581

found on multiple tasks.582

6 Insights & Future Directions583

In this section, we delve into key insights from the584

data mechanism perspective of ICL and identify585

3Similar task vectors (Hojel et al., 2024) can also be found
in the computational vision domain.

open questions that remain to be addressed in this 586

evolving field. 587

The uniformity of the two frameworks. Our 588

new data generative perspective suggests the re- 589

searcher find a suitable statistical framework as the 590

starting point for analysis. We exhibit the poten- 591

tial that both frameworks can be easily utilized to 592

understand the mechanism of both abilities. Such 593

extension enables the future mechanism analysis to 594

select the suitable analysis framework, by referring 595

to their strengths and weaknesses. The original 596

function learning framework for the skill learning 597

ability also implements an implicit Bayesian op- 598

timal selection (Ahuja et al., 2023). Moreover, 599

Swaminathan et al. (2023) extends the Bayesian 600

inference framework to learn new in-context data 601

generate functions. A comprehensive discussion 602

can be found in Appendix A. 603

The unique strengths and weaknesses of skill 604

learning/recognition ability Skill learning effec- 605

tively updates knowledge from in-context data. 606

However, it may be distracted by irrelevant infor- 607

mation (Shi et al., 2023). The skill recognition is ro- 608

bust to in-context noise (Webson and Pavlick, 2021) 609

but less adaptable to new patterns, which leads to 610

the failure on the specification-heavy task (Peng 611

et al., 2023). Therefore, careful evaluation of each 612

ability is recommended to select the most suitable 613

one for specific downstream tasks. A comprehen- 614

sive discussion can be found in Appendix B.3 615

Emergent Skill Composition Ability. We ma- 616

jorly focus on the skill recognition/learning ability 617

in our paper. More recently, new skill composition 618

ability is found on larger model with specialized 619

ICL prompts like Chain-of-Thought (CoT) (Wei 620

et al., 2022b). The skill composition ability com- 621

bines multiple data generation functions to create a 622

more complicated data generation function. This 623

ability, supported theoretically by Arora and Goyal 624

(2023), shows that complex tasks can exhibit per- 625

formance gains when decomposed skills improve 626

linearly. More analyses on the effectiveness of skill 627

composition ability can be found in Appendix C. 628

Application of Skills. After acquiring skill 629

learning and skill recognition abilities during pre- 630

training, we examine how the LLM utilizes both 631

abilities to achieve satisfactory performance on 632

downstream tasks during the ICL inference stage. 633

Generally, the LLM’s behavior aligns more with 634

the skill recognition mechanism on challenging 635

tasks, while skill learning is more frequently ob- 636

served on easier tasks. Min et al. (2022) first ob- 637
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serves that the corrupted mapping does not nec-638

essarily lead to the overall performance degrada-639

tion, indicating an overall skill recognition behav-640

ior. Instead of examining the overall performance641

across tasks, Yoo et al. (2022) conducts a more642

careful evaluation of each task individually where643

the ICL shows different behaviors on tasks with dif-644

ferent difficulties. The relatively easy tasks exhibit645

performance degradation on the wrong input-label646

mapping while the robust performance appears on647

those difficult tasks. Such observation indicates648

that the skill learning ability is more applicable to649

relatively easy tasks while the skill recognition abil-650

ity dominates on the difficult ones. A more detailed651

discussion can be found in B.2652

How the skill learning ability emerges dur-653

ing pre-training. The emergence of the skill654

learning ability can be partially attributed to the655

skewed rank-frequency distribution of pre-training656

corpora. (Chan et al., 2022a), and (Reddy, 2023)657

highlight the role of the induction head (Olsson658

et al., 2022), a particular attention head which659

explicitly searches for a prior occurrence of the660

current token in-context and copying the suffix as661

predictions. Moreover, the function class-based662

analysis (Raventos et al., 2023) illustrates that the663

transition from skill recognition to skill learning664

only happens given diverse enough tasks in pre-665

training corpora. It is interesting to explore how666

these factors collaboratively influence the emer-667

gence of skill learning.668

Why does ICL only learn the data generation669

function that appeared during pre-training? In670

Section 5, we provide a comprehensive discussion671

on what function can be learned in context. Obser-672

vations indicate that ICL can only learn the function673

within the pre-training data generation function674

class. Nonetheless, the causality of the pre-training675

data generation function to ICL remains unclear.676

Garg et al. (2022) proposes the research question677

as: Can we train a model to in-context learn a cer-678

tain function class but overlooks the effect of the679

pre-training data generation function class. Once680

we have a certain clue about causality, we can lever-681

age the skill-learning ability in a more controllable682

and safe manner.683

Another line of research is to conduct analyses684

on more realistic scenarios. Recently, Chen et al.685

(2024) finds the parallel structures in pre-training686

data-pairs of phrases following similar templates687

in the same context window is the key to the emer-688

gence of the ICL capability. We conjecture that689

the underlying reason can be the formulation of the 690

induction head with repeat patterns. 691

Data generation functions aligned with real- 692

world scenarios. One major concern on the sta- 693

tistical framework is that the correspondence with 694

real-world scenarios is unknown and overly sim- 695

plified. Recently, Akyürek et al. (2024) proposes 696

a new approach for generating data functions that 697

are more aligned with real-world scenarios. The 698

framework allows for more accurate simulations 699

and testing of machine learning models by inte- 700

grating domain-specific knowledge and constraints 701

into the data generation process. This alignment 702

enhances the applicability and reliability of exist- 703

ing conclusions to the real-world scenarios. We 704

advocate for theoretical analyses focused on real- 705

world data generation functions, moving beyond 706

traditional statistical frameworks. More empiri- 707

cal analysis on skill learning and skill recognition 708

abilities are illustrated in Appendix B. 709

Extending existing findings to other capabili- 710

ties of LLMs. more ICL capabilities are observed 711

except for classification tasks, e.g., step-by-step 712

reasoning ability (Wei et al., 2022b) for reason- 713

ing and self-correction (Ganguli et al., 2023). A 714

critical question is how we can extend the under- 715

standing frameworks introduced in this paper, par- 716

ticularly the data generation perspective, to more 717

complicated LLMs’ capabilities. Some pioneer- 718

ing research has been done; Prystawski and Good- 719

man (2023) extends the Bayesian inference frame- 720

work to understand the effectiveness of the CoT 721

prompt. Kadavath et al. (2022) focuses on the self- 722

evaluation prompt showing that LLMs can accu- 723

rately examine the correctness of their statements. 724

We believe the introduced data generation perspec- 725

tive and two main understanding frameworks on 726

ICL serve as the milestone to explore more intrinsic 727

capabilities of LLMs. 728

7 Conclusion 729

In this study, we introduce a novel data generation 730

perspective to understand the underlying mecha- 731

nism driving the current success of ICL. We pri- 732

marily focus on understanding the LLM’s ability 733

of skill learning and skill recognition, and investi- 734

gate whether ICL inference is capable of learning 735

new data generation functions in context. Our work 736

makes a step forward to enhancing our understand- 737

ing of underlying mechanisms. 738
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8 Limitations739

In this paper, we provide a mechanism understand-740

ing of the ICL from a data generation perspective,741

We systematically consider the limitations from var-742

ious perspectives such as fairness, security, harm743

to people, and so on, and we do not find any ap-744

parent social risk related to our work. However,745

there is a notable technical limitation in our study.746

The current statistical frameworks with controlled747

experimental settings may not fully capture com-748

plexities present in real-world scenarios. This gap749

between the theoretical framework and practical ap-750

plications suggests that further research is needed751

to adapt and refine the mechanism analysis to align752

with real-world application.753
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A Insights on the Bayesian Inference and 1287

the Function Learning Framework 1288

The core idea from the data-generative perspec- 1289

tive is to (1) construct a data generation function 1290

hypothesis with one specific statistical framework 1291

and (2) analyze the data generation capability of 1292

the LLM with ICL instances with a focus on either 1293

skill learning/recognition mechanism. The exist- 1294

ing pipelines on skill recognition and skill learning 1295

abilities are comprehensively discussed with the 1296

statistical frameworks of the Bayesian inference 1297

and function learning in Section 4 and 5, respec- 1298

tively. However, most existing analysis follows one- 1299

to-one correspondence which explains one ability 1300

with one specific statistical framework, serving as 1301

a solution for skill learning. 1302

Our new data generative perspective suggests the 1303

researcher find a suitable statistical framework as 1304

the starting point for analysis. We exhibit the poten- 1305

tial that both frameworks can be easily utilized to 1306

understand the mechanism of both abilities. Such 1307

extension enables the future mechanism analysis to 1308

select the suitable analysis framework, by referring 1309

to their strengths and weaknesses. The function 1310

learning framework provides an elegant description 1311

of the data generation process with more compre- 1312

hensive conclusions. However, it is over-simplified 1313

with an unclear relevance to the real-world sce- 1314

nario. The Bayesian inference framework provides 1315

a more concrete and detailed description of the data 1316

generation process through an HMM model, e.g., 1317

the delimiter is taken into consideration, while the 1318

theoretical analysis on the role of delimiters is hard 1319

since it requires several assumptions over statistical 1320

modeling. 1321

We provide a comprehensive discussion on ex- 1322

tending one framework to the other statistical 1323

framework. The function learning framework can 1324

be easily extended to understand skill recognition 1325

by simply replacing the data generation function 1326

from a mixture of HMMs with linear functions. 1327

In this section, we focus on how to utilize the 1328

Bayesian inference framework to model the mech- 1329

anism of skill learning. We first show that the orig- 1330

inal function learning framework for the skill learn- 1331

ing ability also implements an implicit Bayesian 1332

optimal selection in Section A.1. We then extend 1333

the Bayesian inference framework to learn new in- 1334

context data generate functions in Section A.2. the 1335

Bayesian inference framework can also serve as a 1336

solution for skill learning. 1337
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A.1 Bayesian Selection in the Function1338

Learning Framework1339

The Bayesian perspective can be found in the func-1340

tion learning framework originally utilized for the1341

skill learning mechanism. Typically, we illustrate1342

the underlying Bayesian selection in the function1343

learning framework, indicating the intrinsic con-1344

nection between the two statistical frameworks.1345

According to Ahuja et al. (2023), the transform-1346

ers pre-trained on the data generated from diverse1347

function classes exhibit improved function-fitting1348

ability across all the pre-training function classes.1349

To identify the best-fit solution among the whole1350

function class, the function selection process imple-1351

ments a Bayesian optimal selection. More details1352

can be found in Section 5.2. Notably, instead of1353

the original Bayesian inference framework only se-1354

lecting pre-training data generation functions, the1355

function selection scope is enlarged, including all1356

the unseen functions from the same function class1357

with the pre-training functions.1358

A.2 Extending the Bayesian Inference1359

Framework for Skill Learning1360

We then illustrate the possibility of extending1361

the Bayesian inference framework to understand1362

the skill learning mechanism to capture new data1363

generation functions from the in-context data via1364

relaxing the particular assumption. One impor-1365

tant assumption in the Bayesian inference frame-1366

work (Xie et al., 2021) is that all ICL demon-1367

strations should be generated with the same la-1368

tent concept. Nonetheless, this strong assumption1369

may not be held in practice. For instance, one1370

demonstration sample discusses the topic of so-1371

ciology but another one is relevant to cardiology,1372

the data generation function for these two domains1373

should be rather different. Inspired by the high1374

compositionality nature of language data, Hahn1375

and Goyal (2023) came up with an information-1376

theoretic bound showing that ICL performance1377

can be improved given more unique compositional1378

structures in pre-training data, therefore skill learn-1379

ing ability can appear by combining compositional-1380

ity structures, in pre-training data, to infer the data1381

generation function of ICL demonstrations.1382

Empirical evidence shows that, given an input-1383

label pair of two semantically unrelated concepts,1384

e.g., mapping sports to animals, Rong (2021); Wei1385

et al. (2023) still observe a satisfactory performance1386

with the increasing model scale, indicating that the1387

LLM can retrieve multiple concepts and combine 1388

them as a new data generation process. Feng and 1389

Steinhardt (2023) interpret the combination with a 1390

binding mechanism with an internal function vector 1391

to recognize the input feature and bind it to the 1392

corresponding label. 1393

Swaminathan et al. (2023) proposes another 1394

way to extend the existing Bayesian frame- 1395

work for skill learning via replacing the origi- 1396

nal HMM model into the clone-structured causal 1397

graph (CSCG) (George et al., 2021; Dedieu et al., 1398

2019). The major difference is that the CSCG con- 1399

siders a learnable emission matrix, which deter- 1400

mines the probability of observing a particular out- 1401

put given each hidden state in the model. A relevant 1402

transition matrix as the concept is retrieved, similar 1403

to the Bayesian inference (Xie et al., 2021). The 1404

hidden states for each token can then be obtained 1405

given the particular relevant template. The LLM 1406

then learns the suitable emission matrix, providing 1407

the best-fit mapping from the hidden states to the 1408

observed token. 1409

B Empirical Investigation On Skill 1410

Recognition and Skill Learning 1411

In this section, we exhibit more empirical analyses 1412

revolving around skill recognition and skill learn- 1413

ing abilities. In contrast to the mechanism analysis 1414

that focuses on whether the ICL can learn new in- 1415

context data generation functions or not, empirical 1416

evidence in this section indicates that it is highly 1417

likely that LLMs exhibit both skill recognition and 1418

skill learning abilities of various levels, instead 1419

of an all-or-nothing conclusion. We first discuss 1420

how the LLM jointly obtains both abilities during 1421

the pre-training stage in Section B.1. Specifically, 1422

the origin of both abilities is determined by the 1423

pre-training data distribution (Chan et al., 2022a) 1424

and the model scale (Wei et al., 2023; Pan, 2023). 1425

We then investigate how the LLM effectively uti- 1426

lizes the obtained abilities during the ICL inference 1427

stage in Section B.2. Typically, the LLM exhibits 1428

varying degrees of usage on those two abilities ac- 1429

cording to tasks with different difficulties. The 1430

unique strengths and weaknesses of each ability 1431

are shown in Section B.3. 1432

B.1 Origin of Skills 1433

In this subsection, we carefully examine how well 1434

the LLM obtains the skill learning and the skill 1435

recognition abilities during the pre-training stage, 1436

15



with a focus on the impact of the pre-training data1437

distribution and model scale. Roughly speaking,1438

the skill recognition ability is easy to achieve while1439

the skill learning ability develops much slower and1440

only emerges when the model scale is sufficiently1441

large.1442

Analyses are first conducted focusing on how1443

those abilities are developed along the pre-training1444

procedure. (Bietti et al., 2023) observe that the1445

skill recognition ability is obtained early in the pre-1446

training procedure, while the skill learning ability is1447

developed much later. However, Singh et al. (2023)1448

shows that the obtained skill learning ability grad-1449

ually vanishes after over-training and is replaced1450

by the skill recognition ability. Such observation1451

indicates that skill learning is a transient ability1452

that may disappear when the model is over-trained1453

rather than a persistent one which can be kept once1454

obtained. The reason can be attributed to the pre-1455

training data distribution (Chan et al., 2022a) where1456

the task learning ability degrades if the pre-training1457

data follows a uniform, i.i.d distribution. Nonethe-1458

less, such degradation may not happen when the1459

pre-training data follows a properly skewed Zipfian1460

distribution. Chan et al. (2022a) further empha-1461

sizes that the skill learning ability emerges when1462

the pre-training data meets the following properties:1463

(1) Skewed rank-frequency distributions: Dynamic1464

contextual meaning does not uniform across data,1465

instead, only a few meanings dominate with the1466

long tail of other infrequent meanings. (2) Bursti-1467

ness: Dynamic contextual meaning is not uniform1468

across time, but appears in clusters. The reason1469

why ICL ability can be obtained on such data dis-1470

tribution remains unclear. A potential explanation1471

could be that the pre-training weight can only ob-1472

tain the head meaning frequently appears while the1473

long tail knowledge can only be obtained via ICL.1474

Analyses are then conducted with a focus on1475

the impact of the model scale. Pan (2023) illus-1476

trates that the skill recognition ability can be found1477

across LLMs with different scales. In contrast,1478

LLMs obtain better skill learning ability along with1479

an increasingly larger scale. Similar observations1480

can be found in (Wei et al., 2023) that the LLM can1481

learn the flipped input-label mapping and override1482

pre-training knowledge when the model scale is1483

sufficiently large. (Fu et al., 2023b) provides the1484

potential explanation where the good skill recogni-1485

tion ability serves as a necessity for developing the1486

skill learning ability.1487

B.2 Application of Skills 1488

After the LLM obtained the skill learning and skill 1489

recognition abilities during pre-training, we then 1490

investigate how the model utilizes both abilities 1491

for achieving satisfactory downstream task perfor- 1492

mance during the ICL inference stage. Overall, 1493

the behavior of the LLM is more consistent with 1494

the skill recognition mechanism on difficult tasks 1495

while observations aligned with skill learning are 1496

more common to see on easy tasks. 1497

Empirical analyses are conducted on the well- 1498

trained LLM, focusing on the ICL behavior on 1499

downstream tasks with various difficulties. Typ- 1500

ically, we examine whether the model behavior 1501

aligns with the skill recognition ability or the skill 1502

learning one via the performance sensitivity on cor- 1503

rupting in-context data with incorrect input-label 1504

mapping. If the LLM takes advantage of the skill 1505

learning ability more, the LLM can learn the cor- 1506

rupted in-context mapping, leading to performance 1507

degradation compared with the origin setting. In 1508

contrast, if the LLM follows the skill recognition 1509

ability more, the LLM should be robust to the 1510

correctness of the input-label mapping, since the 1511

skill recognition ability only implements the pre- 1512

training data generation function with correct input- 1513

label mapping. Min et al. (2022) first observes that 1514

the corrupted mapping does not necessarily lead 1515

to the overall performance degradation, indicating 1516

an overall skill recognition behavior. Instead of ex- 1517

amining the overall performance across tasks, Yoo 1518

et al. (2022) conducts a more careful evaluation 1519

of each task individually where the ICL shows dif- 1520

ferent behaviors on tasks with different difficulties. 1521

The relatively easy tasks exhibit performance degra- 1522

dation on the wrong input-label mapping while the 1523

robust performance appears on those difficult tasks. 1524

Such observation indicates that the skill learning 1525

ability is more applicable to relatively easy tasks 1526

while the skill recognition ability dominates on the 1527

difficult ones. 1528

B.3 Advantages and Disadvantages of Skills 1529

Considering the intricate interplay of both abili- 1530

ties on different tasks, we further illustrate the 1531

strengths and weaknesses inherent in each abil- 1532

ity. Skill learning ability can obtain new knowl- 1533

edge from the in-context data, and even over-ride 1534

the pre-training knowledge. It provides an easy 1535

way to update the knowledge on the specific ap- 1536

plication without requiring computationally heavy 1537
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fine-tuning. Such ability has been successfully uti-1538

lized in different LLM applications, e.g. model1539

editing with ICL (Zheng et al., 2023). Nonethe-1540

less, the skill learning ability may fail as it can be1541

easily distracted by irrelevant context (Shi et al.,1542

2023). Skill recognition ability is insensitive to the1543

new in-context pattern leading to the failure on the1544

specification-heavy task (Peng et al., 2023) while1545

it exhibits robustness to the incorrectness of label-1546

demonstrations and other in-context noise (Webson1547

and Pavlick, 2021). Based on the above discussion,1548

we suggest a careful evaluation of LLM about each1549

ability and select a desired one for the downstream1550

task.1551

C Skill Composition1552

We primarily focus on the skill learning ability1553

where the ICL can learn a new data generation1554

function, and skill recognition ability where the1555

ICL utilizes the data generation function from pre-1556

training data. Instead of focusing on the single1557

data generation function, combining multiple data1558

generation functions together can lead to a com-1559

plicated data generation function. We named such1560

capability as skill composition capability, helping1561

the LLM to achieve a complicated task by combin-1562

ing a sequence of simple and basic steps. Arora and1563

Goyal (2023) theoretically indicates the effective-1564

ness of skill composition where the complicated1565

task can exhibit emergent performance gain when1566

all the decomposed basic skills improve linearly.1567

The discussions on skill composition are orga-1568

nized as follows. In Section C.1, we investigate the1569

effectiveness of skill composition ability. In Sec-1570

tion C.2, we analyze when the skill composition1571

capability can work. In Section C.3, we further1572

illustrate more discussion and real-world applica-1573

tions on the skill composition ability. Notably, the1574

skill composition ability is complicated without1575

a general data generation function framework so1576

far. The skill-composition ability often requires to1577

be elicited by specific-designed ICL prompts, e.g.,1578

Chain-of-Thought prompting (CoT) (Wei et al.,1579

2022b), Tree-of-thought (Yao et al., 2023), and1580

Graph-of-Thought (Besta et al., 2023), which gen-1581

erates multiple intermediate steps before the final1582

answer. Most following literature conducts analy-1583

sis on the CoT prompt.1584

C.1 Effectiveness of Skill Composition 1585

In this section, we investigate the effectiveness 1586

of skill composition ability. Feng et al. (2023) 1587

indicates that if the skill decomposition is ap- 1588

plied, the LLM can be more expressive to describe 1589

more complicated problems, e.g., mathematical 1590

and decision-making problems. Li et al. (2023b); 1591

Yang et al. (2023) further demonstrate the data effi- 1592

ciency where the skill composition facilitates can 1593

learn complicated functions with a reduced sam- 1594

ple complexity. Prystawski and Goodman (2023) 1595

attributes the above expressiveness and efficiency 1596

with the local structures in the training data gener- 1597

ation function. Such locality enables to accurate 1598

inference on each intermediate step supported by 1599

the similar pre-training data generation function. In 1600

contrast, direct inference as a whole instead of each 1601

local steps are likely to fail requiring since such 1602

complicated data generation function does not ap- 1603

pear during the pre-training stage. In summary, the 1604

skill composition ability of LLMs enhances their 1605

expressiveness and data efficiency for modeling 1606

complicated data generation function, building on 1607

the basis of locality data generation function from 1608

the pre-training data. 1609

C.2 When Skill Composition Works 1610

We demonstrate the effectiveness of the composi- 1611

tion in Section C.1, however, it remains unknown 1612

whether the decomposed intermediate steps are 1613

well-organized aligning with human cognition. To 1614

examine the correctness of the LLM decomposi- 1615

tion, the literature focuses on formal deductive 1616

reasoning tasks like math reasoning (Ahn et al., 1617

2024). It enables to conducting systematic and con- 1618

trollable analysis on each reasoning step with the 1619

unique correct answer. 1620

LLMs are able to conduct correct decomposi- 1621

tion on particular tasks, aligning with the ideal 1622

human reasoning process. Zhou et al. (2023) finds 1623

a theoretical criterion to identify when the LLM 1624

can implement the ideal decomposition. Typically, 1625

when the task can be described by a short RASP 1626

program (Weiss et al., 2021), a programming lan- 1627

guage designed for the computational model of 1628

a Transformer, the LLM can achieve the correct 1629

decomposition. Similarly, Yao et al. (2021) demon- 1630

strates that the transformer can process correct de- 1631

composition on particular formal languages with 1632

hierarchical structure, e.g., Dyckk (Chomsky and 1633

Schützenberger, 1959). With a suitable decomposi- 1634
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tion, LLMs can easily solve arbitrary complicated1635

problems (Jelassi et al., 2023; Li and McClelland,1636

2023).1637

Beyond those identified tasks, it remains many1638

tasks where LLMs cannot conduct an ideal decom-1639

position. The key underlying reason (McCoy et al.,1640

2023) is the gap between human cognition and the1641

next-token prediction pre-training task, requiring1642

to tackle problems sequentially greedily. Instead1643

of a proper decomposition, a greedy shortcut can1644

be obtained from standard training, which skips1645

the particular step instead of a formal decompo-1646

sition. Theoretical evidence on the existence of1647

shortcuts can be found in (Liu et al., 2022) on the1648

semi-automaton reasoning task. Saparov and He1649

(2022) indicates that the shortcut can easily select1650

the wrong step, leading to an incomplete planning1651

and subsequently an incorrect answer, leading to1652

failure on complicated tasks (Dziri et al., 2023).1653

Such inherent failure is unavoidable as the trans-1654

former always finds a shortcut solution (Liu et al.,1655

2022) while impossibile to find the exact implemen-1656

tation of the semi-automaton reasoning requiring1657

recurrent models of computation with shallow and1658

non-recurrent architecture. On the contrary, the1659

shortcut also shows its benefits, converting the orig-1660

inal complicated reasoning problem with multiple1661

hops into a simpler one with less hops (Wu et al.,1662

2023b; Saparov and He, 2022), alleviating the per-1663

formance degradation along with the increased hop.1664

In summary, the shortcut solution of LLMs can1665

be a double-side sword to solve a compositional1666

problem. Nonetheless, it remains no existing study1667

on how the LLM acquires the decomposition capa-1668

bility from pre-training data. Notably, we focus on1669

whether the LLM composition aligns with the hu-1670

man decomposition while the manually-conducted1671

deduction rules may not be optimal. The optimal1672

decomposition remains unknown.1673

C.3 More Discussions1674

Despite the above comprehensive understanding,1675

there are more empirical studies on the skill compo-1676

sition ability from various perspectives as follows.1677

Madaan and Yazdanbakhsh (2022) divides the CoT1678

prompt into three key components: symbols, pat-1679

terns, and text with distinct roles as follows: (1)1680

The exact type of symbols does not matter. (2) The1681

patterns are the template serving as a trigger help-1682

ing to locate the correct concept (3) Text contains1683

commonsense knowledge and meaning, leading to1684

the ultimate success. Similarly, Wang et al. (2022)1685

divides the CoT prompt into two key components: 1686

bridging objects (the key and necessary objects) 1687

and language templates. Interestingly, neither of 1688

them matters. In contrast, the relevance to the query 1689

and correct reasoning ordering matters. 1690

More recently, Xu et al. (2024) challenges the 1691

skill compositional capability of LLMs, pointing 1692

out the failure on the sequential reasoning tasks. 1693

On the contrary, LLMs can perform well on simple 1694

composite tasks that can be easily separated into 1695

sub-tasks based on the inputs solely. The skill 1696

composition ability remains mysterious, requiring 1697

further analyses. 1698

D Discussions 1699

D.1 The Emergence Phenomenon On the ICL 1700

Generalization 1701

Chan et al. (2022b) proposes an interesting perspec- 1702

tive to characterize how the ICL generalizes to the 1703

test data based on the in-context samples. Observa- 1704

tions exhibit that the larger LLMs can achieve rule- 1705

based generalization similarly with the SVM. The 1706

rule-based generalization makes decisions using a 1707

minimal set that is central to the category definition, 1708

disregarding less essential data, Nonetheless, induc- 1709

tion heads mechanism with prefix match and copy 1710

are more aligned with examplar-based generaliza- 1711

tion like KNN. The reason why LLM can achieve 1712

rule-based generalization still remains unclear. 1713

D.2 Advantages And Disadvantages of Skill 1714

Learning And Skill Recognition 1715

Skill learning mechanism can obtain new knowl- 1716

edge from the in-context pattern, and even over-ride 1717

the pre-training knowledge. It provides an easy way 1718

to update the knowledge on the specific application 1719

without requiring computational-heavy fine-tuning. 1720

Such ability has been successfully utilized in dif- 1721

ferent LLM applications, e.g. model editing with 1722

ICL (Zheng et al., 2023). Nonetheless, the skill 1723

learning mechanism may fail as it can be easily dis- 1724

tracted by irrelevant context (Shi et al., 2023). The 1725

failure reason found in (Tang et al., 2023) is that the 1726

input-label mapping is more to be the shortcut as 1727

the model scale increases. Skill recognition mech- 1728

anism is insensitive to the new in-context pattern 1729

leading to the failure on the specification-heavy 1730

task (Peng et al., 2023) while it exhibits robust- 1731

ness to the incorrectness of label-demonstrations 1732

and other in-context noise (Webson and Pavlick, 1733

2021). For instance, the skill recognition mecha- 1734
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nism can perform well in a noisy setting as it can1735

only locate the origin ability developed during the1736

training procedure. The LLM cannot learn the new1737

in-context information with noisy labels. Instead,1738

it only helps to locate the most similar concept1739

seen during the pre-training stage. Despite the la-1740

bels being noisy, ICL may still be able to locate1741

the correct concept with the input text information.1742

Empirical evidences (Min et al., 2022) indicates1743

that even random permute the model label can lead1744

to a satisfying performance.1745

D.3 Abstraction Ability of LLMs1746

Despite the success of LLM based in the natural1747

language, (Webb et al., 2023; Mirchandani et al.,1748

2023; Huang et al., 2023b; Chen et al., 2023) indi-1749

cate the effectiveness on abstract symbol without1750

knowing semantic meanings of any individual sym-1751

bol. Webb et al. (2023) exhibits the emergence1752

ability of LLM for abstract pattern induction while1753

(Mirchandani et al., 2023) suggest that LLM is a1754

general pattern machine extrapolating sequences of1755

numbers that represent states over time to complete1756

simple motions. Huang et al. (2023b) achieves com-1757

parable performance using random Gaussian vec-1758

tors instead of the original token embedding when1759

context is sufficient. Chen et al. (2023) indicates1760

such abstraction with randomizing embeddings can1761

help LLM learn multiple languages.1762

D.4 Discussion On the Self-correction1763

The self-correction (Pan et al., 2023; Kim et al.,1764

2023; Gou et al., 2023; Welleck et al., 2022) is1765

an advanced ICL technique iteratively revise the1766

outputs of LLM utilizing feedbacks, aiming to miti-1767

gate undesired and inconsistent behaviors, e.g., lex-1768

ically constrained generation and toxic reduction.1769

Despite its effectiveness, the underlying mecha-1770

nism remains an open question. The initial obser-1771

vations can be found as follows. Kadavath et al.1772

(2022) illustrates positive evidence where LLM can1773

accurately examine the correctness of their state-1774

ments, serving as the necessary condition for self-1775

correction. Nonetheless, Huang et al. (2023a) ob-1776

serves that self-correction cannot improve the per-1777

formance since the added feedback may bias the1778

model away from producing an optimal response1779

to the initial prompt. Hong et al. (2023) provides1780

more detailed evaluation setting and identifies that1781

(1) LLMs perform much worse at identifying falla-1782

cies related to logical structure than those related to1783

content. (2) LLMs cannot classify different types1784

of fallacies. Despite the above phenomenons, there 1785

is still no understanding of the underlying mecha- 1786

nism of self-correction so far. 1787

D.5 How The Data-generating Functions Are 1788

Different Than Arbitrary Functions 1789

We first emphasize the importance of the data gen- 1790

eration function. The strong generative capability 1791

is an essential ability for LLMs. Most successful 1792

applications and usage of the LLM revolve around 1793

the generative capability. Therefore, the data gen- 1794

eration perspective is essential to understand the 1795

LLM. 1796

The data-generating function is generally uti- 1797

lized to understand the data-generation capability 1798

of LLMs. It can be defined as ’the underlying hy- 1799

pothesis on textual data generation’. Technically, 1800

the data-generation function can be any function 1801

that can model the probability over a potential to- 1802

ken given a sequence of tokens, after being trained 1803

with text data. The main difference between the 1804

data-generation function and arbitrary function is 1805

whether the function can be used to generate reason- 1806

able natural language sequences. Understanding 1807

the data-generation process is a core problem in nat- 1808

ural language processing, particularly for natural 1809

language generation tasks. 1810

More concretely, N-gram, HMM, and Recurrent 1811

Neural Networks are three straightforward data- 1812

generation functions but they cannot model long 1813

contexts, and the first two are non-parameterized 1814

data-generation functions. On the other hand, we 1815

can have a linguistic-driven data generation func- 1816

tion, e.g. probabilistic context-free grammar (Hahn 1817

and Goyal, 2023), to introduce some priors of syn- 1818

tax. Since the complicated and hierarchical na- 1819

ture of human languages, LLMs are great in terms 1820

of incorporating contextual information through a 1821

powerful function approximation ability. Honestly 1822

speaking, we can claim that the impressive results 1823

of LLMs depend on the ability to approximate the 1824

unknown data-generation function underlying the 1825

pre-training corpora. 1826

Notably, the statistical framework, which uti- 1827

lized the input-label mapping as the data generate 1828

function is a simplified setting. Such a simplified 1829

setting enables to conduct of more theoretical anal- 1830

ysis. Therefore, we can qualitatively analyze the 1831

expressiveness, generalization, and internal mecha- 1832

nisms of the ICL. For instance, with the function ab- 1833

straction, we can analyze the generalization within 1834

the same function class and between different func- 1835
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tion classes. However, how to take advantage of it1836

in a real-world scenario remains unclear.1837

D.6 Whether Different Demonstrations1838

Represent Different Data Generation1839

Functions1840

Whether different demos represent different data1841

generation functions depends on the hypothesis1842

of the data generative function. It is possible for1843

different demonstrations to share the same data1844

generation function. On the contrary, it is also pos-1845

sible for different orders of the demonstrations to1846

correspond to different data generation functions.1847

D.7 Whether there is the connection between1848

skill learning/recognition and model1849

under/overfitting?1850

The ICL procedure does not have any backward1851

learning process, i.e. gradient descent, generally1852

utilized in deep learning. Therefore, the ICL pro-1853

cedure is not explicitly related to the model under-1854

/overfitting without an explicit fitting procedure.1855

Both skill learning and skill recognition can1856

achieve a certain generalization, without explicit1857

under-fitting or over-fitting. The skill recognition1858

is not directly memorization. Given the train data1859

(x,y) generated from the function y = kx, the1860

pre-training data can be within the input interval1861

x ∈ [0, 1], while the ICL test data can be within the1862

input interval x ∈ [1, 2]. In such a case, the ICL1863

can still achieve satisfying performance, indicating1864

the generalization ability. It indicates the ICL with1865

skill recognition can achieve generalization when1866

test data are within the same function. A more1867

comprehensive discussion when meeting out-of-1868

distribution scenarios can be found in Appendix E.1869

The difference between skill learning and recog-1870

nition is the different extent of the generalization.1871

The skill recognition generalizes through seeking1872

an existing function within the same function class1873

but skill learning can come up with a new function1874

within this function class.1875

D.8 The real-world correspondence of data1876

generation functions1877

Our paper focuses on whether the ICL can learn a1878

new data generation function in context. From a1879

practice scenario, the new data generation function1880

can be defined as the n-gram does not appear in the1881

training stage. Such compositional generalization1882

is a key concept in the NLP domain. For instance,1883

such out-of-distribution can happen when LLMs1884

read the news. The skill learning mechanism can 1885

learn the new n-gram and knowledge in context, 1886

while skill recognition tries to map the pre-training 1887

knowledge with the news. 1888

E The Robustness of ICL On the 1889

Statistical Framework 1890

We primarily analyze the skill-learning mechanism 1891

when (1) data generation functions during the pre- 1892

training and ICL inference stages are from the same 1893

function class, and (2) input features are sampled 1894

from the same distribution in Section 5. In this 1895

section, we provide a further discussion of how 1896

the skill-learning mechanism works when distri- 1897

bution shifts happen, indicating the robustness of 1898

the ICL. The robustness of the ICL is evaluated in 1899

different out-of-distribution scenarios, which can 1900

be roughly divided into the following categories: 1901

(1) Task shift, where the pre-training and in-context 1902

labels are generated from different function classes, 1903

is discussed in Appendix E.2. (2) Corvariate shift, 1904

where the pre-training and in-context inputs are 1905

sampled from different distributions, is discussed 1906

in Appendix E.3. (3) Query shift, where the in- 1907

context training inputs and the query sample in- 1908

put are sampled from different distributions, is dis- 1909

cussed in Appendix E.4. Notably, all the above 1910

out-of-distribution scenarios are conducted on the 1911

statistical framework while it remains an unclear 1912

correspondence to the real-world LLM system pre- 1913

training on the massive corpus. More recently, Vla- 1914

dymyrov et al. (2024) focuses on the corrupted 1915

training data scenario with noises on different ex- 1916

tend. Both empirical and theoretical results indicate 1917

the robustness of transformers in such scenario. 1918

E.1 Preliminary 1919

To formally describe different out-of-distribution 1920

scenarios, we first provide a rigorous descrip- 1921

tion of the pre-training and prompt data from a 1922

distribution perspective. The pre-training data 1923

is defined as (x1,h(x1), · · · ,xN ,h(xN ),xquery) 1924

where xi ∼ Dtrain
x , xquery ∼ Dtrain

x and h ∼ Dtrain
H . 1925

The test prompt is defined similarly but drawing 1926

from a different distribution where xi ∼ Dtest
x and 1927

xquery ∼ Dtest
x . We then describe different out-of- 1928

distribution scenarios and how the LLM behaves 1929

on them differently in the following sections. 1930

E.2 Task Shift 1931

Task shift (Zhang et al., 2023a) is a concept shift 1932

which be formally defined as Dtrain
H ̸= Dtest

H . It 1933

20



describes that the pre-training and in-context la-1934

bels are generated from different function groups.1935

Existing literature demonstrates two different task1936

shifts, i.e., noise shift (Zhang et al., 2023a), and1937

regression vector shift (Raventos et al., 2023).1938

Noise shift (Zhang et al., 2023a) corresponds to1939

the scenario where the shift is induced by the ran-1940

dom Gaussian noise. Typically, the pre-training1941

data generation function is y = ⟨w,x⟩ where1942

in-context data generation function is from noisy1943

linear function yi = ⟨w,x⟩ + ϵ. Zhang et al.1944

(2023a) observes satisfying performance under1945

such shift, indicating the robustness under such1946

Gaussian noise.1947

Regression vector shift (Raventos et al., 2023)1948

corresponds to the scenario where pre-training data1949

generation functions are a limited group Ftrain of1950

linear functions fi : y = ⟨wi,x⟩ + bi, where1951

fi ∈ Ftrain The in-context data generation func-1952

tion is from all the possible linear functions cover-1953

ing the entire function space fi ∈ Fcontext, where1954

Ftrain ⊆ Fcontext. The task shift appears on the1955

unseen data generation function during training.1956

Raventos et al. (2023) observes that ICL exhibits1957

the generalization gap with insufficient pre-training1958

data. The emergence happens when the number of1959

pre-training functions increases with satisfying out-1960

of-distribution performance.1961

E.3 Covariate Shift1962

Covariate shift (Zhang et al., 2023a) can be for-1963

mally defined as Dtrain
x ̸= Dtest

x . It describes that1964

the pre-training inputs and the in-context inputs1965

are sampled from different distributions. Existing1966

literature demonstrates different covariate shifts in-1967

cluding low-dimensional subspace shift, skewed1968

covariance shift, mean shift, and random covariate1969

shift.1970

Low-dimensional subspace shift (Garg et al.,1971

2022) samples prompt input feature from random1972

10-dimensional subspace from the pre-training in-1973

put feature. Garg et al. (2022) empirically observes1974

the robustness over such covariate shift.1975

Skewed covariance shift (Garg et al., 2022) sam-1976

ples in-context features from N (0,Σ) where Σ is1977

a skewed covariance matrix with eigen-basis cho-1978

sen uniformly at random and ith eigenvalue pro-1979

portional to 1/i2. Empirically observations (Garg1980

et al., 2022) indicate the performance degradation1981

when the input feature dimension is larger than 10.1982

Mean shift (Ahuja and Lopez-Paz, 2023) sam-1983

ples train and test inputs from N (µtrain,Σ) and1984

N (µtest,Σ) where N (µtrain ̸= N (µtest). Despite 1985

performance degradation to a certain extend, the 1986

transformer backbone shows better generalization 1987

than the MLP backbone with both empirical obser- 1988

vations and theoretical evidence. 1989

Random covariate shift (Zhang et al., 2023a) cor- 1990

responds to that pre-training training prompts and 1991

in-context prompts are sampled from distributions 1992

with different covariates. The ICL performance 1993

degradation (Von Oswald et al., 2023; Zhang et al., 1994

2023c) drops to 0 quickly with theoretical explana- 1995

tion (Zhang et al., 2023c). The larger transformer 1996

with non-linearity serves as the solution to random 1997

covariate shift, while the reason underlying the 1998

emergent ability remains unclear. 1999

E.4 Query Shift 2000

Query shift (Zhang et al., 2023a) is the covariate 2001

shift, which can be formally defined as Dtest
query ̸= 2002

Dtest
x . It describes the distribution shift within the 2003

in-context training samples and test samples are 2004

sampled from different distributions. Different 2005

from the task shift focusing on the distribution 2006

shift between pre-training data and prompt data, 2007

query shifts describe the distribution shift within 2008

the prompt data, where the training prompt data 2009

distribution is different from the prompt query dis- 2010

tribution. Existing literature demonstrates two dif- 2011

ferent query shifts as follows. 2012

The orthants shift changes the positive or nega- 2013

tive signs to each coordinate of in-context features, 2014

ensuring both prompt data and prompt query fall 2015

within the same orthant, distinct from the query 2016

input’s orthant. Garg et al. (2022) observes the 2017

robustness to this shift when differences between 2018

orthants are not large. 2019

The orthogonal shift maps the the prompt query 2020

to the orthogonal space of prompt data, which is an 2021

extreme case of the formal one. Garg et al. (2022) 2022

shows empirical evidence where the prediction will 2023

be zero and the error will be significantly large. 2024

Zhang et al. (2023c) further theoretically underpins 2025

the underlying reason while no solution is found 2026

currently. 2027
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