
Under review as a conference paper at ICLR 2024

TOWARDS ZERO MEMORY FOOTPRINT SPIKING NEU-
RAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs), as representative brain-inspired neural networks,
emulate the intrinsic characteristics and functional principles of the biological brain.
With their unique structure reflecting biological signal transmission through spikes,
they have achieved significant success in processing temporal data. However,
the training of SNNs demands a substantial memory footprint due to the added
storage needs for spikes or events, resulting in intricate architectures and dynamic
configurations. In this paper, to address memory constraints in SNN training, we
introduce an innovative framework characterized by a remarkably low memory
footprint. We (i) design a reversible spiking neuron that retains a high level of
accuracy. Our design is able to achieve a 58.65× reduction in memory usage
compared to the current spiking neuron. We (ii) propose a unique algorithm to
streamline the backpropagation process of our reversible spiking neuron. This
significantly trims the backward Floating Point Operations Per Second (FLOPs),
thereby accelerating the training process in comparison to the current reversible
layer backpropagation method. By using our algorithm, the training time is able to
be curtailed by 23.8% relative to existing reversible layer architectures.

1 INTRODUCTION

Normal SNN ND Tandem OTTT IDE-LIF Skipper RevSNN

(L
)

(1
)

(L
×

T)
(P

0
1

×
L

×
T)

(
L

×
T)

(L T) ×

: Requires cusparse for acceleration

: Requires pre-trained ANN

Memory Complexity of Different Methods

Figure 1: Comparison of memory complexity
between our RevSNN and other current SOTA
Memory-Efficient SNN Training Techniques.

Spiking Neural Networks (SNNs) have gained
significant recognition in the realm of bio-
inspired neuromorphic computing. In contrast
to traditional Deep Neural Networks (DNNs),
SNNs possess a unique mechanism that pro-
cesses information across multiple timesteps
and impulse events, commonly referred to as
spikes (Davies et al., 2018; Viale et al., 2021).
This inherent ability for temporal processing
enables SNNs to excel in tasks requiring real-
time or sequential data interpretation. An illus-
trative example of this prowess is observed in
robot navigation tasks utilizing Intel’s Loihi plat-
form (Davies et al., 2018), underscoring SNNs’
proficiency in managing temporal data. Further,
works such as (Kim & Panda, 2021) emphasize
the advantages of SNNs over DNNs when han-
dling sparse datasets, exemplified by data from
dynamic vision sensors (DVS). These insights
underscore the potential of SNNs across diverse
applications where processing sequential or time-varying signals is crucial.

Despite their numerous advantages, one major bottleneck in deploying SNNs is their memory
consumption. For a DNN of depth L, the memory complexity is O(L). However, an SNN of
equivalent depth incorporates multiple timesteps T in its computation, amplifying its memory
complexity to O(L × T). To illustrate, while the memory demand during the training of a DNN
like ResNet19 is a mere 0.6 GB, an SNN with the same architecture surges to 12.34 GB (~20 ×)

1

Under review as a conference paper at ICLR 2024

with a timestep of 10. Such heightened memory requirements pose significant challenges for SNN
integration into resource-limited environments, notably in IoT-Edge devices (Putra & Shafique, 2021).

To tackle the SNN’s memory consumption challenge, various methods have been proposed. Shown
in Fig. 1, the ND method by Huang et al. (2023), utilizing sparse training, reduces memory demands
from O(L× T) in the original SNN to p×O(L× T), where 0 ≤ p ≤ 1. However, this approach
necessitates specialized hardware support, such as the CuSparse library. Works such as Tandem (Wu
et al., 2021a), OTTT (Xiao et al., 2022), and IDE (Xiao et al., 2021) further reduce memory
requirements to O(L), with Tandem needing pre-trained Artificial Neural Network. Leveraging the
checkpoint techniques, Skipper (Singh et al., 2022) achieves a complexity of O(

√
L× T). Overall,

these methods lack scalability due to limited memory reduction when SNN layers and timesteps
increase.

In this paper, we address the following question: Does a scalable training memory reduction method
exist that remains scalable irrespective of increased layers and timesteps? If so, how can such
a training method be designed? To that end, we present a novel reversible spiking neuron that
substantially lowers the memory footprint . Our contributions are summarized as follows:

• We recalculate all the intermediate states on-the-fly, rather than storing them during the
backward propagation process. Notably, in comparison, our method realizes a memory
complexity of O(1), shown in Fig. 1. In other words, our training memory reduction method
is scalable when increasing SNN layers and timesteps.

• To enhance the efficiency, we design a reverse computation graph for the backpropagation
process of our reversible spiking neuron, eliminating the need to rebuild the forward com-
putation graph, which significantly reduces the training time compared with the original
reversible layer backpropagation method.

• Empirical evaluation of vast datasets shows that our method could retains the same level of
accuracy during training process, compared to state-of-the-art (SOTA) methods.

Experimental results show that our approach markedly surpasses the SOTA Memory-Efficient
SNN training with reductions of 8.01×, 9.51×, and 3.93× on the CIFAR10, CIFAR100, and
DVS-CIFAR10 datasets respectively. Incorporating our reversible spiking neurons into the OTTT
method for the DVS128-Gesture dataset, we achieve a notable 1.34× reduction compared to the
original OTTT, maintaining high accuracy levels. Moreover, our method reduces the FLOPs needed
for the backpropagation by a factor of 23% compared to the existing reversible layer backpropagation
method, thus accelerating the training process. We hope these advances would pave the way for more
efficient and scalable SNN implementations, enabling the deployment of these biologically inspired
networks across a wider range of applications and hardware platforms.

2 BACKGROUND AND RELATED WORKS

2.1 SPIKING NEURAL NETWORK

The cardinal features that distinguish SNNs from conventional neural networks include: (i) Their
inherent operation over multiple timesteps, emulating the temporal dynamics of information pro-
cessing found in biological systems. This attribute broadens their ability to capture and interpret
time-dependent patterns and sequences (Ghosh-Dastidar & Adeli, 2009). (ii) A unique mechanism
of data handling through spikes. Unlike traditional networks that process continuous values, SNNs
convey information via these discrete-time events. This spiking mechanism offers a more biologically
faithful representation of neuronal signaling and emphasizes their potential to emulate the genuine
communication patterns of neurons in the human brain (Tavanaei et al., 2019; Koravuna et al., 2023).

There are several spiking neural models in the literature: Leaky Integrate and Fire (LIF) (Dayan &
Abbott, 2005), Hodgkin-Huxley (HH) (Hodgkin & Huxley, 1952), and Izhikevich (Izhikevich, 2003).
The LIF model is the most commonly utilized, and our reversible spiking neuron in this paper is
constructed based on this model.

The LIF model’s core involves two primary phases: - Integration: Signals to the neuron accumulate
over time. However, the LIF neuron, unlike a perfect integrator, has a leaky attribute, leading
to the decay of the neuron’s accumulated voltage towards its resting state without new inputs. -

2

Under review as a conference paper at ICLR 2024

Firing: When the integrated voltage surpasses a set threshold, the neuron releases a spike. Following
the firing, the voltage resets, generally to a value beneath the threshold, and the procedure begins
anew. The specific firing function often uses the Heaviside step function (Wu et al., 2021a;b) or its
derivatives (Meng et al., 2022; Nicola & Clopath, 2017).

In conclusion, SNNs have found practical applications across various fields. Specifically, they have
made significant strides in areas including segmentation (Kim et al., 2022; Patel et al., 2021) and
detection (Kim et al., 2020). In the biomedical domain, SNNs have been extensively explored for
tasks such as MRI image segmentation (Ahmadi et al., 2021) and ECG classification (Yan et al.,
2021). Their biologically inspired architecture and unique data processing capabilities position SNNs
as a powerful tool, bridging the gap between computational neuroscience and real-world applications.
As advancements continue, the scope and impact of SNNs are poised to grow even further.

2.2 EXISTING MEMORY-EFFICIENT TECHNIQUES IN SNN TRAINING

Training SNNs can be computationally intensive, often demanding significant memory resources.
Given the intrinsic temporal characteristics of SNNs, training them involves processing information
over several timesteps, which further amplifies the memory requirements (Bauer et al., 2023). This
has spurred research into developing memory-efficient techniques tailored for SNN training.

Just as with conventional networks, SNNs can also adopt some traditional memory-saving techniques,
such as checkpointing and sparse training. The work by Singh et al. (2022) applied checkpointing
to SNNs and, compared to the baseline SNN-BPTT, achieved a reduction in memory usage ranging
from 3.3× to 8.4×, with an average of 6.7×. Additionally, the study by Huang et al. (2023) utilized
sparse training for SNNs, and the results revealed that the training cost of NDSNN is merely 40.89%
of the LTH training cost when implemented on ResNet-19.

One of the primary reasons for the substantial memory consumption in SNNs is the need to retain
computational graphs for multiple time steps during the backpropagation process. This has led to the
development of techniques that focus on optimizing the backpropagation process in SNNs to conserve
memory. An exemplar is (Xiao et al., 2022), which compressed the multi-time step backpropagation
into a single time step, resulting in significant memory savings. When the timestep is set to six, this
approach can reduce memory consumption by approximately 2 to 3 times.

3 REVERSIBLE SPIKING NEURON

3.1 TRAINING MEMORY ANALYSIS

During the training process of spiking neural networks, the activation values occupy the main
memory storage space. The activation value memory analysis schematic diagram is shown in Fig. 2.

𝑁1
𝑡1

𝑁13
𝑡10𝑁13

𝑡10

𝑁1
𝑡1 𝑁1

𝑡2 𝑁1
𝑡10

𝑁13
𝑡2𝑁13

𝑡1𝑁13
𝑡1 𝑁13

𝑡2

𝑁1
𝑡2 𝑁1

𝑡10

Figure 2: Memory comparison between the acti-
vation value of the original SNN network and our
reversible SNN network. : Activation value
bound to memory storage; : Activation value
free from memory storage; : Original spiking
neuron; : Our reversible spiking neuron; +- :
Output potential of the spiking neuron; N tj

i : spik-
ing neuron on layer i timesteps j.

In this figure, we use the VGG-13 architec-
ture (Simonyan & Zisserman, 2014) with ten
timesteps as an example. The percentage val-
ues represent the memory footprint ratio of each
part in the entire network. The left diagram is
the original SNN where the activation values
of spikes account for 90.9% of the memory us-
age, and the output potentials of each neuron
occupy 9.1% of the memory. The right diagram
is our designed reversible SNN, which only re-
quires saving the output potentials of each neu-
ron, without storing all intermediate values, thus
significantly saving memory. The intermedi-
ate activation values will be regained during the
backpropagation process through our inverse cal-
culation equation. In this example, our method
is able to save 90.9% of the memory used for
activation values. The exact amount of memory
saved by our method is shown in Section 5.2.

3

Under review as a conference paper at ICLR 2024

3.2 REVERSIBLE SPIKING NEURON FORWARD CALCULATION

Our forward algorithm is in the upper section of Fig. 3. ❶: The various input states S = (X ,V) of

𝒙𝟐𝟏𝒙𝟏𝟏

𝒙𝟏𝟐 𝒙𝟐𝟐

𝒙𝟏𝟏

𝒙𝟏𝟐

𝒙𝟐𝟏

𝒙𝟐𝟐

𝑿[𝟏] 𝑿[𝟐] 𝑿

𝑽[𝟏]

𝒗𝟐𝟏𝒗𝟏𝟏

𝒗𝟏𝟐 𝒗𝟐𝟐

𝒗𝟏𝟏

𝒗𝟏𝟐

𝒗𝟐𝟏

𝒗𝟐𝟐

𝑽[𝟐] 𝑽

Inverse Step:

Calculate V [𝟐]

𝑴 𝟐 = 𝑽 𝟐 +
𝟏

𝝉
∗ 𝒀 𝟏 − 𝑽 𝟐

𝑽𝒐𝒖𝒕[𝟐] = 𝟏 − 𝒀[𝟐] ⊙ 𝑴 𝟐
+𝒀 𝟐 ∗ 𝑽𝒓𝒆𝒔 + 𝜶 ∗ 𝑽 𝟐

Calculate 𝑿[𝟏]
𝒀 𝟐 = 𝑯 𝑴 𝟐 − 𝑽𝒕𝒉 + 𝜷 ∗ 𝑿 𝟏

𝒗𝟐𝟏

𝒗𝟐𝟐

𝒙𝟏𝟏

𝒙𝟏𝟐

𝑽[𝟐]

𝑿[𝟏]

𝒚𝟏𝟏

𝒚𝟏𝟐

𝒀[𝟏]

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝑽𝒐𝒖𝒕[𝟏]

Calculate V [𝟏]

𝑴 𝟏 = 𝑽 𝟏 +
𝟏

𝝉
∗ 𝑿 𝟏 − 𝑽 𝟏

𝑽𝒐𝒖𝒕[𝟏] = 𝟏 − 𝒀[𝟏] ⊙ 𝑴 𝟏
+𝒀 𝟏 ∗ 𝑽𝒓𝒆𝒔 + 𝜶 ∗ 𝑽 𝟏

Calculate 𝑿[𝟐]
𝒀 𝟏 = 𝑯 𝑴 𝟏 − 𝑽𝒕𝒉 + 𝜷 ∗ 𝑿 𝟐

𝒚𝟏𝟏

𝒚𝟏𝟐

𝑽𝒐𝒖𝒕[𝟏]

𝒚𝟐𝟏

𝒚𝟐𝟐

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝒗𝟐𝟏
𝒐𝒖𝒕

𝒗𝟐𝟐
𝒐𝒖𝒕

𝑽𝒐𝒖𝒕

𝒚𝟏𝟏

𝒚𝟏𝟐

𝒚𝟐𝟏

𝒚𝟐𝟐

𝒀

Forward Step:

𝒗𝟐𝟏𝒗𝟏𝟏

𝒗𝟏𝟐 𝒗𝟐𝟐

Calculate 𝒀[𝟏]

𝑴 𝟏 = 𝑽 𝟏 +
𝟏

𝝉
∗ 𝑿 𝟏 − 𝑽 𝟏

𝒀 𝟏 = 𝑯 𝑴 𝟏 − 𝑽𝒕𝒉 + 𝜷 ∗ 𝑿 𝟐

Calculate 𝑽𝒐𝒖𝒕 𝟏
𝑽𝒐𝒖𝒕[𝟏] = 𝟏 − 𝒀[𝟏] ⊙ 𝑴 𝟏

+𝒀 𝟏 ∗ 𝑽𝒓𝒆𝒔 + 𝜶 ∗ 𝑽 𝟏

𝒗𝟏𝟏

𝒗𝟏𝟐

𝒙𝟐𝟏

𝒙𝟐𝟐

𝑽[𝟏]

𝑿[𝟐]

𝒚𝟏𝟏

𝒚𝟏𝟐

𝒀[𝟏]

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝑽𝒐𝒖𝒕[𝟏]

Calculate 𝒀[𝟐]

𝑴 𝟐 = 𝑽 𝟐 +
𝟏

𝝉
∗ 𝒀 𝟏 − 𝑽 𝟐

𝒀 𝟐 = 𝑯 𝑴 𝟐 − 𝑽𝒕𝒉 + 𝜷 ∗ 𝑿 𝟏

Calculate 𝑽𝒐𝒖𝒕[𝟐]
𝑽𝒐𝒖𝒕[𝟐] = 𝟏 − 𝒀[𝟐] ⊙ 𝑴 𝟐

+𝒀 𝟐 ∗ 𝑽𝒓𝒆𝒔 + 𝜶 ∗ 𝑽 𝟐

𝒚𝟏𝟏

𝒚𝟏𝟐

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝒀[𝟏]

𝑽𝒐𝒖𝒕[𝟏]

𝒚𝟐𝟏

𝒚𝟐𝟐

𝒀[𝟐]

𝒗𝟐𝟏
𝒐𝒖𝒕

𝒗𝟐𝟐
𝒐𝒖𝒕

𝑽𝒐𝒖𝒕[𝟐]

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝒗𝟐𝟏
𝒐𝒖𝒕

𝒗𝟐𝟐
𝒐𝒖𝒕

𝑽𝒐𝒖𝒕

𝒚𝟏𝟏

𝒚𝟏𝟐

𝒚𝟐𝟏

𝒚𝟐𝟐

𝒀

𝒗𝟏𝟏 𝒗𝟐𝟏

𝒗𝟏𝟐 𝒗𝟐𝟐

𝑽[𝟏]𝑽 𝑽[𝟐]

𝒙𝟐𝟏𝒙𝟏𝟏

𝒙𝟏𝟐 𝒙𝟐𝟐

𝒙𝟏𝟏 𝒙𝟐𝟏

𝒙𝟏𝟐 𝒙𝟐𝟐

𝑿[𝟏] 𝑿[𝟐]𝑿

𝒗𝟏𝟏
𝒐𝒖𝒕

𝒗𝟏𝟐
𝒐𝒖𝒕

𝒗𝟐𝟏
𝒐𝒖𝒕

𝒗𝟐𝟐
𝒐𝒖𝒕

𝒀[𝟏] 𝒀[𝟐]

𝑽𝒐𝒖𝒕[𝟐]

Figure 3: This reversibility demo use 2× 2 Input as an illustrative example and shows our forward
and inverse calculations. : The origin of the equations in the inverse process.

each neuron are evenly divided into two groups along the last dimension. Namely: S = [S1,S2].

❷: Calculate the first part of output Mt
1 and Y1:

Mt
1 = Vt−1

1 +
1

τ
·
(
X t

1 − Vt−1
1

)
(1) Yt

1 = H
(
Mt

1 − Vth

)
+ β ·X t

2 (2)

Mt
1 is the membrane potential of the first half neuron at time t. Vt−1

2 is the input potential of the
second half neuron at time t− 1. τ is the time constant. X t

2 is the input to the second half neuron at
time t. Vth is the threshold voltage of the neurons. H() is the Heaviside step function. β is a scaling
factor for the input. β ·X t

2 will help Yt
1 to collect information about the second half of the input

in the next step. M, V , X , Y ∈ R
∏n

i=1 di , Vth ∈ R. Then we calculate the first part of the output
voltage:

Vt
1 =

(
1−Yt

1

)
⊙Mt

1 +Yt
1 · Vres + α · Vt−1

1 (3)
Vt

1 is the output potential of the first half neuron at time t. Vres is the reset voltage of the neurons.
α is a scaling factor for the membrane potential.

❸: Use the first part of output Y1 to calculate the second part Mt
2 and Y2:

Mt
2 = Vt−1

2 +
1

τ

(
Yt

1 − Vt−1
2

)
(4) Yt

2 = H
(
Mt

2 − Vth

)
+ β ·X t

1 (5)

Mt
2 is the membrane potential of the second half neuron at time t. Yt

2 is the output of the second
half neuron at time t. We calculate the second part of the output voltage by:

Vt
2 =

(
1−Yt

2

)
⊙Mt

2 +Yt
2 · Vres + α · Vt−1

2 (6)

Vt
2 is the output potential of the second half neuron at time t, Vres ∈ R.

❹: For all the output states Soutput = ([Y1,Y2], [Vt
1,Vt

2]), combine them by the last dimension.

3.3 REVERSIBLE SPIKING NEURON INVERSE CALCULATION

The purpose of the inverse calculation is to use the output results to obtain the unsaved input values. i.e.
Use Y and Voutput to calculate X and V . Our inverse algorithm is in the lower section of Fig. 3. ➀:

4

Under review as a conference paper at ICLR 2024

For all the output states Soutput = (Y ,Voutput), divide them into two groups by the last dimension
in the same way as in the first step of forward calculation, namely: Soutput = [Soutput1;Soutput2]

➁: Calculate Vt−1
2 by combine Eq. (4) and calculate X t

1 by combine Eq. (4), (5), and (6), simplify:

Vt−1
2 =

Vt
2 − (1−Y2) · 1

τ ⊙Y1 −Y2 · Vreset

(1−Y2) · (1− 1
τ) + α

(7) X t
1 =

Yt
2 −H (Mt

2 − Vth)

β
(8)

➂: Calculate Vt−1
1 by combine Eq. (1) and calculate X t

2 by combine Eq. (1), (2) and (3), simplify:

Vt−1
1 =

Vt
1 − (1−Y1) · 1

τ ⊙X t
1 −Y1 · Vreset

(1−Y1) · (1− 1
τ) + α

(9) X t
2 =

Yt
1 −H (Mt

1 − Vth)

β
(10)

➃: For all the input states S = ([X1,X2], [Vt−1
1 ,Vt−1

2]), combine them by the last dimension.

4 INVERSE GRADIENT CALCULATION

While our reversible architecture markedly reduces memory consumption, it does introduce computa-
tional overhead due to two main factors: (i) The need to recompute previously unstored activation
values, and (ii) Many past reversible layers borrowed the backpropagation technique from check-
pointing (THUDM, 2023; Fan et al., 2020). This approach recalculates intermediate activations to
reconstruct a forward computational graph for gradient derivation, adding computational overhead
and increasing total computation time. This design is unnecessary in the reversible architecture.
This scenario is prevalent across all existing architectures of reversible layers, including Reversible
GNN (Li et al., 2021a), Reversible CNN (Gomez et al., 2017), and so on. To reduce the training
time, we have designed a new algorithm called the inverse gradient calculation method, which can
substantially decrease the number of FLOPs during the backpropagation process compared to the
original reversible architecture. Our design is shown in Fig. 4.

𝑿𝟐

𝑿𝟏

𝑿𝒏−𝟏

𝑋n

𝒀

𝜕𝑌

𝜕𝑋n

𝜕𝑋n

𝜕𝑋n−1

𝜕𝑋2

𝜕𝑋1

𝑋2

𝑋1

𝑋𝑛−1

𝑋𝑛

𝒀

𝜕𝑋n

𝜕𝑋n−1

𝑋𝑛

𝑌

𝜕𝑌

𝜕𝑋n

𝑋𝑛−1

𝜕𝑋2

𝜕𝑋1

𝑋2

𝑋1

𝑋2

𝑋𝑛

𝑋𝑛−1

𝑋2

𝑋1

……

𝑋𝑛

…………
𝑋2

𝑋1

𝑋𝑛−1

𝑋𝑛

……

𝒀

……

: Inverse function
𝜕𝑌

𝜕𝑋n

𝜕𝑋n

𝜕𝑋n−1

𝜕𝑋2

𝜕𝑋1

: Part of
𝜕𝑋n−1

𝜕𝑋n derivative

Brown variables: Cached values

:Forward function

:
𝜕𝑋n

𝜕𝑋n−1 derivative

Figure 4: Three different architectures for comparison. : Forward function, : inverse function, :
∂Xn

∂Xn−1 derivative, :Part of ∂Xn−1

∂Xn derivative, Brown variables: Cached values.

The left diagram illustrates the original forward and backward processes. The middle diagram depicts
the original calculation process for reversible layers. It contains four steps:

1. The input X pass the forward function to compute the output Y , without storing the input
data to conserve memory.

2. For each layer n: The output Xn of this layer passes the inverse function to compute the
input Xn−1 of this layer. This process starts with the final output Y .

5

Under review as a conference paper at ICLR 2024

3. For each layer n: The input Xn−1 passes through the forward function again to reconstruct
the forward computational graph, which facilitates gradient computation.

4. For each layer n: Compute the gradient ∂Xn

∂Xn−1 based on the forward computational graph.

The right diagram is our design with three steps:

1. The input X pass the forward function to compute the output Y , without storing the input
data to conserve memory.

2. For each layer n: The output Xn of this layer passes the inverse function to compute the
input Xn−1 of this layer and construct an inverse computational graph.

3. For each layer n: Compute the gradient ∂Xn

∂Xn−1 based on the inverse computational graph.

Below is the specific calculation formula of the ∂Xn

∂Xn−1 based on the inverse computation graph, and
the derivation process is in the Appendix.

∂Xn

∂Xn−1
1

=
θ

2 + (π · θ · (Mt
1 − Vth))

2 · 1
τ
⊙

(
1 +

θ

2 + (π · θ · (Mt
2 − Vth))

2 · 1
τ

)
+ β (11)

∂Xn

∂Xn−1
2

=
θ

2 + (π · θ · (Mt
2 − Vth))

2 + β (12)

All the variables in Eq. (11) and Eq. (12) have the same meaning as the variables in Eq. (1) - Eq.
(10) and θ is an adjustable constant parameter.

The ability to perform computational graph inverse computation in our algorithm is based on that our
forward function has symmetry with the inverse computation function.

For the original reversible network:

FLOPSori
backward = FLOPSinverse + FLOPSforward + FLOPS ∂Xn

∂Xn−1
(13)

For our reversible network:

FLOPSour
backward = FLOPSinverse + FLOPS

part of ∂Xn−1

∂Xn
(14)

Compared to the standard reversible network, our method reduces FLOPS by 23%. The FLOPS
analysis is shown in the Appendix and the detailed time mearsurement is shown in the Section 5.3.

5 EXPERIMENT

We first benchmarked our design against SOTA SNN training methods on multiple datasets, and then
integrated our reversible spiking neuron into various architectures. Our primary aims are to highlight
the memory efficiency of our method over the conventional spiking neuron and demonstrate the speed
benefits of our backpropagation design compared to the existing reversible backpropagation method.
An ablation study was also conducted to assess different parameters’ effects and the influence of
input group divisions on our model’s performance.

Experiments ran on an RTX6000 GPU using PyTorch 1.13.1 and CUDA 11.4. We verified the
consistency of inverse and forward calculations using torch.allclose(rtol=1e^{-06}, atol
=1e^{-10}), achieving accurate results. Hyperparameters are detailed in the Appendix.

5.1 COMPARISON WITH THE SOTA METHODS

We compared our approach with the current SOTA methods in Memory Efficiency during the SNN
training process across two standard image classification datasets, CIFAR10 and CIFAR100, as well
as two neuromorphic datasets, DVS-CIFAR10 and DVS128gesture. The results are shown in Table 1.

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison of our work with the SOTA methods in Memory Efficiency at SNN training
phase. For all the works: Batch size = 128. †: We conducted experiments using provided open-source code
when available. *: If not, the results were generated with our own implementation.

Dataset Method Architecture Time-steps Accuracy Memory(GiB)
OTTT (Xiao et al., 2022) VGG(sWS) 6 93.52% 4

CIFAR10

S2A-STSU Tang et al. (2022) ResNet-17 5 92.75% 27.93
IDE-LIF (Xiao et al., 2021) CIFARNet-F 30 91.74% 2.8
Hybrid (Rathi et al., 2020) VGG-16 100 91.13% 9.36
Tandem (Wu et al., 2021a) CifarNet 8 89.04% 4.2
Skipper (Singh et al., 2022) VGG-5 100 87.44% 4.6

RevSNN(Ours) ResNet-18 4 91.87% 1.101 ↓ 8.01× (Avg.)

CIFAR100

IDE-LIF† (Xiao et al., 2021) CIFARNet-F 30 71.56% 2.95† (Maqing, 2021)
OTTT (Xiao et al., 2022) VGG(sWS) 6 71.05% 4.04

S2A-STSU (Tang et al., 2022) VGG-13 4 68.96% 31.05
Skipper (Singh et al., 2022) VGG-5 100 66.48% 4.6

RevSNN(Ours) ResNet-18 4 71.13% 1.12 ↓ 9.51× (Avg.)

DVS-CIFAR10

STBP-tdBN (Zheng et al., 2021) ResNet-19 10 67.8% 11.5† (ThiswinEx, 2021)
Tandem (Wu et al., 2021a) CifarNet 8 65.59% 6.79† (DeepSpike, 2021)

Rollout (Kugele et al., 2020) DenseNet 10 66.8% 15.3*
BPTT (Fang et al., 2021) 7-layer CNN 20 74.8% 27.95† (Fangwei, 2021)

RevSNN(Ours) VGG-16 20 72.11% 3.91 ↓ 3.93× (Avg.)

DVS128-Gesture

BPTT (Fang et al., 2021) 8-layerCNN 20 96.88% 137.10† (Fangwei, 2021)
SLAYER (Shrestha & Orchard, 2018) 8-layerCNN 300 93.64% 5.18† (Sumit, 2018)

DECOLLE (Kaiser et al., 2020) 3-layerCNN 1800 95.54% 5.03† (Lab, 2020)
OTTT (Xiao et al., 2022) VGG(sWS) 20 96.88% 28.44† (Xiao, 2022)

RevOTTT(Ours) VGG(sWS) 20 96.75% 21.16 ↓ 1.34×

We subsequently applied our reversible spiking neuron to the current SOTA techniques in terms of
SNN Accuracy and compared it with the original methods. The results are shown in Table 2.

Table 2: Comparison of our work with the SOTA methods in terms of SNN Accuracy. For all the
works: Batch size = 128. †: We conducted experiments using provided open-source code when available. *:
If not, the results were generated with our own implementation.

Dataset Method Architecture Time-steps Accuracy Memory(GiB)

CIFAR10

Dspike (Li et al., 2021b) ResNet-18 6 94.25% 5.78*
RevDspike(Ours) ResNet-18 6 93.43% 2.14 ↓ 2.70×

DSR (Meng et al., 2022) PreAct-ResNet-18 20 95.40% 25.11† (Meng, 2022)
RevDSR(Ours) PreAct-ResNet-18 20 95.35% 5.73 ↓ 4.38×

CIFAR100

Dspike (Li et al., 2021b) ResNet-18 6 74.24% 5.78*
RevDspike(Ours) ResNet-18 6 73.28% 2.14 ↓ 2.70×

DSR (Meng et al., 2022) PreAct-ResNet-18 20 78.50% 25.11† (Meng, 2022)
RevDSR(Ours) PreAct-ResNet-18 20 78.21% 5.73 ↓ 4.38×

Tiny-ImageNet

ND(Dense) (Huang et al., 2023) VGG-16 5 39.45% 3.99
ND(90% Sparsity) (Huang et al., 2023) VGG-16 5 39.12% 3.78
ND(99% sparsity) (Huang et al., 2023) VGG-16 5 33.84% 3.76

RevND(Ours) VGG-16 5 39.73% 2.01 ↓ 1.99×
ND(Dense) (Huang et al., 2023) ResNet-19 5 50.32% 5.29

ND(90% Sparsity) (Huang et al., 2023) ResNet-19 5 49.25% 5.11
ND(99% sparsity) (Huang et al., 2023) ResNet-19 5 41.96% 5.09

RevND(Ours) ResNet-19 5 50.63% 2.47 ↓ 2.14×

Compared to the SOTA Memory-Efficient SNN training, our approach (RevSNN) significantly
achieves a 8.01× reduction on the CIFAR10 dataset; a 9.51× reduction on the CIFAR100 dataset;
and a 3.93× reduction on the DVS-CIFAR10 dataset on average. To further evaluate the versatility
of our reversible spiking neurons, we incorporated them into the OTTT method (RevOTTT) for the
DVS128-Gesture dataset. The results are compelling: a 1.34× reduction compared to the original
OTTT approach, all while preserving a high degree of accuracy. Against Accuracy-Driven SNN
training, our spiking neuron integrated into SOTA methods (RevDespike, RevDSR, RevND) yielded
substantial memory savings: 2.70× for Dspike and 4.38× for DSR on CIFAR datasets. On Tiny-
ImageNet, using our neuron with ND method’s VGG-16 and ResNet-19 architectures resulted in
1.99× and 2.14× reductions, respectively, with accuracy surpassing the original Dense model.

5.2 MEMORY CONSUMPTION EVALUATION

We explored the memory savings of our reversible spiking neuron by incorporating it into various
architectures, including VGG (11, 13, 16, 19) and ResNet (19, 34, 50, 101), using the CIFAR-10

7

Under review as a conference paper at ICLR 2024

dataset with a batch size of 128. For VGG architectures, we analyzed memory usage over 1 to 20
timesteps, while for ResNet, it was over 1 to 10 timesteps. The findings are shown in Fig. 5. Notably,
with the VGG-19 architecture at 20 timesteps, the memory usage for our reversible spiking neuron
remains under 200MB, in stark contrast to the 9032MB required using conventional spiking neuron.
For ResNet-101 at 10 timesteps, the comparison is 1382MB to 28993MB. As we scale model layers
and timesteps, the memory efficiency of our reversible spiking neuron is even more evident. For
instance, VGG-19 at 20 timesteps sees a 58.65× memory reduction. Detailed data are shown in the
Appendix.

VGG Configurations

VGG19
VGG16

VGG13
VGG11

Tim
est

ep
s

5

10

15

20

M
em

or
y(

M
B)

0

200

2000

4000

6000

8000

9032

76

ResNet Configurations

ResNet101
ResNet50

ResNet34
ResNet19

Tim
est

ep
s

2

4

6

8

M
em

or
y(

M
B)

0
2000
5000

10000

15000

20000

25000

28993

225

Original SNN
Reversible SNN

Figure 5: Memory comparison between normal spiking neuron and our reversible spiking neuron.

These experimental results align with our theoretical analysis in Section 3.1, further validating that
our design is able to significantly reduce memory usage.

5.3 TRAINING TIME EVALUATION

To compare the efficiency of our backpropagation design with the traditional reversible method,
we evaluated two backpropagation architectures for our reversible spiking neuron: one with the
conventional method and another with our design. We used VGG architectures (VGG-11 to VGG-19)
over timesteps from 1 to 10 and compared the training iteration times on CIFAR-10 datasets for three
scenarios: original spiking neuron, reversible spiking neuron with conventional backpropagation, and
reversible spiking neuron with our method. All tests were conducted on an RTX6000 GPU with a
batch size of 64.

VGG11 VGG13 VGG16 VGG19
Models

50

100

150

200

250

Ti
m

e
(m

s)

39.8
59.2 66.5

83.7
66.9

98.1
115.5

144.4

57.8
83.7

98.4
109.11.32x

Timestep = 4

VGG11 VGG13 VGG16 VGG19
Models

50

100

150

200

250

Ti
m

e
(m

s)

59.6

86.6
101.8

119.6

88.6

142.7
162.0

192.4

74.0

122.2 132.2
152.0

1.27x

Timestep = 6

VGG11 VGG13 VGG16 VGG19
Models

50

100

150

200

250

Ti
m

e
(m

s)

74.6

116.9
138.3

159.5

117.1

185.0

217.1

284.0

93.0

151.4
176.7

197.1

1.44x

Timestep = 8
Ori. , bw.
Rev. , ori. bp, bw.
Rev. , our bp, bw.
Ori. , fw.
Rev. , ori. bp, fw.
Rev. ,ori. bp, fw.

Figure 6: Training time analysis. Solid lines: Backward process’s duration; Dashed lines: Forward
process’s duration; Red lines: Training time for the original SNN; Green lines: Training time for the
reversible SNN using the original reversible layer backpropagation method; Blue lines: Training time
for the reversible SNN employing our proposed backpropagation architecture.

Fig. 6 presents our measurement of the training time when the number of timesteps is set to 4, 6, and
8. Forward computation times across the three methods are comparable. The original spiking neuron
boasts the quickest backward time as it stores all intermediate values, avoiding recalculations. Among
reversible spiking neurons, our design speeds up the backward process by 20%− 30% compared to

8

Under review as a conference paper at ICLR 2024

the traditional reversible method. This advantage grows with larger networks; for instance, under
VGG-19 at 8 timesteps, our method saves 23.8% of total training time. These findings match our
theoretical predictions in Section 4. Further data is in the Appendix.

5.4 ABLATION STUDY

Effects of parameters α and β in our equations

In Eq. (2) and Eq. (3), we have two parameters: α and β. The optimal setting for the parameter β is
1, as this maximizes the preservation of the original features of the data. We conduct experiments to
assess the impact of the α parameter on the model’s performance. We vary the α parameter from
0.05 to 0.8, and then employ architectures VGG-19, VGG-16, VGG-13, and VGG-11 to evaluate
the accuracy on the CIFAR100 dataset. The results are shown on the left of Fig. 7. We observe that
varying α within the range of 0.05 to 0.8 impacts the final accuracy by approximately 1%. Generally,
the model exhibits optimal performance when α is set between 0.1 to 0.2.

Effects of number of groups for the various states

In Section 3.2, we propose splitting input states into two groups along the last dimension. However,
this poses problems if the tensor’s last dimension is odd. To solve this, we adapt the original algorithm
to divide inputs based on the last dimension’s element count n. This sequential processing with Eq.
(1) - (3) for each group enhances our algorithm’s flexibility. To assess the number of groups’ impact,
we adjusted some fully connected layers in ResNet-19, ResNet-18, VGG-16, and VGG-13 networks
from 128 to 144 activations for varied factor possibilities. We tested performance on CIFAR100 with
groups ranging from 2 to 144, shown in Fig. 7. Results suggest More groups enhance accuracy, often
surpassing the original spiking neuron due to improved data representation.

0.05 0.1 0.2 0.25 0.4 0.5 0.75 0.8
Alpha

67.0

67.5

68.0

68.5

69.0

Ac
cu

ra
cy

 (%
)

Accuracy vs. Alpha

VGG-19
VGG-16
VGG-13
VGG-11

2 3 6 12 24 48 72 144
Number of Groups

66

67

68

69

70

71

Ac
cu

ra
cy

 (%
)

Accuracy vs. Number of Groups

Rev., Mo. ResNet-18
Rev., Mo. VGG-16
Rev. , Mo. VGG-13
Rev. , Mo. ResNet-19
Ori. , Mo. ResNet-18
Ori. , Mo. VGG-16
Ori. , Mo. VGG-13
Ori. , Mo. ResNet-19

Figure 7: Left Figure: Test VGG-19,VGG-16,VGG-13,VGG-11 models on CIFAR100 dataset by
using different α settings. Right Figure: Change activations number from 128 to 144 for some fully
connected layers inside ResNet-19, ResNet-18, VGG-16, VGG-13 and test model performance for
different numbers of groups on CIFAR100. Rev.: Reversible spiking neuron. Ori.: Original spiking
neuron. Mo.: Modified network (Change some fully connected layers).

6 CONCLUSION AND DISCUSSION

This work addresses a fundamental bottleneck of current deep SNNs: their high GPU memory
consumption. We have designed a novel reversible spiking neuron that is able to reduce memory
complexity from O(n2) to O(1). Specifically, our reversible spiking neuron allows our SNN network
to achieve 8.01× greater memory efficiency than the current SOTA SNN memory-efficient work
on the CIFAR10 dataset, and 9.51× greater on the CIFAR100 dataset on average. Furthermore, in
order to tackle the prolonged training time issue caused by the need for recalculating intermediate
values during backpropagation within our designed reversible spiking neuron, we have innovated
a new backpropagation approach specifically suited for reversible architectures. This innovative
method, when compared to the original reversible layer architecture, achieves a substantial reduction
in overall training time by 23.8%. As a result, we are able to train over-parameterized networks that
significantly outperform current models on standard benchmarks while consuming less memory.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mohsen Ahmadi, Abbas Sharifi, Shayan Hassantabar, Saman Enayati, et al. Qais-dsnn: tumor area
segmentation of mri image with optimized quantum matched-filter technique and deep spiking
neural network. BioMed Research International, 2021, 2021.

Felix C Bauer, Gregor Lenz, Saeid Haghighatshoar, and Sadique Sheik. Exodus: Stable and efficient
training of spiking neural networks. Frontiers in Neuroscience, 17:1110444, 2023.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathematical
modeling of neural systems. MIT press, 2005.

DeepSpike. Tandem Learning: An approach to neural network optimization, 2021. URL https:
//github.com/deepspike/tandem_learning. GitHub repository.

Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and Christoph Feichtenhofer. Pyslowfast. https:
//github.com/facebookresearch/slowfast, 2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671,
2021.

Fangwei. Parametric Leaky Integrate and Fire Spiking Neu-
ron, 2021. URL https://github.com/fangwei123456/
Parametric-Leaky-Integrate-and-Fire-Spiking-Neuron. GitHub reposi-
tory.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Third generation neural networks: Spiking neural
networks. In Advances in computational intelligence, pp. 167–178. Springer, 2009.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. Advances in neural information processing systems,
30, 2017.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Shaoyi Huang, Haowen Fang, Kaleel Mahmood, Bowen Lei, Nuo Xu, Bin Lei, Yue Sun, Dongkuan
Xu, Wujie Wen, and Caiwen Ding. Neurogenesis dynamics-inspired spiking neural network
training acceleration. arXiv preprint arXiv:2304.12214, 2023.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14
(6):1569–1572, 2003.

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continuous
local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 11270–11277, 2020.

Youngeun Kim and Priyadarshini Panda. Optimizing deeper spiking neural networks for dynamic
vision sensing. Neural Networks, 144:686–698, 2021.

Youngeun Kim, Joshua Chough, and Priyadarshini Panda. Beyond classification: Directly training
spiking neural networks for semantic segmentation. Neuromorphic Computing and Engineering, 2
(4):044015, 2022.

10

https://github.com/deepspike/tandem_learning
https://github.com/deepspike/tandem_learning
https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/slowfast
https://github.com/fangwei123456/Parametric-Leaky-Integrate-and-Fire-Spiking-Neuron
https://github.com/fangwei123456/Parametric-Leaky-Integrate-and-Fire-Spiking-Neuron

Under review as a conference paper at ICLR 2024

Shamini Koravuna, Ulrich Rückert, Thorsten Jungeblut, et al. Exploring spiking neural networks:
a comprehensive analysis of mathematical models and applications. Frontiers in Computational
Neuroscience, 17, 2023.

Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Efficient processing of
spatio-temporal data streams with spiking neural networks. Frontiers in Neuroscience, 14:439,
2020.

NMI Lab. DECOLLE: Deep Continuous Local Learning (Public Version), 2020. URL https:
//github.com/nmi-lab/decolle-public. GitHub repository.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021a.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable
spike: Rethinking gradient-descent for training spiking neural networks. Advances in Neural
Information Processing Systems, 34:23426–23439, 2021b.

Xu Maqing. IDE-FSNN: Integrated Differential Equations for Fast Spiking Neural Networks, 2021.
URL https://github.com/pkuxmq/IDE-FSNN. GitHub repository.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12444–12453, 2022.

Qy Meng. Dsr, 2022. URL https://github.com/qymeng94/DSR. GitHub repository.

Wilten Nicola and Claudia Clopath. Supervised learning in spiking neural networks with force
training. Nature communications, 8(1):2208, 2017.

Kinjal Patel, Eric Hunsberger, Sean Batir, and Chris Eliasmith. A spiking neural network for image
segmentation. arXiv preprint arXiv:2106.08921, 2021.

Rachmad Vidya Wicaksana Putra and Muhammad Shafique. Q-spinn: A framework for quantizing
spiking neural networks. In 2021 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2021.

Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep
spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=B1xSperKvH.

Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances in
neural information processing systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T Kandemir, Emre Neftci, Vi-
jaykrishnan Narayanan, and Chita R Das. Skipper: Enabling efficient snn training through
activation-checkpointing and time-skipping. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 565–581. IEEE, 2022.

Bam Shrestha Sumit. SLAYER: Spike Layer Error Reassignment in Time (PyTorch Implementation),
2018. URL https://github.com/bamsumit/slayerPytorch. GitHub repository.

Jianxiong Tang, Jianhuang Lai, Xiaohua Xie, Lingxiao Yang, and Wei-Shi Zheng. Snn2ann:
A fast and memory-efficient training framework for spiking neural networks. arXiv preprint
arXiv:2206.09449, 2022.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural networks, 111:47–63, 2019.

11

https://github.com/nmi-lab/decolle-public
https://github.com/nmi-lab/decolle-public
https://github.com/pkuxmq/IDE-FSNN
https://github.com/qymeng94/DSR
https://openreview.net/forum?id=B1xSperKvH
https://openreview.net/forum?id=B1xSperKvH
https://github.com/bamsumit/slayerPytorch

Under review as a conference paper at ICLR 2024

ThiswinEx. STBP-simple, 2021. URL https://github.com/thiswinex/STBP-simple.
GitHub repository.

THUDM. Cogdl: An extensive toolkit for deep learning on graphs. https://github.com/
THUDM/cogdl, 2023.

Alberto Viale, Alberto Marchisio, Maurizio Martina, Guido Masera, and Muhammad Shafique.
Carsnn: An efficient spiking neural network for event-based autonomous cars on the loihi neuro-
morphic research processor. In 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–10. IEEE, 2021.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2021a.

Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, and Ye Tang. Liaf-net: Leaky integrate
and analog fire network for lightweight and efficient spatiotemporal information processing. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6249–6262, 2021b.

Mingqi Xiao. Ottt-snn: Online triple-threshold training for spiking neural networks. https:
//github.com/pkuxmq/OTTT-SNN, 2022. URL https://github.com/pkuxmq/
OTTT-SNN. GitHub repository.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feedback
spiking neural networks by implicit differentiation on the equilibrium state. Advances in Neural
Information Processing Systems, 34:14516–14528, 2021.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training through
time for spiking neural networks. arXiv preprint arXiv:2210.04195, 2022.

Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Energy efficient ecg classification with spiking neural
network. Biomedical Signal Processing and Control, 63:102170, 2021.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11062–11070, 2021.

12

https://github.com/thiswinex/STBP-simple
https://github.com/THUDM/cogdl
https://github.com/THUDM/cogdl
https://github.com/pkuxmq/OTTT-SNN
https://github.com/pkuxmq/OTTT-SNN
https://github.com/pkuxmq/OTTT-SNN
https://github.com/pkuxmq/OTTT-SNN

	Introduction
	Background And Related Works
	Spiking Neural Network
	Existing Memory-Efficient Techniques in SNN Training

	Reversible Spiking neuron
	Training Memory Analysis
	Reversible spiking neuron Forward Calculation
	Reversible spiking neuron Inverse Calculation

	Inverse Gradient Calculation
	Experiment
	Comparison with the SOTA Methods
	Memory Consumption Evaluation
	Training time Evaluation
	Ablation Study

	Conclusion and Discussion

