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Abstract

This work develops new algorithms with rigorous efficiency guarantees for infi-
nite horizon imitation learning (IL) with linear function approximation without
restrictive coherence assumptions. We begin with the minimax formulation of the
problem and then outline how to leverage classical tools from optimization, in
particular, the proximal-point method (PPM) and dual smoothing, for online and
offline IL, respectively. Thanks to PPM, we avoid nested policy evaluation and cost
updates for online IL appearing in the prior literature. In particular, we do away
with the conventional alternating updates by the optimization of a single convex
and smooth objective over both cost and Q-functions. When solved inexactly, we
relate the optimization errors to the suboptimality of the recovered policy. As an
added bonus, by re-interpreting PPM as dual smoothing with the expert policy as a
center point, we also obtain an offline IL algorithm enjoying theoretical guarantees
in terms of required expert trajectories. Finally, we achieve convincing empirical
performance for both linear and neural network function approximation.

1 Introduction

This work is concerned with the prototypical setting of imitation learning (IL) where

1. An expert provides demonstrations of state-action pairs in an environment. The expert could
be optimal or suboptimal with respect to an unknown cost/reward function.

2. The learner chooses distance measure between its policy to be learned and the expert
empirical distribution estimated from demonstrations.

3. The learner employs an algorithm, which additionally may or may not use interactions with
the environment, to minimize the chosen distance.

In IL, the central goal of the learner is to recover a policy competitive with expert with respect to the
underlying unknown cost function. IL is important for several real world applications like driving
[62], robotics [88], and economics/finance [27] at the expense of following resources: (R1) expert
demonstrations, (R2) (optional) interactions with the environment where the expert collected the
demonstrations, and (R3) computational resources for solving the problem template.

Interestingly, while there is a vast amount of literature using optimization ideas on the IL problem
template, i.e. Lagrangian duality [51, 38, 59, 63, 64], resource guarantees are still widely missing
since the optimization literature focuses on the resource (R3) where IL literature mainly focuses on
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the first two resources (R1) and (R2). Our work leverages deeper connections between optimization
tools and IL by showing how classical optimization tools can be applied in a linear programming
formulation of IL problem guaranteeing efficiency in all (R1), (R2), (R3).

Our contributions: This work aims at designing an algorithm enjoying both theoretical guarantees
and convincing empirical performance. Our methodology is rooted in classical optimization tools
and the LP approach to MDPs. More precisely, the method uses the recently repopularized overpa-
rameterization technique to obtain the Q-function as a Lagrangian multiplier [77, 14] and solves the
associated program using a PPM update with appropriately chosen Bregman divergences. This results
to an actor-critic algorithm, with the key feature that the policy evaluation step involves optimization
of a single concave and smooth objective over both cost and Q-functions. In this way, we avoid
instability or poor convergence due to adversarial training [51, 122, 70, 105], and can also recover an
explicit cost along with Q-function. We further account for potential optimization errors, presenting
an error propagation analysis that leads to rigorous guarantees for both online and offline setting. For
the context of linear MDPs [14, 121, 55, 22, 116, 7, 84], we provide explicit convergence rates and
error bounds for the suboptimality of the learned policy, under mild assumptions, significantly weaker
than those found in the literature until now. To our knowledge, such guarantees in this setting are
provided for the first time. Finally, we demonstrate that our approach achieves convincing empirical
performance for both linear and neural network function approximation.

Related Literature. The first algorithm addressing the imitation learning problem is behavioral
cloning [93]. Due to the covariate shift problem [98, 99], it has low efficiency in terms of expert
trajectories (R1). To address this issue, [100, 87, 4, 95, 111, 85, 123, 5, 68, 69] proposed to cast the
problem as inverse reinforcement learning (IRL). IRL improves the efficiency in terms of expert
trajectories, at the cost of introducing the need of running reinforcement learning (RL) repetitively,
which can be prohibitive in terms of environment samples (R2) and computation (R3). A successive
line of work started with [112] highlights that repeated calls to an RL routine can be avoided. This
work inspired generative adversarial imitation learning (GAIL) [51] and other follow-up works
[38, 59, 63, 64] that leveraged optimization tools like primal-dual algorithms but did not try to
deepen the optimization connections to derive efficiency guarantees in terms of all (R1),(R2),(R3).
Finally, a recent line of work [40, 57] in IL bypasses the need of optimizing over cost functions and
thus avoids instability due to adversarial training. Although these algorithms achieve impressive
empirical performance in challenging high dimensional benchmark tasks, they are hampered by
limited theoretical understanding. This is the fundamental difference from our work, which enjoys
both favorable practical performance and strong theoretical guarantees.

Existing model-free IL theoretical papers with global convergence guarantees assume either a
finite horizon episodic MDP setting [70], or tabular MDPs [105], or the infinite horizon case but
with restrictive assumptions, such as linear quadratic regulator setting [21], continuous kernelized
nonlinear regulator [26, 56], access to a generative model and coherence assumption on the choice
of features [58, 14], bounded strong concentrability coefficients [122] or a linear transition law that
can be completely specified by a finite-dimensional matrix [70]. On the other hand, we provide
convergence guarantees and error bounds for the context of linear MDPs [14, 121, 55, 22, 116, 7, 84]
under a mild feature excitation condition assumption. Despite being linear, the transition law can still
have infinite degrees of freedom. To our knowledge, such guarantees in this setting are provided for
the first time.

Our work applies the technique known as regularization in the online learning literature [6, 103]
and Bregman proximal-point or smoothing in optimization literature [97, 82] to the LP formulation
for MDPs [73, 35, 36, 17, 48, 49, 33, 34, 102, 91, 92, 1, 65, 30, 79, 115, 67, 13, 31, 55, 106]. From
this perspective, we can see Deep Inverse Q-Learning [57] and IQ-Learn [40] that consider entropy
regularization in the objective as smoothing using uniform distribution as center point. In our case,
we instead use as center point the previous iteration of the algorithm (for the online case) or the expert
(for the offline case).

From the technical point of view, the most important related works are the analysis of REPS/Q-
REPS [90, 14, 89] and O-REPS [124] that first pointed out the connection between REPS and
PPM. We build on their techniques with some important differences. In particular, while in the
LP formulation of RL, PPM and mirror descent [15, 47] are equivalent, recognizing that they are
not equivalent in IL is critical for stronger empirical performance. As an independent interest, our
techniques can be used to improve upon the best rate for REPS in the tabular setting [89] and to
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extend the guarantees to linear MDPs. In order to discuss in more detail our research questions
and situate them among prior related theoretical and practical works, we provide in Appendix A an
extended literature review.

2 Background

2.1 Markov Decision Processes

The RL environment and its underlying dynamics are typically abstracted as an MDP given by a tuple
(S,A, P,ν0, c, γ), where S is the state space, A is the action space, P : S×A → ∆S is the transition
law, ν0 ∈ ∆S is the initial state distribution, c ∈ [0, 1]|S||A| is the cost, and γ ∈ (0, 1) is the discount
factor. For simplicity, we focus on problems where S and A are finite but too large to be enumerated.
A stationary Markov policy π : S → ∆A interacts with the environment iteratively, starting with an
initial state s0 ∼ ν0. At round t, if the system is at state st, an action at ∼ π(·|st) is sampled and
applied to the environment. Then a cost c(s, a) is incurred, and the system transitions to the next
state st+1 ∼ P (·|s, a). The goal of RL is to solve the optimal control problem ρ⋆c ≜ minπ ρc(π),

where ρc(π) ≜ (1− γ) ⟨ν0,V
π
c ⟩ is the normalized total discounted expected cost of π.

The state value function Vπ
c ∈ R|S| of π, given cost c, is defined by V π

c (s) ≜

Eπ
s

[∑∞
t=0 γ

tc(st, at)
]
, where Eπ

s denotes the expectation with respect to the trajectories gen-

erated by π starting from s0 = s. The optimal value function V⋆
c ∈ R|S| is defined by

V ⋆
c (s) ≜ minπ V

π
c (s). The optimal state-action value function Q⋆

c ∈ R|S||A|, given by Q⋆
c(s, a) ≜

c(s, a) + γ
∑

s′ V
⋆
c (s

′)P (s′|s, a), is known to characterize optimal behaviors. Indeed V⋆
c is the

unique solution to the Bellman optimality equation V ⋆
c (s) = minaQ

⋆
c(s, a). In addition, any deter-

ministic policy π⋆
c(s) = argminaQ

⋆
c(s, a) is known to be optimal.

For every policy π, we define the normalized state-action occupancy measure µπ ∈ ∆S×A, by
µπ(s, a) ≜ (1− γ)

∑∞
t=0 γ

tPπ
ν0

[st = s, at = a] , where Pπ
ν0
[·] denotes the probability of an event

when following π starting from s0 ∼ ν0. The occupancy measure can be interpreted as the discounted
visitation frequency of state-action pairs. This allows us to write ρc(π) = ⟨µπ, c⟩.

2.2 Imitation Learning

Similarly to RL, the IL problem is posed in the MDP formalism, with the critical difference that
the true cost ctrue is unknown. Instead, we have access to a finite set of truncated trajectories sampled
i.i.d. by executing an expert policy πE in the environment. The goal is to learn a policy that performs
better than πE with respect to the unknown ctrue. To this end, we adopt the apprenticeship learning
formalism [4, 112, 50, 51, 105], which carries the assumption that ctrue belongs to a class of cost
functions C. We then seek an apprentice policy πA that outperforms the expert across C by solving
the following optimization problem

ζ⋆ ≜ min
π
dC(π, πE), (1)

where dC(π, πE) ≜ maxc∈C
(
ρc(π) − ρc(πE)

)
defines the C-distance between π and

πE [51, 28, 122, 70]. Then, πA satisfies the goal of IL, since it holds that ρctrue(πA) − ρctrue(πE) ≤
ζ⋆ ≤ 0. Intuitively, the cost class C distinguishes the expert from other policies. The maximization
in (1) assigns high total cost to non-expert policies and low total cost to πE [51], while the
minimization aims to find the policy that matches the expert as close as possible with respect to dC .

By writing dC in its dual form d̄C(µπ,µπE
) ≜ maxc∈C

(
⟨µπ, c⟩ −

〈
µπE

, c
〉 )

, it can be interpreted
as an integral probability metric [80, 60] between the occupancy measures µπ and µπE

. Depending
on how C is chosen, dC turns to a different metric of probability measures like the 1-Wasserstein
distance [117, 32] for C = Lip1(S×A), the total variation for C = {c | ∥c∥∞ ≤ 1}, or the maximum
mean discrepancy for C = {c | ∥c∥H ≤ 1}, where Lip1(S × A) denotes the space of 1-Lipschitz
functions on S ×A, and ∥·∥H denotes the norm of a reproducing kernel Hilbert space H [104].

In our theoretical analysis, we focus on linearly parameterized cost classes [111, 112, 51, 70, 105]
of the form C ≜ {cw ≜

∑m
i=1 wiϕi | w ∈ W}, where {ϕi}mi=1 ⊂ R|S||A|

+ are fixed feature vectors,
such that ∥ϕi∥1 ≤ 1 for all i ∈ [m], and W is a a convex constraint set for the cost weights w. This
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assumption is not necessarily restrictive as usually in practice the true cost depends on just a few key
properties, but the desirable weighting that specifies how different desiderata should be traded-off is
unknown [4]. Moreover, the cost features can be complex nonlinear functions that can be obtained via
unsupervised learning from raw state observations [20, 29]. The matrix Φ ≜ [ϕ1 . . . ϕm] gives
rise a feature expectation vector (FEV) ρΦ(π) ≜ (ρϕ1

(πE), . . . , ρϕm
(πE))

T ∈ Rm of a policy π.
Then, by choosing W to be the ℓ2 unit ballBm

1 ≜ {w ∈ Rm | ∥w∥2 ≤ 1} [4], we get a feature expec-
tation matching objective dC(π, ππE) = ∥ρΦ(π)− ρΦ(πE)∥2, while for W being the probability sim-
plex ∆[m] [111, 112] we have a worst-case excess cost objective dC(π, ππE) = maxi∈[m]

(
ρϕi

(π)−
ρϕi

(πE)
)
. For clarity, we will replace c by w in the notation of the quantities defined in Section 2.1.

3 A Q-Convex-Analytic Viewpoint

Our methodology builds upon the convex-analytic approach to AL, first introduced by [112], with the
key difference that we consider a different convex formulation that introduces Q-functions as slack
variables. This allows to design a practical scalable model-free algorithm with theoretical guarantees.

Let F ≜ {µ ∈ R|S||A| | (B− γP)⊺µ = (1− γ)ν0, µ ≥ 0} be the state-action polytope, where P

is the vector form of P , i.e., P(s,a),s′ ≜ P (s′|s, a), and B is a binary matrix defined by B(s,a),s′ ≜ 1

if s = s′, and B(s,a),s′ ≜ 0 otherwise. The linear constraints that define the set F, also known as
Bellman flow constraints, precisely characterize the set of state-action occupancy measures.
Proposition 1 (94). We have that µ ∈ F if and only if there exists a unique stationary Markov policy
π such that µ = µπ . If µ ∈ F then the policy πµ(a|x) ≜ µ(x,a)∑

a′∈A µ(x,a′) has occupancy measure µ.

Using Proposition 1 and the dual form of the C-distance d̄C(µ,µπE
) = maxw∈W

〈
µ− µπE

, cw
〉
,

it follows that (1) is equivalent to the primal convex program ζ⋆ = minµ{d̄C(µ,µπE
) | µ ∈ F}.

In particular for W = ∆[m] and by using an epigraphic transformation, we end up with an LP
program [112], while for W = Bm

1 we get a quadratic objective with linear constraints [4].

A slight variation of the above reasoning is to introduce a mirror variable d and split the Bellman
flow constraints in the definition of F. We then get the primal convex program

ζ⋆ = min
(µ,d)

{d̄C(µ,µπE
) | (µ,d) ∈ M}, (Primal)

where the new polytope is given by M ≜ {(µ,d) | B⊺d = γP⊺µ+ (1− γ)ν0, µ = d, d ≥ 0}.
This overparameterization trick has been first introduced by Mehta and Meyn [76] and has been
recently revisited by [14, 84, 67, 83, 77, 71]. A salient feature of this equivalent formulation is that it
introduces a Q-function as Lagrange multiplier to the equality constraint d = µ, and so lends itself
to data-driven algorithms. To motivate further this new formulation, in Appendix C, we shed light to
its dual and provide an interpretation of the dual optimizers. In particular, when W = Bm

1 , we show
that (V⋆

wtrue
,Q⋆

wtrue
,wtrue) is a dual optimizer.

For our theoretical analysis we focus on the linear MDP setting [55], i.e., we assume that the transition
law is linear in the feature mapping. We denote by ϕ(s, a) the (s, a)-th row of Φ.
Assumption 1 (Linear MDP). There exists a collection ofm probability measures ω = (ω1, . . . , ωm)
on S, such that P (·|s, a) = ⟨ω(·), ϕ(s, a)⟩, for all (s, a). Moreover ϕ(s, a) ∈ ∆[m], for all (s, a).

Assumption 1 essentialy says that the transition matrix P has rank at most m, and P = ΦM for
some matrix M ∈ Rm×|S|. It is worth noting that in the case of continuous MDPs, despite being
linear, the transition law P (·|s, a) can still have infinite degrees of freedom. This is a substantial
difference from the recent theoretical works on IL [70, 105] which consider either a linear quadratic
regulator, or a transition law that can be completely specified by a finite-dimensional matrix such
that the degrees of freedom are bounded.

Assumption 1 enables us to consider a relaxation of (Primal). In particular, we aggregate the
constraints µ = d by imposing Φ⊺µ = Φ⊺d instead, and introduce a variable λ = Φ⊺µ. It follows
that λ lies in the m-dimensional simplex ∆[m]. Then, we get the following convex program

ζ⋆ = min
(λ,d)

{max
w∈W

⟨λ,w⟩ −
〈
µπE

, cw
〉
| (λ,d) ∈ MΦ}, (Primal′)
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where MΦ ≜ {(λ,d) | B⊺d = γM⊺λ + (1 − γ)ν0, λ = Φ⊺d, λ ∈ ∆[m], d ∈ ∆S×A}.
As shown in [84, 14, 83], for linear MDPs, the set of occupancy measures F can be completely
characterized by the set MΦ (c.f., Proposition 2). While the number of constraints and variables
in (Primal′) is intractable for large scale MDPs, in the next paragraph, we show how this problem
can be solved using a proximal point scheme.

4 Proximal Point Imitation Learning

By using a Lagrangian decomposition, we have that (Primal′) is equivalent to the following bilinear
saddle-point problem

min
x∈X

max
y∈Y

⟨y,Ax+ b⟩ , (SPP)

where A ∈ R(2m+|S|)×(m+|S||A|), and b ∈ R(m+|S|+|S||A|) are appropriately defined (see Ap-
pendix D), x ≜ [λ⊺, d⊺]⊺, y ≜ [w⊺, V⊺,θ⊺]⊺, X ≜ ∆[m] ×∆S×A, and Y ≜ W ×R|S| ×Rm.

Since in practice we do not have access to the whole policy πE, but instead can observe a finite
set of i.i.d. sample trajectories DE ≜ {(x(l)0 , a

(l)
0 , x

(l)
1 , a

(l)
1 , . . . , x

(l)
H , a

(l)
H )}nE

l=1 ∼ πE, we define the
vector b̂ by replacing ρΦ(πE) with its empirical counterpart ρΦ(π̂E) (by taking sample averages) in
the definition of b. We then consider the empirical objective f(x) ≜ maxy∈Y

〈
y,Ax+ b̂

〉
and

apply PPM on the decision variable x. For the λ-variable we use the relative entropy D(λ||λ′) ≜∑m
i=1 λ(i) log

λ(i)
λ′(i) , while for the occupancy measure d we use the conditional relative entropy

H(d||d′) ≜
∑

s,a d(s, a) log
πd(a|s)
πd′ (a|s) . With this choice we can rewrite the PPM update as

(λk+1,dk+1) = argmin
λ∈∆[m],d∈∆S×A

max
y∈Y

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

η
D(λ||Φ⊺dk) +

1

α
H(d||dk), (2)

where we used primal feasibility to replace λk with Φ⊺dk as the center point of the relative entropy.
PPM is implicit, meaning that it requires the evaluation of the gradient at the next iterate xk+1. Such
a requirement makes it not implementable in general. However, in the following, we describe a proce-
dure to apply proximal point to our specific f(x). The following Proposition summarizes the result.
Proposition 2. For a parameter θ ∈ Rm, we define the logistic state-action value function Qθ ∈
R|S||A| by Qθ ≜ Φθ, and the k-step logistic state value function Vk

θ ∈ R|S| by

V k
θ (s) ≜ − 1

α
log

(∑
a

πdk−1
(a|s)e−αQθ(s,a)

)
.

Moreover, we define the k-step reduced Bellman error function δkw,θ ∈ Rm by δkw,θ ≜ w+γMVk
θ−

θ. Then, the PPM update (λ⋆
k,d

⋆
k) in 2 is given by

λ⋆k(i) ∝ (Φ⊺dk−1)(i) e
−ηδkw⋆

k
,θ⋆

k
(i)
, (3)

πd⋆
k
(a|s) ∝ πdk−1

(a|s) e−αQθ⋆
k
(s,a)

, (4)

where (w⋆
k,θ

⋆
k) is the maximizer over W ×Rm of the k-step logistic policy evaluation objective

Gk(w,θ) ≜ −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)e
−ηδkw,θ(i) + (1− γ)

〈
ν0,V

k
θ

〉
− ⟨ρΦ(π̂E),w⟩ . (5)

Moreover, it holds that Gk(w
⋆
k,θ

⋆
k) = ⟨λ⋆

k,w
⋆
k⟩ − ⟨ρΦ(π̂E),w

⋆
k⟩ + 1

ηD(λ⋆
k||Φ

⊺λk−1) +
1
αH(d⋆

k||dk−1). If in addition Assumption 1 holds, then d⋆
k is a valid occupancy measure, i.e.,

d⋆
k ∈ F and so d⋆

k = µπd⋆
k

.

The proof of Proposition 2 is broken down into a sequence of lemmas and is presented in Appendix E.
It employs an analytical-oracle g : Y → X given by

g(y;xk) ≜ argmin
λ∈∆[m],d∈∆S×A

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

η
D(λ||Φ⊺dk) +

1

α
H(d||dk),
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and a max-oracle h : X → Y given by h(x) ≜ argmaxy∈Y ⟨y,Ag(y;x)⟩+ 1
τDΩ(g(y;x)||x),

where we usedDΩ to compact the two divergences. By noting that the PPM update Equation (2) can be
rewritten as xk+1 = g(h(xk);xk), its analytical computation is reduced to the characterization of the
two aforementioned oracles. In particular, the updates (3)–(4) come from the analytical-oracle
while (5) is the objective of the max-oracle.

The choice of conditional entropy as Bregman divergence for the λ variable living in the probability
simplex is standard in the optimization literature and is known to mitigate the effect of dimension. In
particular, as noted in [85], the classic REPS algorithm [90] can be seen as mirror descent with relative
entropy regularization. On the other hand, the choice of conditional entropy as Bregman divergence
for the d variable is less standard and has been popularized by Q-REPS [14]. Such particular
divergence leads to an actor-critic algorithm that comes with several merits. By Proposition 2, it is
apparent that we get analytical softmin updates for the policy πd rather than the occupancy measure d.
Moreover, these softmin updates are expressed in terms of the logistic Q-function and do not involve
the unknown transition matrix P. Consequently, we avoid the problematic occupancy measure
approximation and the restrictive coherence assumption on the choice of features needed in [13, 58],
as well as the biased policy updates appearing in REPS [90, 89]. In addition, the newly introduced
logistic policy evaluation objective Gk(w,θ) has several desired properties. It is concave and smooth
in (w,θ) and has bounded gradients. Therefore, it does not suffer from the pathologies of the squared
Bellman error [78] and does not require heuristic gradient clipping techniques. Moreover, unlike [58]
it allows a model-free implementation without the need for a generative model (see Section 4.1)

We stress the fact that the max-oracle of our proximal point scheme performs the cost update and
policy evaluation phases jointly. This is a rather novel feature of our algorithm that differs from
the separate cost update and policy evaluation step used in recent theoretical imitation learning
works [122, 105, 70]. Our joint optimization over cost and Q-functions avoids instability due to
adversarial training and can also recover an explicit cost along with the Q-function without requiring
knowledge or additional interaction with the environment (see Section 5). It is worth noting that
application of primal-dual mirror descent to (SPP) does not have this favorable property. While in
the standard MDP setting, proximal point and mirror descent coincide because of the linear objective,
in imitation learning proximal point optimization makes a difference. In Appendix K, we include
a more detailed discussion and numerical comparison between PPM and mirror descent updates.

4.1 Practical Implementation

Exact optimization of the logistic policy evaluation objective is infeasible in practical scenarios, due
to unknown dynamics and limited computation power. In this section, we design a practical algorithm
that uses only sample transitions by obtaining stochastic (albeit biased) gradient estimators.

Proposition 2 gives rise to Proximal Point Imitation Learning (P2IL), a model-free actor-critic IRL
algorithm described in Algorithm 1. The key feature of P2IL is that the policy evaluation step
involves optimization of a single smooth and concave objective over both cost and state-action value
function parameters. In this way, we avoid instability or poor convergence in optimization due to
nested policy evaluation and cost updates, as well as the undesirable properties of the widely used
squared Bellman error. In particular, the kth iteration of P2IL consists of the following two steps : (i)
(Critic Step) Computation of an approximate maximizer (wk,θk) ≈ argmaxw,θ Gk(w,θ) of the
concave logistic policy evaluation objective, by using a biased stochastic gradient ascent subroutine;
(ii) (Actor Step) Soft-min policy update πk(a|s) ∝ πk−1(a|s) e−αQθk

(s,a) expressed in terms of the
logistic Q-function.

The domain Θ in Algorithm 1 is the ℓ∞-ball with appropriately chosen radius D to be specified
later (see Proposition 3). Moreover, ΠΘ(x) ≜ argminy∈Θ ∥x− y∥2 (resp. ΠW(w)) denotes the
Euclidean projection of x (resp. w) onto Θ (resp. W).

In order to estimate the gradients ∇θ Gk(w,θ) and ∇w Gk(w,θ) we invoke the Biased Stochastic
Gradient Estimator subroutine (BSGE) (Algorithm 2) given in Appendix H. By using the linear
MDP Assumption 1 and leveraging ridge regression and plug-in estimators, the proposed stochastic
gradients can be computed via simple linear algebra with computational complexity poly(m,n(t)),
independent of the size of the state space.
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Algorithm 1 Proximal Point Imitation Learning: P2IL(Φ,DE,K, η, α)

Input: Feature matrix Φ, expert demonstrations DE, number of iterations K, step sizes η and
α, number of SGD iterations T, SGD learning rates β = {βt}T−1

t=0 , number-of-samples function
n : N→ N
Initialize π0 as uniform distribution over A
Compute the empirical FEV ρΦ(π̂E) using expert demonstrations DE
for k = 1, . . .K do
// Critic-step (policy evaluation)
Initialize θk,0 = 0 and wk,0 = 0

Run πk−1 and collect i.i.d. samples Bk = {(s(n)k−1, a
(n)
k−1, s

′(n)
k−1)}

n(T )
n=1 such that

(s
(n)
k−1, a

(n)
k−1) ∼ µπk−1

and s′(n)k−1 ∼ P(·|s(n)k−1, a
(n)
k−1)

for t = 0, . . . T − 1 do
Compute biased stochastic gradient estimators(

∇̂wGk(wk,t,θk,t), ∇̂θGk(wk,t,θk,t)
)
= BSGE

(
k,wk,t,θk,t, n(t)

)
wk,t+1 = ΠW

(
wk,t + βt∇̂wGk(wk,t,θk,t)

)
θk,t+1 = ΠΘ

(
θk,t + βt∇̂θGk(wk,t,θk,t)

)
end for
(wk,θk) = ( 1

T

∑T
t=1 wk,t,

1
T

∑T
t=1 θk,t)

// Actor-step (policy update)
Policy update: πk(a|s) ∝ πk−1(a|s) e−αQθk

(s,a)

end for
Output: Policy πk̂ with k̂ ∼ Unif({1, . . . ,K}).

4.2 Theoretical Analysis

The first step in our theoretical analysis is to study the propagation of optimization errors made
by the algorithm on the true policy evaluation objective. In particular at each iteration step k, the
ideal policy evaluation update (w⋆

k,θ
⋆
k) and the ideal policy update π⋆

k are given by (w⋆
k,θ

⋆
k) =

argmaxw,θ Gk(w,θ), and π⋆
k(a|s) = πk−1(a|s)e

−α(Qθ⋆
k
(s,a)−V k

θ⋆
k
(s))

. On the other hand, consider
the realised policy evaluation update (wk,θk) such that Gk(w

⋆
k,θ

⋆
k)− Gk(wk,θk) = ϵk, the corre-

sponding policy πk given by πk = πk−1(a|s)e−α(Qθk
(s,a)−V k

θk
(s)), and let dk ≜ µπk

. We denote by
π̂K the extracted mixed policy of {πk}Kk=1. We are interested in upper-bounding the suboptimality
gap dC(π̂K , πE) of Algorithm 1 as a function of εk. To this end, we need the following assumption.

Assumption 2. It holds that λmin(E(s,a)∼dk
ϕ(s, a)ϕ(s, a)T) ≥ β, for all k ∈ [K].

Assumption 2 states that every occupancy measure dk induces a positive definite feature covariance
matrix, and so every policy πk explores uniformly well in the feature space. This assumption is
common in the RL theory literature [2, 46, 37, 66, 3, 7]. It is also related to the condition of persistent
excitation from the control literature [81].

The following proposition ensures that maxw,θ∈W×Rm Gk(w,θ) = maxw,θ∈W×Θ Gk(w,θ). There-
fore, this constraint does not change the problem optimality, but will considerably accelerate the
convergence of the algorithm by considering smaller domains.

Proposition 3. There exists a maximizer θ⋆
k such that ∥θ⋆

k∥∞ ≤ 1+|log β|
1−γ ≜ D.

We can now state our error propagation theorem.

Theorem 1. Let πk̂ be the output of running Algorithm 1 for K iterations, with nE ≥ 2 log( 2m
δ )

ε2

expert trajectories of length H ≥ 1
1−γ log( 1ε ). Let C ≜ 1

βη

(√
2α
1−γ +

√
8η
)
+
√

18α
1−γ . Then, with

probability at least 1−δ, it holds that Ek̂dC(πk̂, πE) ≤ 1
K

(
log d
η + log|A|

α +C
∑

k

√
ϵk+

∑
k ϵk

)
+ε.

By Theorem 1, whenever the policy evaluation errors εk, as well as the estimation error ε can be
kept small, Algorithm 1 ouputs a policy π̂K with small suboptimality gap ρctrue(π̂K) − ρctrue(πE).
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Notably, there is no direct dependence on the size of the state space or the dimension of the feature
space. In the ideal case, where εk = 0 for all k, the convergence rate is O(1/K). The provided error
propagation analysis still holds with general function approximation, i.e., in the context of deep RL.
Indeed, by choosing Φ = I, Assumption 1 is trivially satisfied and the θ variable in the objective
Gk is replaced by a Q-function. In practice, the estimation error ε can be made arbitrary small, by
increasing the number of expert demonstrations nE.

To keep the evaluation errors εk under control we show in Appendix H that with Assumptions 1
and 2 we can construct ∇̂θGk(wk,t,θk,t) and ∇̂wGk(wk,t,θk,t) that have bounded variance using
only samples obtained via trajectories sampled acting with the policy πk and not using a generative
model. However, these estimators are not unbiased but we can prove that the bias decreases as
n(t)−1/2 where n(t) is the number of samples used to estimate the gradients at the tth iteration of
the stochastic gradient ascent routine. Leveraging these estimators, the next theorem ensures that
under Assumptions 1 and 2 the biased stochastic gradient ascent (BSGA) subroutine has sublinear
convergence rate.
Theorem 2. Let (wk,θk) be the output of the BSGA subroutine in Algorithm 1 for T iterations, with

n(t) ≥ max
(
O
(

γ2mDt
(η+α)2β log Tm

δ

)
,O
(

mt
(η+α)2β log Tm

δ

))
sample transitions, and learning rates

βt = O( 1√
t
). Then, ϵk = Gk(w

⋆
k,θ

⋆
k)− Gk(wk,θk) ≤ O(max{η,1}mD

β
√
T

), with probability 1− δ.

Corollary 1 (Resource guarantees). Choose η = α = 1 and let K = Ω
(
ϵ−1
)
, T = Ω

(
ϵ−4
)
. Then

for Ω (KT ) = Ω
(
ϵ−5
)

sample transitions, Ω
(
ε−2
)

expert trajectories and approximately solving
Ω
(
ϵ−1
)

concave maximization problems, we can ensure dC(π̂, πE) ≤ O(ϵ+ε), with high probability.

Offline Setting. Finally, we notice that using Φ⊺µπE
as the reference distribution for the relative

entropy we can obtain an offline algorithm that does not require environment interactions. By
reinterpreting smoothing [82] as one step of proximal point, and using similar arguments as in the
proof of Theorem 1, we can provide similar theoretical guarantees for the offline setting. The formal
statement of the theoretical result as well as the optimization of the empirical policy evaluation
objective are presented in Appendix J (see Theorems 4 and 6).

5 Experiments

In this section, we demonstrate that our approach achieves convincing empirical performance in both
online and offline IL settings on several environments.

Online Setting. We first present results in various tabular environments where we can implement
our algorithm without any practical relaxation outperforming GAIL [51], AIRL [38] and IQ-Learn
[40]. Results are given in Figure 1. Good performance but inferior to IQ-Learn is observed also
for continuous states environments (CartPole and Acrobot) where we used neural networks function
approximation.

Offline Setting. Figures 2a to 2c shows that our method is competitive with the state-of-the-art
offline IL methods IQLearn [40] and AVRIL [25] that recently showed performances superior to
other methods like [54][64]. We also tried our algorithm in the complex image-based Pong task from
the Atari suite. Figure 2d shows that the algorithm reaches the expert level after observing 2e5 expert
samples. We did not find AVRIL competitive in this setting, and skip it for brevity. In these settings,
we verified that the algorithmic performance is convincing even for costs parameterized by neural
networks.

Continuous control experiments. We attain the expert performance also in 2 MuJoCo environments:
Ant, HalfCheetah, Hopper, and Walker (see Figures 2e to 2h). The additional difficulty in
implementing the algorithm in continuous control experiments is that the analytical form of the policy
improvement step is no longer computationally tractable because this would require to compute an
integral over the continuous action space. Therefore, we approximated this update using the Soft
Actor Critic (SAC) [44] algorithm. SAC requires environment samples making the algorithm online.
The good empirical result opens the question of analyzing policy improvement errors as in [41].

Recovered Costs. A unique algorithmic feature of the proposed methodology is that we can explicitly
recover a cost along with theQ-function without requiring adversarial training. In Figures 5 and 7, we
visualize our recovered costs in several simple tabular environments. Most importantly, we verify that
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Figure 1: Extended Online IL Experiments. We show the total returns vs the number of env steps.
We report the results of some environments omitted in the main text.
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Figure 2: Neural function approximation experiments. Figures 2a to 2c show the total returns vs
the number of expert trajectories. Figures 2e to 2h show the total returns vs the number of env steps.
Figure 2d shows the total return vs the number of expert state-action pairs.

the recovered costs induce nearly optimal policies w.r.t. the unknown true cost function. Compared
to IQ-Learn, we do not require knowledge of the transition dynamics or further interaction with the
environment. Regarding the transfer capability to new dynamics, we experimented on Gridworld
(Figure 6) and noticed that the recovered cost induces an optimal policy for the new dynamics while
the imitating policy fails. We elaborate details in Appendix M.

6 Discussion and Outlook

In this work, we studied a Proximal Point Imitation Learning (P2IL) algorithm with both theoretical
guarantees and convincing empirical performance. Our methodology is rooted in classical optimiza-
tion tools and the LP approach to MDPs. The most significant merits of P2IL are the following: (i) It
optimizes a convex and smooth logistic Bellman evaluation objective over both cost and Q-functions.
In particular, it avoids instability due to adversarial training and can also recover an explicit cost along
with Q function; (ii) In the context of linear MDPs, it comes with efficient resource guarantees and
error bounds for the suboptimality of the learned policy (Theorem 2 and Corollary 1). (iii) Beyond the
linear MDP setting, it can be implemented in a model-free manner, for both online and offline setups,
with general function approximation without losing its theoretical specifications. This is justified by
providing an error propagation analysis (Theorems 1 and 4), guaranteeing that small optimization
errors lead to high-quality output policy. At the same time, our newly introduced methods bring
challenges and open questions. One interesting question is whether one can accelerate the PPM
updates and improve the convergence rate. Another direction for future work is to provide rigorous
arguments for the near-optimality of the recovered cost function. We hope our new techniques will
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be useful to future algorithm designers and lay the foundations for overcoming current limitations
and challenges. In Appendix B, we point out in detail a few interesting future directions.
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A Related Literature (Extended)

In order to state our research questions and situate them among prior related theoretical and practical
works, we provide an extended literature review.

Theoretical Imitation Learning. Our work is related to recent actor-critic IL schemes with theoretical
guarantees for different MDP models, and different policy evaluation objectives (e.g., minimizing
the squared Bellman error) [21, 122, 26, 70, 105]. Contrary to these actor-critic schemes, in our
proximal-point imitation learning algorithm, the policy evaluation step involves optimization of a
single objective over both cost and Q-functions. In this way, we avoid instability or poor convergence
due to nested policy evaluation and cost update steps [40] as well as the undesirable properties of the
widely used squared Bellman error [78]. Moreover, for the context of linear MDPs [14, 121, 55, 22,
115, 7, 84], we provide guarantees and convergence rates for the suboptimality of the learned policy,
under mild assumptions, significantly weaker than those found in the literature until now. To our
knowledge, such guarantees in this setting are provided for the first time. It is worth noting that in the
case of continuous MDPs, despite being linear, the transition law can still have infinite degrees of
freedom. This is a substantial difference from the recent theoretical works on IL [21, 122, 26, 70, 105]
which consider either tabular MDPs [105], or a linear quadratic regulator [21], or a linear transition
law that can be completely specified by a finite-dimensional matrix [70]. In the last case, the degrees
of freedom are bounded, and thus mitigate the challenges in estimating the transition model. Indeed,
the linear MDP setting studied in [70] reduces the unknown dynamics problem to estimating an
unknown finite-dimensional matrix, which differs from our nonparametric approach. We also note
that [122, 118] require the restrictive assumption of bounded concentrability coefficients, while this
is not the case for the analysis in this paper. The convergence and generalization of actor-critic IL
schemes for general MDPs has been studied in [28]. However, the authors in [28] only provide
local optimality convergence guarantees, i.e., convergence to a stationary point. On the contrary, our
algorithm provides global convergence guarantees for the linear MDP setting. Moreover, we account
for potential policy evaluation errors , presenting an error propagation analysis that leads to rigorous
guarantees for both online and offline setting, beyond the linear MDP assumption. Indeed, it is worth
noting that the provided error propagation analysis justifies using our derived actor-critic scheme
with general function approximation. A scalable deep reinforcement learning implementation is
possible, without losing the theoretical guarantees of Theorem 1. The work [26] studies offline IL for
the continuous kernelized nonlinear regulator and Gaussian process setting [56]. We notice that this
setting is different from the linear MDP model studied in this paper, and each one does not imply
the other. Finally, a recent theoretical IL work that is rooted in the LP approach to MDPs is [58].
The authors consider a Lagrangian reformulation of the problem and design a stochastic primal-dual
algorithm with explicit performance bounds on the quality of the extracted policy. The most important
limitations of the primal-dual algorithm [58] are (i) the need of a generative oracle, (ii) restricted
coherence assumptions on the choice of features, as well as (iii) the problematic occupancy measure
approximation. These limitations lead to poor practical performance for challenging high-dimensional
and model-free IL setups. On the other hand, our algorithm overcomes these difficulties by applying
a proximal point update to an alternative Q-LP formulation [77, 83]. This results to a model-free
actor-critic scheme with explicit tractable softmax policy updates. Compared with the setting in [58],
where access to a generative-model oracle is assumed, we only have the ability to execute learned
policies in the underlying MDP to generate trajectories. This assumption is considerably weaker that
having a simulator-based MDP, however it is stronger than having ”irreversible experience”, where
the learner must follow a single trajectory without having access to a reset action, that obtains a new
trajectory from the initial state distribution. Most importantly our algorithm enjoys not only strong
theoretical guarantees, but also favorable practical performance.

Approximate Linear Programming. There is an emerging body of literature [33, 1, 30, 109, 65, 79,
115, 67, 10, 16, 74, 31, 55, 106, 14] that studies ALP for the forward RL. While this approach dates
back to 1960s [73], it has recently witnessed an interesting renaissance for its potential to provide a
solid formal framework for newly derived methods, as well as a deeper understanding of existing
empirically successful algorithms. In this paper, we present scalable imitation learning algorithms
with theoretical guarantees rooted in the LP approach, highlighting how historical key limitations have
been eliminated. Prior approximate linear programming (ALP) approaches developed algorithms
for solving large-scale and/or continuous MDPs on a low-dimensional subspace by reducing the
number of constraints (e.g., by constraint sampling) [33, 34]. However, these prior works either
scale badly with the size of the state-action spaces or require access to samples from a distribution
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that depends on the optimal policy. Moreover, they focus mainly on the approximation of the
optimal value but not so much on extracting a near optimal policy. On the other hand, a recent line
of works [30, 67, 115, 55, 106] solve the problem for large-scale MDPs by employing stochastic
primal-dual methods, in light of Lagrangian duality. Although this approach achieves state-of-the-art
sample complexity guarantees, it shows poor performance in practice. First, current primal-dual
algorithms need access to a simulator, mitigating implicitly the problem of exploration, Second,
when dealing with linear relaxations of MDPs [14, 58] one needs to impose a restrictive coherence
assumptions to ensure that small duality gap for the linearly relaxed LP implies small suboptimality
gap for the extracted policy. Finally, while their is enough intuition behind the use of linear function
approximation for value functions, this is not the case for occupancy measure approximation. A
new breed of algorithms that seem to overcome these difficulties is based on an alternative Q-LP
formulation of RL. This approach has been first introduced by Mehta and Meyn [76] and has been
recently revisited by [14, 84, 67, 83, 77, 71]. A salient feature of this equivalent formulation is that it
introduces a Q-function as slack variables, and so lends itself to data-driven algorithms. Our work is
inspired by these line of works. The most related works are the analysis of REPS/Q-REPS [90, 14, 89]
and O-REPS [124] that first pointed out the connection between REPS and PPM. We build on their
techniques with some important differences. In particular, while in the LP formulation of RL, PPM
and mirror descent [15, 47] are equivalent, recognizing that they are not equivalent in IL is critical
for stronger empirical performance. Moreover, our techniques can be used to improve upon the best
rate for REPS in the tabular setting [89] and to extend their guarantees to Linear MDPs.

State-of-the-art Imitation Learning. Generative adversarial imitation learning (GAIL) [51] and
other follow-up works [38, 59, 63, 64] formulate the IL as a minimax adversarial problem similar to a
GAN [43] and leverage primal-dual optimization tools. In particular, GAIL solves IL with alternating
updates of both policy and cost functions. On the other hand, a recent line of work [40, 11, 96]
bypasses the need of optimizing over cost functions and thus avoids instability due to adversarial
training. Although these algorithms achieve impressive empirical performance in challenging high
dimensional benchmark tasks, they are hampered by limited theoretical understanding. This is the
fundamental difference from our work, which enjoys both favorable practical performance and strong
theoretical guarantees. Moreover, a unique algorithmic feature of our proposed methodology is a
convex and smooth logistic policy evaluation objective that optimizes jointly cost and Q-functions.
As a result, our algorithm has the additional practical benefit that can also recover an explicit cost
along with the Q-function without requiring knowledge or further interaction with the environment
(as in [40, 11, 96]). Therefore, the recovered cost functions show promising transfer capability to new
dynamics. In addition, unlike IQ-Learn [40], in our online IL algorithm, instead of regularizing the IL
objective, the key idea is to penalize the divergence between the current policy and the policy obtained
at the previous iteration. We do so by employing a Bregman proximal point update. Most importantly,
as we have already highlighted, the convergence properties of [40, 11, 96]) remain largely elusive in
the function approximation and model-free regime. It is unclear whether the sampling-based variants
of their algorithms converge to a global optimum or if they converge at all, even for the simple tabular
setting.

B Future directions

In this work, we studied a proximal point imitation learning algorithm with both theoretical guarantees
and convincing empirical performance in challenging benchmark tasks. Our methodology is rooted
in classical stochastic optimization tools and in the LP approach to MDPs. We hope that our new
techniques will be useful for future algorithm designers and lay foundations for overcoming current
limitations and challenges. We point out a few interesting directions.

Accelerated proximal point. An appealing possibility is to study an accelerated proximal point
scheme with inexact updates and achieve faster convergence rates. While there has been an effort
in this direction [119, 120], the acceleration relies on the triangle/quadrangle scaling property
assumption [45] that does not hold for KL divergence over the simplex. Understanding if it is
possible to accelerate PPM without such an assumption is an open question, whose solution has direct
application to the LP formulation of RL and imitation learning.

Primal-dual methods with conditional relative entropy. Recent primal-dual RL algorithms
rooted in the LP approach to MDPs achieve state-of-the-art sample complexity guarantees. See,
for example, [13] for exact gradients, [23, 55] for stochastic gradients, and [58] for the imitation
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learning problem. The most important disadvantages of primal-dual RL algorithms are (i) the need
of a generative oracle, (ii) restricted coherence assumptions on the choice of features, as well as
(iii) the problematic occupancy measure approximation. Unfortunately, these limitations lead to
poor practical performance for challenging high-dimensional and model-free RL and IL setups.
On the other hand, our algorithm overcomes these difficulties but requires to approximately solve
a small-dimensional convex program repetitively. It is also challenging to account for the biased
gradient estimates beyond the linear MDP setting. It is promising to investigate if by combining
the alternative Q-LP formulation and the conditional relative entropy as Bregman divergence in a
primal-dual mirror descent scheme, one can avoid the current practical limitations of primal-dual RL
methods. It is also interesting that in this case, the action-value parameters will be updated by taking
one gradient step each time, instead of solving a small-dimensional convex program.

Inexact policy improvement update. The error propagation presented in this work accommodates
for errors only in the policy evaluation phase, while it assumes that the policy improvement step
can be implemented exactly. This happens in other related works like [14, 114]. In contrast, the
error propagation analysis in [41] takes into account an error in the policy improvement step but
unfortunately it does not provide a way to ensure that such an error is small. Future research effort
will aim to include in our error propagation analysis a term given by inexact policy improvement
steps, ensure that such errors are small and characterizing the deterioration in the sample complexity
under policy improvement errors. This kind of analysis would be important for continuous actions
environment where the softmax policy update can not be computed in closed-form.

C Dual Program Interpretation

To motivate further the Primal formulation, we shed light to its dual and provide an interpretation
of the dual optimizers. For brevity, we focus on the case W = Bm

1 . The proof can be found in
Appendix C.1 and is based on strong duality between the two convex programs.
Proposition 4. The dual convex program is given by

ζ⋆ = max
(w,V,Q)

{
(1− γ) ⟨ν0,V⟩ −

〈
µπE

, cw
〉
| Q ≥ BV, Q = cw + γPV,

V ∈ R|S|, Q ∈ R|S||A|, w ∈ W
}
. (Dual)

Moreover, for W = Bm
1 , a triple (VA,QA,wA) is dual optimal if and only if (i) πE is optimal for the

RL problem with cost c = cwA , (ii) VA = V⋆
wA

, (iii) QA = Q⋆
wA

, and (iv) wA ∈ W . In particular,
(V⋆

wtrue
,Q⋆

wtrue
,wtrue) is a dual optimizer.

Proposition 4 states that the set of dual optimal costs cwA is the set of costs in C for which the expert is
optimal. In this case, the optimal VA coincides with the corresponding optimal value function1, while
the optimal QA coincides with the corresponding optimal state-action value function. In particular,
the true weights wtrue, the true optimal value function V⋆

wtrue
and the true optimal state-action value

function Q⋆
wtrue

are dual optimizers. Therefore, the presented Q-convex approach allows to recover
an optimal solution to the original problem (1) from both the (Primal) and (Dual) formulations: it
can be obtained either as the induced policy of a primal optimal occupancy measure or as a greedy
policy associated to a dual optimal Q-function. In Section 4, we generalize the later observation to
implement PPM using softmin updates in terms of Q-functions.

C.1 Proof of Proposition 4

We recall the alternative Q-LP approach to MDPs [76, 77, 84, 83, 14]. Let c ∈ R|S||A| be a cost
function. The forward RL problem is equivalent to the following linear programs2

ρ⋆c = min
(µ,d)∈R2|S||A|

{⟨µ, c⟩ | B⊺d = γP⊺µ+ (1− γ)ν0, d = µ, d ≥ 0} (Primal Q-LP)

= max
(V,Q)∈R|S|+|S||A|

{(1− γ) ⟨ν0,u⟩ | Q ≥ BV, Q = c+ γPV, V ∈ R|S|,
}
, (Dual Q-LP)

1To be precise, this is the case if ν0 ∈ R|S|
++, otherwise they coincide ν0-almost surely.

2Note that usually in the literature the primal LP is (Dual Q-LP).
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We have that if π⋆ is an optimal policy for the forward RL problem with cost c, then (µπ⋆ ,µπ⋆) is
optimal for (Primal Q-LP) and conversely if (µ⋆,d⋆) is optimal for (Primal Q-LP), then πµ⋆ is an
optimal policy for the forward RL problem with cost c. Moreover, (V⋆

c,Q
⋆
c) is an optimal solution

to (Dual Q-LP) and it is the unique optimizer when ν0 ∈ R|S|
++. For the following results, we will

assume without loss of generality that ν0 ∈ R|S|
++.

Proof of Proposition 4. We first derive the dual convex program. We have,

ζ⋆ = min
(µ,d)∈M

max
w∈W

〈
µ− µπE

, cw
〉

= max
w∈W

min
(µ,d)∈M

〈
µ− µπE

, cw
〉

= max
w∈W

min
µ,d≥0

max
V,Q

{
〈
µ− µπE

, cw
〉
+ ⟨γP⊺µ+ (1− γ)ν0 −B⊺d,V⟩+ ⟨d− µ,Q⟩}

= max
w∈W

min
µ,d≥0

max
V,Q

{(1− γ) ⟨ν0,V⟩ −
〈
µπE

, cw
〉
+ ⟨µ, cw + γPV −Q⟩+ ⟨d,Q−BV⟩}

= max
w∈W

max
V,Q

min
µ,d≥0

{(1− γ) ⟨ν0,V⟩ −
〈
µπE

, cw
〉
+ ⟨µ, cw + γPV −Q⟩+ ⟨d,Q−BV⟩}

= max
(w,V,Q)

{
(1− γ) ⟨ν0,V⟩ −

〈
µπE

, cw
〉
| Q ≥ BV, Q = cw + γPV,

V ∈ R|S|, Q ∈ R|S||A|, w ∈ W
}
, (Dual)

where the second equality follows by Sion’s minimax theorem [107], since M is convex and
compact, W is convex and the objective is bilinear, the third equality follows by introducing Lagrange
multipliers V and Q, and the fifth equality follows by linear duality. Note that the derivations hold
for any convex set W .

From now on we consider the case W = Bm
1 = {w ∈ Rm | ∥w∥2 ≤ 1}. Then, the (Primal)

program can be written in the form

ζ⋆ = min
(µ,d)

{d̄C(µ,µπE
) | (µ,d) ∈ M}

= min
(µ,d)

{max
w∈W

〈
µ− µπE

, cw
〉
| (µ,d) ∈ M}

= min
(µ,d)

{max
w∈W

〈
Φ⊺µ−Φ⊺µπE

,w
〉
| (µ,d) ∈ M}

= min
(µ,d)

{
∥∥Φ⊺µ−Φ⊺µπE

∥∥
2
| (µ,d) ∈ M}, (Primal)

where in the last equality we used that the ℓ2-norm is self-dual, that is, the dual norm of the ℓ2-norm is
still the ℓ2-norm. Therefore, when W = Bm

1 , we get a quadratic objective with linear constraints [4].

Assume first that (VA,QA,wA) is optimal for (Dual). Then,

QA ≥ BVA, QA = cwA + γPVA, wA ∈ W, (6)

(1− γ) ⟨ν0,VA⟩ −
〈
µπE

, cwA

〉
= ζ⋆ = 0, (7)

where (6) holds because (VA,QA,wA) is feasible to (Dual), and (7) holds by optimality. Therefore,
(VA,QA) is feasible for (DualQ-LP) with cost c = cwA . Moreover, (µπE

,µπE
) is feasible for (Primal

Q-LP) with cost c = cwA . Therefore,

(1− γ) ⟨ν0,VA⟩ ≤ ρ⋆wA
≤
〈
µπE

, cwA

〉
. (8)

However, by (7) we get that (1−γ) ⟨ν0,VA⟩ =
〈
µπE

, cwA

〉
. Thus, (µπE

,µπE
) is optimal for (Primal

Q-LP) with cost c = cwA and (VA,QA) is optimal for (Dual Q-LP) with cost c = cwA . Thus πE is
optimal for the forward RL problem with cost cwA , VA = V⋆

cwA
, and QA = Q⋆

cwA

Conversely, assume that wA ∈ W , πE is optimal for cwA , VA = V⋆
wA

, and QA = Q⋆
wA

. Then, we
have that (µπE

,µπE
) is optimal for (Primal Q-LP) with cost cwA , and (VA,QA) is optimal for (Dual

Q-LP) with cost cwA . By dual feasibility, we get

QA ≥ BVA, QA = cwA + γPVA. (9)
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Moreover, by primal-dual optimality, we have

(1− γ) ⟨ν0,VA⟩ =
〈
µπE

, cwA

〉
. (10)

From (9), we get that (VA,QA,wA) is feasible to (Dual). Since ζ⋆ = 0, by (10), we conclude that
(VA,QA,wA) is optimal for (Dual).

D Saddle-Point Formulation

By using a compact notation, we have that Primal′ is equivalent to the following bilinear saddle-point
problem

min
x∈X

max
y∈Y

⟨y,Ax+ b⟩ , (SPP)

where

A ≜

[
Im 0

−γM⊺ B⊺

Im −Φ⊺

]
, b ≜

[ −ρΦ(πE)
(1− γ)ν0

0

]
,

x ≜ [λ⊺,d⊺]⊺, y ≜ [w⊺,V⊺,θ⊺]⊺, X ≜ ∆[m] ×∆S×A, and Y ≜ W ×R|S| ×Rm.

E Proof of Proposition 2

Proof of Proposition 2. We break the proof in three parts. In the first two parts, we introduce and
compute the explicit forms of the oracles, while in the third part we derive the proximal point updates.

Analytical oracle. We characterize the analytical-oracle by employing the first-order optimality
conditions for λ and d. In particular, at each iteration step k, for any [w⊺,V⊺,θ⊺]⊺, we have that the
Lagrangian of the optimization problem in the definition of the analytical-oracle has the form

⟨λ,w⟩ − ⟨ρΦ(π̂E),w⟩+
〈
V, γMTλ+ (1− γ)ν0 −BTd

〉
+
〈
θ,ΦTd− λ

〉
+

1

η
D(λ||λk) +

1

α
H(d||dk) + ⟨λ, τ1⟩ − τ,

where we considered a Lagrangian multiplier τ for the simplex constraint
∑

i λ(i) = 1. Now taking
the derivatives with respect to to λ and d, we obtain the following first order optimality conditions:(

w + γMV − θ
)
(i) + τ +

1

η
log

λ(i)

λk(i)
+

1

η
= 0, for all i ∈ [m],(

BV +Φθ
)
(s, a) +

1

α
log

πd(a|s)
πdk

(a|s)
= 0, for all(s, a) ∈ S ×A.

Therefore, we obtain
λ(i) = λk(i) e

−ηδk
w,θ(i)+1−ητ , (11)

where δkw,θ ≜ w + γMVk
θ − θ. In addition, the simplex constraint

∑
i λ(i) = 1 is satisfied by

choosing τ = τkw,θ, where

τkw,θ ≜
1

η
log

(
m∑
i=1

(Φ⊺dk)(i)e
−ηδk

w,θ(i)

)
. (12)

Moreover, by setting Qθ = Φθ, we get

πd(a|s) = πdk
(a|s) e−α(Qθ(s,a)−V (s)). (13)

Equation (4) follows by noting that the constraint
∑

a πd(a|x) implies that V equals the logistic
value function Vk

θ given in Proposition 2. Finally, since (λk,dk) are ideal updates, they are primal
feasible. Hence, we can use the constraint λk = Φ⊺dk in Equation (11) to obtain Equation (3).

All in all, for any y = [w⊺,V⊺,θ⊺]⊺ the analytical-oracle outputs g(y;xk) = [λ⊺,d⊺]
⊺ with

λ(i) ∝ (Φ⊺dk)(i) e
−ηδk

w,θ(i), (14)

πd(a|s) = πdk
(a|s) e−α(Qθ(s,a)−V k

θ (s)). (15)
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Note that the derivatives with respect to λ and d differ from the ones in Logistic Q-Learning [14]. In
our case, δkw,θ depends on both cost weights w and logistic action-value parameters θ. In addition,
δkw,θ is the reduced Bellman error in the feature space rather than in the high dimensional state-action
space.

Max oracle. Since the objective in (2) is convex in x and linear in y, X is convex and compact,
and Y is convex, by virtue of Sion’s minimax theorem [107], we can exchange the min and max in
Equation (2). We then have

min
x∈X

max
y∈Y

〈
y,Ax+ b̂

〉
+

1

τ
DΩ(x||xk) = max

y∈Y
min
x∈X

〈
y,Ax+ b̂

〉
+

1

τ
DΩ(x||xk).

Therefore, we get

y⋆ = argmax
y∈Y

min
x∈X

〈
y,Ax+ b̂

〉
+

1

τ
DΩ(x||xk)

= argmax
y∈Y

〈
y,Ag(y;xk) + b̂

〉
+

1

τ
DΩ(g(y;xk)||xk)

= h(xk).

Proximal point updates via max and analytical oracles. It remains to prove the closed-form
expressions for πd⋆ and λ⋆ given in Equation (3) and Equation (4), respectively. We start rewriting
the objective of the max-oracle as a function of λ and d. In particular, we have〈

y,Ag(y;xk) + b̂
〉
+

1

τ
DΩ(g(y;xk)||xk)

= min
d∈∆S×A,λ∈∆[m]

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

α
H(d||dk) +

1

η
D(λ||λk).

The minimizers of the previous expression are characterized via the analytical-oracle. In
particular, plugging in the analytical forms for λ,d and V, we obtain

min
d∈∆S×A,λ∈∆[m]

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

α
H(d||dk) +

1

η
D(λ||λk)

= ⟨λ,w⟩ − ⟨ρΦ(π̂E),w⟩+ 1

η

〈
λ,−ηδkw,θ − ητkw,θ

〉
+

1

α

〈
d,−α(Φθ −BVk

θ)
〉
+
〈
λ, γM⊺Vk

θ

〉
−
〈
d,BVk

θ

〉
+ (1− γ)

〈
ν0,V

k
θ

〉
+ ⟨d,Φθ⟩ − ⟨λ,θ⟩

= −⟨ρΦ(π̂E),w⟩+ (1− γ)
〈
ν0,V

k
θ

〉
− τkw,θ

= −⟨ρΦ(π̂E),w⟩+ (1− γ)
〈
ν0,V

k
θ

〉
− 1

η
log

(
m∑
i=1

(Φ⊺dk)(i)e
−ηδk

w,θ(i)

)
≜ Gk(w,θ).

This is the objective of the max-oracle in Proposition 2. Given that the max-oracle returns
(w⋆

k,θ
⋆
k), the corresponding primal variables (d⋆

k,λ
⋆
k) satisfy (d⋆

k,λ
⋆
k) = g([w⋆

k,Vθ⋆
k
,θ⋆

k];xk−1).
This completes the proof of the first part of Proposition 2.

It remains to show the dual form of the max-oracle objective Gk(w,θ). In particular, we will show
that

max
w,θ

Gk(w,θ) = max
w

⟨λk+1,w⟩ − ⟨ρΦ(πE),w⟩+ 1

η
D(λk+1||λk) +

1

α
H(dk+1||dk). (16)

We first recall that

Gk(w,θ) = min
d∈∆S×A,λ∈∆[m]

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

α
H(d||dk) +

1

η
D(λ||λk).
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Then, by taking the maximum over y = [w,V,θ] on both sides and using Sion’s minimax theorem,
we get

max
w,θ

Gk(w,θ) = max
y∈Y

min
d∈∆S×A,λ∈∆[m]

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

α
H(d||dk) +

1

η
D(λ||λk)

= min
d∈∆S×A,λ∈∆[m]

max
y∈Y

〈
y,A

[
λ
d

]
+ b̂

〉
+

1

α
H(d||dk) +

1

η
D(λ||λk)

= max
y∈Y

〈
y,A

[
λk+1

dk+1

]
+ b̂

〉
+

1

α
H(dk+1||dk) +

1

η
D(λk+1||λk),

where in the last equality we used the definition of proximal point update in Equa-
tion (2). Finally, by LP strong duality, we have that maxw ⟨λk+1,w⟩ − ⟨ρΦ(π̂E),w⟩ =

maxy∈Y

〈
y,A

[
λ⊺
k+1,d

⊺
k+1

]⊺
+ b̂

〉
. Hence, we conclude that (16) holds.

F Proof of Proposition 3

Proof of Proposition 3. From first order optimality conditions for λ⋆
k, we get

(
w⋆

k + γMVk
θ⋆
k
− θ⋆

k

)
(i) + τkw⋆

k,θ
⋆
k
+

1

η
log

λ⋆
k(i)

λk−1(i)
− 1

η
= 0, for all i ∈ [m]. (17)

We define the regularized cost weights by w̃⋆
k ≜ w⋆

k + 1
η log

λ⋆
k(i)

λk−1(i)
, and the costant (wrt the vector

index i) c ≜ −τkw⋆
k,θ

⋆
k
+ 1

η . This gives for all i ∈ [m]

(
w̃⋆

k + γMVk
θ⋆
k
− θ⋆

k

)
(i) = c.

We define the span norm as ∥x∥sp = infc∈R ∥x− c1∥∞. Then multiplying by Φ from the left, we
have that Φw̃⋆

k + γPVk
θ⋆
k
−Φθ⋆

k = c1. Moreover, we can write

Vk
θ⋆
k
(s) =− 1

α
log

(∑
a

πdk−1
(a|s)e−α(θ⋆

k)
⊺ϕ(s,a)

)

=− 1

α
log

(∑
a

πdk−1
(a|s)e−α(Φw̃⋆

k+γPVk
θ⋆
k
)(s,a)+αc

)

=− 1

α
log

(∑
a

πdk−1
(a|s)e−α(Φw̃⋆

k+γPVk
θ⋆
k
)(s,a)

)
+ c

We set (T Vk
θ⋆
k
)(s) ≜ − 1

α log

(∑
a πdk−1

(a|s)e−α(Φw̃⋆
k+γPVk

θ⋆
k
)(s,a)

)
. Note that T is the soft-

Bellman operator [86, 41] that is a γ-contraction with respect to ∥·∥∞-norm. It follows that

∥∥∥Vk
θ⋆
k

∥∥∥
sp

=
∥∥∥T Vk

θ⋆
k
+ c
∥∥∥
sp

=
∥∥∥T Vk

θ⋆
k

∥∥∥
sp

≤
∥∥∥T Vk

θ⋆
k
− T 0

∥∥∥
sp

+ ∥T 0∥sp ≤ γ
∥∥∥Vk

θ⋆
k

∥∥∥
sp

+ ∥Φw̃⋆
k∥sp .
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Therefore,
∥∥∥Vk

θ⋆
k

∥∥∥
sp

≤ ∥Φw̃⋆
k∥sp

1−γ ≤ 1+log 1
β

1−γ . Moreover, using the relation w̃⋆
k + γMVk

θ⋆
k
− θ⋆

k = c1,

we have that

∥θ⋆
k∥sp ≤

∥∥∥w̃⋆
k + γMVk

θ⋆
k
− c1

∥∥∥
sp

=
∥∥∥w̃⋆

k + γMVk
θ⋆
k

∥∥∥
sp

≤ ∥w̃⋆
k∥sp + γ

∥∥∥MVk
θ⋆
k

∥∥∥
sp

≤ 1 + log

(
1

β

)
+ γ

1 + log
(

1
β

)
1− γ

=
1 + log

(
1
β

)
1− γ

.

This proves that for every maximizer the span norm is bounded. Finally, for showing that there exists
a maximizer with bounded infinity norm, we want to prove that the negative logistic Bellman error
is shift invariant in θ. That is, Gk(w,θ + c1) = Gk(w,θ). Towards this goal, we start proving that
Vk

θ+c1 = Vk
θ + c for any constant c ∈ R. Indeed,

Vk
θ+c1(s) =− 1

α
log

(∑
a

πdk−1
(a|s)e−αθ⊺ϕ(s,a)+−αc1⊺ϕ(s,a)

)

=− 1

α
log

(∑
a

πdk−1
(a|s)e−αθ⊺ϕ(s,a)−αc

)

=− 1

α
log

(∑
a

πdk−1
(a|s)e−αθ⊺ϕ(s,a)

)
− 1

α
log
(
e−αc

)
=Vk

θ(s) + c

At this point, we can show the shift invariance of Gk.

Gk(w,θ + c1) = −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)e
−η(w(i)+γ(MVk

θ+c1)(i)−θ(i)−c)

+ (1− γ)
〈
ν0,V

k
θ+c1

〉
− ⟨ρΦ(π̂E),w⟩

= −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)e
−η(w(i)+γ(MVk

θ)(i)+γc−θ(i)−c)

+ (1− γ)
〈
ν0,V

k
θ

〉
+ (1− γ)c− ⟨ρΦ(π̂E),w⟩

= −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)︸ ︷︷ ︸
=1

e−ηγc+ηc + (1− γ)c+ Gk(w,θ)

= −(1− γ)c+ (1− γ)c+ Gk(w,θ)

= Gk(w,θ)

It follows that there exists a maximizer θ⋆
k for which ∥θ⋆

k∥sp = ∥θ⋆
k∥∞. To see this, we show that we

can find a value of c for which the span seminorm equals the ℓ∞-norm, that is ∥θ⋆
k + c1∥∞ = ∥θ⋆

k∥sp.
By definition of the span norm (and assuming that the infimum is attained), the equality is attained
for c = argminc ∥θ

⋆
k + c1∥∞ =

maxi∈[m] θ
⋆
k(i)+mini∈[m] θ

⋆
k(i)

2 . Then, choosing the shift for which
maxi∈[m] θ

⋆
k(i) = −mini∈[m] θ

⋆
k(i), gives the maximizer for which ∥θ⋆

k∥sp = ∥θ⋆
k∥∞. This

concludes the proof for the bound on the ℓ∞-norm.
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G Proof of Theorem 1

We will analyze the proximal point method applied to SPP. We use a similar error propagation
analysis as in [14].

By Proposition 2, the ideal updates (θ⋆
k,w

⋆
k, π

⋆
k,λ

⋆
k,d

⋆
k) are given by

(w⋆
k,θ

⋆
k) = argmax

w,θ
Gk(w,θ), λ⋆k(i) = (Φ⊺d⋆

k−1)(i) e
−η(δk

θ⋆
k
,w⋆

k
(i)+τk

θ⋆
k
,w⋆

k
)
,

d⋆
k = µπ⋆

k
, π⋆

k(a|s) = πd⋆
k−1

(a|s) e−α(Qθ⋆
k
(s,a)−V k

θ⋆
k
(s))

,

where τkθ⋆
k,w

⋆
k

is a normalization constant. By feasibility of the ideal updates we also have λ⋆
k = Φ⊺d⋆

k

On the other hand, the realized updates (θk,wk, πk,λk,dk) are given by

(wk,θk) = argmax
w,θ

Gϵk
k (w,θ), λk(i) = (Φ⊺dk−1)(i) e

−η(δk
θk,wk

(i)+τk
θk,wk

),

dk = µπk
, πk(a|s) = πdk−1

(a|s) e−α(Qθk
(s,a)−V k

θk
(s)),

where τkθk,wk
is a normalization constant, and the notation (wk,θk) = argmaxw,θ Gϵk

k (w,θ) means
that Gk(w

⋆
k,θ

⋆
k)− Gk(wk,θk) = ϵk. We start by introducing some auxiliary results

Lemma 1. For any occupancy measures d1,d2 ∈ F, and for any cost vectors c, c′ ∈ C, we have:

⟨µπE
− d1, c⟩ −min

c′∈C
⟨µπE

− d2, c
′⟩ ≥ dC(πE , πd2)− dC(πE , πd1).

Proof. We have that

⟨µπE
− d1, c⟩ −min

c′∈C
⟨µπE

− d2, c
′⟩ ≥ min

c∈C
⟨µπE

− d1, c⟩ −min
c′∈C

⟨µπE
− d2, c

′⟩

= max
c′

⟨d2 − µπE
, c′⟩ −max

c
⟨d1 − µπE

, c⟩

= dC(πE , πd2)− dC(πE , πd1).

Corollary 2. Let d⋆ = argmind∈F maxc∈C⟨d, c⟩−⟨µπE
, c⟩. Setting c = Φwk, d1 = d⋆, d2 = dk,

we ge that ⟨µπE
− d⋆,Φwk⟩ −minc∈C⟨µπE

− dk, c⟩ ≥ dC(πE , πdk
)− dC(πE , πd⋆).

Lemma 2. It holds that D(λ⋆
k||λk)
η +

H(d⋆
k||dk)
α = ⟨ρΦ(π̂E)− λ⋆

k, (w
⋆
k −wk)⟩+ ϵk.

Proof. The proof is analogous to Lemma 1 in [14].

Lemma 3 (First order optimality conditions for Gk). For all k ∈ [K], it holds that

⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k −wk⟩ ≤ 0.

Proof. We start by taking the gradient of Gk(wk,θk) with respect to w. In particular, the partial
derivative with respect to the ith component is given by

∂Gk(w
⋆
k,θ

⋆
k)

∂w(i)
=− (ρΦ(π̂E))(i) +

(Φ⊺dk−1)(i)e
−ηδk

θ⋆
k
,w⋆

k
(i)∑m

i=1(Φ
⊺dk−1)(i)e

−ηδk
θ⋆
k
,w⋆

k
(i)

=− (ρΦ(π̂E))(i) + λ⋆
k(i).

Therefore,
∇wGk(w

⋆
k,θ

⋆
k) = −ρΦ(π̂E) + λ⋆

k.

Then, by using the first-order optimality conditions for a concave function, we have

⟨∇wGk(w
⋆
k,θ

⋆
k),wk −w⋆

k⟩ ≤ 0, ∀k.
By replacing the expression for ∇wGk(w

⋆
k,θ

⋆
k), we obtain

⟨−ρΦ(π̂E) + λ⋆
k,wk −w⋆

k⟩ ≤ 0 ∀k ⇐⇒ ⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k −wk⟩,≤ 0 ∀k. (18)
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We also need the following auxiliary result.
Lemma 4. For all k ∈ [K], it holds that

⟨ρΦ(π̂E)−Φ⊺dk,w
⋆
k⟩ ≤ min

w∈W
⟨ρΦ(π̂E)−Φ⊺dk,w⟩+ 2 ∥dk − d⋆

k∥1 . (19)

Proof. By introducing w̄⋆
k = argminw∈W⟨ρΦ(π̂E)−Φ⊺dk,w⟩, and applying triangular inequality,

we obtain
⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k⟩ = ⟨ρΦ(π̂E)−Φ⊺dk, w̄

⋆
k⟩+ ⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k − w̄⋆

k⟩
= min

w∈W
⟨ρΦ(π̂E)−Φ⊺dk,w⟩+ ⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k − w̄⋆

k⟩.

Moreover, we have
⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k − w̄⋆

k⟩ = max
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w
⋆
k −w⟩

= max
w∈W

⟨ρΦ(π̂E) +Φ⊺d⋆
k −Φ⊺d⋆

k −Φ⊺dk,w
⋆
k −w⟩

= max
w∈W

⟨ρΦ(π̂E)−Φ⊺d⋆
k,w

⋆
k −w⟩+ ⟨d⋆

k − dk,Φ(w⋆
k − w̄⋆

k)⟩

≤ max
w∈W

⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k −w⟩︸ ︷︷ ︸

:=(A)

+ ∥d⋆
k − dk∥1 ∥Φ(w⋆

k − w̄⋆
k)∥∞

≤2 ∥d⋆
k − dk∥1 .

The first equality holds because the term in w⋆
k is a constant wrt w, the variable of the max. In the

last inequality follows from (A) being zero as we show next:

max
w∈W

⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k −w⟩ = max

w∈W
⟨ρΦ(π̂E)− λ⋆

k,w
⋆
k −w⟩+ 1

η
D(λ⋆

k||Φ
⊺dk−1)

− 1

η
D(λ⋆

k||Φ
⊺dk−1) +

1

α
H(d⋆

k||dk−1)−
1

α
H(d⋆

k||dk−1)

= max
w∈W

(
⟨λ⋆

k − ρΦ(π̂E),w⟩+ 1

η
D(λ⋆

k||Φ
⊺dk−1)

+
1

α
H(d⋆

k||dk−1)

)
− ⟨λ⋆

k − ρΦ(π̂E),w
⋆
k⟩

− 1

η
D(λ⋆

k||Φ
⊺dk−1)−

1

α
H(d⋆

k||dk−1)

= max
w∈W

(
⟨λ⋆

k − ρΦ(π̂E),w⟩+ 1

η
D(λ⋆

k||Φ
⊺dk−1)

+
1

α
H(d⋆

k||dk−1)

)
− max

w∈W
min

λ,d∈MΦ

(
⟨λ− ρΦ(π̂E),w⟩

+
1

η
D(λ||Φ⊺dk−1) +

1

α
H(d||dk−1)

)
= 0.

Lemma 5 (Lower Bound on feature expectation vectors). Let Assumption 2 hold. We then have
(Φ⊺dk)(j) ≥ β for all j ∈ [m].

Proof. Let ej ∈ Rm the vector with zeros everywhere but in position j where it takes the value of 1.
Then, we observe that

β ≤λmin( E
s,a∼dk

[ϕ(s, a)ϕ(s, a)⊺])

= min
{x∈Rm:∥x∥2=1}

x⊺ E
s,a∼dk

[ϕ(s, a)ϕ(s, a)⊺]x

≤ e⊺j E
s,a∼dk

[ϕ(s, a)ϕ(s, a)⊺] ej

= E
s,a∼dk

[
ϕ2

j (s, a)
]
≤ E

s,a∼dk

[
ϕj(s, a)

]
= (Φ⊺dk)(j).
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Theorem 3 (Error propagation with empirical expert feature expectation vector). Let d⋆ =
argmind∈F maxc∈C⟨d, c⟩ − ⟨µπE

, c⟩, and let λ⋆ be any features expectation vector such that

(λ⋆,d⋆) ∈ MΦ. Moreover, let C ≜ 1
βη

(√
2α
1−γ +

√
8η
)
+
√

18α
1−γ . Then, we have that

1

K

∑
k

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩

≤ D(λ⋆||Φ⊺d0)

Kη
+
H(d⋆||d0)

Kα
+
C

K

∑
k

√
ϵk +

∑
k ϵk
K

.

Proof. We have that

D(λ⋆||λk) =D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk + γMVk
θk

− θk⟩+ ητkθk,wk

=D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨γMTλ⋆,Vk
θk
⟩+ ητkθk,wk

=D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨B⊺d⋆,Vk
θk
⟩ − η(1− γ)⟨ν0,V

k
θk
⟩

+ ητkθk,wk

=D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨B⊺d⋆,Vk
θk
⟩ − η(1− γ)⟨ν0,V

k
θk
⟩

+ ητkθk,wk

=D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨B⊺d⋆,Vk
θk
⟩ − ηGk(θk,wk)

− η⟨ρΦ(π̂E),wk⟩
≤D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨B⊺d⋆,Vk

θk
⟩ − ηGk(θ

⋆
k,w

⋆
k)

+ ηϵk − η⟨ρΦ(π̂E),wk⟩
≤D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk − θk⟩+ η⟨B⊺d⋆,Vk

θk
⟩+ η⟨ρΦ(π̂E)− λ⋆

k,w
⋆
k⟩

−D(λ⋆
k||Φ

⊺dk−1)− η
H(d⋆

k||dk−1)

α
+ ηϵk − η⟨ρΦ(π̂E),wk⟩

≤D(λ⋆||Φ⊺dk−1) + η⟨λ⋆,wk⟩+ η⟨d⋆,BVk
θk

−Φθk⟩+ η⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k⟩

+ ηϵk − η⟨ρΦ(π̂E),wk⟩
≤D(λ⋆||Φ⊺dk−1) + η⟨d⋆,Φwk⟩+ η⟨d⋆,BVk

θk
−Φθk⟩+ η⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k⟩

+ η⟨dk − d⋆
k,Φw⋆

k⟩+ ηϵk − η⟨ρΦ(π̂E),wk⟩
≤D(λ⋆||Φ⊺dk−1) + η⟨d⋆,Φwk⟩+ η⟨d⋆,BVk

θk
−Φθk⟩+ η⟨ρΦ(π̂E)−Φ⊺dk,w

⋆
k⟩

+ η ∥dk − d⋆
k∥1 + ηϵk − η⟨ρΦ(π̂E),wk⟩ Using Lemma 4

≤D(λ⋆||Φ⊺dk−1) + η⟨d⋆,Φwk⟩+ η⟨d⋆,BVk
θk

−Φθk⟩
+ min

w∈W
η⟨ρΦ(π̂E)−Φ⊺dk,w⟩+ 3η ∥dk − d⋆

k∥1 + ηϵk − η⟨ρΦ(π̂E),wk⟩.

Therefore, it follows that

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩ ≤ D(λ⋆||Φ⊺dk−1)−D(λ⋆||λk)

η

+ ⟨d⋆,BVk
θk

−Φθk⟩+ 3 ∥dk − d⋆
k∥1 + ϵk. (20)

Then, by using H(d⋆||dk) = H(d⋆||dk−1)− α⟨d⋆,Φθk −BVk
θk
⟩, we obtain

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩ ≤ D(λ⋆||Φ⊺dk−1)−D(λ⋆||λk)

η

+
H(d⋆||dk−1)−H(d⋆||dk)

α
+ 3 ∥dk − d⋆

k∥1 + ϵk.
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Summing over iteration indices k and dividing by the total number of iterations K, we obtain

1

K

∑
k

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩ ≤ 1

K

∑
k

(
D(λ⋆||Φ⊺dk−1)

η

− D(λ⋆||λk)

η
+
H(d⋆||dk−1)−H(d⋆||dk)

α
+ 3 ∥dk − d⋆

k∥1

)
+

∑
k ϵk
K

. (21)

Moreover, by a telescoping sum, we get

∑
k

(
D(λ⋆||Φ⊺dk−1)−D(λ⋆||λk)

η
+
H(d⋆||dk−1)−H(d⋆||dk)

α

)

=
∑
k

(
D(λ⋆||Φ⊺dk−1)−D(λ⋆||Φ⊺dk)

η
+
D(λ⋆||Φ⊺dk)−D(λ⋆||λk)

η

+
H(d⋆||dk−1)−H(d⋆||dk)

α

)

=
D(λ⋆||Φ⊺d0)−D(λ⋆||Φ⊺dK)

η
+
H(d⋆||d0)−H(d⋆||dK)

α

+
∑
k

D(λ⋆||Φ⊺dk)−D(λ⋆||λk)

η

≤ D(λ⋆||Φ⊺d0)

η
+
H(d⋆||d0)

α
+
∑
k

D(λ⋆||Φ⊺dk)−D(λ⋆||λk)

η

Combining this derivation with (21), we get

1

K

∑
k

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩ ≤ D(λ⋆||λ0)

Kη
+
H(d⋆||d0)

Kα

+
1

K

∑
k

(
D(λ⋆||Φ⊺dk)−D(λ⋆||λk)

η
+ 3 ∥dk − d⋆

k∥1

)
+

∑
k ϵk
K

. (22)

In order to bound the term D(λ⋆||Φ⊺dk) − D(λ⋆||λk), we introduce the Bregman projec-
tion to the space of feature expectation vectors induced by valid occupancy measures λ̃k =
argmin{λ=Φd|d∈F}D(λ||λk). We then have

D(λ⋆||Φ⊺dk)−D(λ⋆||λk) =D(λ⋆||Φ⊺dk)−D(λ⋆||λk) +D(λ⋆||λ̃k)−D(λ⋆||λ̃k)

≤D(λ⋆||Φ⊺dk)−D(λ⋆||λ̃k)−D(λ̃k||λk)

≤D(λ⋆||Φ⊺dk)−D(λ⋆||λ̃k),
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where in the second inequality, we used Lemma 11.3 in [24]. Furthermore,

D(λ⋆||Φ⊺dk)−D(λ⋆||λ̃k) =

m∑
i=1

λ⋆(i) log
λ̃k(i)

Φ⊺dk(i)

≤
m∑
i=1

λ⋆(i)

(
λ̃k(i)

Φ⊺dk(i)
− 1

)

≤
m∑
i=1

λ⋆(i)

Φ⊺dk(i)

∣∣∣λ̃k(i)−Φ⊺dk(i)
∣∣∣

≤max
i

λ⋆(i)

Φ⊺dk(i)

∥∥∥λ̃k −Φ⊺dk

∥∥∥
1

≤ 1

β

∥∥∥λ̃k −Φ⊺dk

∥∥∥
1

≤ 1

β
(
∥∥∥λ̃k − λk

∥∥∥
1
+ ∥λ⋆

k − λk∥1 + ∥λ⋆
k −Φ⊺dk∥1)

≤ 1

β
(

√
2D(λ̃k||λk) +

√
2D(λ⋆

k||λk) + ∥λ⋆
k −Φ⊺dk∥1)

≤ 1

β
(2
√

2D(λ⋆
k||λk) + ∥Φ⊺d⋆

k −Φ⊺dk∥1)

≤ 1

β

(√
8η(ϵk + ⟨ρΦ(π̂E)−Φ⊺d⋆

k,w
⋆
k −wk⟩)

+ ∥Φ∥∞ ∥d⋆
k − dk∥1

)
,

where we used maxi
λ⋆(i)

Φ⊺dk(i)
≤ 1

β thanks to Lemma 5 while in the last line we use the fact that
H(d⋆

k||dk) is positive and the equality in Lemma 2. To bound the ℓ1-norm, we apply Pinkser’s
inequality and Lemma 2 in [14] to get that

∥dk − d⋆
k∥ ≤

√
2D(dk||d⋆

k) ≤

√
2
H(dk||d⋆

k)

1− γ
≤
√

2α

1− γ
(ϵk + ⟨ρΦ(π̂E)−Φ⊺d⋆

k,w
⋆
k −wk⟩).

Plugging the last derivation in Equation (22) gives

1

K

∑
k

⟨ρΦ(π̂E)− d⋆,Φwk⟩ − min
w∈W

⟨ρΦ(π̂E)− dk,Φw⟩ ≤ D(λ⋆||λ0)

Kη
+
H(d⋆||d0)

Kα

+
C

K

∑
k

(√
ϵk + ⟨ρΦ(π̂E)− λ⋆

k,w
⋆
k −wk⟩

)
+

∑
k ϵk
K

. (23)

Finally, using Lemma 3 we have that the term ⟨ρΦ(π̂E)− λ⋆
k,w

⋆
k −wk⟩ is non positive. Therefore,

1

K

∑
k

⟨ρΦ(π̂E)−Φ⊺d⋆,wk⟩ − min
w∈W

⟨ρΦ(π̂E)−Φ⊺dk,w⟩ ≤ D(λ⋆||λ0)

Kη
+
H(d⋆||d0)

Kα

+
C

K

∑
k

√
ϵk +

∑
k ϵk
K

,

where C = 1
βη (
√

2α
1−γ +

√
8η) + 3

√
2α
1−γ .

Finally, we need a Lemma that provides a concentration for the estimated expert feature expectation
vector.

Lemma 6 ([111]). Let DπE
≜ {(sℓ0, aℓ0, sℓ1, aℓ1, . . . , sℓH , aℓH)}nE

ℓ=1 ∼ πE be a finite set of i.i.d.
truncated sample trajectories. We consider the empirical expert feature expectation vector ρΦ(π̂E)
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by taking sample averages, i.e.,

ρΦ(π̂E) ≜ (1− γ)
1

nE

H∑
t=0

N∑
ℓ=1

γtϕi(s
ℓ
t, a

ℓ
t), ∀ i ∈ [m].

Suppose the trajectory length is H ≥ 1
1−γ log( 1ε ), and the number of of expert trajectories is

nE ≥ 2 log( 2m
δ )

ε2 . Then, with probability at least 1− δ, it holds that ∥ρΦ(πE)− ρΦ(π̂E)∥∞ ≤ ε.

At this point, Theorem 1 is proven from the results of Theorem 3,Lemma 6 and Lemma 1.

H Biased Stochastic Gradients and their Properties

In order to estimate the gradient ∇θ G(w,θ), we define the policy πk,θ(a|s) ∝ πk(a|s)e−αQθ(s,a),
for all k ∈ N, and for all θ ∈ Rm. Then, by standard computations we get that for all (w,θ), and for
all j ∈ [m],

∇θ,j G(w,θ)

=

m∑
i=1

(Φ⊺dk−1)(i)B
k
w,θ(i)

[
γΓk(i, j)− 1{i = j}

]
+ (1− γ)

∑
s

ν0(s)
∑
a

πk−1,θ(a|s)ϕi(s, a)

= E(s,a)∼dk−1,i∼ϕ(s,a)

[
Bk

w,θ(i)
[
γΓk(i, j)− 1{i = j}

]]
+ (1− γ)Es0∼ν0,a0∼πk−1,θ(·|s0)

[
ϕi(s0, a0)

]
,

where Bk
w,θ(i) ≜

exp
(
−ηδ k

w,θ(i)
)

Zk
, Zk ≜

∑m
i=1 exp

(
− ηδ k

w,θ(i)
)
ρΦ(πk−1)(i), and Γk(i, j) ≜∑

s′,a′ Mi,s′πk−1,θ(a
′|s′)ϕj(s

′, a′) . Similarly, for the gradient ∇wG(w,θ), we can write

∇w,j G(w,θ) = −ρΦ(π̂E)(j) +

m∑
i=1

(Φ⊺dk−1)(i)B
k
w,θ(i)1{i = j}

= −ρΦ(π̂E)(j) + E(s,a)∼dk−1,i∼ϕ(s,a)

[
Bk

w,θ(i)1{i = j}
]

Note that the following estimators of ∇θ Gk(w,θ) and ∇wGk(w,θ) are unbiased: Sample
(s′, a′) ∼ dk−1, i′ ∼ ϕ(s′, a′), s0 ∼ ν0, and a0 ∼ πk−1,θ(·|s0), then define

∇̃w,jGk(w,θ) = −ρΦ(π̂E)(j) +Bk
w,θ(i

′)1{i′ = j}, (24)

∇̃θ,jGk(w,θ) = Bk
w,θ(i

′)
[
γΓk(i

′, j)− 1{i′ = j}
]
+ (1− γ)ϕj(s0, a0). (25)

These expressions give rise to the Biased Stochastic Gradient Estimator subroutine (BSGE) given
in Algorithm 2, where we plug-in estimators B̂k

w,θ ∈ Rm and Γ̂k ∈ Rm×m to Equations (24)
and (25). It remains to show how to maintain good estimators B̂k

w,θ and Γ̂k by using the linear MDP
Assumption 1. While the estimator Γ̂k ∈ Rm is a standard ridge regression estimator, the construction
of B̂k

w,θ is more involved. In particular, we first need to build an estimator for the product MVk
θ via

ridge regression. Then, the estimator for B̂k
w,θ is derived by plugging-in the estimator of MVk

θ , and

the estimator for the feature expectation vector ρΦ(πk−1) to equation Bk
w,θ(i) ≜

exp
(
−ηδ k

w,θ(i)
)

Zk
.

The reasoning and analysis is inspired by [52, 89].

H.1 Ridge estimators

This section leverages ridge regression [53] to build estimators B̂k
w,θ and Γ̂k ∈ Rm×m. We work

under the Assumption 2 which ensures that every iterate covers the features space. We recall that by
Lemma 5, Assumption 2 implies that Φ⊺dk(s, a) ≥ β, for all k ∈ [K].
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Algorithm 2 Biased Stochastic Gradient Estimator: BSGE(k,w,θ, N)

Input: Policy evaluation step k, reference points (w,θ), number of samples N
Compute empirical estimators δ̂ k

w,θ ∈ Rm, Γ̂k ∈ Rm×m, ρΦ(π̂k−1) ∈ Rm using the first N

samples {(s(n)k−1, a
(n)
k−1, s

′(n)
k−1)}Nn=1 from the buffer Bk

for i = 1, . . . ,m do

Compute B̂k
w,θ(i) =

exp
(
−ηδ̂ k

w,θ(i)
)

Ẑk
, Where Ẑk =

∑m
i=1 exp

(
− ηδ̂ k

w,θ(i)
)
ρΦ(π̂k−1)(i)

end for
Sample (s

(N+1)
k−1 , a(N+1)

k−1 ) ∼ µπk−1
, i(N+1)

k−1 ∼ ϕ(s
(N+1)
k−1 , a

(N+1)
k−1 )

Sample s(0)k−1 ∼ ν0, and a(0)k−1 ∼ πk−1,θ(·|s0)
Compute

∇̂w,jGk(w,θ) = −ρΦ(π̂E)(j) + B̂k
w,θ(i

(N+1)
k−1 )1{i(N+1)

k−1 = j}

∇̂θ,jGk(w,θ) = B̂k
w,θ(i

(N+1)
k−1 )

[
γΓ̂k(i

(N+1)
k−1 , j)− 1{i(N+1)

k−1 = j}
]
+ (1− γ)ϕj(s

(0)
k−1, a

0
k−1)

Output: (∇̂wGk(w,θ), ∇̂θGk(w,θ))

H.1.1 Estimator for MVk
θ

We first construct an estimator for MkV
k
θ . We can start noticing that we can rewrite MkV

k
θ using

the feature covariance matrix Λ̄k ≜ E
(s,a)∼dk−1

[
ϕ(s, a)ϕ(s, a)T

]
as showed by the next lemma.

Lemma 7. It holds that MVk
θ = Λ̄

−1
k E

(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)V k

θ (s′)
]
.

Proof.

MVk
θ =Λ̄

−1
k Λ̄kMVk

θ

=Λ̄
−1
k E

(s,a)∼dk−1

[
ϕ(s, a)ϕ(s, a)TMVk

θ

]
=Λ̄

−1
k E

(s,a)∼dk−1

[
ϕ(s, a)ϕ(s, a)T

∑
s′

M:s′V
k
θ (s′)

]

=Λ̄
−1
k E

(s,a)∼dk−1

[
ϕ(s, a)

∑
s′

ϕ(s, a)TM:s′V
k
θ (s′)

]

=Λ̄
−1
k E

(s,a)∼dk−1

[
ϕ(s, a)

∑
s′

P (s′|s, a)V k
θ (s′)

]
=Λ̄

−1
k E

(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)V k

θ (s′)
]
.

It follows that MVk
θ = argmin

z
E

(s,a)∼dk−1,s′∼P (·|s,a)

[(
ϕ(s, a)Tz− V k

θ (s′)
)2]

.

Now, we move to the problem of estimating M̂Vk
θ with a finite amount of environment interactions

sampled i.i.d from dk−1. We define

M̂Vk
θ ≜ argmin

z

1

N

N∑
n=1

(
ϕ(s

(n)
k , a

(n)
k )Tz− V k

θ (s
′(n)
k )

)2
+ χ ∥z∥22 .

By optimality conditions, we can obtain a closed-form expression for M̂Vk
θ .
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Lemma 8. It holds that

M̂Vk
θ =

1

N
(Λk,N + χI)

−1
N∑

n=1

ϕ(s
(n)
k−1, a

(n)
k−1)V

k
θ (s

′(n)
k−1),

where Λk,N ≜ 1
N

∑N
n=1 ϕ(s

(n)
k−1, a

(n)
k−1)ϕ(s

(n)
k−1, a

(n)
k−1)

T is the empirical covariance matrix.

Proof. Let L(z) ≜ 1
N

∑N
n=1

(
ϕ(s

(n)
k−1, a

(n)
k−1)

Tz− V k
θ (s

′(n)
k−1)

)2
+ χ ∥z∥22. The first derivative is

given by

1

2
∇zL(z) =

1

N

N∑
n=1

ϕ(s
(n)
k−1, a

(n)
k−1)

(
ϕ(s

(n)
k−1, a

(n)
k−1)

Tz− V k
θ (s

′(n)
k−1)

)
+ χz. (26)

Since L(·) is convex in z, by first-order optimality conditions, we get

1

N

N∑
n=1

ϕ(s
(n)
k−1, a

(n)
k−1)

(
ϕ(s

(n)
k−1, a

(n)
k−1)

TM̂Vk
θ − V k

θ (s
′(n)
k−1)

)
+ χM̂Vk

θ = 0

The statement follows from rearranging the terms.

Remark 1. Note that when χ = 0, and ϕ(s, a) is one-hot vector for every (s, a), then we obtain the
tabular estimators Wv proposed in [89].

We invoke Theorem 2 in [53] to derive an upper bound for
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥2
Λ̄k

.

Lemma 9. Fix some χ > 0 and take N ≥ O(
log(m

δ )

χβ ). Then, with probability at least 1− δ, we have∥∥∥MVk
θ − M̂Vk

θ

∥∥∥2
Λ̄k

≤ O
(
mχ2

β3
D2 +

1

N

mχ

β4
D2 log

(
1

δ

)
+
D2m

N
log

(
1

δ

))
,

where D ≜
1+log( 1

β )
1−γ ≥ 1 is the upper bound of

∥∥Vk
θ

∥∥
∞ derived in Proposition 3.

Proof. We introduce the following auxiliary quantities:

MχV
k
θ = argmin

z
E

(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)Tz− V k

θ (s′)
]
+ χ ∥z∥22

=
(
Λ̄k + χI

)−1 E
(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)V k

θ (s′)
]
,

and the conditional expectation

M̄Vk
θ = E

[
M̂Vk

θ |Fn

]
=

1

N
(Λk,N + χI)

−1
N∑

n=1

ϕ(s
(n)
k−1, a

(n)
k−1) E

s′∼P (·|s(n)
k−1,a

(n)
k−1)

[
V k
θ (s′)

]
with Fn being the filtration Fn = {s(i)k−1, a

(i)
k−1}ni=0. Then applying the general random design

decomposition in ([53], Proposition 3) we obtain:∥∥∥MVk
θ − M̂Vk

θ

∥∥∥2
Λ̄k

≤ 3
∥∥MVk

θ −MχV
k
θ

∥∥2
Λ̄k︸ ︷︷ ︸

≜ϵrg

+3
∥∥MχV

k
θ − M̄Vk

θ

∥∥2
Λ̄k︸ ︷︷ ︸

≜ϵbs

+3
∥∥∥M̄Vk

θ − M̂Vk
θ

∥∥∥2
Λ̄k︸ ︷︷ ︸

≜ϵvr

,

(27)
where similarly to [53], we define ϵrg as the ridge error, ϵbs the ridge estimator bias and with ϵvr the
ridge estimator variance. By choosingN ≥ O(6ρ2χd1,χ(logmax (1, d1,χ)+log 1

δ )) = O( 1
βχ log m

δ ),
we ensure that the conditions in Theorem 2 in [53] are satisfied. We next bound each term separately.
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Ridge error. In [53], the bound derived for the ridge error is a function of the regularization
parameter χ, the eigenvalues of the covariance matrix Λ̄k denoted as {σj}mj=1 and the corresponding
eigenvectors {vj}mj=1. In particular, we have

ϵrg ≤
m∑
j=1

σj
(
σj

χ + 1)2
(v⊺

jMVk
θ )

2

=

m∑
j=1

σj
(
σj

χ + 1)2

(
E

(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)V k

θ (s′)
]T

Λ̄
−1
k vj

)2

=

m∑
j=1

1

(
σj

χ + 1)2σj

(
E

(s,a)∼dk−1,s′∼P (·|s,a)

[
ϕ(s, a)V k

θ (s′)
]T

vj

)2

≤
m∑
j=1

1

(
σj

χ + 1)2σj

∥∥Vk
θ

∥∥2
∞

≤
m∑
j=1

1

(βχ + 1)2β
D2

=
mχ2

(β + χ)2β
D2

≤mχ
2

β3
D2,

where in the first inequality we used bullet (3) of Theorem 2 in [53].

Bias. It holds that

ϵbs ≤ O

ρ2χd1,χ E
(s,a)∼dk−1

[approx(s, a)] + (1 + ρ2χd1,χ)ϵrg

N
log

(
1

δ

) ,

where we used the notation

E
(s,a)∼dk−1

[approx(s, a)] ≜ E
(s,a)∼dk−1

[
E

s′∼P (·|s,a)

[
V k
θ (s′)

]
− ϕ(s, a)TMVk

θ

]
= E

(s,a)∼dk−1

[
E

s′∼P (·|s,a)

[
V k
θ (s′)

]
−PVk

θ (s, a)

]
= E

(s,a)∼dk−1

[
E

s′∼P (·|s,a)

[
V k
θ (s′)

]
− E

s′∼P (·|s,a)

[
V k
θ (s′)

]]
= 0.

Moreover,

d1,χ ≜
m∑
j=1

σj
σj + χ

≤ m

Finally, according to Remark 2 in [53], we have that ρχ is bounded as follows

ρ2χ ≤
∥ϕ(s, a)∥22
χd1,χ

≤ 1 + χ

χβm
≤ 2

χβm
,

where the last inequality follows from noticing that d1,χ ≥ βm
1+χ . Therefore, we can conclude that:

ϵbs ≤O

(
(1 + 2

χβ )ϵrg

N
log

(
1

δ

))

=O
(

ϵrg
χβN

log

(
1

δ

))
=O

(
1

N

mχ

β4
D2 log

(
1

δ

))
,
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Variance. From the bullet (5) in [53] it follows that

ϵvr = O

(
Var

[
Vk

θ (s
′) | s, a

]
d2,χ

N
log

(
1

δ

))
.

We have Var
[
Vk

θ (s
′) | s, a

]
≤
∥∥Vk

θ

∥∥2
∞ ≤ D2. Finally, bounding d2,χ we obtain that

d2,χ =

m∑
j=1

(
σj

σj + χ

)2

≤ m.

Hence we can conclude

ϵvr = O
(
D2m

N
log

(
1

δ

))
.

Final bound. By combining the above bounds with Equation (27), we get the final bound∥∥∥MVk
θ − M̂Vk

θ

∥∥∥2
Λ̄k

≤ O
(
mχ2

β3
D2 +

1

N

mχ

β4
D2 log

(
1

δ

)
+
D2m

N
log

(
1

δ

))
.

The bound above is minimized by choosing χ as small as allowed. This is made precise in the next
corollary.

Corollary 3. Let χ = O(
log m

δ

βN ). With probability at least 1− δ, it holds that∥∥∥MVk
θ − M̂Vk

θ

∥∥∥2
Λ̄k

≤O
(
D2m

β5N2

(
log
(m
δ

))2
+
mD2

N
log

(
1

δ

))
.

In order to upper bound
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥2
2

we need the next lemma. Hence, to bound∥∥∥MVk
θ − M̂Vk

θ

∥∥∥2
2
, we can directly apply Theorem 2 in [53] that leads to the following lemma.

Lemma 10. Given a matrix A ∈ Rm×m and a vector x ∈ Rm, we have that ∥x∥A ≥ λmin(A) ∥x∥2.

Proof. We have that A− λmin(A)I ≥ 0 that implies x⊺Ax ≥ λmin(A)x⊺x.

Corollary 4. Let χ = O(
log m

δ

βN ). With probability at least 1− δ, it holds that

∥∥∥MVk
θ − M̂Vk

θ

∥∥∥
2
≤ O

(
D
√
m

β3N
log
(m
δ

)
+
D
√
m√

Nβ

√
log

(
1

δ

))
. (28)

Corollary 5. Let χ = O
(

log m
δ

βN

)
, and N ≥ max

(
γ2mD2

βϵ2 log(1/δ), γ
√
mD

β3ϵ log(m/δ)
)

. Then, with

probability at least 1− δ, it holds that
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥
2
≤ ϵ

γ .

H.1.2 Estimators for Γk

Recall that we introduced Γk(i, j) ≜
∑

s′,a′ Mi,s′πk−1,θ(a
′|s′)ϕj(s

′, a′). We can equivalently
rewrite it as

Γk(·, j) =M
∑
a′

πk−1,θ(a
′|s′)ϕj(s

′, a′)︸ ︷︷ ︸
hk,j(s′)

=Λ̄
−1
k E

(s,a)∼dk−1,s′∼P (·|s,a)
[ϕ(s, a)hk,j(s

′)] ,

where the last equality is obtained with manipulations analogous to Lemma 7.
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Similarly, We can estimate Γk(i, j) with a finite amount of environment interactions sampled i.i.d.
from dk−1, by solving the following ridge regression problem:

Γ̂k(·, j) = argmin
z

1

N

N∑
n=1

(
ϕ(s

(n)
k−1, a

(n)
k−1)

Tz− hk,j(s
′(n)
k−1)

)2
+ χ ∥z∥22

Lemma 11. By optimality conditions, we can obtain a closed form for Γ̂k as

Γ̂k(·, j) =
1

N
(Λk,N + χI)

−1
N∑

n=1

ϕ(s
(n)
k−1, a

(n)
k−1)hk,j(s

′(n)
k−1).

By noting that ∥hk−1,j∥∞ ≤ 1 for any k, it follows that

Corollary 6. For χ = O(
log m

δ

βN ), with probability at least 1− δ, it holds that

∥∥∥Γk(·, j)− Γ̂k(·, j)
∥∥∥
2
≤ O

( √
m√
Nβ

√
log

(
1

δ

)
+

√
m

β3N
log
(m
δ

))
. (29)

Corollary 7. For χ = O(
log m

δ

βN ), and N ≥ max
(
O
(

m
βϵ2 log(1/δ)

)
,O
(√

m
β3ϵ log(m/δ)

))
, with

probability at least 1− δ, it holds that
∥∥∥Γk(·, j)− Γ̂k(·, j)

∥∥∥
2
≤ ϵ.

H.1.3 Estimator for feature expectation vectorρΦ(πk−1)

The goal is to estimate ρΦ(πk−1). Consider the sample transitions {s(n)k−1, a
(n)
k−1}Nn=1 ∼ dN

k−1. Then

we estimate ρΦ(πk−1) = Φ⊺dk−1 by ρΦ(π̂k−1) ≜ 1
N

∑N
n=1 ϕ(s

(n)
k−1, a

(n)
k−1).

In the next lemma, we provide a useful concentration result.

Lemma 12. With probability at least 1− δ, for all N ≥ 1.4 log log(2N)+log 10.4m
δ

βϵ2 , and for all i ∈ [m]

simultaneously, it holds that∣∣ρΦ(π̂k−1)(i)− ρϕ(πk−1)(i)
∣∣ ≤ 2.26ϵρϕ(πk−1)(i) (30)

Proof. Consider the martingale difference sequence Zi(n) = ϕi(s
(n)
k−1, a

(n)
k−1)− ρΦ(πk−1)(i) with

the variance process Vi(n) =
∑n

j=1 E
[
Z2
i (j)|Fj−1

]
, where Fj−1 being the filtration up to the state

action pair (s(j)k−1, a
(j)
k−1). We have,

Vi(n) =

n∑
j=1

E
[
Z2
i (j)|Fj−1

]
=

n∑
j=1

E
(s,a)∼dk−1

[
(ϕi(s, a)− ρΦ(πk−1)(i))

2 |Fj−1

]
=

n∑
j=1

E
(s,a)∼dk−1

[
ϕ2

i (s, a)− 2ϕi(s, a)ρΦ(πk−1)(i) + ρΦ(πk−1)(i)
2|Fj−1

]
≤

n∑
j=1

E
(s,a)∼dk−1

[ϕi(s, a)|Fj−1]− nρΦ(πk−1)(i)
2

= n
(
ρΦ(πk−1)(i)− ρΦ(πk−1)(i)

2
)
≤ nρΦ(πk−1)(i).

The martingale difference sequence Zi(j) satisfies the sub-ψP condition of [52] (see Bennet case in
their Table 3) with constant c = 2. Therefore, by Lemma 13 in [89] with m = ρΦ(πk−1)(i), with
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probability at least 1− δ
2m , for all N ≥ 1.4 log log(2N)+log 10.4m

δ

βϵ2 simultaneously, it holds that

NρΦ(π̂k−1)(i) ≥ NρΦ(πk−1)(i)− 1.44

√
ρΦ(πk−1)(i)N

(
log log 2N +

10.4m

δ

)
− 0.82

(
1.4 log log 2N +

10.4m

δ

)
≥ NρΦ(πk−1)(i)− 1.44

√
ρΦ(πk−1)(i)2N2ϵ2 − 0.82Nβϵ2

≥ NρΦ(πk−1)(i)− 2.26ρΦ(πk−1)(i)Nϵ.

Similarly, with probability at least 1 − δ
2m , for all N ≥ 1.4 log log(2N)+log 10.4m

δ

βϵ2 simultaneously,
it holds that ρΦ(π̂k−1)(i) ≤ ρΦ(πk−1)(i) + 2.26ρΦ(πk−1)(i)Nϵ. A union bound concludes the
proof.

H.1.4 Estimators for B̂k
w,θ

We can directly invoke Lemma 17 in [89] to get guarantees for the estimator B̂k
w,θ(i). In particular,

we obtain the following result.

Lemma 13. Let
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥
∞

≤ ϵ
γ and

∣∣ρΦ(π̂k−1)(i)− ρΦ(πk−1)(i)
∣∣ ≤

2.26ϵρΦ(π̂k−1)(i). Then, it holds that
∣∣∣B̂k

w,θ(i)−Bk
w,θ(i)

∣∣∣ ≤ 38ηϵBk
w,θ(i) ≤ 38ηϵ

β .

Proof. First, we notice that
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥
∞

≤ ϵ
γ implies that δ̂ k

w,θ(i)−δ k
w,θ(i) ≤ ϵ. Therefore,

by Lemma 17 in [89] we get
∣∣∣B̂k

w,θ(i)−Bk
w,θ(i)

∣∣∣ ≤ 38ηϵBk
w,θ(i). Moreover, it holds that

Bk
w,θ(i) =

e−ηδ k
w,θ(i)∑m

i ρϕi
(πk−1)e

−ηδ k
w,θ(i)

≤ e−ηδ k
w,θ(i)

β
∑m

i e−ηδ k
w,θ(i)

≤ 1

β
.

Therefore,∣∣∣B̂k
w,θ(i)−Bk

w,θ(i)
∣∣∣ ≤ 38ηϵ

β
, and B̂k

w,θ(i) ≤ Bk
w,θ(i) (1 + 38ηϵ) ≤ 1

β
(1 + 38ηϵ) .

Corollary 8. Let N1 ≥ max
(
O
(

γ2mD2

βϵ2 log(2/δ)
)
,O
(

γ
√
mD

β3ϵ log(2m/δ)
))

and N2 ≥
1.4 log log(2N2)+log 20.8m

δ

βϵ2 . Then, for χ = O
(

log 2m
δ

βN

)
, and for N ≥ max (N1, N2), with probability

at least 1− δ, it holds that
∣∣∣B̂k

w,θ(i)−Bk
w,θ(i)

∣∣∣ ≤ 38ηϵ
β , for all i ∈ [m].

Proof. By Corollary 5, we have that with N ≥ N1 it holds that
∥∥∥MVk

θ − M̂Vk
θ

∥∥∥
∞

≤ ϵ
γ , with

probability 1 − δ/2. Furthermore, Lemma 12 gives that for N ≥ 1.4 log log(2N)+log 20.8m
δ

βϵ2 , it holds
with probability 1− δ/2 that

∣∣ρΦ(π̂k−1)(i)− ρΦ(πk−1)(i)
∣∣ ≤ 2.26ϵρΦ(π̂k−1)(i), for all i ∈ [m]

simultaneously.

Therefore, a union bound gives that for N ≥ max (N1, N2), with probability 1 − δ, we have that∥∥∥MVk
θ − M̂Vk

θ

∥∥∥
∞

≤ ϵ
γ , and

∣∣ρΦ(π̂k−1)(i)− ρΦ(πk−1)(i)
∣∣ ≤ 2.26ϵρΦ(π̂k−1)(i), for all i ∈ [m].

An application of Lemma 13 concludes the proof.

H.1.5 Estimators for Bk
w,θ(i)Γk(i, j)

We obtain an estimator for Bk
w,θ(i)Γk(i, j) simply as B̂k

w,θ(i)Γ̂k(i, j). The next lemma gives
guarantees for such an estimator.
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Lemma 14. Assume that for any (i, j) ∈ [m]2, it holds that
∣∣∣B̂k

w,θ(i)−Bk
w,θ(i)

∣∣∣ ≤ 38ηϵ
β and∣∣∣Γ̂k(i, j)− Γk(i, j)

∣∣∣ ≤ ϵ. Then,
∣∣∣Bk

w,θ(i)Γk(i, j)− B̂k
w,θ(i)Γ̂k(i, j)

∣∣∣ ≤ ϵ
β (1+ (1+ ϵ)38η), for all

(i, j) ∈ [m]2.

Proof. We have that∣∣∣Bk
w,θ(i)Γk(i, j)− B̂k

w,θ(i)Γ̂k(i, j)
∣∣∣ ≤Bk

w,θ(i)
∣∣∣Γ̂k(i, j)− Γk(i, j)

∣∣∣+ Γ̂k(i, j)
∣∣∣B̂k

w,θ(i)−Bk
w,θ(i)

∣∣∣
≤ 1

β

∣∣∣Γ̂k(i, j)− Γk(i, j)
∣∣∣+ (1 + ϵ)

∣∣∣B̂k
w,θ(i)−Bk

w,θ(i)
∣∣∣

≤ ϵ

β
+ (1 + ϵ)

38ηϵ

β
=
ϵ

β

(
1 + (1 + ϵ)38η

)
,

where we used the bound Γ̂k(i, j) ≤ Γk(i, j) + ϵ ≤ 1 + ϵ.

Lemma 15. For χ = O
(

log m
δ

βN

)
, chooseN ≥ max

(
N1, N2,O

(
m
βϵ2 log(m/δ)

)
,O
(√

m
β3ϵ log(m

2/δ)
))

with N1 and N2 as defined in Corollary 8, then with probability 1 − δ, for all (i, j) ∈ [m]2

simultaneously: ∣∣∣Bk
w,θ(i)Γk(i, j)− B̂k

w,θ(i)Γ̂k(i, j)
∣∣∣ ≤ ϵ

β
(1 + (1 + ϵ)38η).

Proof. By Corollary 8, when χ = O
(

log m
δ

βN

)
, and N ≥ max (N1, N2), it holds with probability at

least 1− δ that ∣∣∣B̂k
w,θ(i)−Bk

w,θ(i)
∣∣∣ ≤ 38ηϵ

β
, for all i ∈ [m].

Moreover, when N ≥ max
(
O
(

m
βϵ2 log(m/δ)

)
,O
(√

m
β3ϵ log(m

2/δ)
))

, by Corollary 7, with prob-

ability at least 1− δ, it holds that
∥∥∥Γk(·, j)− Γ̂k(·, j)

∥∥∥
2
≤ ϵ, for all j ∈ [m] simultaneously.

Finally, a union bound and Lemma 14 give that with probability at least 1 − δ, it holds that∣∣∣Bk
w,θ(i)Γk(i, j)− B̂k

w,θ(i)Γ̂k(i, j)
∣∣∣ ≤ ϵ

β (1 + (1 + ϵ)38η).

H.2 Properties of Stochastic gradients

Lemma 16. Let N ≥ max
(
N1, N2,O

(
m
βϵ2 log(m/δ)

)
,O
(√

m
β3ϵ log(m

2/δ)
))

with N1 and N2

with N1 and N2 as defined in Corollary 8. Then, with probability 1− δ, the following bounds on the
stochastic gradient variance hold simultaneously:∥∥∥∥∥∇̂θGk(w,θ)− E

i
(N+1)
k−1

[
∇̂θGk(w,θ)|FN

]∥∥∥∥∥
∞

≤ 2
(1 + 38ϵη)

β
(2 + ϵ) + 2(1− γ),∥∥∥∥∥∇̂wGk(w,θ)− E

i
(N+1)
k−1

[
∇̂wGk(w,θ)|FN

]∥∥∥∥∥
∞

≤ 2

(
1 +

1 + 38ηϵ

β

)
.

Furthermore, with probability at least 1− δ, the following bounds on the stochastic gradient bias
hold simultaneously:∥∥∥E [∇̂θ,jGk(w,θ)|FN

]
−∇θ,jGk(w,θ)

∥∥∥
1
≤ m

ϵ

β
(γ + 38η (1 + γ(1 + ϵ))) ,∥∥∥∇w,jGk(w,θ)− E

[
∇̂w,jGk(w,θ)|FN

]∥∥∥
1
≤ 38ηϵ

β
.
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Proof. Variance for gradient wrt θ. Recall that by definition of the stochastic gradient we have that

∇̂θ,jGk(w,θ)− (1− γ)ϕj(s
(0)
k−1, a

(0)
k−1) = B̂k

w,θ(i
(N+1)
k−1 )

[
γΓ̂k(i

(N+1)
k−1 , j)− 1{i(N+1)

k−1 = j}
]
.

It then follows that∣∣∣∇̂θGk(w,θ)− (1− γ)ϕj(s
(0)
k−1, a

(0)
k−1)

∣∣∣ ≤γ ∣∣∣B̂k
w,θ(i

(N+1)
k−1 )Γ̂k(i

(N+1)
k−1 , j)

∣∣∣+ ∥∥∥B̂k
w,θ(j)

∥∥∥
∞

Invoking Lemma 15, we have that ifN ≥ max
(
N1, N2,O

(
m
βϵ2 log(m/δ)

)
,O
(√

m
β3ϵ log(m

2/δ)
))

with N1 and N2 as defined in Corollary 8, then with probability 1− δ,∣∣∣B̂k
w,θ(i

(N+1)
k−1 )Γ̂k(i

(N+1)
k−1 , j)

∣∣∣ ≤ 1

β
+
ϵ

β
(1 + 38(1 + ϵ)η) =

1

β
(1 + ϵ(1 + 38(1 + ϵ)η)).

Similarly, by Corollary 8, for N ≥ max (N1, N2), we have that with probability 1− δ,

B̂k
w,θ(i

(N+1)
k−1 ) ≤ Bk

w,θ(i
(N+1)
k−1 ) (1 + 38ηϵ) ≤ 1

β
(1 + 38ηϵ) .

Hence, a union bound gives that with probability 1− δ,∣∣∣∇̂θ,jGk(w,θ)− (1− γ)ϕj(s
(0)
k−1, a

0
k−1)

∣∣∣ ≤ γ
(1 + 38ϵη)

β
(1 + ϵ) +

(1 + 38ϵη)

β
.

This implies that∣∣∣∇̂θ,jGk(w,θ)
∣∣∣ ≤ γ

(1 + 38ϵη)

β
(1 + ϵ) +

(1 + 38ϵη)

β
+ (1− γ).

Therefore, by introducing a filtration FN = σ
(
{(s(n)k−1, a

(n)
k−1, s

′(n)
k−1)}Nn=1

)
, and noticing that B̂k

w,θ

and Γ̂k are FN -measurable, we get∣∣∣∣∣ E
i
(N+1)
k−1

[
∇̂θ,jGk(w,θ)|FN

]∣∣∣∣∣ ≤ E
i
(N+1)
k−1

[∣∣∣∇̂θ,jGk(w,θ)
∣∣∣ |FN

]
≤ γ

(1 + 38ϵη)

β
(1 + ϵ) +

(1 + 38ϵη)

β
+ (1− γ)

At this point, we can simply notice that∣∣∣∣∣∇̂θGk(w,θ)− E
i
(N+1)
k−1

[
∇̂θGk(w,θ)|FN

]∣∣∣∣∣ ≤ 2

[
γ
(1 + 38ϵη)

β
(1 + ϵ) +

(1 + 38ϵη)

β
+ 2(1− γ)

]
≤ 2

(1 + 38ϵη)

β
(2 + ϵ) + 2(1− γ).

Therefore, with probability 1− δ, it holds that∥∥∥∥∥∇̂θGk(w,θ)− E
i
(N+1)
k−1

[
∇̂θGk(w,θ)|FN

]∥∥∥∥∥
∞

≤ 2
(1 + 38ϵη)

β
(2 + ϵ) + 2(1− γ).

Variance for gradient wrt w. Similarly with Corollary 8, we obtain that if N ≥ max (N1, N2),
then with probability at least 1− δ,∥∥∥∇̂wGk(w,θ)

∥∥∥
∞

≤ 1 +
1 + 38ηϵ

β
.

This implies that∥∥∥∥∥∇̂wGk(w,θ)− E
i
(N+1)
k−1

[
∇̂wGk(w,θ)|FN

]∥∥∥∥∥
∞

≤ 2

(
1 +

1 + 38ηϵ

β

)
.
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Bias for gradient wrt θ. By using the unbiased estimator ∇̃θ,jGk(w,θ) in Equation (25), we get∣∣∣∇̃θ,jGk(w,θ)− ∇̂θ,jGk(w,θ)
∣∣∣ ≤ ∣∣∣γ (B̂k

w,θ(i
(N+1)
k−1 )Γ̂k(i

(N+1)
k−1 , j)−Bk

w,θ(i
(N+1)
k−1 )Γk(i

(N+1)
k−1 , j)

)∣∣∣
+
∣∣∣1{i(N+1)

k−1 = j}
(
B̂k

w,θ(i
(N+1)
k−1 )−Bk

w,θ(i
(N+1)
k−1 )

)∣∣∣
≤ γ

∣∣∣B̂k
w,θ(i

(N+1)
k−1 )Γ̂k(i

(N+1)
k−1 , j)−Bk

w,θ(i
(N+1))Γk(i

(N+1)
k−1 , j)

∣∣∣ .
By choosing χ and N as in Lemma 15 and Corollary 8, and by a union bound, we have that with
probability 1− δ,∣∣∣∇̃θ,jGk(w,θ)− ∇̂θ,jGk(w,θ)

∣∣∣ ≤ γ
ϵ

β
(1 + (1 + ϵ)38η) +

38ϵη

β

=
ϵ

β
(γ + 38η (1 + γ(1 + ϵ))) .

Using that ∇̃θ,jGk(w,θ) is an unbiased estimator of ∇θ,jGk(w,θ), we get∣∣∣E [∇̂θ,jGk(w,θ)|FN

]
−∇θ,jGk(w,θ)

∣∣∣ = ∣∣∣E [∇̂θ,jGk(w,θ)− ∇̃θ,jGk(w,θ)
]∣∣∣

≤ E
[∣∣∣∇̂θ,jGk(w,θ)− ∇̃θ,jGk(w,θ)

∣∣∣]
≤ ϵ

β
(γ + 38η (1 + γ(1 + ϵ))) .

Hence, we have that
∥∥∥E [∇̂θ,jGk(w,θ)|FN

]
−∇θ,jGk(w,θ)

∥∥∥
1
≤ m ϵ

β (γ + 38η (1 + γ(1 + ϵ))).

Bias bound for the gradient wrt w. Similarly, we can notice that with probability at least 1− δ, it
holds that∣∣∣∇̃w,jGk(w,θ)− ∇̂w,jGk(w,θ)

∣∣∣ = ∣∣∣1{i(N+1)
k−1 = j}

(
B̂k

w,θ(i
(N+1)
k−1 )−Bk

w,θ(i
(N+1)
k−1 )

)∣∣∣
≤ 38ηϵ

β
.

Since we have only one non-zero element, and by the unbiasedness of ∇̃w,jGk(w,θ), we get∥∥∥∇w,jGk(w,θ)− E
[
∇̂w,jGk(w,θ)|FN

]∥∥∥
1
≤ 38ηϵ

β
.

I Proof of Theorem 2

We first prove a generalization of the Azuma-Hoeffding inequality (Theorem 3.14 in [75]) that holds
when the martingale difference sequence is bounded with high probability but not almost surely.
Lemma 17 (Modified Azuma-Hoeffding). Let {Yi}ni be a martingale difference sequence adapted
to Fi, such that for each i, |Yi| ≤ ci with probability at least 1− δ2. Then, it holds that

P

[
n∑

i=1

Yi ≥ ϵ

]
≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
+ nδ2. (31)

Proof. Define the events Ei = {Yi ≤ ci} and the intersection E = ∩n
i=1{Ei}, and notice that

P [Ec] = P [∪n
i=1{Ec

i }] ≤
∑n

i=1 P [Ec
i ] = nδ2. We then have the following decomposition:

P

[
n∑

i=1

Yi ≥ ϵ

]
= P

[
{

n∑
i=1

Yi ≥ ϵ} ∩ E

]
+ P

[
{

n∑
i=1

Yi ≥ ϵ} ∩ Ec

]

≤ P

[
{

n∑
i=1

Yi ≥ ϵ} ∩ E

]
+ P [Ec]

≤ P

[
n∑

i=1

Yi ≥ ϵ
∣∣E]P [E]︸ ︷︷ ︸

≤1

+nδ2 ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
+ nδ2,
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where in the last step we noticed that under the event E, the martingale difference sequence is
bounded almost surely, therefore we can apply the standard Azuma-Hoeffding inequality.

Corollary 9. Let {Yi}ni be a martingale difference sequence adapted to Fi, such that for each i,
|Yi| ≤ ci with probability at least 1− δ2. Then, with probability 1− δ1 (with δ1 > nδ2), it holds that

n∑
i=1

Yi ≤
√

(
∑n

i=1 c
2
i ) log (1/ (δ1 − nδ2))

2
.

Proof of Theorem 2. We fix a policy evaluation step k ∈ [K], i.e., we study the k-th iteration of the
outer loop of Algorithm 1. Similarly to the proof of Lemma 19 in [89], the biased SGD subroutine
can be seen as an inexact gradient ascent scheme with updates

wk
t+1 = ΠW

(
wk

t + βt(∇wf(w
k
t ,θ

k
t ) + bkw,t + ϵkw,t

)
, (32)

θk
t+1 = ΠΘ

(
θk
t + βt(∇θf(w

k
t ,θ

k
t ) + bkθ,t + ϵkθ,t

)
, (33)

with

ϵkθ,t ≜ ∇̂θGk(w
k
t ,θ

k
t )− E

[
∇̂θGk(w

k
t ,θ

k
t ) | Ft−1

]
, (34)

ϵkw,t ≜ ∇̂wGk(w
k
t ,θ

k
t )− E

[
∇̂wGk(w

k
t ,θ

k
t ) | Ft−1

]
, (35)

bkθ,t ≜ E
[
∇̂θGk(w

k
t ,θ

k
t ) | Ft−1

]
−∇θGk(w

k
t ,θ

k
t ), (36)

bkw,t ≜ E
[
∇̂wGk(w

k
t ,θ

k
t ) | Ft−1

]
−∇wGk(w

k
t ,θ

k
t ). (37)

By Lemma 16, and a union bound, we get that for n(t) ≥
max

{
O
(

γ2mD2

βξ2t
log(Tm

δ ),
)
,O
(

m
βξ2t

log(Tm
δ ),

)}
, with probability at least 1 − δ/2, for

all t = 1, . . . , T simultaneously, it holds that

∥ϵkθ,t∥1 ≤ 2m
(1 + 38ξtη)

β
(2 + ξt) + 2(1− γ) ≤ 6m

β
(1 + 38η) + 2, (38)

∥ϵkw,t∥1 ≤ 2m

(
1 +

1 + 38ηξt
β

)
≤ 2m(1 +

1 + 38η

β
), (39)

∥bkθ,t∥1 ≤ m
ξt
β
(γ + 38η (1 + γ(1 + ξt))) ≤

m

β
(1 + 114β), (40)

∥bkw,t∥1 ≤ 38ηξt
β

≤ 38η

β
, (41)

where we used that {ξt}Tt=1 ∪ {γ} ⊂ (0, 1).

Moreover, by Hölder’s inequality, we get

|
〈
ϵkθ,t,θ

k
t − θ⋆

k

〉
| ≤ ∥ϵkθ,t∥1∥θ

k
t − θ⋆

k∥∞ ≤ 12Dm

β
(1 + 38η) + 2 ≜M1, (42)

|
〈
ϵkw,t,w

k
t −w⋆

k

〉
| ≤ ∥ϵkw,t∥1∥wk

t −w⋆
k∥∞ ≤ 2m(1 +

1 + 38η

β
) ≜M2, (43)

where we used that by the triangle inequality and Proposition 3, it holds that ∥θk
t − θ⋆

k∥∞ ≤
2 1+|log β|

1−γ ≜ 2D. We recall that D ≜
1+log( 1

β )
1−γ ≥ 1.

Since
{
Xk

θ,t ≜
〈
ϵkθ,t,θ

k
t − θ⋆

k

〉}∞

t=1
and

{
Xk

w,t ≜
〈
ϵkw,t,w

k
t −w⋆

k

〉}∞

t=1
are martingale differ-

ences, by using Corollary 9 and a simple union bound, we get that with probability at least 1− δ/2,

−
T∑

t=1

〈
ϵkθ,t,θ

k
t − θ⋆

k

〉
≤ 2M1

√
T log(

16T

δ
), (44)

−
T∑

t=1

〈
ϵkw,t,w

k
t −w⋆

k

〉
≤ 2M2

√
T log(

16T

δ
). (45)
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Furthermore, note that Gk is η + α-smooth with respect to the ∥·∥∞-norm, and so by Lemma 12
in [89], we can bound the ∥·∥1-norm of its gradients. In particular, we have

∥∇θG(wk
t ,θ

k
t )∥1 + ∥∇wG(wk

t ,θ
k
t )∥1 ≤ 2(η + α)(D + 1). (46)

This in turn implies that

∥∇θG(wk
t ,θ

k
t )∥22 + ∥∇wG(wk

t ,θ
k
t )∥22 ≤ 4(η + α)2(D + 1)2. (47)

By smoothness and concavity of the objective Gk, we can apply Lemma 9 in [89]. In particular, by
Equations (38)–(47), a union bound, and by summing over t in the bound of Lemma 9 in [89], we
have the following guarantee for our inexact gradient scheme:

If n(t) ≥ max
{
O
(

γ2mD2

βξ2t
log(Tm

δ ),
)
,O
(

m
βξ2t

log(Tm
δ ),

)}
, and βt ≤ 2

α+η , then with probability
at least 1− δ, it holds that

T∑
t=1

(
Gk(w

⋆
k,θ

⋆
k)− Gk(w

k
t ,θ

k
t )
)

(48)

≤
T∑

t=1

∥wk
t −w⋆

k∥22 + ∥wk
t+1 −w⋆

k∥22
2βt

+

T∑
t=1

∥θk
t − θ⋆

k∥22 + ∥θk
t+1 − θ⋆

k∥22
2βt

(49)

+ 2

T∑
t=1

βt

(
∥∇θG(wk

t ,θ
k
t )∥22 + ∥∇wG(wk

t ,θ
k
t )∥22

)
(50)

+ 5

T∑
t=1

βt
(
∥bkw,t∥22 + ∥bkθ,t∥22 + ∥ϵkw,t∥22 + ∥ϵkθ,t∥22

)
(51)

+

T∑
t=1

(
∥bkw,t∥1 + ∥bkθ,t∥1

)
max{∥wk

t −w⋆
k∥∞, ∥θ

k
t − θ⋆

k∥∞} (52)

−
T∑

t=1

〈
ϵkθ,t,θ

k
t − θ⋆

k

〉
−

T∑
t=1

〈
ϵkw,t,w

k
t −w⋆

k

〉
(53)

≤
T∑

t=1

∥wk
t −w⋆

k∥22 + ∥wk
t+1 −w⋆

k∥22
2βt

+

T∑
t=1

∥θk
t − θ⋆

k∥22 + ∥θk
t+1 − θ⋆

k∥22
2βt

(54)

+

T∑
t=1

(
βtL1 + 2DL2ξt

)
+ 2(M1 +M2)

√
T log(

16T

δ
), (55)

where

L1 = O
(
(η + α)2D2 +

max{η, 1}2m2

β2

)
, (56)

L2 = O
(η +m

β

)
, (57)

M1 = O
(max{η, 1}m

β

)
, (58)

M2 = O
(max{η, 1}Dm

β

)
, (59)

(60)

We choose βt = L√
t
, for some constant L. Then a telescoping sum gives

T∑
t=1

(∥wk
t −w⋆

k∥22 + ∥wk
t+1 −w⋆

k∥22
2βt

+
∥θk

t − θ⋆
k∥22 + ∥θk

t+1 − θ⋆
k∥22

2βt

)
≤ 1

2L
(D2 + 1)

√
T .

(61)
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Moreover,
∑T

t=1 βtL1 ≤ 2L1L
√
T . By combining this inequality with Equations (55) and (61), we

get that
T∑

t=1

(
Gk(w

⋆
k,θ

⋆
k)− Gk(w

k
t ,θ

k
t )
)
≤ 1

2L
(D2 + 1)

√
T + 2L1L

√
T + 2DL2

T∑
t=1

ξt (62)

+ 2(M1 +M2)

√
T log(

16T

δ
) (63)

The optimal choice for L is L =
√
1+D2

2
√
L1

. In addition, by setting ξt =
√

L1

t , we conclude that

T∑
t=1

(
Gk(w

⋆
k,θ

⋆
k)− Gk(w

k
t ,θ

k
t )
)
≤ 4max

{√
1 +D2, 2DL2

}√
L1

√
T (64)

+ 2(M1 +M2)

√
T log(

16T

δ
). (65)

Therefore, by combining Equations (56)–(59) and Equation (64), and by Jensen’s inequality, we
get that if n(t) ≥ max

(
O
(

γ2mDt
(η+α)2β log Tm

δ

)
,O
(

mt
β log Tm

δ

))
, and βt = O( 1√

t
), then, with

probability at least 1− δ, it holds that Gk(w
⋆
k,θ

⋆
k)− Gk(wk,θk) ≤ O

(
max{η,1}mD

β
√
T

)
.

I.1 Proof of Corollary 1

Proof of Corollary 1. We plug the upper bound for ϵk given by Theorem 2 in the error propagation
analysis of Theorem 1. In particular, from Theorem 1, with probability at least 1− δ1, it holds that

dC(π̂, πE) ≤
1

K

(D(λ∗||ΦTd0)

η
+
H(d∗||d0)

α
+ C(η, α)

∑
k

√
ϵk +

∑
k

ϵk

)
+ ε.

where we replaced we made explicit the fact the constant (wrt to K and T ) C depends on α and
η (See Theorem 1 for the exact expression). By plugging in the bound for ϵk given by Theorem 2,
and a union bound, we get that and if we use n(t) ≥ max

(
O
(

γ2mDt
β log Tm

δ2

)
,O
(

mt
β log Tm

δ2

))
samples per iteration, then with probability at least 1− δ1 − δ2, it holds that

dC(π̂, πE) ≤
1

K

(
D(λ∗||ΦTd0)

η
+
H(d∗||d0)

α
+ C(η, α)

∑
k

O

(√
ηmD

β
√
T

)
+
∑
k

O
(
ηmD

β
√
T

))
+ε.

Setting η = α = 1, letting C1 ≜ C(1, 1) and keeping only the dominant terms, we obtain

dC(π̂, πE) ≤
D(λ∗||ΦTd0) +H(d∗||d0)

K
+O

(
C1

mD

β 4
√
T

)
+ ε

Then, choosing K = D(λ∗||ΦTd0)+H(d∗||d0)
ϵ and T = Ω

(
m4D4

β4C4
1ϵ

4

)
, we can ensure that dC(π̂, πE) ≤

ϵ + ε. The overall sample complexity is Kn(T ) = Ω (KT ) = Ω
(
ϵ−5
)
. Notice that the corollary

improves upon the sample complexity bound of Ω
(
ϵ−8
)

derived in [89].

J Offline imitation learning version

Inspecting Equation (5), one can notice that estimating the empirical logistic Bellman evaluation
objective Gk or its gradients requires sampling from dk−1. Hence, the algorithm needs interactions
with the environment at every iteration k. It is possible to alleviate this requirement, changing the
center point for the relative entropy. This is akin to smoothing [82] choosing a convenient center
point. In particular, we replace Equation (2) with the following update:

(λ1,d1) = argmin
λ∈∆[m],d∈∆S×A

〈
y⋆,A

[
λ
d

]
+ b̂

〉
+

1

η
D(λ||Φ⊺µπE

) +
1

α
H(d||d0). (66)
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Algorithm 3 Offline Proximal Point Imitation Learning (OP2IL)

Input: Feature matrix Φ, number of iterations K, step sizes η, α, and β
Input: Expert demonstrations DnE,H

E
◦ Initialize π0 as uniform distribution over A, and set w0 = 1

m1
◦ Compute the empirical FEV ρ̂Φ(πE) using expert demonstrations
◦ Sample {(s(n), a(n), s′(n))}Nn=1 with s(n), a(n) sampled i.i.d. from µπE

and s′(n) ∼
P (·|s(n), a(n)) and compute the empirical offline logistic Bellman error by

Ĝ(w,θ) = −⟨ρΦ(π̂E),w⟩ − 1

η
log

(
1

N

N∑
n=1

e−ηδ̂w,θ(s
(n),a(n),s′(n))

)
+ (1− γ) ⟨ν0, Vθ⟩

// policy evaluation & cost update
◦ Find an approximate maximizer of the negative empirical logistic Bellman error

(w1,θ1) ≈ argmaxw,θĜ(w,θ)

// policy improvement
Policy update:

πd1
(a|s) ∝ πd0

(a|s) e−αQθ1
(s,a)

Output: Policy πd1

Note that we have removed the iteration index k, since the offline version does not require to iteratively
collect new samples from the environment. Changing the reference distribution from Φ⊺dk to Φ⊺µπE
gives Algorithm 3. In this case, the logistic Bellman evaluation objective takes the form

G(w,θ) ≜ −1

η
log

m∑
i=1

(Φ⊺µπE
)(i)e−ηδw,θ(i) + (1− γ) ⟨ν0,Vθ⟩ − ⟨ρΦ(π̂E),w⟩ , (67)

The difference with the online variant is that in the first term we have the expert occupancy measure
instead of the occupancy measure induced by the current policy. We describe the corresponding
empirical estimate in Algorithm 3. Furthermore, we suppress the index k, since the offline algorithm
does not require multiple iterations.

J.1 Theoretical guarantees for the offline case

With minor modifications of the error propagation analysis given in Theorem 1, one can prove the
following result.
Theorem 4. Under the same assumptions as in Theorem 1, and by choosing α =(

2H(d⋆||d0)
3wmax

√
1−γ
2ϵ

)2/3

, we obtain

dC(πE, πd1
)− dC(πE, πd⋆) ≤

D(λ⋆||Φ⊺µπE
)

η
+

(
243H(d⋆||d0)w

2
max

2(1− γ)

)1/3

ϵ
1/3
1 + ϵ1 + ε. (68)

where ϵ1 is the error in the maximization of the logistic Bellman error, i.e. ϵ = maxw∈W,θ G(w,θ)−
G(w1,θ1) and ε is the error in estimating the expert feature expectation vector as in Lemma 6.

Proof. Following exactly the same steps in the proof of Theorem 1 for the special case of K = 1, we
get

dC(πE , πd1
)−dC(πE , πd⋆) ≤

D(λ⋆||Φ⊺µπE
)

η
+
H(d⋆||d0)

α
+3wmax ∥d1 − d⋆

1∥1+ϵ1+ε. (69)

By using the bound ∥d1 − d⋆
1∥1 ≤

√
2αϵ1
1−γ , we have

dC(πE , πd1
)− dC(πE , πd⋆) ≤

D(λ⋆||Φ⊺µπE
)

η
+
H(d⋆||d0)

α
+ 3wmax

√
2αϵ1
1− γ

+ ϵ1 + ε. (70)
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Therefore, by choosing α as stated in the theorem we conclude the proof.

Notice that if the expert is nearly optimal, the step size η can be taken small, ensuring low bias in the
gradients. This allows to use the original empirical logistic Bellman error analysis, proposed in [14],
where one can control the bias by choosing η appropriately small. To this end, we need to relate the
logistic bellman error in the feature space to the one in the state-action space. As we will show, this
introduces an additional bias of order O(η). The statement is made precise in Theorem 5. Thanks to

this result and Theorem 2 in [14], we have that ϵ ≤ (8 + e)ηB2 + 56
√

m log (1+4BN)δ
N where N is

the number of expert transitions in the dataset. We have the following result.

Corollary 10. Let C1 =
(

243H(d⋆||d0)w
2
max

2(1−γ)

)1/3
, η = O

(
D(λ⋆||Φ⊺µπE

)3/4

(C1B)1/4

)
and N =

Õ(mϵ−6 log (1/δ)). Then, with probability 1− δ, it holds that

dC(πE, πd1)− dC(πE, πd⋆) ≤ O
(
C

1/4
1 B1/4D(λ⋆||Φ⊺µπE

)1/4
)
+O(ϵ). (71)

Remark 2. We notice that the optimal choice of η is smaller as the expert is closely optimal, i.e.
D(λ⋆||Φ⊺µπE

) is small. In this condition, we can use the empirical objective estimator proposed
in[14] ensuring small bias. This means that estimating the objective from sample is feasible in the
offline setting. It is still an open question if this is viable for the online setting improving the error
propagation analysis.

Next, we present an important result showing that it is possible to replace the minimization of G, with
its counterpart in the state-action space defined as

GS,A(θ,w) = −1

η
log
∑
s,a

µπE
(s, a)e−ηδSA

w,θ(s,a) + (1− γ) ⟨ν0,Vθ⟩ − ⟨ρΦ(π̂E),w⟩ ,

where we introduced δS,A
w,θ = Φδw,θ.

Theorem 5. Let B ≜ 1 + 2 1+|log β|
1−γ . Suppose η is chosen such that ηB ≤ 1. Then, it holds that∣∣G(θ,w)− GS,A(θ,w)

∣∣ ≤ eηB2.

Proof. From Proposition 3, we have that ∥θ∥∞ ≤ 1+|log β|
1−γ and ∥Vθ∥∞ ≤ 1+|log β|

1−γ , for all θ ∈ Rm.
It follows that for any (w,θ) ∈ W × Rm, it holds that ∥δθ,w∥∞ = ∥w + γMVθ − θ∥∞ ≤
1 + 2 1+|log β|

1−γ = B. Hence, it holds that η ∥δθ,w∥∞ ≤ ηB ≤ 1. First, we recall the assumption that
the rows of Φ are probability distributions, i.e., ϕ(s, a) ∈ ∆[m], for all (s, a). We then have

δS,A
w,θ (s, a) = (Φδw,θ)(s, a) =

m∑
i=1

ϕi(s, a)δw,θ(i) = E
i∼ϕ(s,a)

[δw,θ(i)] . (72)

Moreover, we have

G(w,θ)− GS,A(w,θ) = − 1

η
log

(
m∑
i=1

(Φ⊺µπE
)(i)e−ηδw,θ(i)

)
︸ ︷︷ ︸

≜W

+
1

η
log

(∑
s,a

µπE
(s, a)e−ηδSA

w,θ(s,a)

)
︸ ︷︷ ︸

≜WS,A

We can then lower bound W as

W =
1

η
log

(
m∑
i=1

∑
s,a

ϕi(s, a)µπE
(s, a)e−ηδw,θ(i)

)

=
1

η
log

(
E

(s,a)∼µπE

[
E

i∼ϕ(s,a)

[
e−ηδw,θ(i)

]])

≥ 1

η
log

(
E

(s,a)∼µπE

[
e
−η E

i∼ϕ(s,a)
[δw,θ(i)]

])
,

=WS,A,
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where the inequality follows by Jensen’s inequality for expectations.

We will now upper bound the term W . Thanks to the choice of η such that ηB ≤ 1, we have
that η ≤ 1

B ≤ 1
|δw,θ(i)| , for all i. Therefore, we can apply the inequality ex ≤ 1 + x + x2 for

x = −ηδSA
w,θ(i) ≤ 1 and obtain

E
i∼ϕ(s,a)

[
e−ηδw,θ(i)

]
≤ E

i∼ϕ(s,a)

[
1− ηδw,θ(i) + (ηδw,θ(i))

2
]

≤ 1− E
i∼ϕ(s,a)

[ηδw,θ(i)] + (ηB)2

= 1− ηδSA
w,θ(s, a) + (ηB)2

≤ e−ηδSA
w,θ(s,a) + (ηB)2,

where in the third line we used Equation (72), and in the last line we used the inequality 1− x ≤ e−x

for x = δSA
w,θ(s, a). By taking expectations with respect to µπE

and logarithms on both sides, we get

WSA ≤W ≤ 1

η
log E

(s,a)∼µπE

[
e−ηδSA

w,θ(s,a) + (ηB)2
]
.

Subtracting W yields

0 ≤W −WSA ≤ 1

η
log E

(s,a)∼µπE

[
e−ηδSA

w,θ(s,a) + (ηB)2
]
−WSA

=
1

η
log

1 +
(ηB)2

E
(s,a)∼µπE

[
e−ηδSA

w,θ(s,a)
]


≤ ηB2

E
(s,a)∼µπE

[
e−ηδSA

w,θ(s,a)
]

≤ ηB2

E
(s,a)∼µπE

[e−ηB ]

≤ eηB2,

where in the third line we used the inequality log(1 + x) ≤ x for x = (ηB)2

E
(s,a)∼µπE

[
e
−ηδSA

w,θ
(s,a)

] , while

in the last line we used that ηB ≤ 1. This concludes the proof.

After having established with Theorem 5 that GS,A can be used as biased estimate of G, we can
proceed as in [14]. In particular, we maximize the empirical objective Ĝ (see Algorithm 3) that is a
biased estimate of GS,A ([14, Theorem 2]). Then, we compute unbiased gradients of Ĝ, recurring to
the Donsker-Varadhan formula [18, Corollary 4.15] that implies the following result.

Theorem 6. Given a batch of expert data {S̃n, Ãn, S̃
′
n}Nn=1 ∼ µπE

×P, the following is true:

max
θ

max
w

Ĝ(θ, w) = max
θ

max
w

min
z

S(θ, w, z) (73)

with:

S(θ, w, z) =− 1

N

N∑
n=1

µπE
(S̃n, Ãn)

m∑
i=1

wiϕi(S̃n, Ãn) (74)

+
1

N

N∑
n=1

z(n)

(
δ̂w,θ(S̃n, Ãn, S̃

′
n) +

1

η
log(Nz(n))

)
(75)

+ (1− γ)⟨ν0,Vθ⟩ (76)

and the minimum attained at z⋆ ∝ 1
N e

−ηδ̂w,θ(S̃n,Ãn,S̃
′
n)
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Hence, in the deep learning implementation we update the cost and the value networks backpropagat-
ing through S(θ,w, z⋆).

J.2 Practical implementation

We test a practical relaxation of Algorithm 3 that uses two separate neural networks for cost and
value function approximation. We use a two layers neural network with 128 units per layer with ReLu
activation for the CartPole-v1 environment. Whereas, for Acrobot-v1 and LunarLander-v2 we
used a 3 layers architecture with 64 units per layer.

K Mirror Descent versus Proximal Point

To highlight an important message of our work, in this section, we briefly discuss a mirror descent
scheme with alternating updates, and we compare it to our proximal point algorithm in Figure 3. Note
that in contrast to the classical RL setting, where proximal point and mirror descent coincide because
of the linear objective, in imitation learning this is not the case.

The updates for the mirror descent scheme involve alternation between updating the occupancy
measure dk and the feature expectation vector λk in one stage and the cost weights in a second stage.
That is,

(λk,dk) = argmin
(λ,d)∈MΦ

⟨µ, cwk
⟩+ 1

ηD(λ||Φ⊺dk−1) +
1
αH(d||dk−1), (77)

wk+1 = argmin
w∈∆[m]

〈
µπE

− dk, cw
〉
+ 1

βD(w||wk). (78)

One can notice that the update in Equation (77) corresponds to one update of Logistic Q-Learning
[14]. Therefore, it can be implemented by maximizing the negative logistic Bellman error that is
now a function only of the variable θ and not of both (θ,w) as in PPM. The next proposition is the
counterpart of Proposition 2 for the mirror descent scheme.

Proposition 5. For a parameter θ ∈ Rm, we define the state-action logistic value function Qθ ∈
R|S||A| by Qθ ≜ Φθ, and the k-step state logistic value function Vk

θ ∈ R|S| by

V k
θ (s) ≜ − 1

α
log

(∑
a

πdk−1
(a|s)e−αQθ(s,a)

)
.

Moreover, for a fixed cost c = cw, we define the k-step Bellman error function δkθ,w by δkθ,w ≜
w + γMVk

θ − θ. Then, the unique solution of the aforementioned problem is given by

λk(i) ∝ (Φ⊺dk−1)(i) e
−ηδkθk,wk

(i), (79)

πdk
(a|s) ∝ πdk−1

(a|s) e−αQθk
(s,a), (80)

wk+1,i ∝ wk,i e
−β⟨ϕi ,µπE

−dk⟩, (81)

where θk is the maximizer of the negative k-step logistic Bellman error function

Gk(θ) ≜ −1

η
log

m∑
i=1

(Φ⊺dk−1)(i)e
−ηδkθ,wk

(i) + (1− γ)
〈
ν0,V

k
θ

〉
.

Proposition 5 leads to an actor critic scheme that has three separate and alternating updates: (i) policy
update stage, (ii) policy evaluation update, and (iii) cost weights update. Similar actor critic-schemes
for different MDP models, and different policy evaluation objectives (e.g., minimizing the squared
Bellman error) have been also proposed in [122, 70, 105]. Contrary to these schemes, in our proximal
imitation learning algorithm, the policy evaluation step involves optimization of a single objective
over both cost and Q-functions. In this way, we avoid instability or poor convergence in optimization
due to nested policy evaluation and cost update steps. In section L.5, we verify numerically that PPM
outperforms Mirror Descent in simple tabular environments (see Figure 3).
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L Experimental Details

L.1 Refereences for environments description

In the tabular case we used the environments (DoubleChain [39], SingleChain [39], RiverSwim
[108], WideTree [8], Two States Deterministic [9], Two States Stochastic [14] and
WindyGrid [110]). While for the offline setting, we used the environments CartPole [12], Acrobot
[42] and LunarLander [19]. The curves are averaged over 50 seeds. For the environments Cartpole
and Acrobot, we used a three layer neural network to approximate the value function. In these cases
we averaged 5 seeds.

L.2 Hyperparameters

We report the hyperparameters for the tabular online experiments in Table 1 and for the offline
experiments in Table 2

Environment n-trajs lr w lr θ η α optimizer

TwoStateStochastic-v0 25 0.5 0.5 10 1 FoRB
TwoStateStochastic-v0 25 0.5 0.5 10 1 Adam

WideTree-v0 25 0.5 0.5 10 1 FoRB
RiverSwim-v0 50 0.2 0.2 10 1 FoRB
WindyGrid-v0 50 0.5 0.01 10 1 FoRB

SingleChainProblem-v0 50 0.3 0.005 10 1 Adam
DoubleChainProblem-v0 50 0.5 0.005 10 1 Adam

Table 1: Hyperparameters for proximal point imitation learning in tabular experiments. FoRB stands
for Forward Reflected Backward [72].

Environment lr w lr θ η α optimizer

CartPole-v1 5e− 3 5e− 3 10 1 Adam
Acrobot-v1 5e− 3 5e− 3 10 1 Adam

LunarLander-v2 1e− 4 1e− 4 10 0.01 Adam

Table 2: Hyperparameters for offline experiments

Environment n-trajs lr w lr θ η α

TwoStateStochastic-v0 25 0.5 0.5 10 1
TwoStateProblem-v0 25 0.5 0.5 10 1

WideTree-v0 25 0.5 0.5 10 1
RiverSwim-v0 25 0.5 0.01 10 1
WindyGrid-v0 50 0.5 0.0006 10 1

SingleChainProblem-v0 50 0.03 0.05 10 1
DoubleChainProblem-v0 50 0.03 0.025 10 1

Table 3: Hyperparameters for primal dual mirror descent imitation learning in tabular experiments.
As optimizer, we used OGD in all cases.

L.3 On the data sampling

In all the experiments, we perform a relaxation of our theoretical scheme. In particular, to increase the
sample efficiency we sample state action pairs from the Markovian stream of experience. Analyzing
this setting is an open problem.
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Figure 3: Proximal Point vs Mirror Descent. Comparison of proximal point and mirror descent in
tabular domains. Averages of 10 seeds.

L.4 Offline experiments setting

We consider a training environment and a test environment with different random seeds. We train
both IQLearn and Proximal Point for 2e5 environment steps and we evaluate the policy running 10
episodes on the evaluation environment every 1e3 steps. We report the maximum evaluation result
achieved at the end of training. We average the seeds from 0 to 10 for the results shown in Figure 2.
We use two separate instances of the same architecture as function approximation for the Q-values
and cost respectively. Finally, since the algorithm operates offline it has no access to the distribution
ν0. In order to approximate the term ⟨ν0,V⟩, we use the Bellman flow constraints and the fact that
the expert occupancy measure is feasible, i.e. (1− γ) ⟨ν0,V⟩ =

〈
µπE

,−γPV +BV
〉

where the
last term can be estimated from the expert samples.

L.5 Comparison with mirror descent

We designed also a mirror descent scheme with alternating updates for imitation learning, briefly
described in Appendix K. The best hyperparameters are given in Table 3. Furthermore, we show a
comparison with our proximal point scheme in Figure 3. It is interesting to notice that mirror descent
and proximal point have been used interchangeably in the RL literature. Indeed, in that case the
objective is linear therefore the two algorithms coincide. However, when considering the max-form
objective in imitation learning the equivalence between mirror descent and proximal point does not
longer hold true. We verify numerically that PPM outperforms mirror descent in simple tabular
environments (see Figure 3).

L.6 Hyperparameters for Pong (Atari)

We use a convolutional neural network to learn the Q values instead of the linear function approxi-
mation class we considered in the theoretical analysis. We set the parameter α to 1e − 3 and η to
8e− 2, we used expert samples to approximate expectation with respect to the initial distribution. For
optimizing the network we used Adam [61] with learning rate 1e− 4 and defaults value for β1, β2
Instead of hard constraints on the euclidean norm of the elements of W we consider a ℓ2 penalty
to the loss function. As expert trajectories we used the dataset released by [40]. This is the only
hyperparameters configuration we tried using a single seed (using the seed 0) on our method because
of the high computation requirements of this environment.
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Figure 4: Experiments in the MuJoCo environments with the expert data provided by [40]. The blue
line is proximal point while the yellow line is IQLearn.

L.7 Hyperparameters for MuJoCo (continuous control)

The policy network outputs a distribution over continuous action and is parametrized by independent
gaussian distributions for every component of the continuous action vector. We use a three layer
neural network to estimate their means and variances. We used as center point in the divergence
D the expert feature expectation vector. With further modifications our method can extend also
to continuous control tasks in MuJoCo [113]. The main challenge is that the policy improvement
step can not be computed in closed form. We therefore approximate it with a SAC architecture as
proposed in [40]. We set α to 1e − 3, η to 8e − 2, the SAC actor learning rate to 3e − 5 using
Adam as optimizer using default values of β1, β2,for the critic we used again Adam with learning
rate 3e− 4 and default values for β1, β2. The actor training of SAC is performed using a transition
buffer containing expert and learner data in equal proportion. We used samples from the expert policy
to estimate expectations wrt the initial distribution. We avoid using target networks. We tested our
algorithm on both the environment Ant and HalfCheetah using either the data provided in [40] or
fresh expert data that we generated training experts with PPO [101]. The results are averaged across
5 seeds. For Hopper, we used a larger SAC actor learning rate equal to 2e− 4 and α = 1e− 2. In
addition, we notice that for this environment having a large β1 in Adam was harmful. Hence, we
used β1 = 0.

For Walker, we set the actor learning to 1e− 4.

L.8 Acknowledging existing assets and license.

We built on the code and expert data provided in [40]. They are open sourced for academic scope
according to their GitHub page https://github.com/Div99/IQ-Learn/blob/main/LICENSE.
md.

L.9 On the importance of the dataset

We observed that the performance of our imitation learning algorithm and IQ-Learn can be affected
by the choice of the expert data. In particular, in Appendix L.9, we show that IQ-Learn works better
with the expert data provided in [40].

L.10 Hardware

We ran the experiments on our internal cluster.

M Recovered Costs

A unique algorithmic feature of the proposed methodology is that we can explicitly recover a cost
along with the Q-function without requiring adversarial training. In Figure 5, we visualize our
recovered costs in a simple 5x5 Gridworld. Most importantly, we verify that the recovered costs
induce nearly optimal policies w.r.t. the unknown true cost function. Compared to IQ-Learn [40], we
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do not require knowledge or further interaction with the environment. Therefore, the recovered cost
functions show promising transfer capability to new dynamics.
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Figure 5: Recovered Costs in Gridworld. Comparison between the true cost ctrue and the cost
cK recovered by P2IL. We notice that the optimal value functions V ⋆

ctrue
and V ⋆

cK
present the same

pattern. Hence, the optimal policy with respect to cK is nearly optimal with respect to ctrue.

Cost Transfer Setting. We experimented with a transfer cost setting on a Gridworld (Figure 6).
We consider two different Gridworld MDP environments, say M and M̃ , with opposite action effects.
This means that action Down in M̃ corresponds to action Left in M and vice versa. Similarly, the
effects of Up and Right are swapped between M̃ and M . We denote by Vπ

M̃,ctrue
(resp. V⋆

M̃,ctrue
)

the value function of policy π (resp. optimal value function) in the MDP environment M̃ with cost
function ctrue. Moreover, we denote by π⋆

M,c the optimal policy in the MDP environment M under
cost function c. Figure (a) gives the corresponding optimal value function. Figure (b) presents the
value function of the expert policy πE = π⋆

M,ctrue
used as target by P2IL. Figure (d) shows the value

function of the learned imitating policy πK from P2IL. Finally, Figure (b) depicts the value function
of the optimal policy π⋆

M̃,cK
for the environment M̃ endowed with the recovered cost function cK by

P2IL (with access to samples from M ). We conclude that the policy π⋆
M̃,cK

is optimal in M̃ with

cost ctrue. By contrast, the expert policy πE = π⋆
M,ctrue

used as target by P2IL performs poorly and
as a consequence also the imitating policy πK does so. All in all, we notice that the recovered cost
induces an optimal policy for the new dynamics while the imitating policy fails. Albeit, cost transfer
is successful in this experiment we do not expect this fact to be true in general because we do not
tackle the issue of cost shaping [87].
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Figure 6: Cost Transfer Experiment in Gridworld. We compare the performance of several
policies in the new MDP environment M̃ with cost function ctrue. We notice that the recovered cost
induces an optimal policy for the new dynamics while the imitating policy fails.
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Figure 7: Recovered Costs. Comparison between the true cost ctrue and the cost cK recovered by
P2IL. We notice that the optimal value functions V ⋆

ctrue
and V ⋆
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present the same pattern. Hence, the

optimal policy with respect to cK is nearly optimal with respect to ctrue.

M.1 Preliminary theoretical arguments

We have some preliminary theoretical arguments justifying the near optimality of the recovered
costs/rewards. We present briefly the reasoning.

For brevity, we consider the case W = Bm
1 . Then πE is optimal for the IL problem. Moreover, for

simplicity, we consider the case Φ = I. Otherwise, in the following derivations, we replace Q-values
by parameterized Qθ.

Let (ŵK , Q̂K) be the output (average iterate) of P2IL after K outer loop iterations. We give a sketch
of proof that ŵK converges to an optimal solution to the inverse problem as K → ∞, i.e., ŵK
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converges to some wA ∈ W such that πE is optimal for cwA . To this end, we first introduce the
following definition.
Definition 1. We say that w ∈ W is ε1-optimal and ε2-feasible for the (Dual) program if-f there
exists V ∈ R|S|, such that

⟨µπE
, cw⟩ − (1− γ)⟨ν0,V⟩ ≤ ε1, (82)

cw − (B− γP)V ≥ −ε21. (83)

In this case, V ∈ R|S| is called a certificate.

Note that the definition of ε1-optimality for the (Dual) program follows from the fact that the
dual optimal value is ζ⋆ = 0. Moreover, in the definition of ε2-feasibility we have relaxed the
nonnegativity constraint in the dual program (Dual). We make the following conjecture.

Conjecture: For a sufficiently large number of samples N = O
(

poly
(
1
ε , log(

1
δ

)
,m)

)
, with proba-

bility at least 1− δ, the output cost weight ŵK is ε-optimal and ε-feasible for the (Dual) program,
with certificate the corresponding logistic value function VQ̂K

.

This is easy to show for the exact PPM updates, since (dπ̂K
,dπ̂K

, ŵK ,VQ̂K
, Q̂K) is a saddle-point

of the (SPP). The proof needs much more effort for the inexact updates used in the sampling-based
algorithm.
Lemma 18. Assume that w̃ is ε1-optimal and ε2-feasible for the (Dual) program. Then, πE is
(ε1 + ε2)-optimal for cw̃.

Proof. There exists Ṽ ∈ R|S|, such that

⟨µπE
, cw̃⟩ − (1− γ)⟨ν0, Ṽ⟩ ≤ ε1, (84)

cw̃ − (B− γP)Ṽ ≥ −ε21. (85)

Let π̃ be an optimal policy for cw̃. Then, we have that〈
µπ̃, cw̃ − (B− γP)Ṽ

〉
≥ −ε2⟨µπ̃,1⟩ = −ε2.

By using that (B− γP)Tµπ̃ = (1− γ)ν0, we equivalently that

⟨µπ̃, cw̃⟩ − (1− γ)⟨ν0, Ṽ⟩ ≥ −ε2.
Therefore,

⟨µE, cw̃⟩ ≤ (1− γ)⟨ν0, Ṽ⟩+ ε1 ≤ ⟨µπ̃, cw̃⟩+ ε1 + ε2.

Thus, πE is (ε1 + ε2)-optimal for cw̃.

Claim: As K → ∞ one may approach as closely as desired an optimal solution to the inverse
problem.

Proof for the ideal PPM updates. We recall that by Proposition 4, the set of such solutions is charac-
terized as the set of w-optimizers to (Dual).

Let V̂K = VQ̂K
. By the conjecture, for all K, we have

⟨µπE
, cŵK

⟩ − (1− γ)⟨ν0, V̂K⟩ ≤ εK , (86)

cŵK
− (B− γP)V̂K ≥ −εK1, (87)

for some sequence {εK}∞K=1 such that limK→∞ εK = 0. The sequence {ŵK}∞K=1 ⊂ W is bounded
and so there exists a subsequence {ŵKl

}∞l=1, such that liml→∞ ŵKl
= wA, for some wA ∈ W .

Similarly, by Proposition 3 the sequence {V̂Kl
}∞l=1 is bounded and so there exists a subsequence

{V̂Kln
}∞n=1, such that limn→∞ V̂Kln

= VA, for some VA. By Equations(86)–(87), we have that
for all n ∈ N,

⟨µπE
, cŵKln

⟩ − (1− γ)⟨ν0, V̂Kln
⟩ ≤ εKln

, (88)

cŵKln
− (B− γP)V̂Kln

≥ −εKln
1. (89)
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Taking n→ ∞, we end up that

⟨µπE
, cwA⟩ − (1− γ)⟨ν0,VA⟩ ≤ 0, (90)

cwA − (B− γP)VA ≥ 0. (91)

Equivalently,

⟨µπE
, cwA⟩ − (1− γ)⟨ν0,VA⟩ = 0, (92)

cwA − (B− γP)VA ≥ 0. (93)

Therefore, by Proposition 4, πE is optimal for cwA .
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