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Abstract

Recent advances have demonstrated that integrating reinforcement learning with
rule-based rewards can significantly enhance the reasoning capabilities of large
language models, even without supervised fine-tuning. However, prevalent rein-
forcement learning algorithms such as GRPO and its variants like DAPO, suffer
from a coarse granularity issue when computing the advantage. Specifically, they
compute rollout-level advantages that assign identical values to every token within
a sequence, failing to capture token-specific contributions and hindering effective
learning. To address this limitation, we propose Key-token Advantage Estimation
(KTAE) - a novel algorithm that estimates fine-grained, token-level advantages
without introducing additional models. KTAE leverages the correctness of sampled
rollouts and applies statistical analysis to quantify the importance of individual to-
kens within a sequence to the final outcome. This quantified token-level importance
is then combined with the rollout-level advantage to obtain a more fine-grained
token-level advantage estimation. Empirical results show that models trained with
GRPO+KTAE and DAPO+KTAE outperform baseline methods across five mathe-
matical reasoning benchmarks. Notably, they achieve higher accuracy with shorter
responses and even surpass R1-Distill-Qwen-1.5B using the same base model.

1 Introduction

Notably, large reasoning language models (LRMs) like OpenAI o1 [1] and DeepSeek R1 [2] have
demonstrated the capability to solve complex mathematical reasoning problems that challenge
even human experts. This progress marks a significant step toward Artificial General Intelligence
(AGI) [3, 4, 5]. These reasoning language models often exhibit behaviors such as self-reflection
and self-verification within the reasoning chain, which are critical for enhancing reasoning accuracy.
DeepSeek R1 aptly refers to the critical turning points that lead to improved performance as “aha
moments”. The emergence and cultivation of such moments are greatly facilitated by the application
of reinforcement learning (RL) or distilled from more powerful LRMs [6, 7, 2]. For instance,
DeepSeek applied RL directly to the base language model, using a simple rule-based reward function
to encourage the model to explore and unlock its reasoning potential [8] through self-exploration.
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Figure 1: Model performance comparison. KTAE is a plug-and-play method that introduces no
additional model. It provides token-level advantage estimation for existing RL algorithms such as
GRPO and its variants. “GRPO+KTAE” and “DAPO+KTAE” denote GRPO and DAPO combined
with KTAE respectively, both RL-tuned on the Qwen2.5-Math-7B model. Detailed results in Table 1.

As a mainstream RL algorithm, Group Relative Policy Optimization (GRPO) [9] differs from
the Proximal Policy Optimization (PPO) [10] by eliminating the need for a separate critic model.
Instead, it estimates the advantage of each token using the rewards obtained from a set of generated
rollouts. However, due to the absence of a critic model, GRPO computes a rollout-level advantage
- assigning the same advantage value to every token within a single rollout. This limitation also
persists in its improved variant, DAPO [11]. In practice, the importance of each token in a complete
Chain-of-Thought (CoT) reasoning sequence varies, and we often observe that incorrect rollouts
may only diverge from the correct reasoning path in the final steps. Consequently, applying a
uniform advantage value across all tokens in a rollout lacks granularity and may hinder effective
learning. Prior efforts have explored using process-level reward models to provide more fine-grained
signals [12, 13, 14, 15, 16]. However, as highlighted by DeepSeek [2], training fine-grained reward
models is costly, difficult to scale, has limited capacity to provide accurate signals, and is prone to
reward hacking [17].

To address these challenges, we propose the Key-token Advantage Estimation (KTAE) algorithm.
KTAE introduces no additional models, and instead leverages the correctness of sampled rollouts and
the occurrence of each token within them to construct a contingency table. Then, using statistical
methods such as Fisher’s exact test and Information Gain (IG), it quantifies the strength of association
between each token and correct rollout. Subsequently, by combining the token’s frequency and the
reward assigned to its corresponding rollout, KTAE further quantifies the direction of this association’s
contribution. Finally, these measures are combined (e.g., through multiplication) to yield a ‘key-token
value’ for each token. As shown in Figure 2, when a correct rollout is incorrectly classified as
incorrect by the rule, KTAE can still highlight the positively contributing tokens through computing
the key-token values. In contrast, GRPO assigns the same negative advantages to all tokens in such a
case. Moreover, KTAE can effectively distinguish between tokens irrelevant to problem solving, such
as ‘First’ and ‘denote’, and those highly relevant to problem solving, such as ‘complement’ and ‘ratio’.
Furthermore, KTAE is compatible with GRPO and DAPO. The resulting key-token values are then
added to the rollout-level advantage computed by GRPO to obtain a more fine-grained token-level
advantage estimate. As illustrated in Figure 1, integrating KTAE with either GRPO or DAPO yields
improved performances on average across five major mathematical reasoning benchmarks. Moreover,
KTAE not only improves test accuracy but also very effectively reduces response length without any
length penalty reward, resulting in extremely high reasoning efficiency.

In summary, the KTAE algorithm offers several advantages:

1. KTAE provides more fine-grained advantage information without introducing extra models,
resulting in lower training costs.
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2. KTAE quantifies the importance differences between tokens using statistical analysis meth-
ods, offering strong interpretability.

3. KTAE’s key-token value is computed based on the correctness of the final answer and retains
the original rollout-level advantage, making it less susceptible to reward hacking.

4. KTAE helps the model to focus on key tokens and reduce the learning of irrelevant tokens,
which can effectively reduce the response length.

Question: Two complementary angles, A and B, have measures in the ratio of 7 to 23, respectively. What is the 

ratio of the measure of the complement of angle A to the measure of the complement of angle B? Express your 

answer as a common fraction.

Answer: 23/7

Right answer just without \boxed{}!

Figure 2: Visualization of key-token-values computed by KTAE for a correct rollout whose final
result was unparsable and thus received a final reward of 0. Red shading indicates negative token
associations with producing a correct rollout, with darker red representing stronger negative influence;
Green shading indicates positive associations.

2 Preliminary

2.1 Reinforcement Learning in LLM

When applying Reinforcement Learning (RL) to language models, text generation is modeled as
a token-level Markov Decision Process (MDP). At each timestep t, the state st consists of the
input prompt q and the previously generated tokens [o1, . . . , ot−1], i.e., st = [q; o1, . . . , ot−1]. The
policy π generates the next token ot as action at, and generation ends upon producing an end-
of-sequence token or reaching a maximum length T . The full sequence o = [o1, . . . , oT ] is then
evaluated by a reward function R(q, o) =

∑|o|
t=1 r(st, ot). The RL objective aims to maximize an

entropy-regularized expected reward [18]:
J (πθ) = E(q,o)∼π[R(q, o)]− βEq∼D,st∼πθ

[DKL(πθ(·|st)||πref (·|st))] (1)
Here, πref is a reference policy, DKL denotes the KL divergence, and β controls the penalty strength.
This KL term, central to RLHF, discourages large shifts from the reference distribution to preserve
fluency and diversity. In recent mathematical reasoning tasks [11, 19], β is typically set to 0.

2.2 GRPO

Group Relative Policy Optimization (GRPO) [9] is simplified based on PPO and eliminates the need
for a value model. Given an input q, GRPO samples G rollouts {o1, . . . , oG} from the old policy and
computes their cumulative rewards R = {R1, . . . , RG}. These rewards are then used to estimate
advantages Âi,t, e.g., by comparing each Ri to a baseline derived from R. The optimization objective
for GRPO is defined as follows:
JGRPO(θ) = Eq∼D,{oi}Gi=1∼πθold

(·|q)[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ||πref)

)]
(2)
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where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

, and Âi,t is the advantage estimate derived from the group rewards

R, defined as Âi,t = Ri−mean(R)
std(R) . The clipping term with clip ratio ε [20] aims to constrain the

new policy within the trust region of the old policy, enhancing training stability. By eliminating the
dependency on the value model Vϕ, GRPO aims to substantially reduce training costs while striving
to maintain optimization effectiveness comparable to traditional PPO.

2.3 DAPO

Dynamic Sampling Policy Optimization (DAPO) [11] is an enhancement algorithm of GRPO,
specifically tailored for tasks involving mathematical reasoning. To mitigate the phenomenon of
entropy collapse, DAPO introduces the “Clip-Higher” method, which raises the upper bound of the
clipping function. It incorporates “Dynamic Sampling” to prevent scenarios where all G sampled
rollouts exhibit identical preference outcomes (e.g., all positive or all negative). A “Token-Level
Policy Gradient Loss” is employed to stabilize the training process. Additionally, DAPO introduces
“overlong reward shaping” to penalize excessively long responses, thereby preventing the model from
falling into catastrophic repetition loops.

JDAPO(θ) = Eq∼D,{oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{oi | is_equivalent(a, oi)}∣∣∣ < G,

(3)

where ri,t(θ) and Âi,t are the same as GRPO. εlow and εhigh represent the upper and lower bounds of
ri,t after decoupling.

3 KTAE: A Model-Free Algorithm to Key-Tokens Advantage Estimation

GRPO’s advantage estimation has a relatively coarse granularity. It assigns the same advantage value
to every token within the same rollout. However, in tasks requiring complex reasoning steps, such as
mathematical reasoning, the importance of different tokens within a rollout can vary significantly. To
address this, we propose the KTAE (Key-tokens Advantage Estimation) algorithm. Without additional
models, KTAE quantifies the importance of different tokens by analyzing the statistical associations
within the set of sampled rollouts (correct vs. incorrect). It then integrates this quantified token
importance with rollout-level advantage estimates (computed by GRPO) to produce fine-grained,
token-level advantage estimations. In this section, we will introduce its calculation process in detail.

3.1 Building Token-Level Contingency Tables

For a given problem, we sample a set of G rollouts {o1, . . . , oG}, each with a corresponding rule-
based reward {R1, . . . , RG} indicating its correctness, following the same approach as GRPO. We
divide these rollouts into a correct set xT and an incorrect set xF. For each token oij in the sampled
rollouts oi, we examine its occurrence across all G rollouts and construct a 2× 2 contingency table
summarizing the counts of correct and incorrect rollouts that contain or do not contain oij . An
example contingency table is shown in Figure 3.

Here, G is the total number of rollouts. For token oij , we use the statistics aoij , boij , coij , doij
based on its occurrence across the rollouts sets. aoij is the count of rollouts in xT where oij
appears at least once, aoij =

∑
I(oij ∈ xT); coij is the count of rollouts in xT where oij does

not appear coij = sum(xT) − aoij ; boij and doij are calculated in the same way. The total count:
aoij + boij + coij + doij = G. We then use the statistics from this contingency table to compute the
association between the occurrence of oij and the policy sampling a correct rollout.

3.2 Quantifying Association Strength via Hypothesis Testing

We begin by quantifying the association using hypothesis testing. We set the null hypothesis (H0) as:
the occurrence of oij and the correctness of its rollout have no association. We use Fisher’s exact
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Figure 3: The outline of KTAE algorithm. It constructs a contingency table based on the correctness
of the sampled rollouts, and then calculates the token-level advantage and adds it to the GRPO’s
rollout-level advantage.

test [21] to compute the p-value, which is the probability of observing the current contingency table
or a more extreme one, assuming H0 is true. The formula for Fisher’s exact test p-value is:

Fisher(oij) =

(
aoij

+boij
aoij

)(
coij+doij

coij

)
(

N
aoij

+coij

) =
(aoij + boij )!(coij + doij )!(aoij + coij )!(boij + doij )!

aoij !boij !coij !doij !N !
(4)

In practice, this calculation is performed in log-space to handle large factorials (see appendix D for
details). A smaller p-value indicates stronger evidence against the null hypothesis, meaning a stronger
association between the occurrence of token oij and rollout correctness. Since effective p-values are
often concentrated in a small range, we employ a transformation function to quantify the association
strength and amplify the impact of small p-values. We define the association score of Fisher’s test as:

F(oij) =

{
e−2·Fisher(oij) if Fisher(oij) ̸= 1

0 if Fisher(oij) = 1
(5)

When p = 1 (complete no association), the score is 0; when p approaches 0 (strong association),
the score approaches 1. Fisher’s exact test is chosen over chi-squared or G-tests because the latter
provide less accurate p-values for small sample sizes N , while Fisher’s test offers an exact probability
calculation even with small G (e.g., G = 8 or 16).

3.3 Quantifying Association Strength via Information Gain

To complement the statistical test with an information-theoretic perspective, we compute the Informa-
tion Gain (IG) between the occurrence of the token oij and rollout correctness. Let Y be a random
variable representing rollout correctness, and Xoij be a variable indicating whether the token oij
appears in a rollout. The entropy of rollout correctness H(Y ) is:

H(Y ) = −
aoij + coij

N
log2

(
aoij + coij

N

)
−

boij + doij
N

log2

(
boij + doij

N

)
(6)

The conditional entropy of rollout correctness given whether token oij appears, H(Y |Xoij ), is:

H(Y |Xoij ) =

(
aoij + boij

N

)[
−

aoij

aoij + boij
log2

(
aoij

aoij + boij

)
−

boij
aoij + boij

log2

(
boij

aoij + boij

)]
+

(
coij + doij

N

)[
−

coij
coij + doij

log2

(
coij

coij + doij

)
−

doij
coij + doij

log2

(
doij

coij + doij

)]
(7)
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The Information Gain (IG) is defined as IG(oij) = H(Y )−H(Y |Xoij ).

A higher IG value indicates that knowing whether the token oij appears reduces the uncertainty about
rollout correctness more significantly, suggesting a stronger association with correctness. Otherwise,
means the association is weaker. Through Fisher’s exact test and Information Gain, we have quantified
the strength of association between the occurrence of token oij and rollout correctness (e.g., via a
linear combination h1 · F(oij) + h2 · IG(oij)).

3.4 Quantifying Association Direction and Final Importance Score

However, both F(oij) and IG(oij) can only quantify the strength of association between the occur-
rence of oij and the correct rollout, they cannot quantify the direction of this association (i.e., positive
or negative association). For the detailed proof, see Appendix E. To determine the direction of the
association and further quantify token importance, we adapt the Term Frequency calculation idea
from BM25 [22] to compute standardized frequency scores for the token oij within the set of correct
and incorrect rollouts.

Specifically, we concatenate all correct rollouts into a single long sequence and all incorrect rollouts
into another. We compute the term frequency (tf) of the token oij in these two concatenated sequences,
denoted as tfT(oij) and tfF(oij). Based on tfs we compute standardized frequency scores:

TFT/F(oij) =
(k1 + 1) · tfT/F(oij)

k1(1− b+ b× lenT/F
lenavg

) + tfT/F(oij)
(8)

Here, T/F refers to the correct or incorrect rollouts. lenT and lenF are the average lengths of the
concatenated correct and incorrect rollouts, respectively, and lenavg is the average rollout length
across all G rollouts. k1 and b are adjustable parameters controlling the influence of term frequency
and length normalization (can be set empirically or tuned). Treating all correct/incorrect rollouts as
single sequences reduces the impact of individual rollouts with extreme lengths.

The token directional score D(oij) combines a measure of effect size based on proportion differences
and a measure based on standardized frequency score differences. We use Cohen’s h effect size
(arcsin

√
x − arcsin

√
y) metric to measure the difference in the proportion of correct rollouts

(
aoij

aoij
+coij

) versus incorrect rollouts (
boij

boij+doij
) where oij appears. Simultaneously, we consider the

ratio difference of the standardized frequency scores. The final formula is:

D(oij) =

(
arcsin

√
aoij

aoij + coij
− arcsin

√
boij

boij + doij

)
+ h3

(
TFT(oij)

TFF(oij)
− TFF(oij)

TFT(oij)

)
(9)

This combination aims to capture different aspects of importance: when the token oij’s frequency
is similar in correct and incorrect rollouts(High frequency generic tokens), its importance might be
better reflected by the probability difference in where it appears, hence the dominance of the arcsin
square root proportion difference term ( Cohen’s h effect size); when the token oij’s frequency differs
significantly (especially for low-frequency but critical tokens), the frequency ratio better reflects its
discriminative power, increasing the importance of the frequency score ratio term.

Theoretically, both the Fisher score F(oij) and the Information Gain IG(oij) are strictly greater than
zero, while the directional score D(oij) spans the full real range (−∞,+∞). To derive the final
token-level relevance score, we multiply the magnitude of correlation (e.g., F(oij) or IG(oij)) by
the directionality score D(oij), which reflects whether the token is positively or negatively associated
with correct rollouts. Finally get key-token-value of oij is (h1 ·F(oij)+h2 ·IG(oij)) ·Doij . Positive
key-token-values represent positive association direction.

To stabilize training and constrain the output range, we apply a sigmoid normalization to the resulting
key-token-values. These normalized values are then added to the rollout-level advantage computed
by GRPO, thereby producing the final token-level advantage:

ÂKTAE
oij = ÂGRPO

oi + σ((h1 · F(oij) + h2 · IG(oij)) ·Doij )− 0.5 (10)

KTAE is an algorithm for estimating the advantage of tokens, which computes the key-token-value
through the rollouts obtained from sampling. The complete implementation process is shown in
Algorithm 1. It is orthogonal to the improvement strategy of DAPO, and can be combined with
DAPO in addition. An schematic diagram is shown in Appendix F.

6



Algorithm 1 Key-token Advantage Estimation(KTAE)

Input: Set of G rollouts {o1, . . . , oG} sampled from policy model, rule-based reward {R1, . . . , RG},
weighting parameter h1, h2, h3

1: Calculate the rollout-level advantage of GRPO ÂGRPO

2: Summarize all tokens in rollouts into a set O
3: Divide the G rollouts into xT and xF sets according to the reward R obtained by each rollout
4: for o in O do
5: a =

∑
I(oij ∈ xT), b =

∑
I(oij ∈ xF), c = Len(xT)− a, d = Len(xF)− b

6: Calculate F(o) according to Eq. 4, and calculate IG(o) according to Eq. 6 and Eq. 7
7: Weighted add F(o) and IG(o) to get quantized association strength h1 · F(o) + h2 · IG(o)
8: Calculate the frequency of o in the correct and incorrect rollouts according to Eq. 8
9: Calculate the quantized association direction according to Eq. 9

10: Multiply the association direction and association strength to get the key-token-value of each
token, and then add it to ÂGRPO

o to get ÂKTAE
o

11: end for
Output: ÂKTAE

4 Experiment

Experiment Setting. Our validation and ablation experiments were conducted on the Qwen2.5-
Math-1.5B [23] base model and the comparison experiment with baseline methods is based on
Qwen2.5-Math-7B base model, using math12k [12] and its subset math-level3-5 respectively. See
Appendix G.1 for specific details of dataset and benchmark, Appendix G.3 for implementation details
and hyperparameters, and Appendix J for prompt details.

Method Validation Result. Experiments revealed several key performance trends (Fig. 4). KTAE
consistently enhances MATH500 test accuracy when integrated with GRPO and DAPO, respectively.
Regarding mean response length, the addition of KTAE significantly reduced the response length
for both algorithms compared to their original versions. We believe that achieving improved model
performance while simultaneously reducing generation cost is more meaningful. In terms of genera-
tion entropy, GRPO+KTAE showed accelerated entropy decrease early on but stabilized at a higher
level later, beneficial for mitigating entropy collapse [11]. For DAPO+KTAE, its entropy value was
considerably higher than all other configurations and exhibited a continuous upward trend. While
such high entropy contributes to increased sampling diversity and avoids entropy collapse, it may
also introduce a potential risk of reduced training stability.
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Figure 4: The metric curves of test accuracy, mean response length, and generation entropy of
combining DAPO and GRPO with KTAE.

Comparison with Baselines. In Table 1, the DAPO+KTAE-7B model achieved the highest average
score across the 5 benchmarks, significantly outperforming others on MATH500. Both GRPO+KTAE
and DAPO+KTAE achieved better performance than all baseline methods on AMC (See Appendix
G.2 for more details about baselines). GRPO+KTAE showed performance improvements compared
to the original GRPO on four out of five benchmarks, with only a slight decrease on AIME24
(Considering AIME24 has just 30 problems, this equates to only one fewer correct answer). Likewise,
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compared to the original DAPO, DAPO+KTAE’s performance improved or remained unchanged
on four out of five benchmarks, experiencing a slight decrease only on OlympiadBench. This
demonstrates the effectiveness of the KTAE algorithm. This performance was consistent with the
1.5B model, where our model even surpassed R1-Distill-Qwen-1.5B with the same base model.

Table 1: The zero-shot greedy pass@1 performance of the 1.5B and 7B models across five mathemat-
ical reasoning benchmarks. All the results above are of our reproduction. ∗ refers to OlympiadBench;
† denotes the results from [24]. ‡ denotes the results from [25], @8k refers the max response length.

1.5B Models AIME24 MATH-500 AMC Minerva Olympiad∗ Avg

Qwen2.5-Math-1.5B-Instruct ‡ 10.0 74.2 48.2 26.5 40.2 39.8
Qwen2.5-Math-1.5B ‡ 16.7 61.8 43.4 15.1 28.4 33.1
R1-Distill-Qwen-1.5B@8k ‡ 20.0 77.4 49.4 25.0 35.8 41.5
Oat-Zero-1.5B [25] 20.0 74.4 50.6 23.9 37.0 41.2
GRPO-1.5B 16.7 76.0 51.8 22.1 36.3 40.6
GRPO+KTAE-1.5B 26.7 75.4 41.0 27.2 38.2 41.7
DAPO-1.5B 16.7 77.6 47.0 25.7 39.0 41.2
DAPO+KTAE-1.5B 20.0 77.6 50.6 29.0 40.0 43.4

7B Models AIME24 MATH-500 AMC Minerva Olympiad∗ Avg

Qwen2.5-Math-Instruct [26] † 13.3 79.8 50.6 34.6 40.7 43.8
Qwen2.5-Math † 13.3 57.6 45.0 14.7 23.7 30.9
Eurus-2-7B-PRIME [27] 23.3 82.2 57.8 36.0 39.9 47.8
Oat-Zero-7B [25] 36.7 79.8 61.4 30.5 41.8 50.0
OpenReasoner-Zero-7B [19] 13.3 78.4 45.8 27.9 45.0 41.7
SimpleRL-Zero-7B [28] 26.7 78.6 59.0 33.8 43.4 48.3
GRPO-7B 36.7 81.0 57.8 32.7 43.2 50.3
GRPO+KTAE-7B 33.3 82.4 65.1 33.8 43.7 51.7
DAPO-7B 36.7 81.8 60.2 34.5 45.3 51.7
DAPO+KTAE-7B 36.7 83.2 63.9 35.3 43.7 52.5

Table 2 demonstrates that our model can also significantly reduces the length of the response without
any length penalty reward. This effect is particularly pronounced for the 7B parameter model, where
the GRPO+KTAE model exhibits a considerably shorter generation lengths compared to the baseline
methods. This indicates that the KTAE algorithm enables the model to concentrate more effectively
on key tokens that are crucial for problem resolution, thereby curtailing the generation of redundant
or non-essential tokens. That is to say, KTAE achieved the highest average score across the 5
benchmarks while using the least token budget, demonstrating the highest reasoning efficiency.

As Table 3, KTAE is a model-free algorithm whose computational cost is largely independent of
model size, depending primarily on the number of generated tokens. For larger models such as the
7B variant, each training step is inherently slower, making the relative efficiency loss introduced
by KTAE less noticeable. In contrast, for smaller models like the 1.5B variant, the shorter training
steps make KTAE’s overhead more apparent. Nevertheless, the computational cost of KTAE remains
acceptable compared to methods that rely on model-based computation.

In practice, KTAE’s runtime mainly depends on implementation efficiency. A CPU-only serial
implementation would require several hours, as the current version employs only limited tensor
parallelism across N rollouts per sampling, resulting in low data parallelism and GPU utilization
below 1%. Further optimization—such as concatenating computations into larger tensors to better
exploit GPU capabilities—could substantially improve efficiency. We plan to pursue these engineering
optimizations in future work.

Ablation Analysis. Figure 5 shows the impact of each KTAE component. Removing any component
consistently reduced test accuracy. Excluding IG had the largest negative effect on accuracy and
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Table 2: The response length of the 1.5B and 7B models across five mathematical reasoning bench-
marks. All the results above are of our reproduction. ∗ refers to OlympiadBench.

1.5B Models AIME24 MATH-500 AMC Minerva Olympiad∗ Avg

Oat-Zero-1.5B 1198 878 652 692 938 871.6
GRPO-1.5B 1299 635 908 731 958 906.2
GRPO+KTAE-1.5B 1187 884 617 663 890 848.2
DAPO-1.5B 1218 617 950 712 937 886.8
DAPO+KTAE-1.5B 1110 983 582 666 861 840.4

7B Models AIME24 MATH-500 AMC Minerva Olympiad∗ Avg

Eurus-2-7B-PRIME 1498 685 1099 777 1077 1027.2
Oat-Zero-7B 977 658 903 677 892 821.4
OpenReasoner-Zero-7B 2300 1193 1901 1269 1871 1706.8
SimpleRL-Zero-7B 1074 634 832 584 881 801
GRPO-7B 989 606 806 641 813 771.0
GRPO+KTAE-7B 941 563 741 577 771 718.6
DAPO-7B 1155 676 969 700 986 897.2
DAPO+KTAE-7B 1013 604 864 607 798 777.2

Table 3: Comparison of the training time of one step of the KTAE algorithm and the baseline
algorithm under the same hardware conditions (8 NVIDIA H100 80G)

Algorithms Qwen2.5-7B-MATH Qwen2.5-1.5B-MATH

GRPO 559.36s 277.69s
GRPO+KTAE 641.98s 371.79s
DAPO 1006.30s 363.36s
DAPO+KTAE 1159.00s 642.74s

produced the shortest sequences. In contrast, removing F or tf decreased accuracy while increasing
sequence length, though lengths remained shorter than those of the GRPO baseline. For entropy,
removing tf initially caused a notable increase. Importantly, while GRPO suffered from entropy
collapse, KTAE avoided this. Overall, IG is key for accuracy and brevity, tf supports diversity and
stability, and F contributes to overall performance. All components are essential in accuracy.

Visualization Example. Beyond the example illustrated in Figure 2, we also observed several
zero-reward rollouts. These rollouts are characterized by including the correct answer in their early
stages, but subsequently generating a large number of redundant tokens, ultimately leading to the
correct answer being obscured by the subsequent sequence. Appendix H provides a such example,
where a clear boundary can be distinctly observed, effectively separating the correct answer from the
redundant tokens. This further validates KTAE’s accuracy in identifying key tokens. As shown in
Appendix K, we also observed the ‘aha moment’ phenomenon [2] during the KTAE training process.

5 Related Work

Large Reasoning Models. Breakthroughs [1, 2, 3, 4, 29, 30] in Large Language Models (LLMs)
enable a new era of test-time scaling [31, 32] and human-like, stepwise reasoning. DeepSeek R1 [2]
used pure RL to induce long Chain-of-Thought (CoT) and self-reflection. Following R1, subsequent
work [11, 19, 28, 27, 25, 33] explored RL training variants, mainly on smaller models. While
R1’s paradigm was replicated [11, 19, 28, 27, 25], exploring more fine-grained reward in GRPO is
challenging. This work proposes token-level advantage estimation for GRPO and its variants.
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Figure 5: Training results after removing different components from KTAE.

Reinforcement Learning. RL is key for sequential decision-making, using policy gradient methods.
Early methods (e.g., REINFORCE [34], DPO [35]) had high variance. TRPO [20] and PPO [10]
improved stability with constrained/clipped updates, though PPO is costly. GRPO [9] removed
the Critic using group statistics. GRPO variants, like DAPO [11] and Dr.GRPO [25], built on this.
However, GRPO and variants use uniform rollout advantage, ignoring token importance in reasoning.
We propose Key-token Advantage Estimation, linking tokens to correctness statistically, for finer
granularity. More related work in Appendix I

6 Conclusion

This paper introduces KTAE, an algorithm uses statistical analysis to quantify each token’s association
to correct rollouts. By combining this with GRPO’s rollout-level advantage, KTAE computes
token-level advantages, thereby providing more fine-grained optimization signals and significantly
improving training effectiveness. It requires no new models, adds minimal computational overhead,
and avoids reward hacking. KTAE can effectively identify the importance of different tokens in the
rollout, making the model pay more attention to key tokens in the training process, showing excellent
test performance utilizing the minimum token budget. Theoretically, the core idea of the KTAE can
be applied to many other reasoning domains. Therefore, KTAE still holds significant potential.

7 Acknowledgements

We thank our colleagues Jianghao Chen, Chong Li, Tengxiao Xi, Tianyu Peng, Xingquan Zhang,
Boyu Guan, Jiawei Guo for their insightful and constructive feedback. We thank Qian Li and
Zhenggang Piao for their special assistance. In addition, we thank all reviewers for their valuable
comments and recognition of our work. This work is supported by National Key R&D Program of
China 2022ZD0160602 and the Strategic Priority Research Program of Chinese Academy of Sciences
under Grant XDA04080400.

References
[1] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec

Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[2] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[3] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[4] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025.

[5] Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

10



[6] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning. arXiv preprint arXiv:2502.03387, 2025.

[7] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[8] Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran
Malach. Echo chamber: Rl post-training amplifies behaviors learned in pretraining. arXiv
preprint arXiv:2504.07912, 2025.

[9] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[11] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025.

[12] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2023.

[13] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning, 2024.

[14] Wei Sun, Qianlong Du, Fuwei Cui, and Jiajun Zhang. An efficient and precise training data
construction framework for process-supervised reward model in mathematical reasoning, 2025.

[15] Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations,
2024.

[16] Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh
Agarwal. Generative verifiers: Reward modeling as next-token prediction, 2025.

[17] Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization,
2022.

[18] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft
q-learning, 2018.

[19] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

[20] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[21] Alan Agresti. A survey of exact inference for contingency tables. Statistical science, 7(1):131–
153, 1992.

[22] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike
Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

[23] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

11



[24] Quy-Anh Dang and Chris Ngo. Reinforcement learning for reasoning in small llms: What
works and what doesn’t. arXiv preprint arXiv:2503.16219, 2025.

[25] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

[26] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng
Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward
mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

[27] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,
Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv
preprint arXiv:2502.01456, 2025.

[28] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the
wild, 2025.

[29] Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl,
Lingjiao Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-
reasoning technical report. arXiv preprint arXiv:2504.21318, 2025.

[30] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao,
Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A
survey of reasoning large language models. arXiv preprint arXiv:2502.17419, 2025.

[31] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling, 2024.

[32] Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, and Mehran Kazemi. Smaller,
weaker, yet better: Training llm reasoners via compute-optimal sampling, 2024.

[33] Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu,
Lifu Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and
beyond. arXiv preprint arXiv:2503.10460, 2025.

[34] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36:53728–53741, 2023.

[36] Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong,
Li Zhou, Yann Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath.
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf),
2024.

[37] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[38] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

[39] Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan,
Lyumanshan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline
cognitive reasoning for superintelligent ai. Advances in Neural Information Processing Systems,
37:19209–19253, 2024.

12

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)


[40] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv: 2409.19256, 2024.

[41] Jianghao Chen, Pu Jian, Tengxiao Xi, Dongyi Yi, Qianlong Du, Chenglin Ding, Guibo Zhu,
Chengqing Zong, Jinqiao Wang, and Jiajun Zhang. Chinesewebtext: Large-scale high-quality
chinese web text extracted with effective evaluation model. arXiv preprint arXiv:2311.01149,
2023.

[42] Pu Jian, Donglei Yu, and Jiajun Zhang. Large language models know what is key visual
entity: An llm-assisted multimodal retrieval for vqa. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pages 10939–10956, 2024.

[43] Pu Jian, Junhong Wu, Wei Sun, Chen Wang, Shuo Ren, and Jiajun Zhang. Look again, think
slowly: Enhancing visual reflection in vision-language models, 2025.

[44] Pu Jian, Donglei Yu, Wen Yang, Shuo Ren, and Jiajun Zhang. Teaching vision-language models
to ask: Resolving ambiguity in visual questions. In Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3619–3638,
2025.

[45] Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting
Zhuang. Inftythink: Breaking the length limits of long-context reasoning in large language
models. arXiv preprint arXiv:2503.06692, 2025.

[46] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[47] Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang,
and Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning.

[48] Shuo Ren, Pu Jian, Zhenjiang Ren, Chunlin Leng, Can Xie, and Jiajun Zhang. Towards scientific
intelligence: A survey of llm-based scientific agents. arXiv preprint arXiv:2503.24047, 2025.

[49] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. Advances in
neural information processing systems, 30, 2017.

[50] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

[51] Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by
writing less. arXiv preprint arXiv:2502.18600, 2025.

[52] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on
efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[53] Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024.

[54] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

[55] Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
and Eugene Bagdasarian. Overthinking: Slowdown attacks on reasoning llms. arXiv preprint
arXiv:2502.02542, 2025.

[56] Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

13



[57] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

[58] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun
Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning
pruning. arXiv preprint arXiv:2501.12570, 2025.

[59] Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching,
Ruslan Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement
fine-tuning. arXiv preprint arXiv:2503.07572, 2025.

[60] Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025.

[61] Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less:
Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

[62] Jianghao Chen, Wei Sun, Qixiang Yin, Lingxing Kong, Zhixing Tan, and Jiajun Zhang. Ace-rl:
Adaptive constraint-enhanced reward for long-form generation reinforcement learning, 2025.

[63] Jianghao Chen, Zhenlin Wei, Zhenjiang Ren, Ziyong Li, and Jiajun Zhang. Lr 2 bench:
Evaluating long-chain reflective reasoning capabilities of large language models via constraint
satisfaction problems. arXiv preprint arXiv:2502.17848, 2025.

[64] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PmLR,
2016.

[65] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[66] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[67] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. Pmlr, 2018.

[68] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[69] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo.
Remax: A simple, effective, and efficient reinforcement learning method for aligning large
language models. arXiv preprint arXiv:2310.10505, 2023.

14



Appendix

A Limitations 16

B Broader Impacts 16

C Future Work 16

D Calculating factorials using logarithmic space 16

E Why quantify association direction? 17

F A schematic diagram of KTAE 18

G Implementation Detials 18

G.1 Dataset and Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

G.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

G.3 Implementation Details and Hyperparameters . . . . . . . . . . . . . . . . . . . . 19

H Case Study 19

I More Related Work 19

I.1 Large Reasoning Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 19

I.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

J Prompt 21

K Aha Moment 21

L Dataset License 21

15



A Limitations

Building upon GRPO, the KTAE algorithm introduces a more fine-grained token-level advantage,
which guides the model to focus more on key tokens, thereby demonstrating significant performance
improvement without introducing additional models. However, our experimental validation is
primarily focused on models with 1.5B and 7B parameters, and the performance of KTAE on larger-
scale models has not yet been fully verified. Furthermore, while theoretically KTAE is applicable
to any task beyond based on rule-based rewards, this paper only provides in-depth analysis and
experimental validation on mathematical reasoning tasks, and its potential for application in broader
domains requires further exploration.

B Broader Impacts

Mathematics represents a pinnacle of human wisdom and serves as the foundation of many scientific
disciplines. Our approach aims to empower large language models to tackle complex mathematical
reasoning problems, bringing their capabilities closer to human expert-level intelligence. By doing
so, we seek to advance the development of large language models across scientific fields and support
human efforts in driving scientific progress. A common limitation among current large reasoning
language models is that while their reasoning capabilities are enhanced, they tend to sacrifice some
general abilities like summarization, abstracting, and translation. Consequently, these models may
become specialized models primarily focused on the reasoning domain.

C Future Work

The experiments presented in this paper primarily focus on tasks based on binary discrete rewards,
such as in the fields of mathematics and code generation, where the reward is simply classified as
either correct or incorrect. Future work will explore how to extend the core idea of KTAE to scenarios
with multiclass discrete rewards, and even to those with continuous reward values.

Furthermore, although KTAE quantifies the importance of each token to provide fine-grained opti-
mization signals, the amount of information carried by a single token is often insufficient within a
complete reasoning path. This implies that, even for human experts, it is difficult to determine whether
the presence of a single token has a decisive impact on the final outcome (correct or incorrect), or
whether its absence would necessarily lead to failure. Future work will aim to address or optimize
this problem, for instance.

D Calculating factorials using logarithmic space

The Gamma function is defined by the following integral:

Γ(z) =

∫ ∞

0

tz−1e−t dt (Re(z) > 0).

When z is a positive integer, this integral reduces directly to the factorial expression.

Starting from the integral definition of the Gamma function:

Γ(z + 1) =

∫ ∞

0

tze−t dt.

Let u = tz , dv = e−tdt, then du = ztz−1dt, and v = −e−t. Applying integration by parts:

Γ(z + 1) =
[
−tze−t

]∞
0

+ z

∫ ∞

0

tz−1e−t dt.

As t → ∞, tze−t → 0; as t → 0, tze−t → 0 (since z > 0). Therefore, the boundary term vanishes,
and we obtain:

Γ(z + 1) = zΓ(z).

This recurrence relation is consistent with the factorial identity n! = n · (n− 1)!.
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Fisher’s exact test:

Fisher(oij) =

(
aoij

+boij
aoij

)(
coij+doij

coij

)
(

N
aoij

+coij

)
Of which:(

aoij + boij
aoij

)
=

(aoij + boij )!

aoij !boij !
= e(ln Γ(aoij

+boij+1) ln Γ(aoij
+1)−ln Γ(boij+1))

The above process converts factorial operations into addition and subtraction of the ln Γ function,
which can be efficiently computed in parallel using ‘torch.lgamma()’. This significantly improves
both computational efficiency and numerical precision.

E Why quantify association direction?
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Figure 6: Example of contingency table after changing position.

In the two contingency tables presented above in Figure 6, [a, b] and [c, d] have been interchanged. It
is evident that, for these two tokens p, the direction of association with ’obtaining a correct rollout’
becomes completely opposite as a result of this interchange. However, it is noteworthy that the
association metrics calculated by Equations 4, 6, and 7 remain identical. The proof process is as
follows. This indicates that methods such as Fisher’s exact test and Information Gain (IG) can
only quantify the strength of association between the token and ’obtaining a correct rollout’, but
fail to reveal its direction. Therefore, we propose the use of Equation 9 to accurately quantify the
directionality of this association.

Fisher(o11) =

(
a+b
a

)(
c+d
c

)(
N
a+c

) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!N !

Fisher(o12) =

(
b+a
b

)(
d+c
d

)(
N
b+d

) =
(b+ a)!(d+ c)!(b+ d)!(a+ c)!

b!a!d!c!N !

= Fisher(o11)

IG(o11) = −a+ c

N
log2

(
a+ c

N

)
− b+ d

N
log2

(
b+ d

N

)
−
(
a+ b

N

)[
− a

a+ b
log2

(
a

a+ b

)
− b

a+ b
log2

(
b

a+ b

)]
+

(
c+ d

N

)[
− c

c+ d
log2

(
c

c+ d

)
− d

c+ d
log2

(
d

c+ d

)]
= −a+ c

N
log2

(
a+ c

N

)
− b+ d

N
log2

(
b+ d

N

)
+

a

N
log2

a

a+ b
+

b

N
log2

b

a+ b
− c

N
log2

c

c+ d
− d

N
log2

d

c+ d

17



IG(o12) = −b+ d

N
log2

(
b+ d

N

)
− a+ c

N
log2

(
a+ c

N

)
−
(
b+ a

N

)[
− b

b+ a
log2

(
b

b+ a

)
− a

b+ a
log2

(
a

b+ a

)]
+

(
d+ c

N

)[
− d

d+ c
log2

(
d

d+ c

)
− c

d+ c
log2

(
c

d+ c

)]
= −b+ d

N
log2

(
b+ d

N

)
− a+ c

N
log2

(
a+ c

N

)
+

b

N
log2

b

b+ a
+

a

N
log2

a

b+ a
− d

N
log2

d

d+ c
− c

N
log2

c

d+ c
= IG(o11)

F A schematic diagram of KTAE
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Figure 7: An example of comparing KTAE with vanilla GRPO.

As shown in Figure 7, policy model sampled 4 rollouts, among which only o3’s final answer was
incorrect, while the remaining 3 rollouts all obtained correct results. Each square in the figure
represents a token. The left side of the figure displays the advantage value calculated by GRPO for
each token. It can be observed that not only are all correct rollouts assigned the same advantage value,
but within the same correct rollout, every token is also assigned exactly the same advantage value.
This reflects GRPO’s characteristic of performing evaluation at the rollout level. Building upon this,
when we superimpose the key-token value calculated by KTAE (as shown on the right side of the
figure), each token is quantified with a different importance score, thus significantly differentiating
the contribution levels of various tokens within the rollout. This provides finer-grained optimization
information compared to GRPO.

G Implementation Detials

G.1 Dataset and Benchmark

For the initial validation phase of our method, we first utilized the widely-used MATH dataset,
specifically the MATH12k[12] subset as the training set and its corresponding MATH500 as the test
set. We conducted experiments on the Qwen2.5-Math-1.5B Base model[23], which successfully
verified the effectiveness of our proposed KTAE method. Subsequently, to enable a more fair and
comprehensive comparison with existing baseline methods, and following our initial validation of the
method’s effectiveness, we decided to use a more challenging subset of the MATH dataset (specifically
problems from Levels 3-5) as the training set, while still using MATH500 as the test set. Under this
setup, we trained our model on the larger Qwen2.5-Math-7B Base model[23]. To comprehensively
evaluate the mathematical reasoning capabilities of the KTAE-7B model, we selected five prominent
and widely recognized benchmarks in the field of mathematical reasoning for testing: AIME24[36],
MATH-500[37, 12], AMC[36], Minerva[38] and OlympiadBench[39].
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G.2 Baselines

In the method validation phase, we aim to comprehensively evaluate the performance of our KTAE.
To this end, we first compare them against the foundational GRPO[9] and DAPO[11] algorithms to
quantify the performance gains introduced by our KTAE mechanism. Furthermore, to evaluate the
model trained with our KTAE against existing reinforcement learning training techniques, we also
selected the following representative approaches for comparison:1. Simple-RL-Zoo[28]: A baseline
method trained on the Qwen2.5-Math-7B base model using the math-level3-5 dataset, employing
the basic GRPO algorithm and a rule-based reward. 2. PRIME-Zero[27]: An online process reward
model (PRM) update method, characterized by its ability to enable online PRM updates using only
policy rollouts and outcome labels through implicit process rewards. 3. OpenReasonerZero[19]:
A zero-RL method based on the Qwen2.5-7B base model, which centrally applies the vanilla PPO
algorithm. 4. Oat-Zero [25]: Trained starting from the Qwen2.5Math-7B model and utilizing a rule-
based reward. It employs an improved Dr.GRPO algorithm, which removes the standard deviation
in GRPO advantage computation and token-level normalization in policy loss computation. These
comparison methods encompass applications of basic RL algorithms, methods based on process
rewards, and improved algorithms tailored for specific tasks (such as mathematical reasoning), aiming
to evaluate the effectiveness and advancement of our methods from multiple perspectives.

G.3 Implementation Details and Hyperparameters

Our KTAE-7B model was trained based on the Qwen2.5-Math-7B base model, employing a combined
approach of DAPO and KTAE. The training utilized the VerL[40] reinforcement learning framework
for optimization. During the training process, the model inherited the maximum context length of
4096 from the base model. The specific training hyperparameters were configured as follows: The
maximum generation length was set to 3072, and the maximum prompt length was set to 1024. The
sum of these two values aligns with the model’s maximum context length. The learning rate was fixed
at 1e-6. The training batch size was 1024 questions. The number of rollouts sampled per question
(G) was set to 16. The sampling temperature was 1.0. For the DAPO method, the clip low redio and
clip high redio hyperparameters were set to (0.2, 0.28) in 1.5B models and (0.2, 0.24) in 7B models ,
respectively. The overlong buffer length was set to 512, and the length penalty coefficient was 1.0.
The three hyperparameters h1, h2, and h3 for the KTAE method were all set to 1.0, 2.0, 1.0, k1 and
b in Eq 8 is set to 2.0, 0.5. To ensure reproducibility of the experimental results, all random seeds
used were set to 0. Furthermore, for method validation or preliminary experiments, we conducted
additional training on the Qwen2.5-Math-1.5B base model. The hyperparameters for this training
were largely consistent with the 7B model configuration. All our experiments were performed on 8
NVIDIA H100 80G GPUs.

H Case Study

Similar scenarios are observed in the other two examples in Figure 8. In these rollouts, the model also
generated portions containing the correct answer, but subsequently produced additional or incorrect
content, ultimately obscuring the correct result and leading to a zero reward. In such cases, the
KTAE algorithm accurately identifies segments within the rollout that contain the correct answer and
evaluates them as having a positive contribution, while assessing incorrect or distracting segments as
having a negative contribution.

I More Related Work

I.1 Large Reasoning Language Models

Recent breakthroughs [1, 2, 3, 4, 41] in Large Language Models (LLMs) and Vision-Language
Models [42, 43, 44] have ushered in a new era of test-time scaling [31, 32, 45, 46, 47, 48], enabling
models to simulate human-like, stepwise reasoning processes. OpenAI’s O1 [1] introduces a profound
paradigm shift, demonstrating that extending the length of each chain can significantly enhance model
reasoning performance. DeepSeek R1 [2] employed pure RL with rule-based reward, guiding LLMs
toward the spontaneous emergence of long Chain-of-Thought (CoT) and self-reflection behaviors.
This work established an RL training paradigm starting from a base model and open-sources both its
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Question: The perimeter of a particular square and the circumference of a particular circle are equal. 
What is the ratio of the area of the square to the area of the circle? 
Express your answer as a common fraction in terms of .

Answer: 

Figure 8: An example of visualization of KTAE calculation results.
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training algorithm (GRPO) and model weights. Following the success of RL training demonstrated
by R1, subsequent efforts [11, 19, 28, 27, 25, 49] have explored various RL training algorithms,
predominantly focusing on the smaller Qwen2.5 series models. At the same time, a lot of work has
been done to alleviate the overthinking [50, 51, 52, 53, 54, 55] problem of LRM and the problem
of too long generation length [56, 57, 58, 59, 60, 61, 62, 63]. While this line of work successfully
replicated the RL training paradigm in open-source models, the exploration of more fine-grained
reward signals in GRPO remains an open challenge. This work introduces a novel perspective on
token-level advantage estimation to enable the seamless integration of GRPO and its variants.

I.2 Reinforcement Learning

RL is key for sequential decision-making, using policy gradient methods (On-policy [20, 64, 49],
Off-policy [65, 66, 67, 68]). Early methods (e.g., REINFORCE [34], DPO [35], ReMax [69]) had
high variance. Subsequent work focused on stabilization, leading to TRPO [20] and PPO [10], which
use constrained updates and clipped objectives, respectively. PPO’s reliance on a separate Critic
model increases computational cost. GRPO [9] addressed this by removing the Critic and using
group-level statistics. GRPO variants, such as DAPO [11] (addressing scaling and entropy collapse)
and Dr. GRPO [25] (simplifying GRPO), have built upon this. However, GRPO and its variants
assign uniform rollout-level advantage, overlooking token-specific importance in reasoning. To
improve this granularity, we propose Key-token Advantage Estimation, utilizing statistical methods
to quantify the association between individual tokens and rollout correctness.

J Prompt

As shown in Figure 9, we use the same prompt template (Qwen-Math template) for both RL training
and validation.

  Prompt templates of RL training and Evalutaion

<|im start|>system\nPlease reason step by step, and put your final answer

within \\boxed{}.<|im end|>\n<|im start |>user\n{question}<|im end|>\n<|im

start|>assistant\n

Figure 9: Prompt template in RL training and validation.

K Aha Moment

As shown in Figure 10, the model’s output “we need to find the other solution.” and solve the
question successfully.It demonstrates a phenomenon similar to the ‘Aha moment’ mentioned in the
Deepseek-R1 paper. However, GRPO did not show the ‘aha moment’ phenomenon and answered the
question incorrectly. indicating that KTAE has developed a certain degree of self-reflection and error
correction capabilities.

L Dataset License

Our training data is based on the MATH dataset [37], and we evaluate our model on AIME24 [36],
MATH-500 [37, 12], AMC [36], Minerva [38], and OlympiadBench [39]. We strictly adhere to the
licenses associated with each dataset.
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Question: An equilateral triangle is inscribed in the parabola , such that one of the vertices of the triangle coincides with the vertex of the parabola.Find the side length of this equilateral triangle.

Answer: 

GRPO solution:

To solve the problem, we need to find the side length of an equilateral triangle inscribed in the parabola  
with one of its vertices at the vertex of the parabola, which is at .

Let's denote the other two vertices of the equilateral triangle as  and . 
Since these points lie on the parabola, we have:

The distance between  and  is the same as the distance between  and , 
and the distance between  and . 
Let's denote the side length of the equilateral triangle by . Then we have:

Since  and , we can express  and  in terms of  and :

Substituting these into the distance formula, we get:

Simplifying the first two terms, we get:

This simplifies to:

So we have:

This implies:

Since the triangle is equilateral, the distances between the points must be equal. 
Let's consider the distance between  and :

This simplifies to:

Since  and , we can substitute  and  to get:

This implies:

Since  and , we can let  and . 
Then we have:

 

This simplifies to:

Since the triangle is equilateral, we can assume . Then we have:

Since the side length  must be the same for all vertices, we can set . Then we have:

Therefore, the side length of the equilateral triangle is:

GRPO+KTAE solution:

To solve this problem, we need to find the side length of an equilateral triangle inscribed in the parabola  
with one of its vertices at the vertex of the parabola, which is at .

Let's denote the other two vertices of the equilateral triangle as  and . 
Since these points lie on the parabola, we have:

The distance between  and  is the same as the distance between  and , 
and the distance between  and . 
Let's denote the side length of the equilateral triangle by . Then we have:

First, let's express  and  in terms of  and :

Substituting these into the distance formula, we get:

Simplifying the first two terms:

So we have:

This simplifies to:

Thus:

Now let's consider the third term:

Substituting , we get:

Squaring both sides, we get:

Multiplying through by 64, we get:

Expanding the right-hand side, we get:

Simplifying, we get:

Canceling out  and  from both sides, we get:

Rearranging terms, we get:

Factoring out , we get:

This equation is satisfied if , but since the triangle is equilateral and the vertices are distinct, 
we need to find the other solution. 
By symmetry and the properties of the parabola, 
we can assume . Substituting  into the equation, we get:

Simplifying, we get:

So:

Rearranging terms, we get:

Factoring out , we get:

So:

Thus:

Substituting  into the equation for , we get:

So the side length of the equilateral triangle is:

Aha moment

Figure 10: An example of ‘Aha moment’.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the main contents of the paper in the abstract and introduction,
and introduce our proposed methods and contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We mentioned the current limitations of our method in Appendix A. For
example, due to limited computing resources, we have not tested it on models with a
parameter size greater than 7B; we have not verified it in fields other than mathematics.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a full set of assumptions and complete (and correct) proofs for
each theoretical result through a large number of comparative experiments and ablation
experiments.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Our paper presents our method and implementation details, disclosing enough
information to reproduce the main experimental results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload the full code in the supplemental material and will open source our
model weights later.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the implementation details and parameter settings of our experi-
ments in detail in Appendix G.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not perform error analysis, but our experiments all used a fixed random
seed and tested at temperature 0 to minimize the experimental error caused by randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We describe the computational resources used in the experiments in Appendix
G.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper complies in all respects with the NeurIPS
Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper discuss potential positive impacts in Appendix B
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not release the data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper (e.g., code, data,
models) are appropriately acknowledged, and the licenses and terms of use are clearly
mentioned and appropriately respected in Appendix L for details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code used in the article is well documented and uploaded with the code in
the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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