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Abstract

Federated Learning (FL) enables collaborative model training across dis-
tributed devices while preserving data privacy. Nonetheless, the heterogene-
ity of edge devices often leads to inconsistent performance of the globally
trained models, resulting in unfair outcomes among users. Existing feder-
ated fairness algorithms strive to enhance fairness but often fall short in
maintaining the overall performance of the global model, typically measured
by the average accuracy across all clients. To address this issue, we propose
a novel algorithm that leverages entropy-based aggregation combined with
model and gradient alignments to simultaneously optimize fairness and
global model performance. Our method employs a bi-level optimization
framework, where we derive an analytic solution to the aggregation proba-
bility in the inner loop, making the optimization process computationally
efficient. Additionally, we introduce an innovative alignment update and
an adaptive strategy in the outer loop to further balance global model’s
performance and fairness. Theoretical analysis indicates that our approach
guarantees convergence even in non-convex FL settings and demonstrates
significant fairness improvements in generalized regression and strongly con-
vex models. Empirically, our approach surpasses state-of-the-art federated
fairness algorithms, ensuring consistent performance among clients while
improving the overall performance of the global model.

1 Introduction

Federated Learning (FL) is a distributed learning paradigm that allows clients to collaborate
with a central server to train a model (McMahan et al., 2017). To learn models without
transferring data, clients process data locally and only periodically transmit model updates
to the server, aggregating these updates into a global model. Due to data heterogeneity,
intermittent client participation, and system heterogeneity, even the well-trained global model
will perform better on some clients than others, which leads to performance unfairness (Shi
et al., 2021). Achieving fairness is vital to prevent problems like performance discrimination,
client disengagement, and legal and ethical concerns (Caton & Haas, 2020).

To address performance unfairness and ensure consistent performance in FL, several ap-
proaches have been explored with promising results (Li et al., 2019a; Kanaparthy et al.,
2022; Zhao & Joshi, 2022; Kanaparthy et al., 2022; Pan et al., 2023; Papadaki et al., 2022).
However, these methods often suffer from slow convergence and high communication and
computation overheads (Wang et al., 2021; Huang et al., 2022; Chu et al., 2023). More
critically, existing solutions tend to either sacrifice global model performance for fairness (Li
et al., 2019a; Mohri et al., 2019; Zhang et al., 2023; Li et al., 2020a), while training an
effective global model remains the core goal of FL (Kairouz et al., 2019). Although some
efforts aim to balance fairness without degrading global performance (Lin et al., 2022; Li
et al., 2021), they fail to model the problem directly and achieve suboptimal performance.

To overcome these limitations, we propose a novel algorithm, FedEBA+. It simultaneously
optimizes fairness and global model performance through a bi-level optimization framework,
leveraging Entropy-Based Aggregation plus model and gradient alignment. FedEBA+ assigns
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Figure 1: Illustration of fairness improvement
of FedEBA+ over q-FFL and FedAvg. The
performance gap means the performance difference
between two clients, i.e., ∥F1(x) − F2(x)∥. A smaller
performance gap implies a smaller variance, resulting
in a fairer method. For clients F1(x) = 2(x − 2)2 and
F2(x) =

1
2
(x+ 4)2 with global model xt = 0 at round

t, q-FFL, FedEBA+, and FedAvg produce xt+1 of
−0.4, −0.1, and 0.5, respectively. The yellow, blue, and
green double-arrow lines indicate the performance gap
between the clients using different methods. FedEBA+
is the fairest method with the smallest loss gap, thus
the smallest performance variance. Computational
details are outlined in Appendix I.1.

higher aggregation weights to underperforming clients, providing an analytical solution that
minimizes communication costs while improving both global performance and fairness.

In particular, the objective is based on a constrained entropy model for aggregation in FL.
While entropy models have successfully promoted fairness in areas like data preprocess-
ing (Singh & Vishnoi, 2014) and resource allocation (Johansson & Sternad, 2005), applying
entropy to FL presents unique challenges. In FL, fairness requires equitable performance
across diverse clients with heterogeneous data (Shi et al., 2021; Donahue & Kleinberg, 2021),
not just uniform resource distribution. To address this, FedEBA+ formulates entropy over
aggregation distribution, constraining the distance between aggregated and ideal objectives
(see Section 4.1), leading to an aggregation distribution proportional to loss. Compared
with typical fair aggregation methods, like FedAvg (McMahan et al., 2017) and q-FFL (Li
et al., 2019a), FedEBA+ ensures more uniform client performance (Figure 1). The maximum
entropy model efficiently provides an analytic solution at each computation step, making the
bi-level optimization problem computationally efficient without requiring cyclic updates.

Our major contributions can be summarized as below:

• We propose a bi-level optimization framework, involving a well-designed objective function
capturing both the global model performance and the entropy-based fair aggregation,
aimed at simultaneously enhancing fairness and the overall performance of FL. In the
inner loop of the optimization framework, we derive the analytical solution to the inner
variable, i.e., aggregation probability, ensuring computational efficiency and improving
fairness. In the outer loop, we introduce an innovative alignment update and an adaptive
strategy to dynamically balance the global model’s performance and fairness.

• We propose FedEBA+, a novel FL algorithm for advocating fairness while improving the
global model performance, embedding the analytical fair aggregation solution and the
innovative model and gradient alignment update strategy. To alleviate the communication
burdens, we further present a practical algorithm Prac-FedEBA+, achieving competitive
performance with communication costs comparable to FedAvg.

• Theoretically, we provide the convergence guarantee for FedEBA+ under a nonconvex
setting. In addition, we establish the fairness of FedEBA+ through performance variance
analysis using both the generalized linear regression model and the strongly convex model.

• Empirical results on Fashion-MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet demon-
strate that FedEBA+ surpasses existing fairness FL algorithms in both fairness and global
model performance. Additionally, experiments highlight the efficiency of Prac-FedEBA+,
showing its robustness to noisy labels and the enhancement for privacy protection.

2 Related Work

There have been encouraging efforts to address fairness in Federated Learning, including
function-based approaches like q-FFL (Li et al., 2019a) and AFL (Deng et al., 2020), gradient-
based methods such as FedFV Wang et al. (2021) and MGDA (Hu et al., 2022; Pan et al.,
2023), and personalized methods (Li et al., 2021; Lin et al., 2022). While these improve
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fairness, they suffer from slow convergence (Li et al., 2019a; Deng et al., 2020) and high
communication and computation overheads (Hu et al., 2022; Pan et al., 2023). Crucially,
to the best of our knowledge, none of these methods simultaneously optimize fairness and
global model performance or explicitly model the goal of balancing both, which is a key
challenge in fair FL.

To this end, we propose a computationally efficient bi-level optimization algorithm designed
to enhance global model performance while ensuring fairness among clients. Our approach
effectively addresses key challenges in this research area. A more comprehensive discussion
of the related work and fairness concepts can be found in Appendix A and Appendix B.

3 Preliminaries and Metrics

Notations. Let m be the number of clients and |St| = n be the number of selected clients
for round t. We denote K as the number of local steps and T as the total number of
communication rounds. We use Fi(x) and f(x) to represent the local and global loss of
client i with model x, respectively. Specifically, xi

t,k and git,k = ∇Fi(x
i
t,k, ξ

i
t,k) represents

the model parameter and local gradient of the k-th local step in the i-th worker after the
t-th communication, respectively. x is the global model and xt is global model at round t.
The global model update is denoted as ∆t = 1/η(xt+1 − xt), while the local model update is
represented as ∆i

t = xi
t,k − xi

t,0. Here, η and ηL correspond to the global and local learning
rates, respectively.

Problem formulation. The typically FL objective can be formulated as follows:

min
x

f(x) =

m∑
i=1

piFi(x) , (1)

where Fi(x) = Eξi∼DiFi(x, ξi) is the local objective function of client i over data distribution
Di, ξi means the sampled data of client i and pi represents the aggregation weight of client i.

In this paper, our goal is to improve the performance of the global model, specifically by
minimizing the objective loss function, while also reducing performance variance. This
motivates us to establish the following optimization objective as our final objective:

x∗ = argmin
x

f(x) = argmin
x

{
m∑
i=1

piFi(x) + βΦ(x)

}
, (2)

where x∗ is the optimal model parameter, Fi(x) is the local loss on client i, and f(x)
represents the global model’s loss, aimed at improving the global model’s performance.
β > 0 is the penalty coefficient of the fairness regularization, while Φ(x) is the regularization
term that aims to improve fairness. Thus, optimizing this objective entails simultaneously
enhancing the global model’s performance and reducing variance. We explicitly formulate
Φ(x) in Section 4.2, building on the fair aggregation optimization in Section 4.1, and rewrite
(2) as a bi-level optimization Problem (6).

Metrics. This paper aims to 1) promote fairness in FL while 2) enhance the global model’s
performance. Typically, the global model’s performance is evaluated based on its accuracy
or loss. Regarding the fairness metric, we adhere to the definition proposed by (Li et al.,
2019a), which employs the variance of clients’ performance as the fairness metric:
Definition 3.1 (Fairness via variance). A model x1 is more fair than x2 if the test perfor-
mance distribution of x1 across the network with m clients is more uniform than that of x2,
i.e. var {Fi (x1)}i∈[m] < var {Fi (x2)}i∈[m], where Fi(·) denotes the test loss of client i ∈ [m]

and var {Fi (x)} = 1
m

∑m
i=1

[
Fi(x)− 1

m

∑m
i=1 Fi(x)

]2 denotes the variance.

Ensuring the global model’s performance is the fundamental goal of FL. However, fairness-
targeted algorithms may compromise high-performing clients to mitigate variance (Shi et al.,
2021). Our evaluation of fairness algorithms extends beyond global accuracy, considering
the accuracy of the best 5% and worst 5% clients. This analysis, also viewed as a form of
robustness in some studies (Yu et al., 2023; Li et al., 2021), provides insights into potential
compromises.
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Algorithm 1 FedEBA+

1: Input: Number of clients m, global learning rate η, local learning rate ηl, number of local epoch
K, total training rounds T , threshold θ.

2: Output: Final model parameter xT .
3: Initialize: model x0, guidance vector r = [1, · · · , 1].
4: for round t = 1, . . . , T do
5: Server selects a set of clients |St| and broadcast model xt;
6: Server collects selected clients’ loss L = [F1(xt), . . . , F|St|(xt)];
7: if arccos( L,r

∥L∥·∥r∥ ) > θ then
8: Sever receives ∇Fi(xt), calculates the fair gradient and broadcast to clients: g̃b,t =∑

i∈St

exp[Fi(xt)/τ)]∑
j∈St

exp[Fj(xt)/τ ]
∇Fi(xt);

9: for Client i ∈ St in parallel do
10: for k = 0, · · ·,K − 1 do
11: hi

t,k ← (1− α)∇Fi(x
i
t,k; ξi) + αg̃b,t;

12: end for
13: ∆i

t = xi
t,K − xi

t,0 = −ηL
∑K−1

k=0 hi
t,k;

14: end for
15: Aggregation: ∆t =

∑
i∈St

pi∆
i
t, where pi =

exp[Fi(x
i
t,K)/τ)]∑

i∈St
exp[Fi(x

i
t,K

)/τ ]
;

16: else
17: for each worker i ∈ St,in parallel do
18: for k = 0, · · ·,K − 1 do
19: xi

t,k+1 = xi
t,k − ηL∇Fi(x

i
t,k; ξi);

20: end for
21: Let ∆i

t = xi
t,K − xi

t,0 = −ηL
∑K−1

k=0 ∇Fi(x
i
t,k; ξi) and ∆̃a,i

t = xi
t,1 − xi

t,0;
22: end for
23: Server aggregates model update by Eq. (8);
24: end if
25: Server update: xt+1 = xt + η∆t;
26: end for

4 FedEBA+: An Effective Fair Algorithm

In this section, we first define the constrained maximum entropy for aggregation probability
and derive a fair aggregation strategy (Sec 4.1). We then introduce a bi-level optimization
objective for fair FL (Sec 4.2), which enhances the global model’s performance through
model alignment and improves fairness through gradient alignment (Sec 4.3). The complete
algorithm, covering entropy-based aggregation, model alignment, and gradient alignment, is
presented in Algorithm 1.

4.1 Fair Aggregation: EBA

Inspired by the Shannon entropy to fairness (Jaynes, 1957), which ensures unbiased probability
distribution by maximizing neutrality towards unobserved information and eliminating
inherent bias (Hubbard et al., 1990; Sampat & Zavala, 2019), we formulate the following
optimization problem with designed constraints on FL aggregation:

max
pi,∀i∈[m]

H(pi) := −
m∑
i=1

pi log(pi) s.t.

m∑
i=1

pi = 1, pi ≥ 0,

m∑
i=1

piFi(xi) = f̃(x) . (3)

H(pi) denotes the entropy of aggregation probability pi, and f̃(x) signifies the ideal loss,
representing the global model’s performance under ideal training setting, which is unknown
but whose gradient can be approximately formulated and utilized as shown in Eq. (8) and
Eq. (10), detailed in the next section. The classical entropy model reduces prior distribution
knowledge and avoids bias from subjective influences. Compared to the existing entropy
model of fairness Johansson & Sternad (2005), we first incorporate the FL constraints∑m

i=1 piFi(xi) = f̃(x) to force aggregation into the fair regularization region, specifically
improving fairness. Maximizing constrained entropy implies greater fairness, as shown in the
toy example in Appendix I.1.
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Proposition 4.1. By solving the constrained maximum entropy problem, we propose an
aggregation strategy called EBA to enhance fairness in FL, expressed as follows:

pi =
exp[Fi(xi)/τ)]∑N
j=1 exp[Fj(xj)/τ ]

, (4)

where τ > 0 is the temperature, and the derivation of τ is related to f̃(x).

Details for deriving the above proposition and the proof of the uniqueness of the solution for
the constrained maximum entropy model are provided in Appendix C.1 and K, respectively.

Proposition 4.1 shows that assigning higher aggregation weights to underperforming clients
directs the aggregated global model’s focus toward these users, enhancing their performance
and reducing the gap with top performers, ultimately promoting fairness, as shown in the
toy case of Figure 1 and experiments in Table 15. It is worth noting that the aggregation
probability can be solved in closed form, relying solely on the loss of the local model, making
it computationally efficient.

When taking into account the prior distribution of aggregation probability pi, which is
typically expressed as the relative data ratio qi = ni/

∑
i∈St

ni where ni is the number of data
in client i, the expression of fair aggregation probability becomes pi =

qi exp[Fi(x)/τ)]∑N
j=1 qj exp[Fj(x)/τ ]

.

Without loss of generality, we utilize Eq. (4) to represent entropy-based aggregation in this
paper. The derivations for fair aggregation probability expression w/o prior distribution are
given in Appendix C.1.
Remark 4.2 (The effectiveness of τ on fairness). τ controls the fairness level as it decides
the spreading of weights assigned to each client. A higher τ results in uniform weights
for aggregation, while a lower τ yields concentrated weights. This aggregation algorithm
degenerates to FedAvg(McMahan et al., 2017) or AFL (Mohri et al., 2019) when τ is
extremely large or small. We further discuss the effectiveness of τ in Appendix M.6.
Remark 4.3 (Robustness of EBA). Typical aggregation methods focusing on fairness
or heterogeneity often suffer significant performance degradation in scenarios with noisy
labels (Pillutla et al., 2019; Yang et al., 2022; Xu et al., 2022). We demonstrate that our
aggregation method maintains robustness to noisy labels by extending the local loss Fi(x) to a
robust loss F r

i (x). The aggregation then becomes:

pi =
exp (F r

i (x)/τ)∑
j exp (F

r
j (x)/τ)

, F r
i (x) = Eξi

[
F cls
i (x; ξi) + γF reg

i (x;Augment(ξi))
]
, (5)

where F cls
i (x; ξi) represents the cross-entropy loss, and F reg

i (x;Augment(ξi)) denotes the self-
distillation loss with augmented data. The robust loss mitigates model output discrepancies
between original and mildly augmented instances, addressing noisy label scenarios and
enhancing robustness. The detailed LSR implementation algorithm is presented in Algorithm 2
of Appendix D.

4.2 Bi-level optimization formulation and alignment update

Recall the final objective (2) to develop an objective function that simultaneously improves
fairness and global model performance. Based on the proposed maximum entropy model, we
define Φ = −

[∑N
i=1 pi log pi + λ0

(∑N
i=1 pi − 1

)
+ 1

τ

(
f̃(x)−

∑N
i=1 piFi(x)

)]
. Maximizing

Φ with respect to pi ensures the same fair aggregation result as proposition 4.1. Thus, we
develop final objective into a bi-level optimization objective that enhances model performance
during updates while maintaining aggregation fairness, formulated as below:

minx maxpi L (x, pi) :=

N∑
i=1

piFi(x)− β

[
N∑
i=1

pi log pi

+λ0

(
N∑
i=1

pi − 1

)
+

1

τ

(
f̃(x)−

N∑
i=1

piFi(x)

)]
,

(6)

For the inner loop of Problem (6), maximizing the objective L (x, pi) over the inner variable
pi results in the same analytical solution as the aggregation probability in Eq. (4). For
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the outer loop of Problem (6), minimizing the objective L (x, pi) with respect to the outer
variable x introduces the following model update formula:

∂L (x, pi)

∂x
= (1− α)

m∑
i=1

pi∇Fi(x) + α∇f̃(x) , (7)

where α = β/τ ≥ 0 is a constant. Then the global model is updated by ∆t = −ηL ∂L(x,pi)
∂x =

−ηL(1− α)
∑m

i=1 pi∇Fi(x)− αηL∇f̃(x).
The proposed update formulation integrates the traditional federated learning (FL) update
with the ideal gradient ∇f̃(x) to align model updates. The choice of approximation for the
ideal loss gradient, ∇f̃(x), influences the extent of performance improvement. Specifically,
∇f̃(x) can represent either the ideal global gradient ∇f̃a(xt) to enhance global model
performance or the ideal fair gradient ∇f̃ b(xt) to improve fairness, as detailed in the
subsequent section.

4.3 Adaptive Balance between Fairness and Global Performance
Improvement

Our approach leverages an alignment update strategy, derived from the outer optimization
loop, to simultaneously enhance global model performance and fairness through entropy-
based aggregation. This process is dynamically adjusted to prioritize either fairness or
global performance based on the current state of the system. When local updates diverge
significantly from fairness, improving fairness also mitigates local shifts, thereby boosting
global performance (Karimireddy et al., 2020b). Conversely, when fairness is within an
acceptable range, we focus on enhancing global performance through server-side alignment
updates, formulated using a momentum-like method.

To achieve this adaptive balance, we employ an arccos-based scheme. If the arccos value
of the clients’ performance vector L = [F1(xt), . . . , F|St|(xt)] and the guidance vector (an
all-ones vector of length |St|) exceeds a predefined threshold (fair angle θ), the system is
deemed unfair, and gradient alignment for fairness is applied. Otherwise, if the arccos value
is below the threshold, the system is considered to be within the tolerable fairness range, as
illustrated in Figure 2.

Model Alignment for Improving Global Accuracy. Based on the proposed model
update formula (7), we propose an server-side model update approach to improve the global
model performance. The ideal global gradient ∇f̃(x) := ∇f̃a(xt) = ∆̃a

t aligns the aggregated
model to facilitate updates towards the global optimum. Unable to directly obtain the ideal
global gradient, we estimate it by averaging local one-step gradients and align the model
update. Utilizing local SGD with xt+1 = xt − η ∂L(x)

∂x and xt+1 = xt − η∆t, we have

∆t = (1− α)
∑

i∈St

pi
∑K−1

k=0
∇Fi(x

i
t,k; ξ

i
t,k) + α∇f̃a(x) = (1− α)

∑
i∈St

pi∆
i
t + α∆̃a

t , (8)

where pi follows the proposed aggregation probability, i.e., pi =
exp[Fi(x

i
t,K)/τ)]∑

i∈St
exp[Fi(xi

t,K)/τ ]
. Here,

∆̃a
t denotes the aggregation of one-step local updates, defined as follows:

∆̃a
t =

1

|St|
∑

i∈St

∆̃a,i
t =

1

|St|
∑

i∈St

(xi
t,1 − xi

t,0) . (9)

When the client’s dataset size ni varies, the expression of ∆̃a
t should be ∆̃a

t =∑
i∈St

ni∑
j∈St

nj
∆̃a,i

t . The model alignment update is outlined in Algorithm 1 (Steps 17-
23). The rationale for utilizing the above equation to estimate the ideal global model is
twofold: 1) a single local update corresponds to an unshifted update on local data, whereas
multiple local updates introduce model bias in heterogeneous FL (Karimireddy et al., 2020b);
2) the expectation of sampled clients’ data over rounds represents the global data due to
unbiased random sampling (Wang et al., 2022).

6
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Figure 2: Gradient Alignment improves
fairness. Gradient alignment ensures that
each local step’s gradient stays on track and
does not deviate too far from the fair direction.
It achieves this by constraining the aligned
gradient, denoted by hi

k,t, to fall within the
tolerable fair area. The gradient git represents
the gradient of global model for each client
in round t, while g̃t = ∇Fi(xt) denotes the
ideal fair gradient for model xt. The gradient
gik,t = ∇Fi(x

i
t,k; ξi) is the gradient of client i

at round t and local epoch k.

Gradient Alignment for Fairness. To enhance fairness, we define
∇f̃(x) := ∇f̃ b(xt) =

∑
i∈St

pi
∑K−1

k=0 ∇f̃ b(xi
t,k) as the ideal fair gradient to align the

local model updates. To align gradients, the server receives ∇Fi(xt) and Fi(xt)
from clients, utilizing entropy-based aggregation to assess each client’s importance.
The fair update is denoted as ∆t = (1 − α)

∑
i pi
∑K−1

k=0 ∇Fi(x
i
t,k; ξ

i
t,k) + α∇f̃ b(x) =∑

i pi
∑K−1

k=0

[
(1− α)∇Fi(x

i
t,k; ξ

i
t,k) + α∇f̃ b(xi

t,k)
]
. Subsequently, the ideal fair gradient

∇f̃ b(xi
t,k) is estimated by:

∇f̃b(xi
t,k) = g̃b,t =

∑
i∈St

p̃i∇Fi(xt) , (10)

where p̃i = exp[Fi(xt)/τ)]/
∑

j∈St
exp[Fj(xt)/τ ], g̃b,t represents the fair gradient of the selected

clients, obtained using the global model’s performance on these clients without local shift
(i.e., one local update). In particular, for each local epoch k, we use the same fair gradient
that is regardless of k. Therefore, the aligned gradient of model xi

t,k can be expressed as:

hi
t,k ← (1− α)∇Fi(x

i
t,k; ξi) + αg̃b,t . (11)

The fairness alignment is depicted in Algorithm 1, Steps 8-15.

4.4 Practical gradient alignment to reduce communication.

Note that in the above discussion, the server needs to obtain the one local update to calculate
the aligned gradient g̃b,t and sends it back to clients for local update. Considering the
communication burden of FL, we propose a practical version of the gradient alignment
method:
Proposition 4.4. For approximating the aligned gradient and overcoming the communication
overhead issue, we use the average of multiple local updates to approximate the one-step
gradient. Then, the fair gradient is approximated by:

g̃b,t =
∑

i∈St

exp[Fi(xt)/τ)]∑
j∈St

exp[Fj(xt)/τ ]

1

K

∑K−1

k=0
∇Fi(x

i
t,k; ξi) . (12)

In this way, the client only needs to communicate the model once to the server, same as Fe-
dAvg. The complete practical algorithm, named Prac-FedEBA+, is presented in Algorithm 3.

5 Analysis of Convergence and Fairness

In this section, we analyze convergence under a nonconvex setting and evaluate fairness using
variance and Pareto-optimality.

5.1 Convergence Analysis of FedEBA+

To facilitate the theoretical analysis, we adopt common assumptions for nonconvex fed-
erated learning: L-smoothness, unbiased local gradient estimators, and bounded gradient
dissimilarity. See Appendix G for assumptions’ details.
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Theorem 5.1. Under Assumption 1–3, and let constant local and global learning rate ηL
and η be chosen such that ηL < min (1/(8LK), C), where C is obtained from the condition
that 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

p∥wA
2 + 1) > C > 0, and η ≤ 1/(ηLL). In particular,

let ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
, the convergence rate of Algorithm 1 (FedEBA+)

with α = 0 is:
min
t∈[T ]

E ∥∇f (xt)∥2 ≤ O
(
(f0 − f∗) + m/2

∑
i w

2
i σ

2
L√

mKT

)
+O

(
5(σ2

L + 4Kσ2
G) + 40K(A2 + 1)χ2

w∥pσ
2
G

2KT

)
.

(13)
Here, A ≥ 0 is a constant defined in Assumption 3, and w is the prior aggregation distribution
detailed in Lemma H.1. The proof details of Theorem 5.1 are provided in Appendix H.
Remark 5.2. According to the property of unified probability, we know 1

m ≤
∑m

i=1 w
2
i ≤

1, where the right inequality comes from
∑

i w
2
i ≤

∑
i wi and the left inequality comes

from Cauchy-Schwarz inequality. Therefore, the worst case of the convergence rate will be
O(

√
m√
KT

+ 1
T ).

Remark 5.3. When α ̸= 0, the convergence rate of FedEBA+ is: mint∈[T ] E ∥∇f (xt)∥2 ≤
O( (1−α)2

∑
i w

2
i

√
mσ2

L+α2
√
Kρ2

√
KT

+ 1
T ), where σL ∼ ρ by Assumption 4, thus a larger α indicating

a tighter convergence upper bound than only using reweight aggregation with α = 0. K
represents the local epoch times (in each communication round) and m represents the client
numbers, usually client numbers are larger than the local epoch in the cross-device FL. In

addition, when wi =
1
m , i.e., uniform aggregation, the rate is O( (1−α)2σ2

L+α2
√

K/mρ2

√
mKT

+ 1
T ).

When
√
K/m << 1, using the proposed alignment update results in a faster convergence rate

than FedAvg. The proof details are provided in Appendix H.2.

5.2 Fairness Analysis of FedEBA+

Variance analysis. We analyze the performance variance of clients of FedEBA+ using
both the generalized linear regression model and the strongly convex model.
Theorem 5.4. Under Algorithm 1, FedEBA+ exhibits smaller performance variance than
FedAvg:

(1) For the generalized regression model, as per the setup in Li et al. (2020a), it is formulated
as f(x; ξ) = T (ξ)⊤x−A(ξ), where T (ξ) represents the generalized regression coefficient and
A(ξ) denotes the Gaussian noise term. We then derive the test variance of FedEBA+ and
compare it with FedAvg:

var
(
F test
i (xEBA+)

)
=

b̃2

4
var
(
∥w̃ −wi∥22

)
(14)

var{F test
i (xEBA+)}i∈m ≤ var{F test

i (xAvg)}i∈m (15)

where w̃ =
∑m

i=1 piwi, wi represents the true parameter on client i, , and b̃ is a constant that
approximates bi in Ξ⊤

i Ξi = mbiId, where Ξi = [T (ξi,1), . . . , T (ξi,n)]. The data heterogeneity
is reflected in the heterogeneity of wi.

(2) For the strongly convex setting, we assume the client’s loss to be smooth and strongly
convex, following the setting in (Chu et al., 2023). By assuming the existence of an outlier,
we derive the test variance of FedEBA+ and compare it with FedAvg:

var
(
F test
i (xEBA+)

)
=

1

N

N∑
i=1

L̃2
i − (

1

N

N∑
i=1

L̃i)
2 , (16)

var{F test
i (xEBA+)}i∈m ≤ var{F test

i (xAvg)}i∈m , (17)

where L̃i is the test loss of FedEBA+ on client i, distinguishing from training loss Fi(x).

Details regarding the setting of the linear regression model, smooth and strongly convex
assumptions, and the derivation details are presented in Appendix I.2 and Appendix I.3.

In addition to analyzing fairness variance in federated learning, we demonstrate that our
algorithm, FedEBA+, satisfies Pareto-optimality and uniqueness as per Property 1 of (Sampat
& Zavala, 2019). This supports the fairness effectiveness of our algorithm, with further
details provided in Appendix J and Appendix K.
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Table 1: Performance of algorithms on FashionMNIST and CIFAR-10. We report the
accuracy of global model, variance fairness, worst 5%, and best 5% accuracy. The data is divided
into 100 clients, with 10 clients sampled in each round. All experiments are running over 2000
rounds for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Algorithm
FashionMNIST CIFAR-10

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 86.49 ±0.09 62.44 ±4.55 71.27 ±1.14 95.84 ±0.35 67.79 ±0.35 103.83 ±10.46 45.00 ±2.83 85.13 ±0.82
FedSGD 83.79 ±0.28 81.72 ±0.26 61.19 ±0.30 96.60 ±0.20 67.48 ±0.37 95.79 ±4.03 48.70 ±0.9 84.20 ±0.40
q-FFL 86.57 ±0.19 54.91 ±2.82 70.88 ±0.98 95.06 ±0.17 68.76 ±0.22 97.81 ±2.18 48.33 ±0.84 84.51 ±1.33
FedMGDA+ 84.64 ±0.25 57.89 ±6.21 73.49 ±1.17 93.22 ±0.20 65.19 ±0.87 89.78 ±5.87 48.84 ±1.12 81.94 ±0.67
Ditto 86.37 ±0.13 55.56 ±5.43 69.20 ±0.37 95.79 ±0.38 60.11 ±4.41 85.99 ±7.13 42.20 ±2.20 77.90 ±4.90
PropFair 85.51 ±0.28 75.27 ±5.38 63.60 ±0.53 97.60 ±0.19 65.79 ±0.53 79.67 ±5.71 49.88 ±0.93 82.40 ±0.40
TERM 84.31 ±0.38 73.46 ±2.06 68.23 ±0.10 94.16 ±0.16 65.41 ±0.37 91.99 ±2.69 49.08 ±0.66 81.98 ±0.19
FOCUS 86.24 ±0.18 61.15 ±1.17 68.15 ±0.25 98.50 ±0.10 59.60 ±1.52 455.14 ±11.19 9.54 ±0.18 87.72 ±0.12
lp-proj 86.21 ±0.02 56.71 ±2.25 68.47 ±0.37 97.86 ±0.52 68.86 ±0.51 78.65 ±7.01 49.53 ±1.11 83.33 ±1.23
Rank-Core-Fed 85.54 ±0.33 58.19 ±2.83 67.80 ±0.55 96.60 ±0.40 67.15 ±1.12 87.02 ±2.46 45.41 ±0.62 85.82 ±0.20

Prac-FedEBA+ 86.62 ±0.07 46.41 ±0.88 71.40 ±0.15 96.1 ±0.46 69.83 ±0.34 74.16 ±1.66 52.40 ±0.50 84.10 ±0.39
FedEBA+ 87.50 ±0.19 43.41 ±4.34 72.07 ±1.47 95.91 ±0.19 72.75 ±0.25 68.71 ±4.39 55.80 ±1.28 86.93 ±0.52

Table 2: Performance of algorithms on CIFAR-100 and Tiny-ImageNet. We include
FedFV (Wang et al., 2021) and FedProx (Li et al., 2020b) to compare the performance.

Algorithm
CIFAR-100 Tiny-ImageNet

Global Acc. ↑ Std. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 30.94 ±0.04 17.24 ±0.08 0.20 ±0.00 65.90 ±1.48 61.99 ±0.17 19.62 ±1.12 53.60 ±0.06 71.18 ±0.13
q-FFL 24.97 ±0.46 14.54 ±0.21 0.00 ±0.00 45.04 ±0.53 62.42 ±0.46 15.44 ±1.89 54.13 ±0.11 70.01 ±0.09
AFL 20.84 ±0.43 11.32 ±0.20 4.03 ±0.14 50.83 ±0.30 62.09 ±0.53 16.47 ±0.88 54.65 ±0.64 68.83 ±1.30

FedProx 31.50 ±0.04 17.50 ±0.09 0.41 ±0.00 64.50 ±0.11 62.05 ±0.04 16.21 ±1.13 54.41 ±0.47 69.92 ±0.26
FedFV 31.23 ±0.04 17.50 ±0.02 0.20 ±0.00 66.05 ±0.11 62.13 ±0.08 15.69 ±0.58 53.92 ±0.30 69.60 ±0.31

FedMGDA+ 31.34 ±0.12 16.61 ±0.29 0.74 ±0.12 65.21 ±1.15 62.33 ±0.26 17.49 ±0.31 53.77 ±0.16 70.04 ±0.30
PropFair 30.85 ±0.07 16.52 ±0.24 0.29 ±0.04 64.33 ±0.71 62.01 ±0.17 16.81 ±0.28 53.83 ±0.42 69.95 ±0.18
TERM 28.98 ±0.45 17.19 ±0.13 0.37 ±0.02 63.85 ±0.40 61.29 ±0.37 19.36 ±0.94 52.92 ±0.65 69.82 ±0.44

Prac-FedEBA+ 31.95 ±0.12 15.23 ±0.09 1.05 ±0.25 67.20 ±0.03 63.43 ±0.56 15.13 ±0.48 54.38 ±0.67 70.15 ±0.33
FedEBA+ 31.98 ±0.30 13.75 ±0.16 1.12 ±0.05 67.94 ±0.54 63.75 ±0.09 13.89 ±0.72 55.64 ±0.18 70.93 ±0.22

6 Numerical Results

Metrics and Baselines. We use variance, worst 5% accuracy, and best 5% accuracy as
performance metrics for fairness evaluation, and global accuracy to evaluate the global
model’s performance. Additionally, the coefficient of variation (Cv = std

acc) (Jain et al.,
1984), the ratio of standard deviation and accuracy, is used to capture the fairness and global
performance simultaneously. We compare FedEBA+ with FedAvg, FedSGD (McMahan
et al., 2016), and fair FL algorithms, including AFL (Mohri et al., 2019), q-FFL (Li et al.,
2019a), FedMGDA+(Hu et al., 2022), PropFair (Zhang et al., 2023), TERM (Li et al., 2020a),
FOCUS (Chu et al., 2023), Ditto (Li et al., 2021) and lp-proj (Lin et al., 2022). Additional
implementation details, such as models and hyperparameters, are available in Appendix L.

FedEBA+ can significantly improve both fairness and global accuracy simultane-
ously. In Table 1 and Table 2, we compare FedBEA+’s performance with other fairness
FL algorithms on diverse datasets and models. The result reveals the following insights:
1) FedEBA+ significantly reduces performance variance and improves global accuracy si-
multaneously. The variance improvement is 3× on FashionMNIST and 1.5× on CIFAR-10
compared to the best-performing baseline. Accuracy improves by 4% on CIFAR-10 and 3%
on CIFAR-100 and Tiny-ImageNet. 2) Other baselines face an accuracy-variance trade-off,
showing either lower global accuracy or limited improvement compared to FedAvg. 3)
With the same communication cost as FedAvg, Prac-FedEBA+ surpasses other baselines.
Moreover, Figure 3(a) clearly shows FedEBA+’s superiority in both fairness and global
accuracy. Similarly, Table 18 in Appendix M shows that FedEBA+ achieves nearly 4×
better performance in Cv, capturing both fairness and accuracy simultaneously.

Fast convergence and stability to hyperparameters of FedEBA+. Figure 3(b)
shows that FedEBA+ converges faster and achieves better accuracy than others. Figure 5(a)
indicates that increasing α improves fairness but decreases accuracy. Figure 5(b) demonstrates
that decreasing τ enhances fairness, with τ > 1 generally leading to better global accuracy.
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(a) Performance of variance and accuracy (b) Performance of convergence
Figure 3: Performance of algorithms on (a) left: variance and accuracy on MNIST, (a) right: variance
and accuracy on CIFAR-10, (b) left: convergence on MNIST, (b) right: convergence on CIFAR-10.

Table 3: Ablation study for θ of FedEBA+.

FedEBA+θ=

FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Additional cost Global Acc. Var. Additional cost

θ = 0◦ 87.50± 0.19 43.41± 4.34 50.0% 72.75± 0.25 68.71± 4.39 50.0%

θ = 15◦ 87.14± 0.12 43.95± 5.12 48.6% 71.92± 0.33 75.95± 4.72 26.2%

θ = 30◦ 86.96± 0.06 46.82± 1.21 37.7% 70.91± 0.46 70.97± 4.88 12.7%

θ = 45◦ 86.94± 0.26 46.63± 4.38 4.2% 70.24± 0.08 79.51± 2.88 0.2%

θ = 90◦ 86.78± 0.47 48.91± 3.62 0% 70.14± 0.27 79.43± 1.45 0%

Table 3 shows our schedule of using the fair angle θ to control the gradient alignment times
is effective, as it largely reduces the communication rounds with larger angles. In addition,
compared with the results of baseline in Table 1, the results illustrate that our algorithm
remains effective when we increase the fair angle. The communication cost of communicating
the MLP model is 7.8MB/round, the CNN model is 30.4MB/round. If the communication
cost is affordable, θ = 0 should be chosen for optimal performance. Otherwise, we recommend
using the Prac-FedEBA+ algorithm with the default θ = 15◦, which requires no additional
communication cost but with better performance than SOTA baselines.

Robustness and Privacy Evaluation. Table 13 demonstrates that FedEBA+ keeps robust
to noisy label scenarios; Figure 8 indicates that FedEBA+ is compatible with differential
privacy methods without significant performance degradation. Additional details are provided
in Appendix M.

All the components of FedEBA+ are necessary. In Table 15 of Appendix M, we
conduct the ablation study on FedEBA+, showing that each step of FedEBA+ is beneficial.
Even the aggregation alone improves global performance and fairness.

Additional results in Appendix M consistently demonstrate the superiority of
FedEBA+, including: 1) Performance table with full hyperparameter choices for algorithms
(Table 7 for baselines and Table 16 for FedEBA+). 2) Performance of fairness algorithms
integrated with advanced optimization methods like momentum (Table 10) and VARP
(Table 11). 3) Performance results under cosine similarity and entropy metrics (Table 19).
4) Ablation studies on the fair angle θ, Dirichlet parameter (non-iid-ness), and annealing
strategies of τ , as detailed in Table 8, Figure 14, and Figure 9, respectively. 5) Scalability of
FedEBA+ in Table 21 and 22.

7 Conclusions, Limitations and Future Works

In this paper, we introduced FedEBA+, a novel federated learning algorithm that enhances
fairness and global model performance through a computationally efficient bi-level opti-
mization framework. We propose an innovative entropy-based fair aggregation method for
the inner loop and develop adaptive alignment strategies to optimize global performance
and fairness in the outer loop. Our theoretical analysis confirms that FedEBA+ converges
effectively in non-convex federated learning settings, and empirical results demonstrate its
superiority over state-of-the-art fairness algorithms, ensuring consistent performance across
diverse clients and improving overall global model accuracy.

While FedEBA+ exhibits resilience to noisy label scenarios, ensuring its efficacy in the face
of backdoor or Byzantine attacks remains an open challenge. Malicious attackers may upload
high losses to divert server’s focus, thereby diminishing model performance. Developing a
Byzantine-robust version of FedEBA+ is left for future investigation.
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Contents of Appendix

A An Expanded Version of The Related Work

Fairness-Aware Federated Learning. Various fairness concepts have been proposed
in FL, including performance fairness (Li et al., 2019a; 2021; Wang et al., 2021; Zhao
& Joshi, 2022; Kanaparthy et al., 2022; Huang et al., 2022), group fairness (Du et al.,
2021; Ray Chaudhury et al., 2022), selection fairness (Zhou et al., 2021), and contribution
fairness (Cong et al., 2020), among others (Shi et al., 2021; Wu et al., 2022; Chen et al., 2023).
These concepts address specific aspects and stakeholder interests, making direct comparisons
inappropriate. This paper specifically focuses on performance fairness, the most commonly
used metric in FL, which serves client interests while improving model performance. We list
and compare the commonly used fairness metrics of FL in the next section, i.e., Section B.

Some works propose objective function-based approaches to enhance performance fairness
for FL. In (Li et al., 2019a), q-FFL uses α-fair allocation for balancing fairness and efficiency,
but specific α choices may introduce bias. In contrast, FedEBA+ employs maximum entropy
aggregation to accommodate diverse preferences. Additionally, FedEBA+ introduces a novel
fair FL objective with dual-variable optimization, enhancing global model performance and
variance. Besides, Deng et al. (2020) achieves fairness by defining a min-max optimization
problem in FL. In the gradient-based approach, FedFV (Wang et al., 2021) mitigates gradient
conflicts among FL clients to promote fairness, but it consumes much computational and
storage resources. Efforts have been made to connect fairness and personalized FL to
enhance robustness (Li et al., 2021; Lin et al., 2022), different from our goal of learning a
valid global model to guarantee fairness. FOCUS (Chu et al., 2023) introduces the Fairness
via Agent-Awareness (FAA) metric, quantifying the maximum discrepancy in excess loss
across agents. Utilizing an Expectation Maximization (EM) algorithm, FOCUS achieves
soft clustering of clients. However, it involves communication between all clients and the
server, with each client requiring all cluster models, resulting in elevated communication
and computation costs. Although addressing FAA is not our primary focus, we illustrate
that FedEBA+ remains effective and outperforms FOCUS in both variance and FAA in our
experimental setting, as detailed in Table 1 and Table 17. Notably, our method operates
without imposing data distribution or model class assumptions, distinguishing it from existing
work (Chu et al., 2023) that relies on the distance disparity of local loss and ideal loss as a
fairness measure. The use of variance in performance fairness naturally aligns with the goal
of ensuring uniform performance across clients. Recently, reweighting methods encourage a
uniform performance by up-reweighting the importance of underperforming clients (Zhao
& Joshi, 2022; Mollanejad et al., 2024). However, these methods enhance fairness at the
expense of the performance of the global model (Kanaparthy et al., 2022; Huang et al.,
2022). In contrast, we propose FedEBA+ as a solution that significantly promotes fairness
while improving the global model performance. Notably, FedEBA+ is orthogonal to existing
optimization methods like momentum (Karimireddy et al., 2020a) and VARP (Jhunjhunwala
et al., 2022), allowing seamless integration, as shown in Table 10 and Table 11.

Recently, several federated learning studies have explored a diverse range of fairness ob-
jectives, such as Proportionality (Chaudhury et al., 2024; Ray Chaudhury et al., 2022),
Disparity (Hamman & Dutta), Stability (Gao et al.), and fairness in vertical FL (Fan et al.; Qi
et al., 2022). Chaudhury et al. (2024) provides explainable proportional fairness guarantees
to the agents in general settings in which the error rates of the agents are proportional to
the size of their local data, and Ray Chaudhury et al. (2022) proposes a core-stability as
fairness metric that is more resilient to noisy data from certain clients. The used fairness is
sensitive to data, while ours focuses on performance fairness for clients, regarding the data
distribution, thus the objective is different. Hamman & Dutta offers an information-theoretic
perspective on group fairness trade-offs in federated learning, utilizing partial information
decomposition to identify unfairness. Gao et al. mainly focus on establishing a theoretical
bound for showing the influence of clients’ altruistic behaviors and the configuration of
the friend-relationship network on the achievable egalitarian fairness. These works aim to
establish the theoretical bound for analyzing the fairness and trade-offs, from an information
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perspective and game theory, instead of providing a fair algorithm. Fan et al.; Qi et al. (2022)
discuss fairness in vertical FL by learning fair and unified representations, where feature
fields are decentralized across different platforms. In contrast, our work focuses on horizontal
FL and compares our results with state-of-the-art horizontal FL fairness algorithms.

Aggregation in Federated Optimization. FL employs aggregation algorithms to com-
bine decentralized data for training a global model (Kairouz et al., 2019). Approaches include
federated averaging (FedAvg) McMahan et al. (2017), robust federated weighted averaging
Pillutla et al. (2019); Laguel et al. (2021); Pillutla et al. (2023), importance aggregation Wang
et al. (2022), and federated dropout Zheng et al. (2022). However, these algorithms can be
sensitive to the number and quality of participating clients, causing fairness issues (Li et al.,
2019b; Balakrishnan et al., 2021; Shi et al., 2021). To the best of our knowledge, we are
the first to analyze the aggregation from the view of entropy. Unlike heuristics that assign
weights proportional to client loss (Zhao & Joshi, 2022; Kanaparthy et al., 2022), our method
has physical meanings, i.e., the aggregation probability ensures that known constraints are
as certain as possible while retaining maximum uncertainty for unknowns. By selecting the
maximum entropy solution with constraints, we actually choose the solution that fits our
information with the least deviation (Jaynes, 1957), thus achieving fairness.

Our proposed aggregation method differs from existing approaches in several key aspects.
First, the aggregation formulation is novel, with probabilities pi = e

Fi(x)/τ

Z proportional to
the exponential of client loss and regulated by a controllable parameter τ . Unlike heuristic
methods that assign weights directly proportional to client loss pi ∝ Fi(x) (Mollanejad
et al., 2024; Zhao & Joshi, 2022; Kanaparthy et al., 2022), our approach is derived from
a constrained optimization framework. Second, the objective is fundamentally different.
Existing entropy-based aggregation methods (Huang et al., 2022; Herath et al., 2024) and
softmax-based reweighting approaches (Zhao & Joshi, 2022; Kanaparthy et al., 2022) aim to
enhance model accuracy without addressing fairness, whereas our approach focuses explicitly
on improving fairness. Third, our method introduces a novel constrained entropy model, the
first of its kind in the FL fairness community, which prioritizes underperforming clients to
achieve weighted fair aggregation. Furthermore, our approach offers practical advantages,
such as its exponent form and control parameter τ , which effectively mitigate extreme
unfairness and allow flexibility in recovering existing aggregation methods like FedAvg, AFL,
and q-FFL. Empirically, our entropy-based aggregation (FedEBA+ with α = 0 ) outperforms
state-of-the-art methods like q-FFL and TERM, achieving superior results in both fairness
and accuracy.

FL others. In addition to fairness algorithms, FL faces other challenges such as privacy
preservation (Wang et al., 2023; Zhou et al., 2023; Chen et al., 2023) and communication
efficiency (Chai et al., 2023; Almanifi et al., 2023; Paragliola & Coronato, 2022). Given the
widespread adoption of FL, our primary focus in this work is on designing a high-performance
fairness algorithm. Nonetheless, we acknowledge the significance of other aspects in FL,
such as privacy preservation. Hence, we provide experimental results demonstrating the
compatibility of our algorithm with existing privacy protection methods and its robustness
to external noise scenarios.

B Discussion of fairness metrics

In this section, we summarize the commonly used definitions of fairness metrics and comment
on their advantages and disadvantages.

Euclidean Distance and person correlation coefficient are usually used for contribution
fairness, and risk difference and Jain’s fairness Index are usually used for group fairness,
which is a different target from performance fairness in this paper. In particular, cosine
similarity and entropy play roles similar to variance, used to measure the performance
distribution among clients. The more uniform the distribution, the smaller the variance and
the more similar to vector 1. The larger the entropy of the normalized performance, the
more similar to vector 1. Thus, for performance fairness, we only need one of them. We use
variance, which is the most widely used metric in related works.
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The detailed discussion of each metric is shown below:

• Variance, applied in accuracy parity and performance fairness scenarios, is valued for its
simplicity and straightforward implementation, focusing on a common performance metric.
However, it has a limitation as it only measures relative fairness, making it sensitive to
outliers (Zafar et al., 2017; Li et al., 2019a; 2021; Hu et al., 2022; Shi et al., 2021).

• Cosine similarity, sharing applications with variance, is known for its similarity to
variance and the ease with which it captures linear relationships (Li et al., 2019a).
Nevertheless, it falls short when it comes to capturing magnitude differences and is
sensitive to zero vectors (Selbst et al., 2019; Hardt et al., 2016).

• Also utilized in scenarios akin to variance, entropy offers simplicity but has dependencies
on normalization and sensitivity to the number of clients involved in the computation,
making it less robust in certain situations (Li et al., 2019a; Selbst et al., 2019; Hardt et al.,
2016).

• Applied in contribution fairness, Euclidean distance provides a straightforward inter-
pretation and is sensitive to magnitude differences. However, it lacks consideration for
the direction of the differences, limiting its overall effectiveness.

• In contribution fairness scenarios, the Pearson correlation coefficient is appreciated
for its scale invariance and ability to capture linear relationships (Jia et al., 2019). Yet,
it may be sensitive to outliers and may not accurately capture magnitude differences,
assuming a linear relationship between the data variables (Wang et al., 2019).

• Commonly used in group fairness contexts, risk difference is sensitive to group disparities
and offers interpretability (Du et al., 2021). However, it lacks normalization, which can
impact its effectiveness in certain scenarios (Dwork et al., 2012).

• Jain’s Fairness Index finds application in various fairness aspects, including group
fairness, selection fairness, performance fairness, and contribution fairness. It boasts
normalization across groups and flexibility in handling various metrics. Nevertheless, it is
sensitive to metric choice and introduces complexity in interpretability (Chiu, 1984; Liu
et al., 2022).

C Entropy Analysis

C.1 Derivation of Proposition 4.1

In this section, we derive the maximum entropy distribution for the aggregation strategy
employed in FedEBA+.

The choice of an exponential formula treatment for the loss function, represented as pi ∝
eFi(x)/τ , is motivated by our adherence to a maximum entropy distribution. This approach
is favored over alternatives such as pi ∝ Fi(x) because our aggregation strategy is designed
to achieve maximum entropy.

Maximizing entropy minimizes the incorporation of prior information into the distribution,
ensuring that the selected probability distribution is free from subjective influences and
biases (Bian et al., 2021; Sampat & Zavala, 2019). Simultaneously, this aligns with the
tendency of many physical systems to evolve towards configurations with maximal entropy
over time (Jaynes, 1957).

In the following we will give a derivation to show that pi ∝ eFi(xi)/τ is indeed the maximum
entropy distribution for FL. The derivation below is closely following (Jaynes, 1957) for
statistical mechanics. Suppose the loss function of the user corresponding to the aggregation
probability pi is Fi(xi). We would like to maximize the entropy H(pi) = −

∑m
i=1 pi log pi,

subject to FL constrains that
∑m

i=1 pi = 1,pi ≥ 0,
∑

i piFi(xi) = f̃(x), which means we
constrain the reweighted clients’ performance to be close to ideal model’s performance, such
as ideal global model performance or the ideal fair performance.
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Proof.

L

(
p, λ0;

1

τ

)
:= −

[
N∑
i=1

pi log pi + λ0

(
N∑
i=1

pi − 1

)
+

1

τ

(
µ−

N∑
i=1

piFi(xi)

)]
, (18)

where µ = f̃(x).

By setting

∂L
(
p, λ0;

1
τ

)
∂pi

= −
[
log pi + 1 + λ0 −

1

τ
Fi(xi)

]
= 0 , (19)

we get:

pi = exp

[
−
(
λ0 + 1− 1

τ
Fi(xi)

)]
. (20)

According to
∑

i pi = 1, we have:

λ0 + 1 = log
N∑
i=1

exp

(
1

τ
Fi(xi)

)
=: logZ , (21)

which is the log-partition function.

Thus,we reach the exponential form of pi as:

pi =
exp [Fi(xi)/τ ]∑N

j=1 exp(Fj(xj)/τ)
. (22)

When taking into account the prior distribution of aggregation probability (Li et al., 2020b;
Balakrishnan et al., 2021), which is typically expressed as qi = ni/

∑
i∈St

ni, the original
entropy formula can be extended to include the prior distribution as follows:

H(pi) =

m∑
i=1

pi log(
qi
pi
) . (23)

Thus, the solution of the original problem under this prior distribution becomes:

pi =
qi exp[Fi(xi)/τ)]∑N
j=1 qj exp[Fj(xi)/τ ]

. (24)

Proof.

L

(
p, λ0;

1

τ

)
:= −

N∑
i=1

pi log
qi
pi

+ λ0

(
N∑
i=1

pi − 1

)
+

1

τ

(
µ−

N∑
i=1

piFi(xi)

)
. (25)

Following similar derivation steps, let

∂L
(
p, λ0;

1
τ

)
∂pi

= − log(qi) + log(pi) + 1 + λ0 −
1

τ
Fi(xi) = 0 , (26)

we get:

pi = exp

[
−
(
λ0 + 1− log(qi)−

1

τ
Fi(xi)

)]
. (27)

According to
∑

i pi = 1, we have:∑
i

pi =
∑
i

exp

[
−
(
λ0 + 1− log(qi)−

1

τ
Fi(xi)

)]
= 1 . (28)
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Therefore, we get:

λ0 + 1 = log

N∑
i=1

qi exp

(
1

τ
Fi(x)

)
=: log(Z) . (29)

Then substituting λ0 + 1 = log(Z) back to pi = exp
[
−
(
λ0 + 1− log(qi)− 1

τ Fi(xi)
)]

, we
obtain (24):

pi =
qi exp[Fi(xi)/τ)]∑N
j=1 qj exp[Fj(xi)/τ ]

. (30)

D Enhancing Robustness in FedEBA+ through Local
Self-Regularization

In this section, we introduce Local Self-Regularization (LSR) for FedEBA+ as a robustness
solver. The method is primarily based on the work of Jiang et al. (2022). For the sake of
completeness in this paper, we restate the LSR algorithm here. The LSR algorithm effectively
regulates the local training process by implicitly preventing the model from memorizing noisy
labels. Additionally, it explicitly narrows the model output discrepancy between original
and augmented instances through self-distillation.

Algorithm 2 Local Self-Regularization

1: for client i in parallel do
2: Input: client i, global model xt, parameter γ, λ ∼ Beta(1, 1).
3: Output: local trained model xt+1

i .
4: Initialize: xt,0

i ← xt.
5: for k = 0, · · · ,K − 1 do
6: p1, p2 = Softmax(Fi(x

t,k
i ; ξi)), Softmax(F (xt,k

i ;Augment(ξi)));
7: p = λp1 + (1− λ)p2;

8: ps,c = p
1/Ts
c∑

j p
1/Ts
j

, where c denotes the c-th class, and Ts is the sharpening temperature;

9: F cls = CorssEntropy(ps, y);
10: F reg = SelfDistillation(F (xt,k

i ; ξi), F (xt,k
i ;Augment(ξi)));

11: F r
i = F cls + γF reg;

12: Update xi
t+1 with F r

i ;
13: end for
14: end for

For the regression loss, self-distillation is performed on the network. We use the two output
logits ξi and Augment(ξi) to conduct instance-level self-distillation. First, apply a softmax
function with a distillation parameter Td to the output as:

q1,i, q2,i =
exp([F (xt,k

i ; ξi)]c/Td)∑
j exp([F (xt,k

i ; ξi)]j/Td)
,

exp([F (xt,k
i ;Augment(ξi))]c/Td)∑

j exp([F (xt,k
i ;Augment(ξi))]j/Td)

, (31)

where c and j denote the output logits for the c-th and j-th class, respectively. The
self-distillation loss term is formulated as:

F reg =
1

2
(KL (q1∥U) +

1

2
(KL(q2∥U)) , (32)

where KL means Kullback-Leibler divergence and U = 1
2 (q1 + q2).

In this way, we can express the robust EBA method by:

pi =
exp (F r

i (x)/τ)∑
j exp (F

r
j (x)/τ)

, F r
i (x) = Eξi

[
F cls
i (x; ξi) + γF reg

i (x;Augment(ξi))
]
. (33)

We experimentally demonstrate the robustness of EBA in Table 13.
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Algorithm 3 Prac-FedEBA+

1: Input: Number of clients m, global learning rate η, local learning rate ηl, number of local epoch
K, total training rounds T , threshold θ.

2: Output: Final model parameter xT .
3: Initialize: model x0, guidance vector r = [1, · · · , 1].
4: for round t = 1, . . . , T do
5: Server selects a set of clients |St| and broadcast model xt.
6: for each worker i ∈ St,in parallel do
7: for k = 0, · · ·,K − 1 do
8: xi

t,k+1 = xi
t,k − ηL∇Fi(x

i
t,k; ξi);

9: end for
10: ∆i

t = xi
t,K − xi

t,0 = −ηL
∑K−1

k=0 ∇Fi(x
i
t,k; ξi);

11: end for
12: Server receive model updates ∆i

t and clients’ loss L = [F1(xt), . . . , F|St|(xt)];
13: if arccos( L,r

∥L∥·∥r∥ ) > θ then

14: Approximate fair gradient: g̃t =
∑

i∈St

exp[Fi(xt)/τ)]∑
i∈St

exp[Fi(xt)/τ ]
1
K

∑K−1
k=0 ∇Fi(x

i
t,k; ξi);

15: Align model: ∆̂t
i = (1− α)∆t

i − αηLKg̃t;

16: Aggregation: ∆t =
∑

i∈St
pi∆̂

i
t, where pi =

exp[Fi(x
i
t,K)/τ)]∑

i∈St
exp[Fi(x

i
t,K

)/τ ]
;

17: else
18: Approximate global update for participating client: ∆̃i

t =
1
K
(xi

t,K−1 − xi
t,0);

19: Server aggregates model update by (8);
20: end if
21: Server update: xt+1 = xt + η∆t;
22: end for

D.1 Toy example of extremal case

In this subsection, we examine an extreme case as an illustrative example. Consider two
clients: client 1 with noisy data and client 2 with separable data. Assume the test accuracy
on client 1 is consistently zero or the loss is always high, denoted as H1.

After local updates on each client, the model adjusts its parameters to minimize the noise.
However, in the absence of an underlying pattern, the weights do not capture any meaningful
relationship between features and labels. Consequently, the loss can be assumed to be H1,
and the model parameter as xt

1 = xt+1
i without loss of generality, as the model has no

convergence point.

In contrast, assume client 2’s model is y = 1
2x

2, and starting from xt
2 = 2, it converges to

xt+1
2 = 0. Thus, for FedEBA+, the updated model is x̃ = 0 + xt

1 · e
H1

H1+0 . For FedAvg, the
updated model is x̂ = 1

2x
t
1. Since |e · x1| ≥ | 12x1|, we have y(x̃) ≤ y(x̂). Consequently, we

can assert that the disparity between client 1 and client 2 using EBA+ is smaller than with
FedAvg.

Hence, we assert that even in the extreme case, FedEBA+ effectively reduces performance
variance through the entropy-based aggregation method.

E Practical Algorithm with effective communication.

To achieve the same communication costs to FedAvg, we introduce a practical adapta-
tion of FedEBA+ termed Prac-FedEBA+. Specifically, Prac-FedEBA+ leverages the last
round’s gradient to approximate current round information, reducing the need for extensive
communication between the server and clients, as outlined in Algorithm 3.
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Table 4: Convergence rate comparison of FedEBA+ with existing works.

Algorithm Convergence Upper Bound Rate Order

FedAvg (Yang
et al.,
2021)

1
c

(
f0−f∗
√
nKT

+
σ2
L+3Kσ2

G

2
√
nKT

+
5(σ2

L+6Kσ2
G)2

2KT
+

15(σ2
L+6Kσ2

G)

2
√
nKT3

)
O( 1√

nKT
+ 1

T
+ 1√

nKT3
)

FedIS (Chen
et al.,
2020)

1
c

(
(f0−f∗)B2

√
nKT

+
2Fσ2

L+2F (1−n/m)Kσ2
G

2
√
nKT

+ B2F
T

+ F2/3σG

T2/3

)
O( 1√

nKT
+ 1

T
+ 1√

T3
)

FedNova (Wang
et al.,
2020)

1
c

(
(f0−f∗)√

nKT
+

Aσ2
L+τ/τeff

2
√
nKT

+
mCσ2

G
τT

)
O( 1√

nKT
+ 1

T
)

FedEBA+

1

c

(
f0 − f∗
√
nKT

+
(1− α)2

∑m
i=1 w

2
i

√
mσ2

L + α2K−1/2√mρ2

2
√
nKT

+
5(1− α)2(σ2

L + 6Kσ2
G) + 15(1− α)2α2Kρ2

2KT

) O(
√

K/n
√
nKT

+ 1
T
)

F Analysis Comparison with existing works

In this paper, the fairness and global model performance are analyzed via variance and
convergence, respectively. The comprehensive analysis significantly improves upon existing
research.

• For the variance analysis, all existing fairness works are typically evaluated by
comparing them with FedAvg. However, our analysis expands beyond linear models
to include the strongly convex setting.

• For the convergence analysis, beyond the strongly convex and convex settings, we
demonstrate that our algorithms converge in nonconvex settings with a convergence
rate no worse than the state-of-the-art FedAvg algorithm, as shown in the Table 4.

To explicitly demonstrate the importance of the paper’s theoretical merit, we provide the
following table to illustrate its contributions compared with other fairness works:

Table 5: Analysis Comparison of Different Fairness Algorithms

Algorithm Variance analysis Convergence analysis

q-FFL ✓ ×
FedMGDA+ × ✓ Strongly convex
TERM ✓ Linear model ✓ Strongly convex
AFL × ✓ Convex
PropFair × ✓ Nonconvex
lp-proj ✓ Linear model ✓ Nonconvex
FedEBA+ ✓ Linear model & Strongly convex ✓ Nonconvex

The above comparison reveals that, among existing work, only FedEBA+ and lp-proj offer
simultaneous variance and convergence analysis. In contrast to lp-proj:

• FedEBA+ expands fairness analysis from generalized linear regression models to
strongly convex models.

• Moreover, lp-proj is a personalized FL algorithm, markedly distinct from ours, as
this paper focuses on achieving a fair global model. Consequently, the convergence
analysis and fairness analysis are distinct. Only FedEBA+ aims to improve the
global model’s performance and variance simultaneously, employing variance and
convergence analyses, respectively.
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G Assumptions for Convergence Analysis

To facilitate the convergence analysis, we adopt the following commonly used assumptions
in FL.
Assumption 1 (L-Smooth). There exists a constant L > 0, such that ∥∇Fi(x)−∇Fi(y)∥ ≤
L∥x− y∥,∀x, y ∈ Rd, and i = 1, 2, . . . ,m.
Assumption 2 (Unbiased Local Gradient Estimator and Local Variance). Let ξit be a
random local data sample in the round t at client i: E

[
∇Fi(xt, ξ

i
t)
]
= ∇Fi(xt),∀i ∈ [m].

There exists a constant bound σL > 0, satisfying E∥∇Fi(xt, ξ
i
t)−∇Fi(xt)∥2 ≤ σ2

L.
Assumption 3 (Bound Gradient Dissimilarity). For any set of weights {wi ≥ 0}mi=1 with∑m

i=1 wi = 1, there exist constants σ2
G ≥ 0 and A ≥ 0 such that

∑m
i=1 wi ∥∇Fi(x)∥2 ≤

(A2 + 1) ∥
∑m

i=1 wi∇Fi(x)∥
2
+ σ2

G.

These assumptions are commonly used in both non-convex optimization and FL literature,
see e.g. (Karimireddy et al., 2020b; Yang et al., 2021; Wang et al., 2020). For Assumption 3,
if all local loss functions are identical, then A = 0 and σG = 0.

H Convergence Analysis of FedEBA+

In this section, we give the proof of Theorem 5.1.

Before going to the details of our convergence analysis, we first state the key lemmas used in
our proof, which helps us to obtain the advanced convergence result.
Lemma H.1. To make this paper self-contained, we restate the Lemma 3 in (Wang et al.,
2020):

For any model parameter x, the difference between the gradients of favg(x) and f(x) can be
bounded as follows:

∥∇favg(x)−∇f(x)∥2 ≤ χ2
w∥p

[
A2∥∇f(x)∥2 + χ2

w∥p

]
, (34)

where χ2
w∥p denotes the chi-square distance between w and p, i.e., χ2

w∥p =∑m
i=1 (wi − pi)

2
/pi. f(x) is the global objective with f(x) =

∑m
i=1 wifi(x) where w is

usually the data ratio of clients, i.e., w = [ni

N , · · · , ni

N ]. f(x) =
∑m

i=1 pifi(x) is the objective
function of FedEBA+ with the reweight aggregation probability p.

Proof.

∇favg(x)−∇f(x) =
m∑
i=1

(wi − pi)∇favg
i (x)

=

m∑
i=1

(wi − pi) (∇favg
i (x)−∇f(x))

=

m∑
i=1

wi − pi√
p
i

· √pi (∇f
avg
i (x)−∇f(x)) .

(35)

Applying Cauchy-Schwarz inequality, it follows that

∥∇favg(x)−∇f(x)∥2 ≤

[
m∑
i=1

(wi − pi)
2

pi

][
m∑
i=1

pi ∥∇favg
i (x)−∇f(x)∥2

]
≤ χ2

w∥p
[
A2∥∇f(x)∥2 + σ2

G

]
,

(36)

where the last inequality uses Assumption 3. Note that

∥∇favg(x)∥2 ≤ 2∥∇favg(x)−∇f(x)∥2 + 2∥∇f(x)∥2

≤ 2
[
χ2
w∥pA

2 + 1
]
∥∇f(x)∥2 + 2χ2

p∥wσ2
G .

(37)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

As a result, we obtain

min
t∈[T ]

∥∇favg (xt)∥2 ≤
1

T

T−1∑
t=0

∥∇favg (xt)∥2 (38)

≤ 2
[
χ2
w∥pA

2 + 1
] 1

T

T−1∑
t=0

∥∇f (xt)∥2 + 2χ2
w∥pσ

2
G (39)

≤ 2
[
χ2
w∥pA

2 + 1
]
ϵopt + 2χ2

w∥pσ
2
G , (40)

where ϵopt =
1
T

∑T−1
t=0 ∥∇f (xt)∥2 denotes the optimization error.

H.1 Analysis with α = 0.

Lemma H.2 (Local updates bound.). For any step-size satisfying ηL ≤ 1
8LK , we can have

the following results:
E∥xi

t,k − xt∥2 ≤ 5K(η2Lσ
2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (41)

Proof.
Et∥xi

t,k − xt∥2 (42)

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2 (43)

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2 (44)

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2 (45)

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lσ
2
G + 4Kη2L(A

2 + 1)∥∇f(xt)∥2 (46)

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2 . (47)

Unrolling the recursion, we obtain:
Et∥xi

t,k − xt∥2 (48)

≤
k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(49)

≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f(xt)∥2

]
(50)

≤ 5K(η2Lσ
2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (51)

Thus, we can have the following convergence rate of FedEBA+:
Theorem H.3. Under Assumption 1–3, and let constant local and global learning rate ηL
and η be chosen such that ηL < min (1/(8LK), C), where C is obtained from the condition
that 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

w∥pA
2 + 1) > c > 0 ,and η ≤ 1/(ηLL), the expected

gradient norm of FedEBA+ with α = 0, i.e., only using aggregation strategy 4, is bounded as
follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤
f0 − f∗
cηηLKT

+Φ , (52)
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where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2
σ2
L + 20L2K2(A2 + 1)η2Lχ

2
w∥pσ

2
G] . (53)

where c is a constant, χ2
w∥p =

∑m
i=1 (wi − pi)

2
/pi represents the chi-square divergence

between vectors p = [p1, . . . , pm] and w = [w1, . . . , wm]. For common FL algorithms with
uniform aggregation or with data ratio as aggregation probability, wi =

1
m or wi =

ni

N .

Proof. Based on Lemma H.1, we first focus on analyzing the optimization error ϵopt:

Et[f(xt+1)] (54)
(a1)

≤ f(xt) + ⟨∇f(xt),Et[xt+1 − xt]⟩+
L

2
Et[∥xt+1 − xt∥2] (55)

= f(xt) + ⟨∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]⟩+
L

2
η2Et[∥∆t∥2] (56)

= f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

, (57)

where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the
local data SGD and the filtration of xt. However, in the next analysis, the expectation is
over all randomness, including client sampling. This is achieved by taking expectation on
both sides of the above equation over client sampling.

To begin with, we consider A1:

A1 (58)
= ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩ (59)

=

〈
∇f(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηLg
i
t,k + ηLK∇f(xt)]

〉
(60)

(a2)
=

〈
∇f(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f(xt)]

〉
(61)

=

〈√
ηLK∇f(xt),−

√
ηL√
K

Et[

m∑
i=1

wi

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))]

〉
(62)

(a3)
=

ηLK

2
∥∇f(xt)∥2 +

ηL
2K

Et

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))

∥∥∥∥∥
2

− ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 . (63)
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The use Jensen’s Inequality:

A1 (64)

(a4)

≤ ηLK

2
∥∇f(xt)∥2 +

ηL
2

K−1∑
k=0

m∑
i=1

wiEt

∥∥∇Fi(x
i
t,k)−∇Fi(xt)

∥∥2
− ηL

2K
Et∥

m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 (65)

(a5)

≤ ηLK

2
∥∇f(xt)∥2 +

ηLL
2

2m

m∑
i=1

K−1∑
k=0

Et

∥∥xi
t,k − xt

∥∥2 − ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 (66)

≤
(
ηLK

2
+ 10K3L2η3L(A

2 + 1)

)
∥∇f(xt)∥2 +

5L2η3L
2

K2σ2
L + 10η3LL

2K3σ2
G

− ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 , (67)

where (a2) follows from Assumption 2. (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and

(a4) uses Jensen’s Inequality: ∥
∑m

i=1 wizi∥
2 ≤

∑m
i=1 wi ∥zi∥2, (a5) comes from Assumption 1.

Then we consider A2:

A2 (68)

= Et∥∆t∥2 = Et

∥∥∥∥∥ηL
m∑
i=1

wi

K−1∑
k=0

git,k

∥∥∥∥∥
2

(69)

= η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

git,k −
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(70)

(a6)

≤ η2L

m∑
i=1

w2
i

K−1∑
k=0

E∥gi(xi
t,k)−∇Fi(x

i
t,k)∥2 + η2LEt∥

m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 (71)

≤
m∑
i=1

w2
i η

2
LKσ2

L + η2LEt∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 (72)

where (a6) follows from ∥
∑

i wiai∥2 =
∑

i w
2
i ∥ai∥2 where ai is an unbiased estimator.
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Now we take expectation over iteration on both sides of expression:
f(xt+1) (73)

≤ f(xt)− ηηLKEt ∥∇f(xt)∥2 + ηEt ⟨∇f(xt),∆t + ηLK∇f(xt)⟩+
L

2
η2Et∥∆t∥2 (74)

(a7)

≤ f(xt)− ηηLK

(
1

2
− 20L2K2η2L(A

2 + 1)(χ2
w∥pA

2 + 1)

)
Et ∥∇f(xt)∥2

+
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

∑
i w

2
i η

2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G

−
(
ηηL
2K
− Lη2η2L

2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(75)

(a8)

≤ f(xt)− cηηLKE ∥∇f(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) (76)

+

∑
i w

2
i η

2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G

−
(
ηηL
2K
− Lη2η2L

2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(77)

(a9)

≤ f(xt)− cηηLKEt∥∇f(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G)

+

∑
i wη

2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G , (78)

where (a7) is due to Lemma H.1, (a8) holds because there exists a constant c > 0 (for some
ηL) satisfying 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

w∥pA
2 + 1) > c > 0, and the (a9) follows

from
(

ηηL

2K −
Lη2η2

L

2

)
≥ 0 if ηηl ≤ 1

KL .

Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (79)

Which implies:

1

T

T−1∑
t=1

E∥∇f(xt)∥2 ≤
f0 − f∗
cηηLKT

+Φ , (80)

where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL
∑

i w
2
i

2
σ2
L + 20L2K2(A2 + 1)η2Lχ

2
w∥pσ

2
G] . (81)

Corollary H.4. Suppose ηL and η are ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
such that

the conditions mentioned above are satisfied. Then for sufficiently large T, the iterates of
FedEBA+ with α = 0 satisfy:

min
t∈[T ]

∥∇f (xt)∥2 ≤ O
(
(f0 − f∗)√

mKT

)
+O

(√
m
∑

i w
2
i σ

2
L

2
√
KT

)
+O

(
5(σ2

L + 4Kσ2
G)

2KT

)
+O

(
20(A2 + 1)χ2

w∥pσ
2
G

T

)
. (82)

According to the property of unified probability, we know 1
m ≤

∑m
i=1 w

2
i ≤ 1, where the upper

comes from
∑

i w
2
i ≤

∑
i wi and lower comes from Cauchy-Schwarz inquality. Therefore, the

convergence rate upper bound lies between O( 1√
mKT

+ 1
T ) and O(

√
m√
KT

+ 1
T ).
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H.2 Analysis with α ̸= 0

To derivate the convergence rate of FedEBA+ with α ≠ 0, we need the following assumption:
Assumption 4 (Error bound between practical global gradient and ideal gradient). In
each round, we assume the aligned gradient ∇f(xt) and the gradient ∇f(xt) is bounded:
E∥∇f(xt)−∇f(xt)∥2 ≤ ρ2, ∀i, t. For simplicity of analysis, let ρ is comparable to σL, i.e.,
ρ ∼ σL, since they are both constant bounds.

To simplify the notation, we define hi
t,k = (1− α)∇Fi(x

i
t,k) + α∇f(xt).

Lemma H.5. For any step-size satisfying ηL ≤ 1
8LK , we can have the following results:

E∥xi
t,k − xt∥2 ≤ 5K(1− α)2(η2Lσ

2
L + 6Kη2Lσ

2
G) + +30K2η2Lα

2ρ2

+ 30K2η2L(1 +A2(1− α)2)∥∇f(xt)∥2 . (83)

Proof.

Et∥xi
t,k − xt∥2 (84)

= Et∥xi
t,k−1 − xt − ηLh

t
t,k−1∥2 (85)

= Et∥xi
t,k−1 − xt − ηL((1− α)gtt,k−1 + α∇f(xt)− (1− α)∇Fi(x

i
t,k−1)

+ (1− α)∇Fi(x
i
t,k−1)− (1− α)∇Fi(xt) + (1− α)∇Fi(xt) +∇f(xt)−∇f(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + (1− α)2η2Lσ
2
L + 6Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 6Kη2Lα
2E∥∇f(xt)−∇f(xt)∥2 + 6Kη2L(1− α)2(σ2

G +A2∥∇f(xt)∥2)
+ 6Kη2L∥∇f(xt)∥2 (86)

≤ (1 +
1

K − 1
)Et∥xi

t,k−1 − xt∥2 + (1− α)2η2Lσ
2
L

+ 6Kη2Lα
2ρ2 + 6Kη2L(1− α)2(σ2

G +A2∥∇f(xt)∥2) + 6Kη2L∥∇f(xt)∥2 , (87)

Unrolling the recursion, we obtain:

Et∥xi
t,k − xt∥2 (88)

≤
k−1∑
p=0

(1 +
1

K − 1
)p
(
(1− α)2η2Lσ

2
L + 6K(1− α)2η2Lσ

2
G + 6Kα2η2Lρ

2

+6Kη2L(A
2(1− α)2 + 1)∥∇f(xt)∥2

)
(89)

≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
(1− α)2η2Lσ

2
L

+6K(1− α)2η2Lσ
2
G + 6Kα2η2Lρ

2 + 6Kη2L(A
2(1− α)2 + 1)∥∇f(xt)∥2

]
(90)

≤ 5Kη2L(1− α)2(σ2
L + 6Kσ2

G) + 30K2η2Lα
2ρ2 + 30K2η2L(A

2(1− α)2 + 1)∥∇f(xt)∥2 . (91)

Similarly, to get the convergence rate of objective f(xt), we first focus on f(xt):

Et[f(xt+1)]
(a1)

≤ f(xt) + ⟨∇f(xt),Et[xt+1 − xt]⟩+
L

2
Et[∥xt+1 − xt∥2] (92)

= f(xt) + ⟨∇f(xt),Et[η∆t + ηηLK∇f(xt)− ηηLK∇f(xt)]⟩+
L

2
η2Et[∥∆t∥2] (93)

= f(xt)− ηηLK ∥∇f(xt)∥2 + η ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

, (94)

where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the
local data SGD and the filtration of xt. However, in the next analysis, the expectation is
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over all randomness, including client sampling. This is achieved by taking expectation on
both sides of the above equation over client sampling.

To begin with, we consider A1:

A1 (95)
= ⟨∇f(xt),Et[∆t + ηLK∇f(xt)]⟩ (96)

=

〈
∇f(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηLh
i
t,k + ηLK∇f(xt)]

〉
(97)

(a2)
=

〈
∇f(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηL[(1− α)∇Fi(x
i
t,k) + αf(xt)] + ηLK∇f(xt)]

〉
. (98)

For the above equation, we can separate the ∇f(xt) into (1− α)∇f(xt) and α∇f(xt) two terms,
thus, we have:

A1 (99)

=
〈√

ηLK∇f(xt),

−
√
ηL√
K

Et

(
m∑
i=1

wi

K−1∑
k=0

(1− α)[∇Fi(x
i
t,k)−∇f(xt)] +

m∑
i=1

wi

K−1∑
k=0

α[∇f(xt)−∇f(xt)]

)〉
(100)

(a3)
=

ηLK

2
∥∇f(xt)∥2 −

ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

+
ηL
2K

Et

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

(
(1− α)[∇Fi(x

i
t,k)−∇f(xt)] + α[∇f(xt)−∇f(xt)]

)∥∥∥∥∥
2

(101)

(a4)

≤ ηLK

2
∥∇f(xt)∥2 +

ηL(1− α)2

2m

K−1∑
k=0

m∑
i=1

wiEt

∥∥∥∇Fi(x
i
t,k)−∇Fi(xt)

∥∥∥2
+

ηLα
2

2m

K−1∑
k=0

m∑
i=1

wiE∥∇f(xt)−∇f(xt)∥2 −
ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

(102)

(a5)

≤ ηLK

2
∥∇f(xt)∥2 +

ηL(1− α)2L2

2m

m∑
i=1

K−1∑
k=0

Et

∥∥∥xi
t,k − xt

∥∥∥2
+

ηLα
2

2m

m∑
i=1

K−1∑
k=0

E∥∇f(xt)−∇f(xt)∥2 −
ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

(103)

≤ ηLK

2
∥∇f(xt)∥2 +

ηL(1− α)2

2m

m∑
i=1

K−1∑
k=0

(
5KηL(1− α)2(σ2

L + 6Kσ2
G) + 30K2η2

L[α
2ρ2

+(1 +A2(1− α)2)∥∇f(xt∥2]
)
+

η2
Lα

2

2
Kρ2 − ηL

2K
E∥

m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2 ,

(104)

where (a2) follows from Assumption 2. (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and

(a4) uses Jensen’s Inequality: ∥
∑m

i=1 wizi∥
2 ≤

∑m
i=1 wi ∥zi∥2, (a5) comes from Assumption 1.
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Then we consider A2:

A2 (105)

= Et∥∆t∥2 (106)

= Et

∥∥∥∥∥ηL
m∑
i=1

wi

K−1∑
k=0

hi
t,k

∥∥∥∥∥
2

(107)

= η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

[
(1− α)∇Fi(x

i
t,k; ξ

i
t) + αf(xt)

]∥∥∥∥∥
2

(108)

≤ η2LE∥
m∑
i=1

wi

K−1∑
k=0

[
(1− α)∇Fi(x

i
t,k; ξ

i
t) + αf(xt)

]
− (1− α)∇Fi(x

i
t,k) + (1− α)∇Fi(x

i
t,k)∥2 (109)

(a6)

≤
m∑
i=1

w2
i η

2
LK(1− α)2σ2

L + η2LE∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2 (110)

where (a6) follows from Assumption 2.

Now we substitute the expressions for A1 and A2 and take the expectation over the client
sampling distribution on both sides. It should be noted that the derivation of A1 and A2

above is based on considering the expectation over the sampling distribution:

f(xt+1) (111)

≤ f(xt)− ηηLKEt ∥∇f(xt)∥2 + ηEt ⟨∇f(xt),∆t + ηLK∇f(xt)⟩+
L

2
η2Et∥∆t∥2 (112)

(a7)

≤ f(xt)− ηηLK

(
1

2
− 30α2L2K2η2L((1− α)2A2 + 1)

)
E ∥∇f(xt)∥2

+
5(1− α)2ηη3LL

2K2

2

[
5(1− α)2(σ2

L + 6Kσ2
G) + 30Kα2ρ2

]
+

ηη2Lα
2

2
Kρ2

+

∑m
i=1 w

2
iLη

2η2L
2

(1− α)2Kσ2
L

− (
ηηL
2K
− η2η2LL

2
)E

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]

∥∥∥∥∥
2

(113)

where (a7) comes from 1
2 − 15α2L2K2η2L((1− α)2A2 + 1) > c > 0 and ηηL

2K −
ηη2

LL
2 ≥ 0.

Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (114)

Which implies:

1

T

T−1∑
t=1

E∥∇f(xt)∥2 ≤
f0 − f∗
cηηLKT

+ Φ̃ , (115)

where

Φ̃ =
1

c

[
5η2LKL2(1− α)4

2
(σ2

L + 6Kσ2
G) + 15K2η2L(1− α)2α2ρ2

+

∑m
i=1 w

2
i ηηLL(1− α)2

2
σ2
L +

ηLα
2ρ2

2

]
. (116)
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Corollary H.6. Suppose ηL and η are ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
such that

the conditions mentioned above are satisfied. Then for sufficiently large T, the iterates of
FedEBA+ with α ̸= 0 satisfy:

min
t∈[T ]

∥∇f (xt)∥2 ≤ O
(
(f0 − f∗)√

mKT

)
+O

(
m∑
i=1

w2
i

(1− α)2
√
mσ2

L

2
√
KT

)
+O

(
5(1− α)2(σ2

L + 6Kσ2
G)

2KT

)
+O

(
15(1− α)2α2ρ2

T

)
+O

(
α2ρ2

2
√
TK

)
. (117)

For the convergence rate of FedEBA+ with α ̸= 0, the convergence rate order can be
represented as :O( (1−α)2

∑
i w

2
i

√
mσ2

L+α2
√
Kρ2

√
KT

+ 1
T ), where K << m and σL ∼ ρ, thus a larger

α indicating a tighter convergence upper bound than only using reweight aggregation. In

addition, when wi =
1
m , i.e., uniform aggregation, it is O( (1−α)2σ2

L+α2
√

K/mρ2

√
mKT

+ 1
T ), since√

K/m << 1, which indicating when using alignment update the convergence result will be
faster than FedAvg.

I Fairness Analysis via Variance

To demonstrate the ability of FedEBA+ to enhance fairness in federated learning, we first
employ a two-user toy example to demonstrate how FedEBA+ can achieve a more balanced
performance between users in comparison to FedAvg and q-FedAvg, thus ensuring fairness.
Furthermore, we use a general class of regression models and strongly convex cases to show
how FedEBA+ reduces the variance among users and thus improves fairness.

I.1 Toy Case for Illustrating Fairness

In Figure 1, the term "performance gap" refers to the performance disparity between two
clients, calculated by ∥F1(x) − F2(x)∥. The magnitude of this gap effectively reflects the
variance among clients. Considering that V ar = |F1(x)−F2(x)|2

4 , it can be inferred that a
larger performance gap |F1(x)− F2(x)| corresponds to a larger variance, thus indicating less
fairness.

In this section, we examine the performance fairness of our algorithm. In particular, we
consider two clients participating in training, each with a regression model: f1(xt) = 2(x−2)2,
f2(xt) =

1
2 (x+ 4)2. Corresponding,

∇f1(xt) = 4(x− 2) , (118)

∇f2(xt) = (x+ 4) . (119)

When the global model parameter xt = 0 is sent to each client, each client will update the
model by running gradient decent, here w.l.o.g, we consider one single-step gradient decent,
and stepsize λ = 1

4 :

xt+1
1 = xt − λ∇f1(xt) = 2 , (120)

xt+1
2 = xt − λ∇f2(xt) = −1 . (121)

The aggregation weights for FedAvg and FedEBA+ can be concluded as:

(p1, p2)AVG = (
1

2
,
1

2
); (p1, p2)EBA+ = (

1

1 + e9/2
,

e9/2

1 + e9/2
). (122)

Thus, for uniform aggregation, i.e., FedAvg:

xt+1
AVG =

1

2
(xt+1

1 + xt+1
2 ) =

1

2
. (123)
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While for FedEBA+:

xt+1
EBA+ =

ef1(x
t+1
1 )

ef1(x
t+1
1 ) + ef2(x

t+1
2 )

xt+1
1 +

ef2(x
t+1
2 )

ef1(x
t+1
1 ) + ef2(x

t+1
2 )

xt+1
2 ≈ −0.1 . (124)

Therefore,

VarAVG =
1

2

2∑
i=1

(
fi(x

t+1
AVG)−

1

2

2∑
i=1

(fi(x
t+1
AVG)

)
= 2 ∗ (2.81)2 , (125)

VarEBA+ =
1

2

2∑
i=1

(
fi(x

t+1
EBA+)−

1

2

2∑
i=1

(fi(x
t+1
EBA+)

)
= 2 ∗ (0.6)2 . (126)

Thus, we prove that FedEBA+ achieves a much smaller variance than uniform aggregation.

Furthermore, for q-FedAvg, we consider q = 2 that is also used in the proof of (Li et al.,
2019a):

∇xt
1 = L(xt − xt+1

1 ) = −2 , (127)

∇xt
2 = L(xt − xt+1

2 ) = 1 . (128)

Thus, we have:

∆t
1 = fq

1 (xt)∇xt
1 = 8 ∗ (−2) = −16 , (129)

ht
1 = qfq−1

1 (xt)∥∇xt
1∥2 + Lfq

1 (xt) = 1× 1× 22 + 8 = 12 , (130)

∆t
2 = fq

2 (xt)∇xt
2 = 8 ∗ (1) = 8 , (131)

ht
2 = qfq−1

2 (xt)∥∇xt
2∥2 + Lfq

2 (xt) = 1× 1× 12 + 8 = 9 . (132)

The aggregation weights for q-FFL can be concluded as:

(p1, p2)q−FFL = (
4

13
,
4

13
). (133)

Finally, we can update the global parameter as:

xt+1
q−FFL = xt −

∑
i ∆

t
i∑

i h
t
i

≈ −0.4 . (134)

Then we can easily get:

Varq−FFL =
1

2

2∑
i=1

(
fi(x

t+1
q−FFL)−

1

2

m∑
i=1

(fi(x
t+1
q−FFL)

)
= 2 ∗ (2.52)2

In conclusion, we prove that

VarEBA+ ≤ Varq−FFL ≤ VarAVG . (135)

In this case, the normalized performance’s entropy, after maxing the constrained entropy of
aggregation probability, exhibits a relationship akin to variance (greater entropy corresponds
to improved fairness).

Entropy
(
f
(
xt+1
EBA+

))
= −

2∑
i=1

fi
(
xt+1
EBA+

)∑2
j=1 fj

(
xt+1
EBA+

) log( fj
(
xt+1
EBA+

)∑2
i=j fi

(
xt+1
EBA+

)) ≈ 0.996 (136)

Entropy
(
f
(
xt+1
q−FFL

))
= −

2∑
i=1

fi
(
xt+1
q−FFL

)∑2
j=1 fj

(
xt+1
q−FFL

) log( fj
(
xt+1
q−FFL

)∑2
i=j fi

(
xt+1
q−FFL

)) ≈ 0.942, (137)

Entropy
(
f
(
xt+1
AV G

))
= −

2∑
i=1

fi
(
xt+1

avg
)∑2

j=1 fj
(
xt+1

AVG

) log( fj
(
xt+1

AVG

)∑2
i=j fi

(
xt+1

AVG

)) ≈ 0.890 (138)
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where

f1
(
xt+1
EBA+

)
= 2 ∗ (2.1)2, f2

(
xt+1
EBA+

)
=

1

2
∗ (3.9)2, (139)

f1
(
xt+1
q−FFL

)
= 2 ∗ (2.4)2, f2

(
xt+1
q−FFL

)
=

1

2
∗ (3.6)2, (140)

f1
(
xt+1
AV G

)
= 2 ∗ (1.5)2, f2

(
xt+1
AV G

)
=

1

2
∗ (4.5)2. (141)

Therefore, Entropy(f(xt+1
EBA+)) > Entropy(f(xt+1

q−FFL)) > Entropy(f(xt+1
AVG)) and

V arEBA+ < V arq−FFL < V arAVG.

I.2 Analysis Fairness by Generalized Linear Regression Model

Our setting. In this section, we consider a generalized linear regression setting, which
follows from that in (Lin et al., 2022).

Suppose that the true parameter on client i is wi, and there are n samples on each
client. The observations are generated by ŷi,k(wi, ξi,k) = T (ξi,k)

⊤wi − A(ξi,k), where
the A(ξi,k) are i.i.d and distributed as N

(
0, σ2

1

)
. Then the loss on client i is Fi (xi) =

1
2n

∑n
k=1

(
T (ξi,k)

⊤xi −A(ξi,k)− ŷi,k
)2.

We compare the performance of fairness of different aggregation methods. Recall Defina-
tion 3.1. We measure performance fairness in terms of the variance of the test accuracy/losses.

Solutions of different methods First, we derive the solutions of different meth-
ods. Let Ξi = (T (ξi,1), T (ξi,2), . . . , T (ξi,n))

⊤ , Ai = (A(ξi,1), A(ξi,2), . . . , A(ξi,n))
⊤and

yi = (yi,1, yi,2, . . . , yi,n)
⊤. Then the loss on client i can be rewritten as Fi (xi) =

1
2n ∥Ξixi −Ai − yi∥22, where rank (Ξi) = d. The least-square estimator of wi is(

Ξ⊤
i Ξi

)−1

Ξ⊤
i (yi +Ai) . (142)

FedAvg: For FedAvg, the solution is defined as wAvg = argminw∈Rd
1
m

∑m
i=1 Fi(w). One can

check that wAvg =
(∑m

i=1 Ξ
⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i (yi+Ai) =

(∑m
i=1 Ξ

⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i Ξiŵi+

Λ, where Λ =
(∑m

i=1 Ξ
⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i Ai and ŵi = argminx∈Rd fi(xi) is the solution on

client i.

FedEBA+: For our method FedEBA+, the solution of the global model is wEBA+ =

argminw∈Rd

∑m
i=1 piFi(w) =

(∑m
i=1 piΞ

⊤
i Ξi

)−1∑m
i=1 piΞ

⊤
i Ξiŵi + Λ̂, where pi ∝ eFi(wi),

and Λ̂ =
(∑m

i=1 piΞ
⊤
i Ξi

)−1∑m
i=1 piΞ

⊤
i Ai

Following the setting of (Lin et al., 2022), to make the calculations clean, we assume Ξ⊤
i Ξi =

nbiId. Then the solutions of different methods can be simplified as

• FedAvg: wAvg =
∑m

i=1 bi ˆ(wi+Ai)∑m
i=1 bi

.

• FedEBA+: wAvg =
∑m

i=1 bipi(ŵi+Ai)∑m
i=1 bipi

.

Test Loss We compute the test losses of different methods. In this part, we assume bi = b
to make calculations clean. This is reasonable since we often normalize the data.

Recall that the dataset on client i is (Ξi,yi), where Ξi is fixed and yi follows Gaussian
distribution N

(
Ξiwi, σ

2
2In

)
. Then the data heterogeneity across clients only lies in the

heterogeneity of wi. Besides, since distribution of Λ also follows gaussian distribution
N
(
0, σ2

1In

)
, thus wi +Ai follows from N

(
Ξiwi, σ

2In

)
, where σ2 = σ2

1 + σ2
2 . Then, we can

obtain the distribution of the solutions of different methods. Let w =
∑N

i=1 wi

N . We have
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• FedAvg: wAvg ∼ N
(
w, σ2

bNnId

)
.

• FedEBA+: wEBA+ ∼ N
(
w̃,
∑N

i=1 p
2
i
σ2

bnId

)
, where w̃ =

∑N
i=1 piwi.

Since Ξi is fixed, we assume the test data is (Ξi,y
′
i) where y′

i = Ξiwi + z′i with z′i ∼
N
(
0n, σ

2
zIn

)
independent of zi. Then the test loss on client k is defined as:

F te
i (xi) =

1

2n
E ∥Ξixi +Ai − y′

i∥
2
2 (143)

=
1

2n
E ∥Ξixi +Ai − (Ξiwi + z′i)∥

2
2 (144)

=
σ̃2

2
+

1

2n
E ∥Ξi (xi −wi)∥22 (145)

=
σ̃2

2
+

b

2
E ∥xi −wi∥22 (146)

=
σ̃2

2
+

b

2
tr (var (xi)) +

b

2
∥Exi −wi∥22 . (147)

where σ̃ is a Gaussian variance, which comes from the fact that both Ai and z′i follow
Gaussian distribution with mean 0.

Therefore, for different methods, we can compute that

F te
i

(
wAvg) = σ̃2

2
+

σ̃2d

2Nn
+

b

2
∥w −wi∥22 , (148)

F te
i

(
wEBA+) = σ̃2

2
+

N∑
k=1

p2i
σ̃2d

2n
+

b

2
∥w̃ −wi∥22 . (149)

Define var as the variance operator. Then we give the formal version of Theorem 5.4.

The variance of test losses on different clients of different aggregation methods are as follows:

V Avg = var
(
F te
i

(
wAvg)) = b2

4
var
(
∥w −wi∥22

)
, (150)

V EBA+ = var
(
F te
i

(
wEBA+)) = b2

4
var
(
∥w̃ −wi∥22

)
. (151)

Based on a simple fact: assign larger weights to smaller values and smaller weights to larger
values, and give a detailed mathematical proof to show that the variance of such a distribution
is smaller than the variance of a uniform distribution. Which means V EBA+ ≤ V Avg.

Formally, let ∥w̃ −wi∥2 = Ai. From equation (149), we know that F te
i (wEBA+) ∝ Ai, and

pi ∝ Fi. Thus, we know pi ∝ Ai.

Then, we consider the expression of V EBA+ = b2

4 var(Ai). Assume Ai = [A1 > A2 > · · · >
Am], then the corresponding aggregation probability distribution is [p1 > p2 > · · · > pm].
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We show the analysis of variance with set size 2, while the analysis can be easily extended to
the number K. For FedEBA+, we have

var(Ai) =

m∑
i=1

pi

(
Ai −

∑
i

piAi

)2

(152)

= p1(A1 − (p1A1 + p2A2))
2 + p2(A2 − (p1A1 + p2A2))

2 (153)

= p1(1− p1)
2A2

1 − 2(1− p1)p1p2A1A2 + p1p
2
2A

2
2 (154)

+ p2(1− p2)
2A2

2 − 2(1− p2)p1p2A1A2 + p21p2A
2
1 (155)

= (p1p
2
2 + p21p2)A

2
1 − 2p1p2(2− p1 − p2)A1A2 + (p1p

2
2 + p21p2)A

2
2 (156)

(a1)
= p1p2(A

2
1 +A2

2)− 2p1p2A1A2 (157)

= p1p2(A1 −A2)
2 , (158)

where (a1) follows from the fact
∑

i pi = 1.

According to our previous analysis, p1 > p2 while A1 > A2.According to Cauchy-Schwarz
inequality, one can easily prove that p1p2 ≤ 1

4 , where 1
4 comes from uniform aggregation.

Therefore, we prove that V EBA+ ≤ V Avg.

I.3 Fairness analysis by smooth and strongly convex Loss functions.

In this section, we define the test loss on client i as L(xi), to distinguish it from the training
loss Fi(xi).

To extend the analysis to a more general case, we first introduce the following assumptions:

Assumption 5 (Smooth and strongly convex loss functions). The loss function Li(x) for
each client is L-smooth,

∥∇Li(x)∥2 ≤ L , (159)

and µ-strongly convex:

L(y) ≥ L(x)+ < ∇L(x), y − x > +
1

2
µ∥y − x∥2 . (160)

The variance of FedAvg with N clients loss can be formulated as:

V Avg
N =

1

N

N∑
i=1

L2
i (x)− (

1

N

N∑
i=1

Li(x))
2. (161)

For FedEBA+, the variance can be formulated with a similar form, only different in client’s
loss Li(x̃), abbreviated as L̃i. Then, the variance of FedEBA+ with N clients can be
formulated as:

V EBA+
N =

1

N

N∑
i=1

L̃2
i − (

1

N

N∑
i=1

L̃i)
2. (162)
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When client number is N + 1, abbreviate FedAvg’s loss Li(x) as Li, we conclude

V Avg
N (163)

=
1

N + 1

N+1∑
i=1

L2
i −

(
1

N + 1

N+1∑
i=1

Li

)2

(164)

=
N

N + 1

1

N

(
L2
1 + L2

2 + · · ·+ L2
N+1

)
−
[

N

N + 1

1

N
(L1 + L2 + · · ·+ LN+1)

]2
(165)

=
N

N + 1

1

N

[(
L2
1 + L2

2 + · · ·+ L2
N

)
+ L2

N+1

]
−
[

N

N + 1

(
L1 + L2 + · · ·+ LN

N
+

LN+1

N

)]2
(166)

=

(
N

N + 1

)2
N + 1

N

∑N
i=1 L

2
i

N
−

(
1

N

N∑
i=1

Li

)2


+
1

N + 1
L2
N+1 −

L2
N+1

(N + 1)2
− 2(

N

N + 1
)2
∑N

i=1 Li

N

LN+1

N
(167)

= (
N

N + 1
)2

1

N

∑N
i=1 L

2
i

N
+

N

N + 1
VN +

1

N + 1
L2
N+1

− 1

(N + 1)2
L2
N+1 − 2(

N

N + 1
)2
∑N

i=1 Li

N

LN+1

N
(168)

=
N

N + 1
VN +

L2
1 + · · ·+ L2

N

(N + 1)2
++

NL2
N+1

(N + 1)2
− 2(L1 + · · ·+ N )LN+1

(N + 1)2
(169)

=
N

N + 1
VN +

∑N
i=1(Li − LN+1)

2

(N + 1)2
. (170)

We start proving V Avg
N ≥ V EBA+

N ,∀N by considering a special case with two clients: There
are two clients, Client 1 and Client 2, each with local model x1, x2 and training loss F1(x1)
and F2(x2).

In this analysis, we assume Client 2 to be the outlier, which means the client’s optimal
parameter and model parameter distribution is far away from Client 1. In particular,
µ2 >> L1

smooth.

The global model starts with x = 0, and after enough local training updates, the model x1, x2

will converge to their personal optimum x∗
1, x

∗
2. W.l.o.g, we let Client 1 with F1(x

∗
1) = 0,

Client 2 with F2(x
∗
2) = a > 0. Let x∗

1 < x∗
2 (relative position, which does not affect the

analysis).

Based on the proposed aggregation pi ∝ exp Fi(x)
τ , we can derive the aggregated global model

x̃ of FedEBA+ to be:

x̃ = p1x
∗
1 + p2x

∗
2 =

x∗
1 + eax∗

2

ea + 1
. (171)

While for FedAvg, the aggregated global model x is:

x =
x∗
1 + x∗

2

2
. (172)

For FedEBA+, the test loss of Client 1 and Client 2 are L̃1 = L1(x̃), L̃2 = L2(x̃) respectively.
The corresponding variance is V EBA+

2 = 1
2 (L̃1 − L̃2)

2.

For FedAvg, the test loss of Client 1 and Client 2 is L1 = L1(x), L2 = L2(x) respectively.
The corresponding variance is V AVG

2 = 1
2 (L1 − L2)

2.
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Since Client 2 is a outlier with F2(x
∗
2) > 0 and x∗

1 < x∗
2, we can easily conclude F2(x) is

monotonically decreasing on (x∗
1, x

∗
2), F1(x) is monotonically increasing on (x∗

1, x
∗
2). Besides,

w.l.o.g, since ∇F1(x) ≤ Lsmooth << µ2, we can let µ = a
x∗
2−x∗

1
.

Thus, we promise a
x∗
2−x∗

1
> ∇F1(x

∗
2). According to the property of calculus, we can easily

check that F2(x)− F1(x) > 0 is monotonically decreasing on (x∗
1, x

∗
2).

Since

x∗
2 − x̃ =

x∗
2 − x∗

1

ea + 1
≤ x∗

2 − x =
x∗
2 − x∗

1

2
, (173)

thus we have (F2(x̃)− F1(x̃))
2 ≤ (F2(x)− F1(x))

2 .

So far, we have prove V EBA+
2 ≤ V AVG

2 .

To extend the analysis to arbitrary N , we utilize the mathematical induction:

Assume V EBA+
N ≤ V AVG

N , we need to derive V EBA+
N+1 ≤ V AVG

N+1 .

Consider a similar scenario as we analyze with two clients. We assume Client N+1 to be
an outlier, which means the client’s optimal value and parameter distribution are far away
from other clients. In particular, µN+1>>Lothers

smooth
. W.l.o.g, let the optimal value F (x∗

N+1) for
Client N+1 be a, others to be zero.

Again, the global model starts with x = 0, and after enough local training updates, the
models will converge to their personal optimum x∗

1, x
∗
2, . . . , x

∗
N+1 and x∗

N+1 > x∗
others.

By (170), we have:

V Avg
N+1 =

N

N + 1
V AVG
N +

∑N
i=1(Li − LN+1)

2

(N + 1)2
, (174)

where Li is the test loss of client i after average and

V EBA+
N+1 =

N

N + 1
V EBA+
N +

∑N
i=1(L̃i − L̃N+1)

2

(N + 1)2
. (175)

Since we know V EBA+
N ≤ V AVG

N , thus as long as we promise
∑N

i=1(L̃i−L̃N+1)
2

(N+1)2 ≤∑N
i=1(Li−LN+1)

2

(N+1)2 , we can finish the proof.

Consider an arbitrary client i ∈ [1, N ], since we already know FN+1(x
∗
N+1) = a > Fi(x

∗
i ) = 0,

the expression for x̃ is

x̃ =

N+1∑
i=1

pix
∗
i =

1

N + ea

N∑
i=1

x∗
i +

ea

N + ea
x∗
N+1 , (176)

While for FedAvg,

x =

N+1∑
i=1

1

N + 1
x∗
i . (177)

Following the exact analysis on Client i and Client N + 1, we can conclude that FN+1(x)−
Fi(x) > 0 is monotonically decreasing on (x∗

i , x
∗
N+1).

Since

x∗
N+1 − x̃ =

Nx∗
N+1 −

∑N
i=1 x

∗
i

ea +N
≤ x∗

N+1 − x =
Nx∗

N+1 −
∑N

i=1 x
∗
i

ea + 1
, (178)

thus we have (FN+1(x̃)− Fi(x̃))
2 ≤ (FN+1(x)− Fi(x))

2 ∀i ∈ [1, . . . , N ].
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Therefore, we promise
∑N

i=1(L̃i−L̃N+1)
2

(N+1)2 ≤
∑N

i=1(Li−LN+1)
2

(N+1)2 .

So far, we have prove V EBA+
N+1 ≤ V AVG

N+1 .

According to the mathematical induction, we prove V EBA+
N ≤ V AVG

N for arbitrary client
number N under smooth and strongly convex setting.

J Pareto-optimality Analysis

In addition to variance, Pareto-optimality can serve as another metric to assess fairness,
as suggested by several studies (Wei & Niethammer, 2022; Hu et al., 2022). This metric
achieves equilibrium by reaching each client’s optimal performance without hindering oth-
ers (Guardieiro et al., 2023). We prove that FedEBA+ achieves Pareto optimality through
the entropy-based aggregation strategy.
Definition J.1 (Pareto optimality). Suppose we have a group of m clients in FL, and each
client i has a performance score fi. Pareto optimality happens when we can’t improve one
client’s performance without making someone else’s worse: ∀i ∈ [1,m],∃j ∈ [1,m], j ̸=
i such that fi ≤ f ′

i and fj > f ′
j, where f ′

i and f ′
j represent the improved performance

measures of participants i and j, respectively.

In the following proposition, we show that FedEBA+ satisfies Pareto optimality. ’
Proposition J.2 (Pareto optimality.). The proposed maximum entropy model H(pi) is proven
to be monotonically increasing under the given constraints, ensuring that the aggregation
strategy φ(p) = argmaxp∈P h(p(f)) is Pareto optimal. Here, p(f) is the aggregation weights
p = [p1, p2, . . . , pm] of the loss function f = [f1, f2, . . . , fm], and h(·) represents the entropy
function. The proof can be found in Appendix J.

In this following, we demonstrate the Proposition J.2. In particular, we consider the
degenerate setting of FedEBA+ where the parameter α = 0. We first provide the following
lemma that illustrates the correlation between Pareto optimality and monotonicity.
Lemma J.3 (Property 1 in (Sampat & Zavala, 2019).). The allocation strategy φ(p) =
argmax

p∈P
h(p(f)) is Pareto optimal if h is a strictly monotonically increasing function.

In order for this paper to be self-contained, we restate the proof of Property 1 in (Sampat &
Zavala, 2019) here:

Proof Sketch: We prove the result by contradiction. Consider that p∗ = φ(P) is not Pareto
optimal; thus, there exists an alternative p ∈ P such that∑

i

pifi =

∑
i pi log pi
Z

≥
∑
i

p∗i fi =

∑
i p

∗
i log p

∗
i

Z
, (179)

where Z > 0 is a constant. Since h(p) is a strictly monotonically increasing function, we
have h(p) > h (p∗). This is a contradiction because h∗ maximizes h(·).
According to the above lemma, to show our algorithm achieves Pareto-optimal, we only need
to show it is monotonically increasing.

Recall the objective of maximum entropy:

H(p) = −
∑

p(x)log(p(x)) , (180)

subject to certain constraints on the probabilities p(x).

To show that the proposed aggregation strategy is monotonically increasing, we need to
prove that if the constraints on the probabilities p(x) are relaxed, then the maximum entropy
of the aggregation probability increases.

One way to do this is to use the properties of the logarithm function. The logarithm function
is strictly monotonically increasing. This means that for any positive real numbers a and b,
if a ≤ b, then log(a) ≤ log(b).
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Now, suppose that we have two sets of constraints on the probabilities p(x), and that the
second set of constraints is a relaxation of the first set. This means that the second set of
constraints allows for a larger set of probability distributions than the first set of constraints.

If we maximize the entropy subject to the first set of constraints, we get some probability
distribution p(x). If we then maximize the entropy subject to the second set of constraints,
we get some probability distribution q(x) such that p(x) ≤ q(x) for all x.

Using the properties of the logarithm function and the definition of the entropy, we have:

H(p(x)) = −
∑

(p(x) log(p(x))) (181)

≤ −
∑

(p(x) log(q(x))) (182)

= −
∑

((p(x)/q(x))q(x) log(q(x))) (183)

= H(q(x))−
∑

((
p(x)

q(x)
q(x) log(p(x)/q(x))) (184)

≤ H(q(x)) . (185)

This means that the entropy H(q(x)) is greater or equal to H(p(x)) when the second set of
constraints is a relaxation of the first set of constraints. As the entropy increases when the
constraints are relaxed, the maximum entropy-based aggregation strategy is monotonically
increasing.

Up to this point, we proved that our proposed aggregation strategy is monotonically increasing.
Combined with the Lemma J.3, we can prove that equation (4) is Pareto optimal.

K Uniqueness of our Aggregation Strategy

In this section, we prove the proposed entropy-based aggregation strategy is unique.

Recall our optimization objective of constrained maximum entropy:

H(p(x)) = −
∑

(p(x) log(p(x))) , (186)

subject to certain contains, which is
∑

i pi = 1, pi ≥ 0,
∑

i piFi = f̃ .

Based on equation 4, and writing the entropy in matrix form, we have:

Hi,j(p) =

{
pi(

Fi

τ − log
∑

eFi/τ ) = −api for i = j

0 otherwise
, (187)

where a is some positive constant.

For every non-zero vector v we have that:

vTH(p)v =
∑
j∈N
−apiv2j < 0. (188)

The Hessian is thus negative definite.

Furthermore, since the constraints are linear, both convex and concave, the constrained
maximum entropy function is strictly concave and thus has a unique global maximum.

L Experiment Details

L.1 Experimental Environment

For all experiments, we use NVIDIA GeForce RTX 3090 GPUs. Each simulation trail with
2000 communication rounds and three random seeds.
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Federated Datasets and Models. We tested the performance of FedEBA+ on five
public datasets: MNIST, Fashion MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet. We
use two methods to split the real datasets into non-iid datasets: (1) following the setting of
(Wang et al., 2021), where 100 clients participate in the federated system, and according to
the labels, we divide all the data of MNIST, FashionMNIST, CIFAR-10, CIFAR-100 and
Tiny-ImageNet into 200 shards separately, and each user randomly picks up 2 shards for
local training. (2) we leverage Latent Dirichlet Allocation (LDA) to control the distribution
drift with the Dirichlet parameter α = 0.1.

As for the model, we use an MLP model with 2 hidden layers on MNIST and Fashion-MNIST,
and a CNN model with 2 convolution layers on CIFAR-10, ResNet-18 on CIFAR-100, and
MobileNet-v2 on TinyImageNet.

Baselines We compared several advanced FL fairness algorithms with FedEBA+, including
FedAvg (McMahan et al., 2017), FedSGD (McMahan et al., 2016), AFL (Mohri et al.,
2019),q-FFL (Li et al., 2019a),FedMGDA+(Hu et al., 2022),PropFair (Zhang et al., 2023),
TERM (Li et al., 2020a), FOCUS (Chu et al., 2023), Ditto (Li et al., 2021),FedFV (Wang
et al., 2021), and lp-proj (Lin et al., 2022).

Hyper-parameters As shown in Table 3, we tuned some hyper-parameters of baselines
to ensure the performance in line with the previous studies and listed parameters used in
FedEBA+. All experiments are running over 2000 rounds for the local epoch (K = 10) with
local batch size B = 50 for MNIST and B = 64 for CIFAR datasets. The learning rate
remains the same for different methods, that is η = 0.1 on MNIST, Fasion-MNIST, CIFAR-10,
η = 0.05 on Tiny-ImageNet and η = 0.01 on CIFAR-100 with decay rate d = 0.999.

Table 6: Hyperparameters of baselines.

Algorithm Hyper-parameters

q-FFL q ∈ {0.001, 0.01, 0.1, 0.5, 10, 15}
PropFair M ∈ {0.2, 2.05.0}, ϵ = 0.2
AFL λ ∈ {0.1, 0.5, 0.7}
TERM T ∈ {0.1, 0.5, 0.8, 1, 5}
FedMGDA+ ϵ ∈ {0, 0.03, 0.08, 0.1, 1.0}
FedProx q = {0.001, 0.001, 0.1, 0.5, 10.0, 15.0}
Ditto λ = {0.0, 0.5}
FOCUS β = 0.5, cluster = 2
lp-proj localmodeldim = 60, λ = 15, p = 1.0
FedFV α ∈ {0.1, 0.2, 0.5}, τ ∈ {0, 1, 10}
FedEBA+ τ ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 20.0}, α ∈ {0.0, 0.1, 0.5, 0.9}

M Additional Experiment Results

M.1 Fairness Evaluation of FedEBA+

In this section, we provide additional experimental results to illustrate that FedEBA+ is
superior to other baselines.

Figure 4 illustrates that, on the MNIST dataset, FedEBA+ demonstrates faster convergence,
increased stability, and superior results in comparison to baselines. As for the CIFAR-10
dataset, its complexity causes some instability for all methods, however, FedEBA+ still
concludes the training with the most favorable fairness results.

Table 9 shows FedEBA+ outperforms other baselines on CIFAR-10 using MLP
model. The results in Table 9 demonstrate that 1) FedEBA+ consistently achieves a smaller
variance of accuracy compared to other baselines, thus is fairer. 2) FedEBA+ significantly
improves the performance of the worst 5% clients and 3) FedEBA+ performances steady in
terms of best 5% clients. A significant improvement in worst 5% is achieved with relatively
no compromise in best 5 %, thus is fairer.
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Table 7: Performance of algorithms on FashionMNIST and CIFAR-10. We report the
accuracy of global model, variance fairness, worst 5%, and best 5% accuracy. The data is divided
into 100 clients, with 10 clients sampled in each round. All experiments are running over 2000
rounds for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Worst 5% Best 5% Global Acc. Var. Worst 5% Best 5%

FedAvg 86.49 ± 0.09 62.44±4.55 71.27±1.14 95.84± 0.35 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82

q-FFL|q=0.001 87.05± 0.25 66.67± 1.39 72.11± 0.03 95.09± 0.71 68.53± 0.18 97.42± 0.79 48.40± 0.60 84.70± 1.31
q-FFL|q=0.01 86.62± 0.03 58.11± 3.21 71.36± 1.98 95.29±0.27 68.85± 0.03 95.17± 1.85 48.20±0.80 84.10±0.10
q-FFL|q=0.5 86.57± 0.19 54.91± 2.82 70.88± 0.98 95.06±0.17 68.76± 0.22 97.81± 2.18 48.33±0.84 84.51±1.33
q-FFL|q=10.0 77.29± 0.20 47.20± 0.82 61.99± 0.48 92.25±0.57 40.78± 0.06 85.93± 1.48 22.70±0.10 56.40±0.21
q-FFL|q=15.0 75.77±0.42 46.58±0.75 61.63±0.46 89.60±0.42 36.89±0.14 79.65±5.17 19.30±0.70 51.30±0.09

FedMGDA+|ϵ=0.0 86.01±0.31 58.87±3.23 71.49±0.16 95.45±0.43 67.16±0.33 97.33±1.68 46.00±0.79 83.30±0.10
FedMGDA+|ϵ=0.03 84.64±0.25 57.89±6.21 73.49±1.17 93.22±0.20 65.19±0.87 89.78±5.87 48.84±1.12 81.94±0.67
FedMGDA+|ϵ=0.08 84.90±0.34 61.55±5.87 73.64±0.85 92.78±0.12 65.06±0.69 93.70±14.10 48.23±0.82 82.01±0.09

AFL|λ=0.7 85.14±0.18 57.39±6.13 70.09±0.69 95.94±0.09 66.21±1.21 79.75±1.25 47.54±0.61 82.08±0.77
AFL|λ=0.5 84.14±0.18 90.76±3.33 60.11±0.58 96.00±0.09 65.11±2.44 86.19±9.46 44.73±3.90 82.10±0.62
AFL|λ=0.1 84.91±0.71 69.39±6.50 69.24±0.35 95.39±0.72 65.63±0.54 88.74±3.39 47.29±0.30 82.33±0.41

PropFair|M=0.2,thres=0.2 85.51±0.28 75.27±5.38 63.60±0.53 97.60±0.19 65.79±0.53 79.67±5.71 49.88±0.93 82.40±0.40
PropFair|M=5.0,thres=0.2 84.59±1.01 85.31±8.62 61.40±0.55 96.40±0.29 66.91±1.43 78.90±6.48 50.16±0.56 85.40±0.34

TERM|T=0.1 84.31±0.38 73.46±2.06 68.23±0.10 94.16±0.16 65.41±0.37 91.99±2.69 49.08±0.66 81.98±0.19
TERM|T=0.5 82.19±1.41 87.82±2.62 62.11±0.71 93.25±0.39 61.04±1.96 96.78±7.67 42.45±1.73 80.06±0.62
TERM|T=0.8 81.33±1.21 95.65±9.56 56.41±0.56 92.88±0.70 59.21±1.45 82.63±3.64 41.33±0.68 77.39±1.04

FedFV|α=0.1,τfv=1 86.51±0.28 49.73±2.26 71.33±1.16 95.89±0.23 68.94±0.27 90.84±2.67 50.53±4.33 86.00±1.23
FedFV|α=0.2,τfv=0 86.42±0.38 52.41±5.94 71.22±1.35 95.47±0.43 68.89±0.15 82.99±3.10 50.08±0.40 86.24±1.17
FedFV|α=0.5,τfv=10 86.88±0.26 47.63±1.79 71.49±0.39 95.62±0.29 69.42±0.60 78.10±3.62 52.80±0.34 85.76±0.80
FedFV|α=0.1,τfv=10 86.98±0.45 56.63±1.85 66.40±0.57 98.80±0.12 71.10±0.44 86.50±7.36 49.80±0.72 88.42±0.25

FedEBA+|α=0,τ=0.1 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90
FedEBA+|α=0.5,τ=0.1 87.21±0.06 40.02±1.58 73.07±1.03 95.81±0.14 72.39±0.47 70.60±3.19 55.27±1.18 86.27±1.16
FedEBA+|α=0.9,τ=0.1 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52

(a) MNIST (b) CIFAR-10

Figure 4: Performance of all the methods in terms of Fairness (Var.).

M.2 Fairness Evaluation in Different Non-i.i.d. Cases

We adopt two kinds of data splitation strategies to change the degree of non-i.i.d., which are
data devided by labels mentioned in the main text, and the data partitioning in deference to
the Latent Dirichlet Allocation (LDA) with the Dirichlet parameter . Based on FedAvg, we
have experimented with various data segmentation strategies for FedEBA+ to verify the
performance of FedEBA+ for scenarios with different kinds of data held by clients.
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Table 8: Ablation study for θ of FedEBA+. This table shows our schedule of using the fair
angle θ to control the gradient alignment times is effective, as it largely reduces the communication
rounds with larger angles. In addition, compared with the results of baseline in Table 1, the results
illustrate that our algorithm remains effective when we increase the fair angle. The additional
cost is computed by Additional communication/total communications, the communication cost of
communicating the MLP model is 7.8MB/round, the CNN model is 30.4MB/round.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Additional cost Global Acc. Var. Additional cost

FedAvg 86.49± 0.09 62.44± 4.55 - 67.79± 0.35 103.83± 10.46 -
q-FFL 87.05± 0.25 66.67± 1.39 - 68.53± 0.18 97.42± 0.79 -
FedMGDA+ 84.64± 0.25 57.89± 6.21 - 67.16± 0.33 97.33± 1.68 -
AFL 85.14± 0.18 57.39± 6.13 - 66.21± 1.21 79.75± 1.25 -
PropFair 85.51± 0.28 75.27± 5.38 - 65.79± 0.53 79.67± 5.71 -
TERM 84.31± 0.38 73.46± 2.06 - 65.41± 0.37 91.99± 2.69 -
FedFV 86.98± 0.45 56.63± 1.85 - 71.10± 0.44 86.50± 7.36 -
FedEBA+
θ = 0◦ 87.50± 0.19 43.41± 4.34 50.0% 72.75± 0.25 68.71± 4.39 50.0%

θ = 15◦ 87.14± 0.12 43.95± 5.12 48.6% 71.92± 0.33 75.95± 4.72 26.2%

θ = 30◦ 86.96± 0.06 46.82± 1.21 37.7% 70.91± 0.46 70.97± 4.88 12.7%

θ = 45◦ 86.94± 0.26 46.63± 4.38 4.2% 70.24± 0.08 79.51± 2.88 0.2%

θ = 90◦ 86.78± 0.47 48.91± 3.62 0% 70.14± 0.27 79.43± 1.45 0%

Table 9: Performance of algorithms on CIFAR-10 using MLP. We report the global model’s accuracy,
fairness of accuracy, worst 5% and best 5% accuracy. All experiments are running over 2000 rounds
for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Method Global Acc. Std. Worst 5% Best 5%

FedAvg 46.85±0.65 12.57±1.50 19.84±6.55 69.28±1.17

q-FFL|q=0.1 47.02±0.89 13.16±1.84 18.72±6.94 70.16±2.06
q-FFL|q=0.2 46.91±0.90 13.09±1.84 18.88±7.00 70.16±2.10
q-FFL|q=1.0 46.79±0.73 11.72±1.00 22.80±3.39 68.00±1.60
q-FFL|q=2.0 46.36±0.38 10.85±0.76 24.64±2.17 66.80±2.02
q-FFL|q=5.0 45.25±0.42 9.59±0.36 26.56±1.03 63.60±1.13

Ditto|λ=0.0 52.78±1.23 10.17±0.24 31.80±2.27 71.47±1.20
Ditto|λ=0.5 53.77±1.02 8.89±0.32 36.27±2.81 71.27±0.52

AFL|λ=0.01 52.69±0.19 10.57±0.37 34.00±1.30 71.33±0.57
AFL|λ=0.1 52.68±0.46 10.64±0.14 33.27±1.75 71.53±0.52

TERM|T=1.0 45.14±2.25 9.12±0.35 27.07±3.49 62.73±1.37

FedMGDA+|ϵ=0.01 45.65±0.21 10.94±0.87 25.12±2.34 67.44±1.20
FedMGDA+|ϵ=0.05 45.58±0.21 10.98±0.81 25.12±1.87 67.76±2.27
FedMGDA+|ϵ=0.1 45.52±0.17 11.32±0.86 24.32±2.24 68.48±2.68
FedMGDA+|ϵ=0.5 45.34±0.21 11.63±0.69 24.00±1.93 68.64±3.11
FedMGDA+|ϵ=1.0 45.34±0.22 11.64±0.66 24.00±1.93 68.64±3.11

FedFV|α=0.1,τfv=1 54.28±0.37 9.25±0.42 35.25±1.01 71.13±1.37

FedEBA|α=0.9,τ=0.1 53.94±0.13 9.25±0.95 35.87±1.80 69.93±1.00
FedEBA+|α=0.5,τ=0.1 53.14±0.05 8.48±0.32 36.03±2.08 69.20±0.75
FedEBA+|α=0.9,τ=0.1 54.43±0.24 8.10±0.17 40.07±0.57 69.80±0.16

(a) Ablation for α (b) Ablation for τ

Figure 5: Ablation study for hyperparameters
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Table 10: Performance of algorithms+momentum on Fashion-MNIST to show that FedEBA+ is
orthogonal to advance optimization methods like momentum (Karimireddy et al., 2020a), allowing
seamless integration. All experiments are running over 2000 rounds on the MLP model for a single
local epoch (K = 10) with local batch size = 50, global momentum = 0.9 and learning rate η = 0.1.
The reported results are averaged over 5 runs with different random seeds. We highlight the best
and the second-best results by using bold font and blue text.

Method Global Acc. Var. Worst 5% Best 5%

FedAvg 86.68± 0.37 66.15± 3.23 72.18± 0.22 96.04±± 0.35
AFL|λ=0.05 79.68± 0.91 55.00± 3.34 66.67± 0.12 94.00± 0.08
AFL|λ=0.7 85.41± 0.30 63.42±± 1.55 73.83± 0.37 96.46± 0.12
q-FFL|q=0.01 86.82± 0.20 64.11± 2.17 71.08± 0.16 96.29± 0.08
q-FFL|q=15 79.59± 0.48 62.26± 2.88 66.33± 1.14 90.07± 0.98
FedMGDA+|ϵ=0.0 82.69± 0.52 65.26± 3.81 69.63± 1.20 92.67± 0.54
PropFair|M=5,thres=0.2 85.67± 0.19 73.44± 2.44 64.59± 0.42 97.47± 0.11
FedProx|µ=0.1 86.76± 0.26 60.69± 3.07 72.67± 0.29 95.96± 0.14
TERM|T=0.1 84.58± 0.28 76.44± 2.50 69.52± 0.36 94.04± 0.50
FedFV|α=0.1,τ=10 87.46± 0.18 58.35± 1.89 67.71± 0.56 97.79± 0.18

FedEBA+|α=0.9,T=0.1 87.67± 0.28 46.67± 1.09 71.90± 0.70 96.26± 0.03

Table 11: Performance of algorithms+VARP on Fashion-MNIST to show that FedEBA+ is orthog-
onal to advance optimization methods like VARP (Jhunjhunwala et al., 2022), allowing seamless
integration. All experiments are running over 2000 rounds on the MLP model for a single local
epoch (K = 10) with local batch size = 50, global learning rate = 1.0 and client learning rate = 0.1.
The reported results are averaged over 5 runs with different random seeds. We highlight the best
and the second-best results by using bold font and blue text.

Method Global Acc. Var. Worst 5% Best 5%

FedAvg (FedVARP) 87.12± 0.08 59.96± 2.48 72.45± 0.26 96.09±± 0.27
q-FFL|q=0.01 86.73± 0.31 62.89± 2.67 73.55± 0.11 95.54± 0.14
q-FFL|q=15 78.98± 0.63 58.28± 1.95 67.12± 0.97 88.42± 0.67
FedFV|α=0.1,τ=10 87.28± 0.10 57.90± 1.77 67.41± 0.30 97.66± 0.06

FedEBA+|α=0.9,T=0.1 87.45± 0.18 49.91± 2.38 71.44± 0.64 95.94± 0.09

Table 12: Ablation study for Dirichlet parameter α. Performance comparison between
FedAvg and FedEBA+ on CIFAR-100 using ResNet18 (devided by Dirichlet Distribution with
α ∈ {0.1, 0.5, 1.0}). We report the global model’s accuracy, fairness of accuracy, worst 5% and best
5% accuracy. All experiments are running over 2000 rounds for a single local epoch (K = 10) with
local batch size = 64, and learning rate η = 0.01. The reported results are averaged over 5 runs
with different random seeds.

Algorithm Global Acc. Var. Worst 5% Best 5%

α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 30.94±0.04 54.69±0.25 64.91±0.02 17.24±0.08 7.92±0.03 5.18±0.06 0.20±0.00 38.79±0.24 54.36±0.11 65.90±1.48 70.10±0.25 75.43±0.39
FedEBA+ 33.39±0.22 58.55±0.41 65.98±0.04 16.92±0.04 7.71±0.08 4.44±0.10 0.95±0.15 41.63±0.16 58.20±0.17 68.51±0.21 74.03±0.07 74.96±0.16
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Figure 6: The maximum and minimum 5% performance of all baselines and FedEBA+
on CIFAR-10.

Figure 7: The maximum and minimum 5% performance of all baselines and FedEBA+
on FashionMNSIT.

M.3 Global Accuracy Evaluation of FedEBA+

We run all methods on the CNN model, regarding the CIFAR-10 figure. Under different hyper-
parameters, FedEBA+ can reach a stable high performance of worst 5% while guaranteeing
best 5%, as shown in Figure 6. As for FashionMNIST using MLP model, the worst 5%
and best 5% performance of FedEBA+ are similar to that of CIFAR-10. We can see that
FedEBA+ has a more significant lead in worst 5% with almost no loss in best 5%, as shown
in Figure 7.

M.4 Robustness Evaluation to Noisy Label Scenario

The local noisy label follows the symmetric flipping approach introduced in Jiang et al.
(2022); Fang & Ye (2022), with a noise ratio of ϵ set to 0.5. All the other settings like the
learning rate keep the same. Specifically, we employ the MLP model for Fashion-MNIST
and the CNN model for CIFAR-10.

The results of Table 13 reveal that (1) FedEBA+ maintains its superiority in accuracy
and fairness even when there are local noisy labels; (2) FedEBA+ can be integrated with
established approaches for addressing local noisy labels, consistently outperforming other
algorithms combined with existing methods in terms of both fairness and accuracy.
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Table 13: Performance of algorithms on local noisy label scenario. We evaluate the
effectiveness of FedEBA+ when incorporating local noisy labels on both the FashionMNIST dataset
with an MLP model and the CIFAR-10 dataset with a CNN model, using a noise ratio of ϵ = 0.5.

Algorithm
FashionMNIST CIFAR-10

Global Acc. ↑ Std. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Std. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 80.59±0.42 57.34±2.98 65.40±0.43 94.87±0.25 33.45±0.89 38.03±2.30 21.67±0.96 46.27±1.65
q-FFL 79.85±0.31 68.00±4.34 64.13±0.75 95.47±0.19 30.83±0.76 44.46±2.76 17.21±1.03 44.33±0.19
AFL 80.34±0.35 57.35±6.06 65.60±2.01 95.00±0.91 32.64±0.33 35.58±3.17 20.47±0.82 44.80±1.61
FedFV 63.08±0.88 88.95±3.06 46.13±0.77 83.13±1.52 34.28±0.39 41.07±0.77 21.13±0.90 46.60±0.33
FOCUS 80.79±0.27 58.61±3.61 64.40±1.85 94.80±0.62 26.81±1.22 14.04±0.68 6.84±1.58 56.69±1.22
FedEBA+ 82.03±0.42 49.23±7.21 67.67±1.06 95.27±0.81 35.04±0.21 34.60±3.69 23.07±1.24 47.80±1.23

FedAvg + LSR 84.36±0.07 57.80±5.71 69.20±0.75 96.87±0.34 58.90±0.42 80.80±8.73 40.80±0.75 76.93±1.24
q-FFL + LSR 84.23±0.08 63.69±1.62 64.73±0.09 96.87±0.41 58.91±0.75 86.32±10.20 41.33±0.90 77.60±2.73
FedEBA+ + LSR 85.30±0.12 54.10±4.13 67.93±0.62 96.80±0.28 61.21±0.88 64.73±0.97 43.40±1.72 75.53±2.05

(a) CIFAR-10 (b) FASHION-MNIST

Figure 8: Privacy Evaluation of FedEBA+.

M.5 Privacy Evaluation.

We also evaluate FedEBA+ under privacy preservation. Following Abadi et al. (2016), we
insert Gaussian noise into the intermediate regularization variable δ with noise standard
deviation σ2 : σ̃i ← σi +

1
LN (0, σ2

2C
2
0I), where L is the batch size, σ2 is the noise parameter,

C2 is the clipping constant. The result is shown in Figure 8. With σ2 ≤ 5, the curves show
only marginal reductions without significant performance degradation. However, higher
values of σ2 risk compromising performance. This suggests that our approach is compatible
with a specific threshold of privacy preservation. In addition, Table 14 shows that compared
to other fairness baselines, FedEBA+ maintains its fairness and performance advantage when
using differential privacy.

M.6 Ablation Study

Remark M.1 (The annealing manner for τ). While we set τ as a constant in our algorithm,
we demonstrate that utilizing an annealing schedule for τ can further enhance performance.
The linear annealing schedule is defined below:

τT = τ0/(1 + κ(T − 1)), (189)

where T is the total communication rounds and hyperparameter κ controls the decay rate.
There are also concave schedule τk = τ0/(1 + κ(T − 1))

1
2 and convex schedule τk = τ0/(1 +

κ(T − 1))3. We experiment with different annealing strategies for τ in Figure 9.

For the annealing schedule of τ mentioned above, Figure 9 shows that the annealing schedule
has advantages in reducing the variance compared with constant τ . Besides, the global
accuracy is robust to the annealing strategy, and the annealing strategy is robust to the
initial temperature T0.
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Table 14: Performance of fairness algorithms under different differential privacy noise σ.

noise σ2

Fashion-MNIST CIFAR10
Global Acc. Var. Worst 5% Best 5% Global Acc. Var. Worst 5% Best 5%

FedEBA+

0 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52
2 86.24±0.14 75.67±3.40 63.67±0.74 97.9±0.22 70.69±0.40 76.25±3.56 51.87±0.25 86.5±0.24
5 86.01±0.08 73.11±2.62 64.90±0.94 98.0±0.16 69.86±0.14 76.4±2.38 51.20±0.11 85.15±0.45
10 85.96±0.08 71.52±2.45 64.8±1.85 97.53±0.34 69.48±0.32 85.53±2.10 49.93±0.77 84.53±0.62
50 83.43±0.14 79.7±1.18 61.37±1.52 97.00±0.59 67.57±0.68 120.83±2.80 45.40±0.99 86.17±0.33

FedAvg

0 86.49±0.09 62.44±4.55 71.27±1.14 95.84±0.35 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82
2 64.20±0.22 534.40±1.24 7.4±0.2 93.2±0 45.29±0.81 101.04±9.70 23.4±0.10 68.2±0.33
5 64.14±0.02 536.57±2.72 7.4±0 93.1±0.13 45.01±0.33 98.38±5.24 26.4±1.5 66.2±1.2
10 64.10±0.13 533.34±4.26 7.2±0 93.0±0 45.45±0.62 97.50±4.93 26.6±2.2 68.0±1.4
50 64.06±0.05 533.61±2.40 7.55±0.16 93.1±0.10 45.27±0.92 100.54±6.23 26.5±1.33 66.4±1.4

qFedAvg

0 86.57±0.19 54.91±2.82 70.88±0.98 95.06±0.17 68.76± 0.22 97.81±2.18 48.33±0.84 84.51±1.33
2 64.17±0.02 529.99±0.92 7.8±0 93.2±0 43.79±0.70 187.79±2.03 16.8±0 76.14±2.32
5 64.16±0.04 530.55±1.17 7.6±0 93.2±0 44.50±0.78 191.12±1.70 15.4±1.14 73.8±1.28
10 64.15±0.03 526.82±0.67 7.6±0 93.2±0 43.42±0.80 200.31±2.80 14.33±1.24 73.8±1.14
50 64.21±0.07 529.58±0.50 7.6±0 93.2±0 43.92±0.92 195.69±3.07 15.88±1.30 74.2±0.84

FedMGDA+

0 84.64±0.25 57.89±6.21 73.49±1.17 93.22±0.20 65.19±0.87 89.78±5.87 48.84±1.12 81.94±0.67
2 79.34±0.06 112.12±1.49 56.67±0.25 95.13±0.09 43.84±0.22 183.39±3.17 14.60±1.2 70.40±0.4
5 77.13±0.15 136.19±1.20 51.8±0.40 95.00±0.22 41.39±0.63 96.67±2.88 23.2±0.6 62.00±0.2
10 71.02±0.01 248.45±2.18 36.7±0.7 93.2±0.13 36.75±0.45 107.94±4.10 16.2±0.34 57.00±4.0
50 57.04±0.03 754.46±0.81 0.2±0 93.9±0.1 23.08±0.05 203.65±3.6 0.40±0 56.4±0.43

(a) Fairness and Accuracy on Fashion-
MNIST

(b) Fairness and Accuracy on MNIST

Figure 9: Ablation study for Annealing schedule τ

(a) CIFAR-10 (b) FASHION-MNIST

Figure 10: Performance of FedEBA+ under different θ in terms of global accuracy.

For the tolerable fair angle, we also provide the ablation studies of θ. The results in
Figure 10 11 12 show our algorithm is relatively robust to the tolerable fair angle θ, though
the choice of θ = 45 may slow the performance slightly on global accuracy and min 5%
accuracy over CIFAR-10.

For different fairness evaluation metrics, Table 17 demonstrates that in our setting, FedEBA+
exhibits competitive performance under FAA metrics. Instead, FOCUS exhibits a relatively
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(a) CIFAR-10 (b) FASHION-MNIST

Figure 11: Performance of FedEBA+ under different θ in terms of Max 5% test accuracy.

(a) CIFAR-10 (b) FASHION-MNIST

Figure 12: Performance of FedEBA+ under different θ in terms of Min 5% test accuracy.

(a) CIFAR-10 (b) FASHION-MNIST

Figure 13: Performance of FedEBA+ under different θ in terms of Fairness (Std).

large FAA. This discrepancy arises from the differing settings between ours and FOCUS’s.
In our scenario, only a subset of clients undergoes training, contrasting with FOCUS’s full
client participation, consequently leading to subpar clustering performance.
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Table 15: Ablation study for FedEBA+ on four datasets. We test the effectiveness of
FedEBA+ when decomposing each proposed step, i.e., entropy-based aggregation and alignment
update, on different datasets. FedEBA differs from FedAvg only in the aggregation method, and
FedEBA+ incorporates the alignment into FedEBA. FedAvg serves as the backbone, FedAvg+① is
employed to demonstrate the individual effectiveness of our proposed aggregation step, FedAvg+②
is utilized to showcase the individual effectiveness of our proposed alignment step, and FedAvg + ①
+ ② is used to show the effectiveness of our proposed algorithm, FedEBA+.

Algorithm
CIFAR-10 (CNN) FashionMNIST (MLP)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82 86.49±0.09 62.44±4.55 71.27±1.14 95.84±0.35
FedAvg+① 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27
FedAvg+② 72.04±0.51 75.73±4.27 53.45±1.25 87.33±0.23 87.42± 0.09 60.08±7.30 69.12±1.23 97.8±0.19
FedAvg+①+② 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19

Algorithm
CIFAR-100 (Resnet-18) Tiny-ImageNet (MobileNet-2)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 30.94±0.04 17.24±0.08 0.20±0.00 65.90±1.48 61.99±0.17 19.62±1.12 53.60±0.06 71.18±0.13
FedAvg+① 32.38±0.13 17.09±0.06 0.75±0.22 66.40±0.47 63.34±0.25 15.29±1.36 54.17±0.04 70.98±0.10
FedAvg+② 31.93±0.39 17.15±0.05 0.39±0.01 66.04±0.16 63.46±0.04 14.52±0.21 54.36±0.03 71.13±0.03
FedAvg+①+② 33.39±0.22 16.92±0.04 0.95±0.15 68.51±0.21 64.05±0.09 14.91±1.85 54.32±0.09 71.27±0.04

Table 16: Performance of FedEBA+ with different τ and α choices. The performance of
different hyper-parameter choices of FedEBA+ shows better performance than baselines.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Global Acc. Var.

FedAvg 86.49 ± 0.09 62.44 ± 4.55 67.79 ± 0.35 103.83 ± 10.46
q-FFL|q=0.001 87.05 ± 0.25 66.67 ± 1.39 68.53 ± 0.18 97.42 ± 0.79
q-FFL|q=0.5 86.57 ± 0.19 54.91 ± 2.82 68.76 ± 0.22 97.81 ± 2.18
q-FFL|q=10.0 77.29 ± 0.20 47.20 ± 0.82 40.78 ± 0.06 85.93 ± 1.48
PropFair|M=0.2,thres=0.2 85.51 ± 0.28 75.27 ± 5.38 65.79 ± 0.53 79.67 ± 5.71
PropFair|M=5.0,thres=0.2 84.59 ± 1.01 85.31 ± 8.62 66.91 ± 1.43 78.90 ± 6.48
FedFV|α=0.1,τfv=10 86.98 ± 0.45 56.63 ± 1.85 71.10 ± 0.44 86.50 ± 7.36
FedFV|α=0.2,τfv=0 86.42 ± 0.38 52.41 ± 5.94 68.89 ± 0.15 82.99 ± 3.10

FedEBA+|α=0.1,τ=0.1 86.98±0.10 53.26±1.00 71.82±0.54 83.18±3.44
FedEBA+|α=0.3,τ=0.1 87.01±0.06 51.878±1.56 71.79±0.35 77.74±6.54
FedEBA+|α=0.7,τ=0.1 87.23±0.07 40.456±1.45 72.36±0.15 77.61±6.31
FedEBA+|α=0.9,τ=0.05 87.42±0.10 50.46±2.37 72.19±0.16 71.79±6.37
FedEBA+|α=0.9,τ=0.5 87.26±0.06 52.65±4.03 71.89±0.39 75.29±9.01
FedEBA+|α=0.9,τ=1.0 87.14±0.07 52.71±1.45 72.30±0.26 73.79±9.11
FedEBA+|α=0.9,τ=5.0 87.10±0.14 55.52±2.15 72.43±0.11 82.08±8.31

Table 17: Performance of Fair FL Algorithms under FAA: We present results under the FAA
metric, as utilized in Chu et al. (2023), where FAA represents the discrepancy in excess loss across
clients. The algorithms are tested on the FashionMNIST and CIFAR-10 datasets, with 10 out of
100 clients participating in each round. Specifically, for FOCUS, we adhere to the settings in Chu
et al. (2023) and set the cluster number to 2. The smaller the FAA, the better.

FedAvg AFL q-FFL FedFV FOCUS FedEBA+

FashionMNIST 0.7262±0.010 0.4500±0.006 0.4624±0.008 0.3749±0.017 1.16±0.161 0.4048±0.011
CIFAR-10 2.296±0.031 0.8104±0.009 0.8465±0.013 0.7733±0.017 2.6448±0.061 0.6846±0.035
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Table 18: Comparison of Algorithms with metric coefficient of variation (CV ) The CV improvement
shows the improvement of algorithms over FedAvg. The result is calculated by global accuracy and
variance of Table 1.

Algorithm
FashionMNIST CIFAR-10

Cv = std
acc Cv improvement Cv = std

acc Cv improvement

FedAvg 0.09136199 0% 0.150312741 0%
q-FFL 0.112432356 -23% 0.144026806 4.2%
FedMGDA+ 0.089893051 1.3% 0.146896915 2.4%
AFL 0.088978374 2.6% 0.134878199 10.1%
PropFair 0.101459812 -11.3% 0.135671155 10.9%
TERM 0.101659126 -10.1% 0.146631123 2.7%
FedFV 0.086517483 4.8% 0.130809249 13.3%

FedEBA+ 0.072539115 21.8% 0.1139402 27.8%

Table 19: Performance of Algorithms with Various Metrics. We provide the results under
cosine similarity and entropy metrics, as used in (Li et al., 2019a), the geometric angle corresponds to
cosine similarity metric, and KL divergence between the normalized accuracy vector a and uniform
distribution u that can be directly translated to the entropy of a. We test the algorithms on the
FashionMNIST dataset, with fine-tuned hyperparameters.

Algorithm Global Acc. Var. Angle (◦) KL (a||u)

FedAvg 86.49 ± 0.09 62.44±4.55 8.70±1.71 0.0145±0.002
q-FFL 87.05± 0.25 66.67± 1.39 7.97±0.06 0.0127±0.001
FedMGDA+ 84.64±0.25 57.89±6.21 8.21±1.71 0.0132±0.0004
AFL 85.14±0.18 57.39±6.13 7.28±0.45 0.0124±0.0002
PropFair 85.51±0.28 75.27±5.38 8.61±2.29 0.0139±0.002
TERM 84.31±0.38 73.46±2.06 9.04±0.45 0.0137±0.004
FedFV 86.98±0.45 56.63±1.85 8.01±1.14 0.0111±0.0002

FedEBA+ 87.50±0.19 43.41±4.34 6.46±0.65 0.0063±0.0009
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Table 20: Performance of algorithms on Fashion-MNIST and CIFAR-10. Based on the
same experimental setup as Table 1 in the main text, we introduce additional baselines that focus on
designing aggregation algorithm suitable for the heterogeneous characteristics under the federated
systems, namely, FedwAvg (Hong et al., 2022) and FedDISCO (Ye et al., 2023) to compare the
performance. Specifically, FedwAvg assesses the number of forgettable samples of the global model
on different clients’ local data every t global communication rounds and assigns higher aggregation
weights to local update parameters with higher forgetting degrees; FedDISCO assigns different
weights to the client update parameters based on the offset of the local data label distribution from the
global data label distribution, with clients more aligned with the global data label distribution being
assigned higher aggregation weights. Based on their original experimental section, we set appropriate
hyper-parameters for the two added baselines, where α = 0.3 for FedwAvg, a = 0.1, b = 0.1 for
FedDISCO, and the distribution difference is calculated by L2 norm.

Algorithm
Fashion-MNIST CIFAR-10

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 86.49±0.09 62.44±4.55 71.27±1.14 95.84±0.35 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82
FedwAvg 86.23±0.05 63.26±1.45 68.07±0.57 98.00±0.16 68.71±0.31 82.21±2.89 49.20±0.00 82.73±0.98

FedDISCO 85.74±0.34 57.61±5.17 68.00±3.00 98.07±0.09 69.27±0.45 86.39±6.35 48.43±1.50 83.67±0.82

FedEBA 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90
FedEBA+ 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52

Table 21: The impact of neural networks scalability of different widths on algorithms.
To test scalability, we set up experiments with CNNs that are narrower and wider than the main
paper, and provided the running time required for each communication round. Specifically, the
narrower CNN includes two convolutional layers (channel 3-32-32), and three linear layers (dimension
800-128-64-10). The wider CNN includes two convolutional layers (channel 3-128-128), and three
linear layers (dimension 1600-384-192-10), with all other experimental settings being the same as
the default.

Algorithm
Narrower CNN Wider CNN

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 65.37±0.27 116.91±1.02 41.60±0.86 84.73±1.75 69.93±0.46 79.28±3.02 50.61±0.50 85.20±0.65
q-FFL 65.22±0.71 106.98±1.76 42.33±0.52 84.33±1.16 69.60±0.48 74.00±3.35 50.27±1.52 83.33±0.94

FedEBA+ 70.59±0.61 58.95±6.49 54.67±2.65 84.13±0.52 74.14±0.07 57.35±5.74 56.47±1.04 85.47±0.25

Table 22: The impact of neural networks scalability of different depths on algorithms. To
test scalability, we set up experiments with CNNs that are shallower and deeper than the main paper,
and provided the running time required for each communication round. Specifically, the shallower
CNN includes only one convolutional layer (channel 3-64), and three linear layers (dimension 64-
384-192-10). The deeper CNN includes three convolutional layers (channel 3-64-128-128), and three
linear layers (dimension 512-384-192-10), with all other experimental settings being the same as the
default.

Algorithm
Shallower CNN Deeper CNN

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 45.10±0.86 119.56±17.13 25.53±2.66 67.93±2.75 67.71±0.45 82.11±5.09 48.40±0.33 83.53±1.11
q-FFL 44.82±0.82 108.05±7.40 26.33±2.22 66.07±0.25 65.75±0.42 77.13±8.44 48.81±1.39 81.60±0.16

FedEBA+ 46.91±1.28 113.30±20.19 25.80±2.90 68.60±1.73 69.67±0.42 69.95±5.55 51.53±1.62 83.80±0.99
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Figure 14: Comparison of performance on CIFAR-10 under different degrees of Non-IID.
We performed different degrees of Non-IID partitioning on the CIFAR-10 dataset using Latent
Dirichlet Allocation (LDA). Specifically, according to the degree of Non-IID from high to low, we
set Dirichlet α ∈ {0.1, 0.3, 0.5, 0.8, 1.0}. Combined with the different Non-IID partitions discussed
in the main paper, this comprehensively demonstrates the performance of FedEBA+ under various
scenarios.

Figure 15: Case of relatively low performance of FedMGDA+, PropFair, and TERM on
the CIFAR-100 dataset with seed=1234. In this setting, the accuracy of these algorithms is
relatively poor, and the convergence is abnormal. However, with fine-tuned parameters and different
seed setups, they can perform normally, and the relatively good performance of these algorithms is
reported in Table 2.
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