
Extended Abstract Track
Under Review - Extended Abstract Track 1–15, 2023 Symmetry and Geometry in Neural Representations

Learning Useful Representations of Recurrent Neural
Network Weight Matrices

Abstract

Recurrent Neural Networks (RNNs) are general-purpose parallel-sequential computers. The
program of an RNN is its weight matrix. Its direct analysis, however, tends to be challeng-
ing. Is it possible to learn useful representations of RNN weights that facilitate downstream
tasks? While the ”Mechanistic Approach” directly ‘looks inside’ the RNN to predict its
behavior, the ”Functionalist Approach” analyzes its overall functionality—specifically, its
input-output mapping. Our two novel Functionalist Approaches extract information from
RNN weights by ‘interrogating’ the RNN through probing inputs. Our novel theoreti-
cal framework for the Functionalist Approach demonstrates conditions under which it can
generate rich representations for determining the behavior of RNNs. RNN weight represen-
tations generated by Mechanistic and Functionalist approaches are compared by evaluating
them in two downstream tasks. Our results show the superiority of Functionalist methods.

Keywords: Recurrent Neural Networks, Representation Learning

1. Introduction

For decades, researchers have developed techniques for learning representations in deep neu-
ral networks (NNs). This expertise has significantly advanced the field by enabling models to
convert data into useful formats for solving problems. In particular, Recurrent NNs (RNNs)
have been widely adopted due to their computational universality (18). Low-dimensional
representations of the programs of RNNs (their weight matrices) are of great interest as they
can speed up the search for solutions to given problems. For instance, compressed RNN rep-
resentations have been used to evolve RNN parameters (10) for controlling a car from video
input (9). However, such representations have employed Fourier-type transforms, e.g., the
coefficient of the Discrete Cosine Transform (DCT) (19), and did not use the capabilities of
NNs to learn such representations. Recent work has seen a rise of representation learning
techniques for NN weights using powerful neural networks as encoders (20; 17; 1; 4). How-
ever, there is a lack of methods for learning representations of RNNs. This paper introduces
novel techniques for learning them, using powerful NNs which may be RNNs themselves.
Just like representation learning in other fields, such as Computer Vision, facilitates solving
specific tasks, such techniques can facilitate learning, searching, and planning with RNNs.

2. Self-supervised Learning of Function Representations

We consider a Recurrent Neural Network (RNN), fθ : RX × RH → RY × RH ; (x, ho) 7→
(y, hn), parametrized by θ ∈ Θ, which maps an input x and hidden state ho to an output y
and a new hidden state hn. The RNN interacts with a potentially stochastic environment,
E , that maps an RNN’s output y to a new input x. The environment may have its own
hidden state η. By sequentially interacting with the environment, the RNN produces a
rollout defined by: {

xt, ηt = E(yt−1, ηt−1)

yt, ht = fθ(xt, ht−1),

© 2023 .

Extended Abstract Track

fθ1fθ1
fθ1fθ1fθ1fθ

ER

EI

EO

E(θ) A

̂x

̂y

x

ỹ

θ

Non-Interactive Function Encoder

Function Emulator

Function
Embedding

fθ1
RNN

Weights fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

 S1 S2 S3

fθ1fθ1
fθ1fθ1fθ1fθ

ER

EI

EO

E(θ) A

̂x

̂y

x

ỹ

θ

Interactive Function Encoder Function Emulator

Function
Embedding

fθ1
RNN

Weights fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

Figure 1: Left: Non-Interactive Encoder. Right: Interactive Encoder.

with fixed initial states y0, η0 and h0. For instance, fθ might be an autoregressive generative
model, with E acting as a stochastic environment that receives a probability distribution
over some language tokens, yt—the output of f—, and produces a representation (e.g., a
one-hot vector) of the new input token xt+1. When the environment is stochastic, numerous
rollouts can be generated for any θ ∈ Θ. A rollout sequence of a function fθ in environment
E has the form Sθ = (x1, y1, x2, y2, . . .).

Encoder and Emulator Our primary objective is to propose, analyze, and train several
methods for representing RNN weights. We define the Encoder Eϕ : Θ → RM ; θ 7→ z,
parametrized by ϕ ∈ Φ as a function mapping the RNN parameters θ to a lower-dimensional
representation z. To train the encoder Eϕ, we consider an Emulator Aξ : RX ×RB ×RZ →
RY ×RB; (x, bo, z) 7→ (ỹ, bn), parametrized by ξ ∈ Ξ. The Emulator is an RNN with hidden
state b that learns to imitate different RNNs fθ based on their function encoding z = E(θ).

Dataset and Training We consider a dataset D = {(θi, Sθi)|i = 1, 2, . . . } composed
of tuples, each containing the parameters of a different RNN and a corresponding rollout
sequence. We assume that all RNNs have the same initial state h0 but have been trained on
different tasks. Our self-supervised learning approach to training function representations is
inspired by the work of (12)). The Encoder Eϕ and the Emulator Aξ are jointly trained by
minimizing a loss function L. This loss function measures the behavioral similarity between
an RNN fθ and the Emulator Aξ, which is conditioned on the function representation
z = Eϕ(θ) of θ as produced by the Encoder Eϕ. Put simply, the Emulator utilizes the
representations of a set of diverse RNNs fθ to imitate their behavior:

min
ϕ,ξ

E(θ,S)∼D
∑

(xi,yi)∈S

L
(
Aξ(xi, bi−1, Eϕ(θ)), yi

)
. (1)

In the case of continuous outputs y, the mean-squared error provides a suitable loss function.
Conversely, for categorical outputs, we employ the inverse Kullback-Leibler divergence.

2.1. RNN Encoders

In this section, we explore various mechanistic and functionalist methods for constructing
RNN encoders. These approaches will be compared in our experimental section.

2

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

Flattened Weights (Mechanistic) Flattening the weights into a single vector presents
the most straightforward method for encoding an RNN. While this technique has shown
efficacy on a modest scale (3; 6), it faces challenges when applied to larger parameter vectors,
especially in handling weight-space symmetries such as neuron permutations.

Neural Functional (Mechanistic) Fast Weight Programmers (14; 15; 13; 8) are neural
networks that can process the gradients or weights of another neural network. A recent
variant thereof, called Neural Functionals(11), has been used to learn representations of
neural network weights that are invariant to the permutation of hidden neurons. The
architecture comprises layers that display equivariance to neuron permutations, followed
by a final pooling operation that ensures the invariance property. Neural Functionals have
been theoretically proven to be able to extract all information from the weights of a neural
network (11). However, their implementation to date has been confined to feedforward
networks, such as MLPs and CNNs.

Non-Interactive RNN Probing (Functionalist) In the context of Reinforcement
Learning and Markov Decision Processes, policy fingerprinting has emerged as an effec-
tive way to evaluate feedforward neural network policies (4; 5; 2). In policy fingerprinting,
a set of learnable probing inputs is given to the network. Based on the set of correspond-
ing policy outputs, a function (policy) representation is produced. This approach can be
adapted in a straightforward way for RNNs by learning whole probing sequences instead of
probing inputs (see Figure 1, left). In the context of this paper, we refer to this approach
as non-interactive RNN probing.

Interactive RNN Probing (Functionalist) The probing sequences for non-interactive
RNN probing are static, i.e., at test time, the probing sequences do not depend on the
specific RNN being evaluated. The alternative is to make the probing sequences dynamically
dependent on the given RNN. Each item in the probing sequences should depend on the
outputs of the given RNN to the previous items (Figure 1, right). This idea has been
described previously to extract arbitrary information from a recurrent world model (16).
Our theoretical framework shows that this novel approach, which we call interactive RNN
probing, is more powerful than non-interactive probing in certain cases.

3. Experiments

We empirically analyze various approaches to learning representations of RNNs, with a
specific focus on LSTM (7) weights. Each LSTM in our dataset serves as an autoregressive
generative model of a specific formal language. The set of formal languages is identical
to the one constructed for the proof of Proposition 4. Each LSTM is trained on strings
from a particular language using the standard language modelling objective. We split the
dataset into training, validation, and out-of-distribution (OOD) test parts. The OOD split
includes only tasks in which the relative frequencies of each token appearance are small
(i.e., all tokens appear approximately the same number of times). The validation set is
utilized for early stopping during training. All shown results are derived from the test set.
The experiments employ the four types of function encoders described in Section 2.1. The
encoders’ hyperparameters are selected to ensure a comparable number of parameters among
them. The training details remain consistent across all runs (further details are available

3

Extended Abstract Track

1 2 3 4 5 6 7 8
parallel probing sequences

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

flattened
neural functional
non-interactive
interactive

1 2 3 4 5 6 7 8
parallel probing sequences

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pr
ed

ict
io

n
lo

ss

flattened
neural functional
non-interactive
interactive

Figure 2: Left: Accuracy of a language classifier, trained using the generated function en-
codings. Right: Loss of a performance predictor, also trained on the generated function
encodings, depicted on the test set. Plots are presented as a function of the number of par-
allel probing sequences (only relevant for interactive and non-interactive probing encoders).
Both graphs display the mean and bootstrapped 95% confidence intervals, aggregated across
15 seeds.

in Appendix B). All encoders are trained end-to-end together with an LSTM emulator to
minimize the loss defined in Equation 1, utilizing the reverse Kullback-Leibler divergence as
the loss function L. The objective is to ensure that the LSTM weight encodings z serve as
generally useful representations. We verify this by training models for two downstream tasks
using the fixed representations provided by the encoder E. The first task involves classifying
the language on which an LSTM fθ was trained, given its encoding E(θ). This classification
is inherently challenging, considering the dataset contains a total of 216 different languages,
and some networks are nearly untrained. The second task aims to predict the performance
of fθ, defined as the percentage of strings generated by fθ belonging to the language that
fθ was trained on. We present the results for these tasks in Figure 2. A visualization of
the learned embedding spaces can be found in Figure 8 in the Appendix. From the results,
it is evident that the interactive probing encoder yields the most useful representations for
both tasks. Having multiple probing sequences in parallel benefits both interactive and
non-interactive encoders. The representations derived from the flattened weights and the
neural functional encoder appear to contain no useful information for the language classifier.
In predicting accuracy, representations from neural functionals outperform those based on
flattened weights but fall short when compared to functionalist representations.

4. Conclusion and Future Work

We identified two classes of methods for learning RNN weight representations. Firstly, we
adapted the Mechanistic Neural Functional approach to RNNs and, secondly, presented
two novel Functionalist methods, theoretically demonstrating when their representations
can be utilized to identify RNNs. Functionalist methods outperformed Mechanistic ones,
learning more useful RNN weight representations for two downstream tasks. Future work
will explore the combination of both approaches and evaluate their performance on more
challenging problems.

4

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

References

[1] E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum. From data to
functa: Your data point is a function and you can treat it like one. arXiv preprint
arXiv:2201.12204, 2022.

[2] F. Faccio, V. Herrmann, A. Ramesh, L. Kirsch, and J. Schmidhuber. Goal-conditioned
generators of deep policies. arXiv preprint arXiv:2207.01570, 2022.

[3] F. Faccio, L. Kirsch, and J. Schmidhuber. Parameter-based value functions. Preprint
arXiv:2006.09226, 2020.

[4] F. Faccio, A. Ramesh, V. Herrmann, J. Harb, and J. Schmidhuber. General policy
evaluation and improvement by learning to identify few but crucial states. arXiv
preprint arXiv:2207.01566, 2022.

[5] J. Harb, T. Schaul, D. Precup, and P.-L. Bacon. Policy evaluation networks. arXiv
preprint arXiv:2002.11833, 2020.

[6] V. Herrmann, L. Kirsch, and J. Schmidhuber. Learning one abstract bit at a
time through self-invented experiments encoded as neural networks. arXiv preprint
arXiv:2212.14374, 2022.

[7] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[8] K. Irie, I. Schlag, R. Csordás, and J. Schmidhuber. Going beyond linear transformers
with recurrent fast weight programmers. Advances in Neural Information Processing
Systems, 34:7703–7717, 2021.

[9] J. Koutńık, G. Cuccu, J. Schmidhuber, and F. Gomez. Evolving large-scale neural
networks for vision-based reinforcement learning. In Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pages 1061–1068, 2013.

[10] J. Koutńık, F. Gomez, and J. Schmidhuber. Evolving neural networks in compressed
weight space. In Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, pages 619–626, 2010.

[11] A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, and H. Maron. Equivariant
architectures for learning in deep weight spaces. arXiv preprint arXiv:2301.12780, 2023.

[12] R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation via policy-
dynamics value functions. arXiv preprint arXiv:2007.02879, 2020.

[13] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pages 9355–9366.
PMLR, 2021.

[14] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131–139, 1992.

5

Extended Abstract Track
[15] J. Schmidhuber. A ‘self-referential’weight matrix. In International Conference on

Artificial Neural Networks, pages 446–450. Springer, 1993.

[16] J. Schmidhuber. On learning to think: Algorithmic information theory for novel
combinations of reinforcement learning controllers and recurrent neural world mod-
els. Preprint arXiv:1511.09249, 2015.

[17] K. Schürholt, D. Kostadinov, and D. Borth. Hyper-representations: Self-supervised
representation learning on neural network weights for model characteristic prediction.
2021.

[18] H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied
Mathematics Letters, 4(6):77–80, 1991.

[19] R. K. Srivastava, J. Schmidhuber, and F. Gomez. Generalized compressed network
search. In Proceedings of the fourteenth international conference on Genetic and evo-
lutionary computation conference companion, GECCO Companion ’12, page 647–648,
New York, NY, USA, 2012. ACM, ACM.

[20] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. O. Tolstikhin. Predicting
neural network accuracy from weights. ArXiv, abs/2002.11448, 2020.

[21] A. Zhou, K. Yang, K. Burns, Y. Jiang, S. Sokota, J. Z. Kolter, and C. Finn. Permu-
tation equivariant neural functionals. arXiv preprint arXiv:2302.14040, 2023.

6

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

ID

fC

f1f1f1f1 i

⏟D

x fC(x)

Figure 3: The Interrogator ID has access
to the set of functions D and can inter-
act with one function fC , which it has to
identify.

f1

f2 f3 f4

f7

f5 f6

x1

x2 x3

x4 x5

x6

Figure 4: A binary tree constructed as
described in the proof of Theorem 2. Giv-
ing the inputs xj corresponding to all
branching nodes to a function allows to
uniquely identify it.

Appendix A. A Theoretical Framework for the Functionalist Approach

Developing an abstract theoretical model based on the functionalist view of RNN weights
provides fundamental insights into the potential and limitations of this approach. The
functionalist perspective emphasizes the overall functionality, disregarding the specific un-
derlying mechanisms of RNNs. Therefore, our abstraction adopts the models of total Turing
machines as a model of computation. Practically, the function encoder is trained using a
dataset of functions. In contrast, the encoder maintains perpetual direct access to the
dataset in our theoretical framework. Note that our framework does not incorporate the
concept of generalization to unseen functions or networks. We detail our theoretical func-
tionalist framework and explore the interactive and non-interactive approach.

Let D represent a set of n total computable functions {fi : N → N|i = 1, 2, . . . , n}. Here,
D comprises n Turing machines that halt on every input, with no pair being functionally
equivalent. Let ID denote another Turing machine, which we call the Interrogator. ID
has access to the function set D (e.g., the corresponding Turing numbers might be written
somewhere on its tape). Moreover, ID is given access to one function fC ∈ D as a black
box. ID can interact with fC by providing an input x ∈ N and subsequently reading the
corresponding output fC(x). The task of ID is to identify which member of D corresponds
to function fC , while minimizing interactions with fC . Specifically, ID must return i ∈
{1, . . . , n} such that fC = fi. This setup is depicted in Figure 3.

Lemma 1 Given any subset G ⊆ D, |G| ≥ 2, there exists an input x that can be computed
for which fa(x) ̸= fb(x) with fa, fb ∈ G.

Proof This follows immediately from the fact that all functions in G are total computable
and functionally distinct.

Proposition 2 Any function fC from a set D can be identified by an interrogator through
at most |D| − 1 interactions.

7

Extended Abstract Track
Proof According to Lemma 1, it is possible to split any set G ⊆ D, |G| ≥ 2 into two
nonempty, non-overlapping subsets: Ga := {f ∈ G|f(xj) = fa(xj)} and Gb := {f ∈
G|f(xj) ̸= fa(xj)} for some fa ∈ G and xj ∈ N. Any resulting subset that has at least two
members can be split again using the same procedure with a different probing input xj+1.
Starting from the full set D, it is possible to construct a binary tree (see Figure 4) where the
leaves are subsets of D containing exactly one uniquely identified function. The branching
(i.e., non-leaf) nodes correspond to the splitting operation, which involves observing the
output of a specific probing input xj .

The Interrogator can identify a given function fC ∈ D by providing it with all inputs xj
corresponding to the branching nodes in the binary tree and observing the outputs. Since
any binary tree with n leaves has exactly n− 1 branching nodes, any function fC ∈ D can
be identified using |D| − 1 interactions.

Of course, there are ‘easy’ function sets in the sense that their members can be identified
using much fewer interactions. Consider, for example, the set {n 7→ i ∀n|1 ≤ i ≤ L}. Here,
only one (any) probing input is necessary, since the identity of the function can be directly
read from the output.

An Interrogator is called interactive if the value xj of the jth probing input depends on
fC(x1), . . . , fC(xj−1), i.e., the outputs corresponding to the previous probing inputs. This
implies that the probing inputs generally depend on the specific function fC given to I.
Conversely, a non-interactive Interrogator can only provide a fixed set of probing inputs to
fC , and their values do not depend on the outputs of fC . In the proof of Proposition 2,
the probing inputs given to fC do not dynamically depend on fC . This means that the
theorem holds for non-interactive Interrogators. A natural question arises: Can interactive
Interrogators identify a function using fewer interactions? Although there are instances
where they need exponentially fewer interactions, in the worst-case scenario, both methods
necessitate an equivalent number of interactions:

Proposition 3 The upper bound for probing interactions required to identify a function
from a given function set D is |D|−1 for both interactive and non-interactive Interrogators.

Proof It is easy to construct function sets D for which the members cannot be identified
in less than |D| − 1 interactions, even by an interactive Interrogator.

One such function set is {ξi|1 ≤ i ≤ L} with ξi : n 7→

{
0 if n = i,

n else
. In the worst case,

there is no way around trying all inputs i, . . . , L− 1.

Proposition 4 There exists a function set for which an interactive Interrogator requires
exponentially fewer probing interactions to identify a member than does a non-interactive
one.

Proof We construct a concrete set of functions that an interactive Interrogator can identify
exponentially faster than a non-interactive one. Consider the family of context-sensitive
languages

Lm1,...,mk
:= {an+m1

1 an+m2
2 . . . an+mk

k |n ∈ N}, (2)

8

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

with m1, . . . ,mk ∈ N and a1, . . . , ak being the letters/tokens of the language. The param-
eters mi define the relative number of times different tokens may appear. As an example,
one member of the language L3,1,2 is the string a1a1a1a1a2a2a3a3a3.

Let GL := {Lm1,...,mk
|m1, . . . ,mk ∈ {1, . . . ,M}}, i.e., a set of such languages with

different parameters mi. GL contains Mk languages. To each language Lm1,...,mk
, we

can assign a unique generative function gm1,...,mk
. This function, given a partial string

from the language, returns a list of the allowed tokens for the next step. If the input
string is not a partial string of the language, it returns the empty string ϵ. For example,
g3,1,2(a1a1a1) = (a1, a2), g3,1,2(a1a1a1a1a2) = (a2), and g3,1,2(a1a1a2a2) = ϵ. Our function
set DL is a set of such generative functions, DL := {gm1,...,mk

|m1, . . . ,mk ∈ {1, . . . ,M}}.
For an interactive Interrogator, there is a simple strategy to identify a given function

gC ∈ DL using M · k interactions: The first input is the string aM1 a2. From there on,
the Interrogator acts as an autoregressive generative model—it appends the allowed token
returned by gC to the string and uses it as the new input. Only one valid token will be
returned by gC for all probing input strings that are generated using this approach since
the n is determined from the first input string. This is repeated until ϵ is returned, which
is after a maximum of (M − 1) · k calls to gC . The last probing input string will be
ar11 . . . arkk with r1 = M , from which the language can be inferred in the following way: Let
n := min{r1, . . . , rk}. The language gC is generating is thus Lr1−n,...,rk−n.

The non-interactive Interrogator cannot use this strategy, since every probing input
except the first depends on gC ’s output for the previous probing input. We can show that
in the non-interactive setting, (M−1)k calls to gC are needed to identify it. Assuming n = 0,
there are Mk−1 unique prefixes for the first token ak. Each of these prefixes is only allowed
in M languages Lm1,...,mk−1,·, namely the ones with specific m1, . . . ,mk−1. Remember that
gC returns ϵ whenever it is given a substring that is not part of its language. That means,
to determine mk, M

k−1(M − 1) different inputs have to be given to fC . It follows that in
total,

∑k−1
b=2 M

b(M −1) = Mk−M2 inputs are needed to identify the exact language of gC .
In short, to identify a function from the set DL described above, an interactive Inter-

rogator needs O(Mk) probing inputs, whereas a non-interactive one needs O(Mk).

9

Extended Abstract Track
Appendix B. Implementation Details

Flattened Weights For the flattened weights Encoder, all parameters θ of the RNN to
be encoded are flattened into a vector. This weight vector is given as input to a multi-layer
perceptron (MLP) with ReLU nonlinearities, which outputs the RNN encoding z.

Neural Functional For the neural functional (NF) Encoder, we adapt the equivariant
NF-layer (21) for LSTMs. To preserve both equivariance to neuron permutation and func-
tional universality, the appropriate row- and column-wise feature extractors have to be
added for input-to-hidden and hidden-to-hidden weights, considering rollouts across time
and depth of the network.

Non-interactive RNN Probing A diagram of the non-interactive probing encoder is
shown in Figure 1 (left). RNN probing Encoders have three main components: the core
LSTM ER, an input projection MLP EI and an output projection MLP EO.

For the the non-interactive Encoder, a learnable latent probing sequence (S1, S2, . . . , Sl)
with a fixed length l is given to EI . EI(Si) is interpreted as either one a several parallel
probing inputs x̂i and given to fθ. The resulting probing outputs ŷi := fθ(x̂i) are given
to EO (in the case of multiple parallel probing outputs, the values ŷi are concatenated).
The sequence of probing output projections (EO(ŷ1), . . . , EO(ŷl)) is given as input to ER,
preceded by a begin-of-sequence (BOS) and followed by an end-of-sequence (EOS) token.
ER’s output after the EOS token is transformed with a learned linear projection into the
RNN representation z.

Interactive RNN Probing As can be seen in Figure 1 (right), the interactive probing
encoder differs from the non-interactive one in one crucial aspect: Instead of having a
learned but static latent probing sequence, the probing inputs at each step are based on the
output of ER from the current step, which in turn depends on the probing outputs of the
previous step. This means that the interactive probing Encoder can dynamically adapt the
probing sequences to the particular RNN fθ that is being encoded.

Emulator The Emulator Aξ is an LSTM network. The conditioning on the function
representation z is done by adding a learned linear projection of z to the embedding of the
begin-of-sequence token.

10

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

Appendix C. Experimental Details

LSTM Dataset The set of languages is {Lr,r+o1,r+o2,r+o3 |o1, o2, o3 ∈ {−3, . . . , 2} and r =
−min{o1, o2, o3}}, with L defined in Equation 2. This set contains 63 = 216 uniquely
identifiable languages. The training data for each LSTM are strings from a particular
language of length ≤ 40, with an additional begin-of-sequence and end-of-sequence token.

The LSTMs trained for the dataset have two layers with a hidden size of 32, resulting
in a total of 13766 parameters. In total, 1000 such networks are trained, each on one of
the 216 possible languages. For each LSTM, 10 snapshots (at steps 0, 100, 200, 500, 1000,
2000, 5000, 10000 and 20000) are saved during training. A snapshot consists of the LSTM’s
current weights and 100 sequences, also of length 40, generated by it.

Hyperparameters Table 1 shows the hyperparameters shared by all four encoder types
in the experiments. Hyperparameters specific to probing, flattened and neural functional
encoders are shown in Tables 2, 3 and 4, respectively.

Hyperparameter Value

A hidden size 256
A #layers 2
z size 16
batch size 64
optimizer AdamW
learning rate 0.0001
weight decay 0.01
gradient clipping 0.1

Table 1: General hyperparameters

Hyperparameter Value

ER hidden size 256
ER #layers 2
EI hidden size 128
EI #layers 1
EO hidden size 128
EO #layers 1
probing sequence length 22

Table 2: Hyperparameters for prob-
ing (interactive and non-interactive) en-
coders

Hyperparameter Value

hidden size 128
#layers 3

Table 3: Hyperparameters for flattened
weights encoders

Hyperparameter Value

#channels 4
#layers 4

Table 4: Hyperparameters for neural
functional encoders

11

Extended Abstract Track
Additional Results Figure 5 shows the test losses of the different Emulators (as defined
in Equation 1). The relative performance of the different encoders types is similar as for
the downstream tasks shown Figure 2.

We also investigate the results for different lengths of the probing sequence for the
interactive and non-interactive probing encoders. This is shown in Figure 7.

1 2 3 4 5 6 7 8
parallel probing sequences

0.01

0.02

0.03

0.04

0.05

0.06

0.07

oo
d

lo
ss

flattened
neural functional
non-interactive
interactive

Figure 5: Loss of the emulator on the test. Plotted as a function of the number of parallel
probing sequences. Mean and bootstrapped 95% confidence intervals across 15 seeds.

10 15 20 25 30 35 40
probing sequence length

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

 d
iff

er
en

ce

non-interactive
interactive

Figure 6: Difference in generation accuracy of the emulated function compared to the
original one. Validation set. Plotted as a function of the length of the probing sequence.
Mean and bootstrapped 95% confidence intervals across 15 seeds.

12

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

3
0
2
4

4
1
3
5

5
2
4
6

sequence
length: 7

sequence
length: 12

sequence
length: 22

sequence
length: 42

num
occurrences:

num
occurrences:

num
occurrences:

Task: L3,0,2,4

Figure 7: Probing sequences generated for g2,0,1,3 by the best performing interactive func-
tion encoder with different sequence lengths. For the sequence lengths 12, 22 and 42, the
encoder produces a insightful probing sequence, i.e. probing sequences that belong to the
corresponding language.

13

Extended Abstract Track
Flattened

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Neural Functional

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Non-interactive

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Interactive

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Figure 8: PCA of the function encodings generated by different encoders. Left column:
Colored by language, Right column: Colored by perfomance (accuracy).

14

Extended Abstract Track
Learning Useful Representations of Recurrent Neural Network Weight Matrices

15

	Introduction
	Self-supervised Learning of Function Representations
	RNN Encoders

	Experiments
	Conclusion and Future Work
	A Theoretical Framework for the Functionalist Approach
	Implementation Details
	Experimental Details

