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Abstract
Representational drift refers to over-time changes
in neural activation accompanied by a stable task
performance. Despite being observed in the brain
and in artificial networks, the mechanisms of
drift and its implications are not fully under-
stood. Motivated by recent experimental find-
ings of stimulus-dependent drift in the piriform
cortex, we use theory and simulations to study
this phenomenon in a two-layer linear feedfor-
ward network. Specifically, in a continual online
learning scenario, we study the drift induced by
the noise inherent in the Stochastic Gradient De-
scent (SGD). By decomposing the learning dy-
namics into the normal and tangent spaces of the
minimum-loss manifold, we show the former cor-
responds to a finite variance fluctuation, while the
latter could be considered as an effective diffusion
process on the manifold. We analytically compute
the fluctuation and the diffusion coefficients for
the stimuli representations in the hidden layer as
functions of network parameters and input distri-
bution. Further, consistent with experiments, we
show that the drift rate is slower for a more fre-
quently presented stimulus. Overall, our analysis
yields a theoretical framework for better under-
standing of the drift phenomenon in biological
and artificial neural networks.

1. Introduction
Representational drift has been observed across different
parts of the nervous system, such as in the hippocampus (Ziv
et al., 2013), sensorimotor (Rule et al., 2019), and visual
systems (Deitch et al., 2021; Marks & Goard, 2021). A re-
cent study in the piriform cortex (Schoonover et al., 2021), a
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brain structure processing information about smells, demon-
strated drift of odorant representations despite stable odor
identification. Such drift was characterized by a gradual
and across-days decay in the self-similarity of the stimulus
representation. Additionally, in the same study, the drift was
shown to be stimulus dependent. It was shown that a more
familiar stimulus drifts at a smaller rate (Schoonover et al.,
2021).

The mechanisms and implications of the drift in the brain
and artificial neural networks are still under investigation
(see recent reviews by Masset et al. (2022), Rule et al.
(2019), and Driscoll et al. (2022)). Recent modeling studies
have shown that drift could happen in the presence of synap-
tic or other types of noise (Qin et al., 2023; Aitken et al.,
2022). Using simulations of neural networks, Aitken et al.
(2022) showed different noise types injected during training
could lead to drift with qualitatively different patterns and
geometries. However, no theoretical consideration of the
drift was provided in that study. Qin et al. (2023) studied
the drift in a network with a similarity-matching objective
and a Hebbian/anti-Hebbian learning rule. They showed
that noisy synaptic updates could lead to a random-walk
exploration of the solution space. Other mechanisms have
been suggested on how a stable readout could be performed
despite an evolving population code (Rule & O’Leary, 2022;
Rule et al., 2020; Kalle Kossio et al., 2021).

One important source of noise during learning for both nat-
ural and artificial neural networks is the sampling noise that
arises from the stochasticity in observing the data. It is there-
fore natural to ask if and how this type of noise can lead to
drift, and whether it can explain the stimulus-dependency
of the rate of the drift observed in experiments. Here, we
aim to answer these questions in a two-layer linear neural
network model that undergoes online continual learning via
Stochastic Gradient Descent (SGD). In addition to being
common in machine learning, feed-forward networks are a
reasonable first approximation to sensory (olfactory) pro-
cessing in the brain. Specifically, we found the two-layer
linear network to be one of the simplest models that enables
studying the representational drift in the hidden layer, and
yet allows for analytical tractability.
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Figure 1. (left) Neural network model. (right) Manifold of
minimum-loss (M) in the parameter space.

2. Model and Theory
A multilayer network including L layers can be described
by a set of weight matrices W (l), where index l enumerates
the individual layers. The network can be represented by a
vector in a vector space constructed from non-commuting
weight matrices:

θ =
(
W (1),W (2), ...,W (L)

)
. (1)

Our goal is to study the dynamics of learning and the drift
in this space for a two-layer neural network described below
(Section 2.1). We derive the manifold of stable minimum-
loss (Section 2.2), and study its first order differential ge-
ometry (Section 2.3). We use the Euclidean inner product
in this space, which means for two vectors θ1 and θ2, we
have:

θT
1 θ2 =

∑
l

tr
(
W

(l)T
1 W̄

(l)
2

)
. (2)

By characterizing the movements normal and tangential to
the manifold (Sections 2.4.1 and 2.4.2), we derive an ef-
fective diffusion process on the manifold and calculate the
corresponding diffusion (”drift”) rates for the representa-
tions (Section 2.4.3). Finally, we apply this framework to
study the dependency of the drift on the input statistics in
two cases of isotropic Gaussian stimuli (Section 3), and a
case with a frequently presented stimulus (Section 4). Our
results are further validated by numerical simulations.

2.1. Neural network model

Our model consists of a linear feedforward neural network
with an expansive hidden layer, as shown in Figure 1. The
input to the network is the external stimulus (x ∈ Rn), the
hidden layer activation is the representation of the stimulus
(h ∈ Rp, e.g. neural activities in the piriform cortex), and
the output is the task outcome (y ∈ Rm, e.g. the percept
or an identity of an stimulus). The two weight matrices are
U = W (1) and W = W (2) respectively, and the predicted
output is ŷ = WUx. In the parameter space the network
is denoted by θ = (U ,W ).

We consider a continual online learning scenario in which
the network sees one sample at a time taken independently
from a fixed data distribution. The objective function consist
of a Mean Squared Error (MSE) loss and L2-regularization.
Hence, the sample loss becomes:

l(x,y;θ) =
1

2
∥y−WUx∥2 + γ

2
(∥W ∥2F +∥U∥2F ), (3)

where γ is the regularization coefficient. Further, we assume
y = x, which means the goal of the network is to learn
the identity mapping from the input to the output. Note
this essentially becomes an autoencoder with an expansive
hidden layer (p ≥ n = m). Finally, the learning occurs via
the SGD with a minibatch size of one. The update in the
parameter vector θ upon observing sample x is:

∆θ = −ηg(x;θ), (4)

where g(x;θ) = ∇θl(x;θ) is the sample gradient vector,
and η is the learning rate. In terms of the weight matrices,
this is equivalent to ∆W = −η∇W l and ∆U = −η∇U l.

2.2. Degeneracy and the manifold of solutions

A condition that makes representational drift possible is
the redundancy of the network parameters associated with
achieving a given task performance. In a two-layer network
with ŷ = WUx, the transformations W̃ → W̃Q and
Ũ → Q−1Ũ leave the output unchanged for any invertible
matrix Q. In our model, the presence of L2 regulariza-
tion confines Q to be orthogonal for the loss to remain
unchanged. The effect of Q is rotation of the represen-
tations, and hence it links the degeneracy to a rotational
symmetry in the network. We aim to study whether and how
the space of redundant parameters are explored due to the
online learning stochasticity and, from that, characterize the
rate and the geometry of the drift in the representations.

We define the manifold of solutions, M, to be the set of
stable critical points in the parameter space. This manifold
represents the redundancy in the model, as all the points on
it have the same expected loss value L(θ) = ⟨l(θ)⟩x, and
hence are equally preferable (note that ⟨.⟩x is the expectation
over the input distribution). We analytically derive M in
the following theorem as a function of the input distribution,
and for the rest of the paper refer to it as the manifold.
Theorem 2.1. (Manifold) The manifold of solutions for
learning the identity map (y = x) is:

M :{θ̃=(Ũ , W̃ ) |W̃W̃ T =In−γΣ−1
x , Ũ = W̃ T }, (5)

where Σx = ⟨xxT ⟩x is the second order moment of the
input distribution with eigenvalues that are assumed to be
greater than γ.

The above can be shown by first finding the critical points of
the loss satisfying ∇UL = ∇WL = 0. The solutions con-
sist of saddle-points, as well as the above manifold which
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has a non-negative Hessian eigenspectrum (see the proof in
Appendix A).

2.3. Differential geometry of the manifold

In order to study the learning dynamics near the manifold,
we characterize its first order differential geometry. This is
done by finding the local tangent and normal spaces to the
manifold (Tθ̃M and Nθ̃M, respectively).

Lemma 2.2. (Tangent space) The local tangent space to
the manifold at point (W̃ T , W̃ ) is spanned by vectors t =
(T T

W ,TW ) with TW = W̃W̃ TΩW̃ +KW̃⊥, where Ω is
an arbitrary n×n skew-symmetric matrix, K is an arbitrary
n×(p−n) matrix, and W̃⊥ is a full-rank (p−n)×p matrix
whose rows are orthogonal to rows of W̃ .

The proof is presented in Appendix B. To gain some in-
tuitions about the above results, note that movements in
the tangent space create coordinated changes ∆W = TW

and ∆U = T T
W in the weight matrices such that their ef-

fects cancel out at the output (this is because ∆(W̃ Ũ) ≈
W̃T T

W +TW Ũ = 0). Additionally, these changes generate
rotations of representation vectors, which is expected due
to the rotational symmetry of the problem discussed in the
previous section. In this context, the term in TW containing
Ω creates rotations within the n-dimensional subspace of
the existing representations (i.e. the column-space of Ũ ),
while the term containing K is responsible for rotations that
move the representations toward the (p − n)-dimensional
subspace orthogonal to the current representations1.

Using the inner product in Eq.2, the normal space can be
defined as the subspace orthogonal to the tangent space.
We will use the eigenspace of the Hessian corresponding
to positive eigenvalues to describe the normal space (see
Section 2.4 and Appendix A.2.1 – note similarly, the tangent
space is equivalent to the eigenspace of the Hessian with
zero eigenvalue). In the subsequent sections, we use the
results in this section to project the gradient vector into these
spaces.

2.4. Learning dynamics near the manifold and
emergence of drift

In this section, we will study the stochastic dynamics of
learning in an online learning scenario in which the data
are sampled from a fixed distribution. We assume sufficient
training has been performed, and hence we are on or close to
the manifold while being continuously nudged around due
to the SGD noise. An arbitrary point θ near the manifold
can be represented as:

θ = θ̃ + θN , (6)

1Note the dimension of the tangent space is np− n(n+1)
2

, which
is equal to the degrees of freedom in Ω and K.

where θ̃ is the closest point on the manifold to θ, and
θN ∈ Nθ̃M is the deviation from the manifold in the nor-
mal space. In the rest of this section, we will find update
equations for θN and θ̃, and describe their dynamics.

2.4.1. FLUCTUATION IN THE NORMAL SPACE

We can find an update equation for θN by projecting the two
sides of the SGD update (Eq.4) into the normal space. For
small learning rates and over long times, this equation can be
approximated with a continuous-time stochastic differential
equation (SDE):

dθN = −HθNdt+
√
ηCdBt. (7)

In the above, Hk,l (∈[1,2np]) =
∂L

∂θk∂θl
|θ̃ is the Hessian, Bt

is the standard multi-dimensional Brownian motion (Wiener
process), and C ≈ ⟨g̃g̃T ⟩1/2x , where g̃ is the gradient at
point θ̃ on the manifold (Eq.8). In general, the gradient (g)
can be analytically calculated at any point by differentiating
the loss function with respect to the weight matrices (see
Eq.31 in the Appendix). On the manifold this becomes:

g̃(x) := g(x; θ̃) = (W̃ TZx,ZxW̃ ), (8)

where Zx = γ(In − Σ−1
x xxT ). Note that C in Eq.7 is

in general a function of θN . But in deriving the SDE, we
approximated it with its value on the manifold (θN = 0),
which is justified for small deviations (see Section C.1 for
the derivation of the SDE).

Since the Hessian is positive semidefinite on the mani-
fold, the process defined by the SDE in Eq.7 is a mean-
reverting process known as the multi-dimensional Ornstein-
Uhlenbeck (OU) stochastic process (Gardiner et al. (1985)).
OU has a stationary solution with zero mean and a finite
variance (Appendix C.2). Hence, we refer to the deviations
in the normal space as fluctuation. We represent the fluc-
tuation in a basis constructed from the eigenvectors of the
Hessian with positive eigenvalues:

ρ = NTθN , where N = [n1|n2| ... |nK ], (9)
and Hnk = λknk, λk > 0.

Here ρk represents the deviation from the manifold along
the Hessian eigenvector nk. As shown in Appendix C.2,
the stationary solution of ρ satisfies ⟨ρk⟩ = 0, and has the
covariance:

⟨ρkρl⟩ =
η

λk + λl
⟨nT

k g̃(x)n
T
l g̃(x)⟩x. (10)

As expected, since g̃(x) is the driver of the fluctuation in
the SDE (Eq.7), the fluctuation covariance depends on the
projection of g̃ on {nk}. In Appendix A.2.1 we calculate
these eigenvectors, which consists of two sets. We show
that g̃ has no projection on one of these sets and hence, for
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the purpose of fluctuation, only a subspace of the normal
space is relevant. This subspace is described in the next
proposition.
Proposition 2.3. (Hessian eigenspace) If (vi, si) are the
eigenvector/eigenvalue pairs of Σx = ⟨xxT ⟩ with s1 ⩾
.. ⩾ sn > γ, the Hessian eigenvectors nk along which
there is non-zero fluctuation (i.e. nT

k g̃ ̸= 0) correspond to
(vi,vj) pairs for i, j ∈ [1, n] via:

nk ≡ nij = (W̃ TZij ,ZijW̃ ), (11)

where Zij = Cij(κijviv
T
j + vjv

T
i ). Here, κij = sgn(i−

j)(
√
1 + b2− b) for b = [1/γ− (si+ sj)/(2sisj)]|si− sj |,

and Cij = [(2−γ/si−γ/sj)(1+κ2
ij)]

− 1
2 is a normalization

constant ensuring nT
knk = 1. The corresponding Hessian

eigenvalues are λii = 2(si − γ) and λij(i ̸=j) = 2si −
γ(si/sj + κij). (See proof in Appendix C.3.)

The above proposition relates the relevant directions in the
normal space to the corresponding (ij) indices of the input
principal directions (this makes k a composite index). Sub-
sequently, the components of the fluctuation covariance can
be written as ⟨ρkρl⟩ ≡ ⟨ρijρpq⟩ (see Appendix C.4 for the
components as functions of the input distribution). The re-
mark below provides an interpretation of movements along
different nk in the representation space.
Remark 2.4. (Fluctuation of the representations): When on
the manifold, the representations of all unit-length stimuli
form an n-dimensional ellipsoid embedded in Rp. The main
axes of this ellipsoid are h̃i = W̃ Tvi, with norms |h̃i| =
(1− γ/si)

1/2 (i ∈ [1, n]). Using the above proposition, we
can determine how deviations along different nk lead to
different deformation modes for the ellipsoid. Specifically,
the deviation along nii changes h̃i radially (changing its
norm), while leaving other (orthogonal) axes unchanged.
Similarly, deviation along nij for i ̸= j moves h̃i and h̃j

toward or away from each other, and leaves other axes intact.
The latter shows that the fluctuations can change not only
the lengths but also the pairwise angles of the representation
vectors. Note however that the average of these changes is
zero over time.

We take the variance of the norm as a measure of the fluctu-
ation for the representations, i.e.

σ2
i := var(|hi(t)|) =

1

2
⟨ρ2ii⟩ =

ηγ2

4si
(
⟨x4

i ⟩x
s2i

− 1), (12)

where xi := vT
i x (see Section C.5 for derivation). As

we show later, this has an excellent match to numerically
measured fluctuations.

2.4.2. TANGENTIAL UPDATES

Over a learning update, the displacement in the parameter
space (∆θ) leads to a corresponding projected movement on

the manifold (∆θ̃). For small learning rates and by avoiding
the curvature effect, we have:

∆θ̃ = −ηgT (x; θ̃+Nρ), (13)

where gT = ΠT (g) is the projection of the gradient vector
onto the tangent space. In the next theorem, we calculate
this projection and find its action on the representations.

Theorem 2.5. (Tangential update) For a normal deviation
Nρ=

∑
k ρknk from point θ̃ = (W̃ T , W̃ ) on the manifold,

the tangential projection of the gradient is:

gT (x; θ̃+Nρ) = (GUT
,GT

UT
), for (14)

GUT
=W̃ T (W̃W̃ T )−

1
2 (
∑
k

ρkG:,:
k )(W̃W̃ T )

1
2 +O(|ρ|2),

where G is a rank-3 tensor with components Gs,r
k ≡ Gs,r

ij

that are defined as:

Gs,r
ij (x) =

γCij
√
ωrωs

2(ωr + ωs)
[xj(S

ij
sjxsδ

r
i − Sij

rjxrδ
s
i )

+ xi(S
ij
isxsδ

r
j − Sij

irxrδ
s
j )], (15)

where δrs is the Kronecker delta function, ωi := 1 − γ/si,
and Sij

rs := κij/sr + 1/ss (r, s, i, j ∈ [1, n]). The action
of the tangential gradient in the representation space is a
small rigid-body rotation around the origin. In this rotation,
the representation vectors stay within the column-space of
W̃ T , which itself stays fixed during the tangential updates.
Additionally, the angular displacement of the representation
hs(= Uvs) toward hr(= Uvr) is:

∆φsr(x; θ̃+Nρ) = η

K∑
k=1

ρkGs,r
k (x) +O(|ρ|2). (16)

In deriving the above, the gradient was approximated to the
first order of the deviation from the manifold, and subse-
quently the tangential projector operator was applied. Here
G is a tensor that, for a given direction in the normal space
(corresponding to k ≡ ij), returns a rotation generator via
the skew-symmetric matrix G:,:

k (Gs,r
k = −Gr,s

k ). Note also
that during the gradient updates only a subspace of the tan-
gent space is explored corresponding to the term with Ω in
Lemma 2.2 (see Appendix D).

2.4.3. DRIFT AS A DIFFUSION PROCESS

As we saw in Section 2.4.1, the mean-reverting property of
the gradient confines the normal deviations near the man-
ifold (Fig.2 - Left). The movements in the tangent space,
however, face no such mean-reverting property and hence
can diffuse freely on the manifold in a random-walk fashion.
As per Theorem 2.5, the tangential component of the gradi-
ent is proportional to the deviation from the manifold (ρ),
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Figure 2. Schematics showing (left) the probability distribution of
the fluctuations outside the manifold, (middle) the gradient vectors
on and near the manifold, and (right) the tangential component of
the gradient.

and it vanishes on the manifold (see the schematics in the
middle and right panels of Fig.2). We can find an effective
diffusion process for the movements on the manifold, which
because of the above correspondence, is expected to depend
on the statistics of the normal deviations. Specifically, over
large timescales, Eq.13 can be approximated as the follow-
ing continuous-time SDE, describing the evolution of the
the parameter vector on the manifold:

dθ̃ =
√

2η−1Dθ dBt. (17)

In the above, Dθ=(1/2)⟨∆θ̃∆θ̃T ⟩x,ρ= (η2/2)⟨gTg
T
T ⟩x,ρ

is the diffusion tensor for the parameters (measured over
a training step), and Bt is multi-dimensional Brownian
motion. The above diffusion process is manifested as a ro-
tational diffusion in the representation space. According to
Theorem 2.5, the rotations happen within the n-dimensional
space of representations and hence to fully characterize the
diffusion it’s sufficient to measure the pairwise diffusion
rates between the axes of the ellipsoid {hs} (s ∈ [1, n]).
Similar to the parameter diffusion above, we define Dsr to
be the diffusion rate between the two representations hs

and hr based on the mean squared of the pairwise angular
displacement, i.e.:

Dsr :=
1

2
⟨∆φ2

sr⟩x,ρ =
η2

2

K∑
k,l=1

⟨ρkρl⟩ ¯̄Gs,r
k,l , (18)

where we defined ¯̄Gs,r
k,l := ⟨Gs,r

k Gs,r
l ⟩x. The right-hand

side results from replacing ∆φsr from Eq.16 and taking the
average. The total diffusion for the representation hs can be
derived by summing up the diffusion rates along different
directions: Ds =

∑n
r=1,r ̸=s Dsr.

Eq.18 indicates that the diffusion rate between two repre-
sentation vectors is an aggregation of terms resulting from
deviations in different directions in the normal space. In this
equation, η2 ¯̄Gk,l can be thought of as the diffusion per di-
rection (or more accurately direction pair k, l) in the normal
space, and ⟨ρkρl⟩ is the covariance of the corresponding
fluctuations. As both ¯̄G and ⟨ρρT ⟩ depend on the second
and the fourth moments of the stimuli distribution, the dif-
fusion is also a function of the those moments of the input
distribution.

2.5. Numerical simulations

Alongside the analytical derivations, we also performed nu-
merical simulations in which we measured the drift in a
neural network undergoing continual SGD training. We
first numerically validated the equations of the manifold
by verifying that after enough training steps the network
approaches the theoretical manifold. Next, to measure the
drift, we initialized multiple (> 104) realizations of the net-
work, all starting from a fixed point on the manifold but
undergoing different random SGD samplings during the
training. Following a transitory phase, we studied the over-
time trajectories of the hidden layer activation for different
trial stimuli. This was done by measuring the fluctuation
(variance) of the representation norm, and the angular dis-
placements of the representations. The diffusion coefficient
was estimated as half of a linear fit slope to the mean squared
angular displacements aggregated from all the realizations.

3. Drift Under Gaussian Stimuli
In this section, we present complete analytical results for
a case where the stimuli are drawn randomly and indepen-
dently from a standard n-dimensional Gaussian distribu-
tion, i.e. xi ∼ N (0, 1). Since the input covariance is the
identity (⟨xixj⟩ = δji ), its eigenvectors {vi} form an or-
thonormal basis for Rn, all corresponding to eigenvalue
si = 1. Using Proposition 2.3, the relevant directions in
the normal space consist of three sets corresponding to
Zii = viv

T
i /(

√
2ω), Zij(i>j) = (viv

T
j + vjv

T
i )/(2

√
ω),

and Zij(i<j)=(−viv
T
j +vjv

T
i )/(2

√
ω), where ω = 1−γ,

and i, j ∈ [1, n]. For calculating the above, we derived the
coefficients κij(i>j) = 1, κii = 0, and κij(i<j) = −1 in
the proposition. The corresponding Hessian eigenvalues are
λij(i⩾j) = 2(1− γ) and λij(i<j) = 2− γ.

The components of the fluctuation matrix result from pro-
jecting the gradient onto the above eigenvectors (Eq.10) and
using the identity ⟨xixjxpxq⟩ = δjqip + δpqij + δqpij for the
Gaussian input (see Appendix C.4). This leads to:

⟨ρ2ij⟩ = ηγ2, for i ⩾ j, (19)

with the rest of the components being zero. Following Eq.12,
the fluctuation in the representation norm of an arbitrary
unit-length stimulus becomes:

σ2
s =

ηγ2

2
. (20)

To find the diffusion coefficients, we first calculate the com-
ponents of the G tensor from Eq.15:

Gs,r
ii =

γ

2
√
2ω

xi(xsδ
r
i − xrδ

s
i ), Gs,r

ij(i<j) = 0, (21)

Gs,r
ij(i>j) =

γ

4
√
ω
[xj(xsδ

r
i − xrδ

s
i ) + xi(xsδ

r
j − xrδ

s
j )].
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Subsequently, the coefficients ¯̄Gs,r
ij,pq can be found by taking

the averages of the products of the G terms from Eq.21,
leading to:

¯̄Gs,r
ii,ii =

γ2

8ω
(δri + δsi ),

¯̄Gs,r
ii,jj(i ̸=j) =

−γ2

8ω
(δrsij + δsrij ),

¯̄Gs,r
ij,ij(i>j)=

γ2

16ω
(δri +δsi +δrj+δsj+2δrsij + 2δsrij ), (22)

with the rest of the components being zero. Finally, re-
placing the above in the summation of Eq.18 results in the
diffusion rate between the representations of two arbitrary
stimuli denoted by s and r(̸= s):

Dsr =
η3γ2

2
(

n∑
i=1

¯̄Gs,r
ii,ii +

n∑
i,j=1,i>j

¯̄Gs,r
ij,ij)

=
η3γ4

2(1− γ)
(
1

4
+

n

8
) =

1

16

η3γ4

1− γ
(n+ 2). (23)

Note the summation was performed only over indices where
the fluctuation covariance was non-zero. Since the diffu-
sion is isotropic, the total diffusion for representation h̃s

becomes:

Ds = (n− 1)Dsr =
1

16

η3γ4

1− γ
(n− 1)(n+ 2). (24)

4. Drift Under a Frequent Stimulus
As demonstrated in the previous section, SGD-induced drift
could occur even with isotropic background stimuli. In this
section, we will study how the presence of a frequent stimu-
lus in the environment influences the drift. To do this, we
consider a case where in addition to the background Gaus-
sian stimuli, there is a relatively more frequent stimulus, a,
that is presented with probability α during training, i.e.:

x =

{
a Pr = α
N (0, In) Pr = 1− α

(25)

Note that the previous case in Section 3 is equivalent to
α = 0, and here we study the drift as a function of α.
Without loss of generality, we take a to be along the first
axis, and for simplicity we assume it has unit length. The
second and fourth moments of the input distribution become
⟨xixj⟩ = αδ11ij + (1 − α)δji and ⟨xixjxpxq⟩ = αδ1111ijpq +

(1− α)(δjqip + δpqij + δqpij ), respectively. The eigenvectors of
Σx still form an orthonormal basis for the input, but with
eigenvalues sa = s1 = 1, and sb = 1−α for b ∈ [2, n] (note
we use indices a and b to refer to the frequent and orthogonal
background stimuli, respectively). The fluctuations of the
representation norm for the frequent stimulus a and a unit
length background stimulus b (⊥ a) can be found from
Eq.12:

σ2
a =

ηγ2

2
(1− α), σ2

b =
ηγ2

4

2 + α

(1− α)2
. (26)

It is easy to check that σ2
a ⩽ σ2

b irrespective of α, which
suggests that the fluctuation of the frequent stimulus repre-
sentation is smaller than that of a background stimulus.

To fully characterize the diffusion in the representation
space, we take advantage of the symmetry within the space
of background stimuli. This means we only need to find two
pairwise diffusion coefficients: Dab (= Dba), which mea-
sures the diffusion between the frequent and a background
stimulus, and Dbc (= Dcb), which measures the pairwise
diffusion between two orthogonal background stimuli (with-
out loss of generality, we take b = 2 and c = 3). To calcu-
late these coefficients, we need to perform the summation
in Eq.18 which is taken over indices (k, l) or equivalently
(ij, pq) for i, j, p, q ∈ [1, n]. For large n, many of the terms
in the summation can be ignored as shown in Appendix E.1.
Here we present results for two limiting cases.

We first study the regime of small α, which can be consid-
ered as a perturbation to the previous Gaussian stimuli case.
As a first order correction to the summation, it is sufficient
to sum over indices for which the unperturbed case had
non-zero ⟨ρijρpq⟩ or ¯̄Gs,r terms. This limits the summation
to indices (ij, ij)i>j for which either i or j are equal to r
or s (see details in Appendix E.1). If we take d (> c) to
be an additional index within the background subspace (e.g.
d = 4), the diffusion summations for the two coefficients
simplify to:

Dba ≈ nη2

2
(⟨ρ2db⟩ ¯̄G

a,b
db,db + ⟨ρ2da⟩ ¯̄G

a,b
da,da) (α ≪ 1, n ≫ 1)

≈ nη3γ4

32
[(1 + 2α)(1) + (1 +

α

2
)(1 + α)]

≈ nη3γ4

16
(1 +

7α

4
)

Dbc ≈
nη2

2
(⟨ρ2db⟩ ¯̄G

c,b
db,db + ⟨ρ2dc⟩ ¯̄G

c,b
dc,dc)

≈ nη3γ4

32
[(1 + 2α)(1 + α) + (1 + 2α)(1 + α)]

≈ nη3γ4

16
(1 + 3α), (27)

where we replaced the following quantities calculated in
Appendix E.2 under small α and γ:

⟨ρ2db⟩=⟨ρ2dc⟩ = ηγ2(1 + 2α), ⟨ρ2da⟩=ηγ2(1 +
α

2
) (28)

¯̄Ga,b
db,db =

γ2

16
, ¯̄Ga,b

da,da = ¯̄Gc,b
db,db =

¯̄Gc,b
dc,dc =

γ2

16
(1 + α).

The above shows Dbc − Dba ≈ 5nη3γ4α/64 ≥ 0. This
difference can be attributed to both the fluctuation and the
¯̄G terms (for example, one can check from Eq.27 that if the
fluctuation terms are replaced with their values at α = 0,
the difference still remains but to a lesser degree).
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Total diffusion for stimuli a and b becomes:

Da = (n− 1)Dab ≈
n2η3γ4

16
(1 +

7α

4
) (α ≪ 1, n ≫ 1)

Db = Dba + (n− 2)Dbc ≈
n2η3γ4

16
(1 + 3α), (29)

which shows Db ≥ Da.

In Appendix E.3, we also perform derivations for large n
and α ≫ γ (specifically, with respect to the input eigenval-
ues, we assume sa, sb, sa − sb ≫ γ). The results of those
calculations are:

Da ≈ n2η3γ4⟨x2
ax

2
c⟩⟨x2

bx
2
c⟩

128s5b
[1 + 3

sb
sa

+ 2(
sb
sa

)2 +
4( sbsa )

2

1 + sb
sa

]

=
n2η3γ4

16(1− α)3
[
1− 7

4α+ 15
16α

2 − 1
8α

3

1− α
2

],

Db ≈
n2η3γ4⟨x2

bx
2
c⟩2

16s5b
=

n2η3γ4

16(1− α)3
(α ≫ γ, n ≫ 1)

(30)

where in the equalities we replaced sa = 1, sb = 1−α, and
⟨x2

ax
2
c⟩ = ⟨x2

bx
2
c⟩ = 1− α. The term inside the second line

brackets in Da is always smaller than one. Hence, we again
have Db ≥ Da.

In Figure 3, we plot the diffusion and fluctuations coeffi-
cients as a function of α for stimuli a and b. We see that,
consistent with the above results, the frequent stimulus drifts
at a relatively slower rate and has a smaller fluctuation, ir-
respective of α. Additionally, there is an excellent match
between the theoretical and the simulations results for both
the fluctuations and the diffusion coefficients. Finally, in the
bottom panel of the same figure, we plotted the trajectories
of the representations over time for n = p = 3. The lower
fluctuation and diffusion rates for the more frequent stimu-
lus can be visually observed from the smaller point cloud
for this stimulus.

5. Discussion
In a two-layer neural network model of the olfactory system,
we show, using theory and simulations, that the stochasticity
in SGD online learning could result in a drift of stimuli rep-
resentation over time, even after the training is complete and
no measurable change in the performance is observed. We
analytically demonstrate the dependency of the drift on the
input distribution and, in particular, show that a frequently
presented stimulus drifts at a relatively slower rate. This
finding is consistent with experimental observations in the
piriform cortex (Schoonover et al., 2021).

We studied the learning dynamics in the high-dimensional
space of network parameters. In this space, drift can be

Figure 3. Plots of (left) diffusion, and (right) fluctuation for rep-
resentations of a frequent (subscript a, blue) and a background
stimulus (subscript b, red). Horizontal axes are the probability of
the frequent stimulus, α. In both plots m = n = 10, p = 20,
γ = 0.04, and η = 0.005. (bottom) History of representations
for three trial stimuli after 2.2 × 105 training steps. n = p = 3,
γ = 0.1, η = 0.1, and α = 0.5. a is the frequent and b and c are
two orthogonal background stimuli.

considered as any movement tangential to the manifold of
minimum-loss, the effects of which aggregate over time to
create an effective diffusion process. Orthogonal to this is
the fluctuation outside the manifold that has a finite variance
due to the mean-reverting property of the gradient. For the
tangential gradient to have a non-zero value, an orthogonal
deviation from the manifold was necessary (see Eq.14 and
Figure 2). In a way, this makes the diffusion on the manifold
a second order phenomenon, and that explains why the
amount of diffusion depends on the fluctuation covariance
(Eq.18). In our work, diffusion (random walk) emerged as a
mechanism underlying the representational drift. Note that
in this sense it is different from the term drift in Physics.

In the representation space, the effects of the fluctuation and
tangential movements are deformations and rigid-body rota-
tions of the space, respectively. If we consider the represen-
tation of a given stimulus over time, its trajectory consists of
two parts: a random walk movement on a high-dimensional
sphere, and simultaneously, a mean-reverting fluctuating
process that causes deviations on and outside the sphere (i.e.
changing norms and pair-wise angles of representations).
This can be observed from the visualization in the bottom
panel of Figure 3. Note that the random walk on a sphere
dynamics is consistent with the over-time decay of popula-
tion response self-similarity as observed in the experiments

7
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of (Schoonover et al., 2021). Further, the lower diffusion
rate observed for a more frequent stimulus suggests that the
rigid-body rotation on average rotates the frequent stimulus
to a lesser degree. This could be explained by, for example,
the axis of rotation being on average closer to the represen-
tation of the frequent stimulus. The lower diffusion and
fluctuation for the more frequent stimulus could be traced to
the mechanism by which the gradient tends to preserve the
representation and the output of more rehearsed stimuli..

Recently, Qin et al. (2023) studied drift in a one-layer neu-
ral network model of sensory systems with a similarity
matching objective and a Hebbian/anti-Hebbian learning
rule. Similarly to our results, they showed that the represen-
tations undergo a rotational diffusion process. This is not
surprising as both models have objective functions with de-
generate solutions and rotational symmetry. In our case, the
L2 regularization creates that symmetry. Qin et al. (2023)
also demonstrated a stimulus dependency of the diffusion
coefficient, such that the drift for a given eigenvector direc-
tion was inversely related to its eigenvalue. However, in
that study synaptic noise was injected to the network and
the stimulus dependency was not studied when this noise
was zero. Here, we used a two-layer neural network model
with MSE loss to study drift under no external noise. We
showed that the sampling noise due to the SGD stochasticity
is enough to demonstrate the stimulus dependency of the
drift rate. Along that line, we speculate that the anisotropic
profile of the SGD noise enhances the stimulus dependency
of the drift when compared to an isotropic (synaptic) noise.
Our results further show that in the pure SGD case, the
drift direction is limited to the subspace of existing stimuli
representations. When an isotropic noise is injected to the
weights, this will no longer be the case since the whole
tangent space will be explored.

SGD dynamics have been studied extensively in the machine
learning literature (see e.g. Mandt et al. (2017); Jastrzebski
et al. (2017); Zhu et al. (2018); Chaudhari & Soatto (2018);
Yaida (2018); Zhang et al. (2018)). In a recent study, Li et al.
(2022) provided a mathematical framework for investigating
the limiting dynamics of SGD around the local minimizer
manifold in overparametrized networks. They used this
framework to study the regularization effect of SGD (i.e.
implicit bias), and showed that label noise could drive the
network to areas with flatter landscape with potential ben-
efits for generalization (Wei & Schwab, 2019; Blanc et al.,
2020; Cowsik et al., 2022). Unlike that study, our analysis
deals with a regime where the system has reached a final
stage of learning with a steady local loss landscape. Hence
in our case the effective dynamics on the manifold is a pure
random-walk. Additionally, the analytical tractability of
our model allowed us to calculate the exact gradient profile
around the manifold. We found that to accurately calculate
the drift, we had to integrate the effect of the tangential

gradient not just on the manifold but away from it (hence
the third power of the learning rate in our diffusion rate,
one of which stems from the normal fluctuation covariance).
Finally, our model contains weight decay, which influences
both the learned manifold and the gradients.

Linear multilayer networks, despite their simplicity, demon-
strate nonlinear and nontrivial learning behaviors (Saxe
et al., 2013; Li & Sompolinsky, 2021). In our case, the
two-layer feedforward network was the simplest architec-
ture that provided necessary redundancy in the network
parameters through the product of the weight matrices. We
used the identity mapping (autoencoder) setup to simplify
the derivations of main formalisms, allowing us to focus on
the role of input distribution on the drift. The dependence
of the drift on the data is inherent in the diffusion term in
Eq.18, which ultimately depends on the 2nd/4th moments of
the input distribution. Extensions of our work may include
nonlinear and deep networks with recurrent connections in
addition to a non-stationary data-distribution. The main
concepts on which our framework builds are valid for more
general linear or nonlinear networks minimizing an objec-
tive function with stationary data. In those cases, the loss
could still be approximated as a quadratic function near
the manifold of minimum loss, and hence the equations for
fluctuations and tangent movements still hold. However, the
specific form of the gradient as the driver of the drift and
the geometry of the manifold will be problem-dependent.
We expect our main findings (i.e. the presence of drift, and
lower drift for a more frequent stimulus) to carry over to
nonlinear cases, however, we leave that to future studies.

Acknowledgements
We are grateful for fundings from the Swartz Foundation,
and the National Institute of Health (U19NS112953-01).

References
Absil, P.-A., Mahony, R., and Sepulchre, R. Optimization

algorithms on matrix manifolds. In Optimization Algo-
rithms on Matrix Manifolds. Princeton University Press,
2009.

Aitken, K., Garrett, M., Olsen, S., and Mihalas, S. The
geometry of representational drift in natural and artificial
neural networks. PLOS Computational Biology, 18(11):
e1010716, 2022.

Blanc, G., Gupta, N., Valiant, G., and Valiant, P. Implicit reg-
ularization for deep neural networks driven by an ornstein-
uhlenbeck like process. In Conference on learning theory,
pp. 483–513. PMLR, 2020.

Chaudhari, P. and Soatto, S. Stochastic gradient descent
performs variational inference, converges to limit cycles

8



Representational Drift in a Two-Layer Neural Network

for deep networks. In 2018 Information Theory and
Applications Workshop (ITA), pp. 1–10. IEEE, 2018.

Cowsik, A., Can, T., and Glorioso, P. Flatter, faster: scaling
momentum for optimal speedup of sgd. arXiv preprint
arXiv:2210.16400, 2022.

Deitch, D., Rubin, A., and Ziv, Y. Representational drift
in the mouse visual cortex. Current Biology, 31(19):
4327–4339, 2021.

Driscoll, L. N., Duncker, L., and Harvey, C. D. Represen-
tational drift: Emerging theories for continual learning
and experimental future directions. Current Opinion in
Neurobiology, 76:102609, 2022.

Edelman, A., Arias, T. A., and Smith, S. T. The geometry
of algorithms with orthogonality constraints. SIAM jour-
nal on Matrix Analysis and Applications, 20(2):303–353,
1998.

Gardiner, C. W. et al. Handbook of stochastic methods,
volume 3. springer Berlin, 1985.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Kalle Kossio, Y. F., Goedeke, S., Klos, C., and
Memmesheimer, R.-M. Drifting assemblies for persistent
memory: Neuron transitions and unsupervised compen-
sation. Proceedings of the National Academy of Sciences,
118(46):e2023832118, 2021.

Kunin, D., Bloom, J., Goeva, A., and Seed, C. Loss land-
scapes of regularized linear autoencoders. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pp. 3560–3569. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
kunin19a.html.

Li, Q. and Sompolinsky, H. Statistical mechanics of deep
linear neural networks: The backpropagating kernel renor-
malization. Physical Review X, 11(3):031059, 2021.

Li, Z., Wang, T., and Arora, S. What happens after SGD
reaches zero loss? –a mathematical framework. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=siCt4xZn5Ve.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gra-
dient descent as approximate bayesian inference. arXiv
preprint arXiv:1704.04289, 2017.

Marks, T. D. and Goard, M. J. Stimulus-dependent repre-
sentational drift in primary visual cortex. Nature commu-
nications, 12(1):1–16, 2021.

Masset, P., Qin, S., and Zavatone-Veth, J. A. Drifting neu-
ronal representations: Bug or feature? Biological cyber-
netics, pp. 1–14, 2022.

Qin, S., Farashahi, S., Lipshutz, D., Sengupta, A. M.,
Chklovskii, D. B., and Pehlevan, C. Coordinated drift
of receptive fields in hebbian/anti-hebbian network mod-
els during noisy representation learning. Nature Neuro-
science, pp. 1–11, 2023.

Rule, M. E. and O’Leary, T. Self-healing codes: How
stable neural populations can track continually reconfig-
uring neural representations. Proceedings of the National
Academy of Sciences, 119(7):e2106692119, 2022.

Rule, M. E., O’Leary, T., and Harvey, C. D. Causes and
consequences of representational drift. Current opinion
in neurobiology, 58:141–147, 2019.

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N.,
Harvey, C. D., and O’Leary, T. Stable task information
from an unstable neural population. Elife, 9:e51121,
2020.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Schoonover, C. E., Ohashi, S. N., Axel, R., and Fink, A. J.
Representational drift in primary olfactory cortex. Nature,
pp. 1–6, 2021.

Wei, M. and Schwab, D. J. How noise affects the hessian
spectrum in overparameterized neural networks. arXiv
preprint arXiv:1910.00195, 2019.

Yaida, S. Fluctuation-dissipation relations for stochastic
gradient descent. arXiv preprint arXiv:1810.00004, 2018.

Zhang, Y., Saxe, A. M., Advani, M. S., and Lee, A. A.
Energy–entropy competition and the effectiveness of
stochastic gradient descent in machine learning. Molecu-
lar Physics, 116(21-22):3214–3223, 2018. doi: 10.1080/
00268976.2018.1483535. URL https://doi.org/
10.1080/00268976.2018.1483535.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic
noise in stochastic gradient descent: Its behavior of escap-
ing from sharp minima and regularization effects. arXiv
preprint arXiv:1803.00195, 2018.

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh,
K. K., Kitch, L. J., El Gamal, A., and Schnitzer, M. J.
Long-term dynamics of ca1 hippocampal place codes.
Nature neuroscience, 16(3):264–266, 2013.

9

https://proceedings.mlr.press/v97/kunin19a.html
https://proceedings.mlr.press/v97/kunin19a.html
https://openreview.net/forum?id=siCt4xZn5Ve
https://openreview.net/forum?id=siCt4xZn5Ve
https://doi.org/10.1080/00268976.2018.1483535
https://doi.org/10.1080/00268976.2018.1483535


Representational Drift in a Two-Layer Neural Network

Appendix

A. Derivation of the Manifold and the Hessian (Proof of Theorem 2.1)
We lay out different parts of the proof over the next few sections. We first calculate all the critical points that satisfy the zero
expected gradient condition (Section A.1), and from those, we calculate the Hessian (sections A.2 and A.2.1), and show that
the manifold M is the only stable solution with non-negative Hessian spectrum (Section A.2.2). The proof is summarized in
Section A.3.

A.1. Derivation of the critical points

The gradient can be found by taking the derivative of the loss function in Eq.3. By assuming y = x, we have:

g(x;θ) = ∇θl(x;θ) = (GU ,GW ),

{
GW = ∇W l = (WU − In)xx

TUT + γW
GU = ∇U l = W T (WU − In)xx

T + γU
(31)

At the critical points the expected gradients are zero. This is equivalent to:

⟨g(x;θ)⟩x = ∇θL = 0 =⇒
{

(In −WU)ΣxU
T = γW

W T (In −WU)Σx = γU
(32)

which need to be solved for W ∈ Rn×p and U ∈ Rp×n under p ≥ n. A similar set of equations was studied in Kunin et al.
(2019) but with p ≤ n. We follow part of a proof from that study (Proof 2.1 in that paper) to show two facts about the
solutions of the above equations (note that despite different assumptions for the dimension of the hidden layer, the following
facts still hold).

Claim 1: C := (In − WU)Σx ⪰ 0. Proof. By multiplying the first line of Eq.32 by W T from the right we get
(In − WU)Σx(WU)T = γWW T ⪰ 0, and therefore Σx(WU)T ⪰ (WU)Σx(WU)T . Following a property of
positive semi-definite matrices that states if A ⪰ 0 and ABT ⪰ BABT , then A ⪰ BA, we have Σx ⪰ WUΣx, which
proves the claim.

Claim 2: U = W T . Proof. By subtracting the transpose of the first line of Eq.32 from the second, and using the symmetric
property of C, we have: (U −W T )(C + γIn) = 0. Now, since C + γIn ≻ 0, we use a property of positive definite
matrices that states if B ≻ 0 and ATBA = 0, then A = 0, to get U −W T = 0. For more information see Kunin et al.
(2019) and its supplementary material.

Replacing W from the first line of Eq.32 into its second line, and using U = W T from Claim 2, we can form an equation
for WW T :

(In −WW T )Σx(WW )T (In −WW T )Σx = γ2WW T (33)

To solve the above we note that because we showed that C = (In − WW T )Σx is semi-positive definite and hence
symmetric, two matrices WW T and Σx commute and hence can be diagonalized simultaneously. Therefore, if Σx =
V SV V T is the singular value decomposition (SVD) with SV = diag({si}), we can assume WW T = V ΛV T , where
Λ = diag({Λi}) for i ∈ [1, n]. Replacing these in Eq.33, leads to n separate equations for the diagonal entries Λi:

Λi(Λ
2
i s

2
i − 2Λis

2
i + (s2i − γ2)) = 0, i ∈ [1, n] (34)

A valid solution for each entry is either Λi = 0 or Λi = 1− γ
si

(note Λi = 1 + γ
si

also satisfies the above equation but it’s
not a valid solution overall since any Λ with such an entry violates the positive semi-definiteness of C). For a given Λ, we
have W = V Λ

1
2QT and U = W T = QΛ

1
2TV T for any orthonormal matrix Q. Based on the values of diagonal entries,

we can classify the critical points into three sets:

• The manifold (M): Λi = 1− γ
si

for all i ∈ [1, n]. In this case Λ = In − γS−1
V and hence WW T = In − γΣ−1

x .

• Zero solution: Λi = 0 for all i ∈ [1, n]. In this case W and U are both zero.

• Mixed solutions: Λi = 0 for some i ∈ [1, n], and Λi = 1− γ
si

for the other entries.

In the next section we show, by calculating the Hessian spectrum, that the manifold (M) is a stable solution, and the zero
and the mixed solutions are unstable critical points. We will also use the results of the Hessian in other parts of the paper.

10



Representational Drift in a Two-Layer Neural Network

A.2. Hessian eigenspace

To find the eigenvectors of the Hessian, we assume we are a small deviation away from a critical point θ̃ = (Ũ , W̃ ) along
the vector n. The eigenvalue equation can be written as:

n = (NU ,NW ) : Hn = λn ≡
{

∇WL |θ̃+n = λNW

∇UL |θ̃+n = λNU
(35)

After replacing n in the gradient equations (Eq.31), and ignoring second and higher order terms, we have the following
matrix equations for NW , NU and λ:{

(W̃ Ũ − In)ΣxN
T
U + (NW Ũ + W̃NU )ΣxŨ

T + γNW = λNW

NT
W (W̃ Ũ − In)Σx + W̃ T (NW Ũ + W̃NU )Σx + γNU = λNU

(36)

To find the eigenvectors and the eigenvalues, we won’t need to calculate the Hessian matrix explicitly. However, for
completeness we mention here. Vectorizing the above equations lead to:

[(ŨΣxŨ
T + γIp)⊗ In]vec(NW ) + [(Ip ⊗ (W̃ Ũ − In)Σx)K

(p,n) + (ŨΣx ⊗ W̃ )]vec(NU ) = λvec(NW ) (37)

[(Σx(W̃ Ũ − In)
T ⊗ Ip)K

(n,p) + (ΣxŨ
T ⊗ W̃ T )]vec(NW ) + [(Σx ⊗ W̃ TW̃ ) + γ(In ⊗ Ip)]vec(NU ) = λvec(NU )

where the ”vec” operator reshapes a matrix to a vector, and ⊗ denotes the Kronecker product between two matrices. If we
consider the parameter space as θ ≡ vec(U)⊕ vec(W ), the 2np×2np Hessian matrix can be formed as below:

H =

(
HUU HUW

HWU HWW

)
(38)

HWW = (ŨΣxŨ
T + γIp)⊗ In

HUU = (Σx ⊗ W̃ TW̃ ) + γ(In ⊗ Ip)

HWU = HT
UW = (Ip ⊗ (W̃ Ũ − In)Σx)K

(p,n) + (ŨΣx ⊗ W̃ )

where K is the Commutation matrix.

A.2.1. DERIVATION OF THE HESSIAN EIGENSPACE FOR THE MANIFOLD

Here we find the Hessian eigenspace for the manifold of Theorem 2.1. Replacing the equations of the manifold (W̃ Ũ =
I − γΣ−1

x and Ũ = W̃ T ) in Eq.36 results in the following equations for NW , NU and λ:{
−γNT

U + (NW W̃ T + W̃NU )ΣxW̃ + (γ − λ)NW = 0

−γNT
W + W̃ T (NW W̃ T + W̃NU )Σx + (γ − λ)NU = 0

(39)

Since the Hessian is a real and symmetric matrix, the set of its eigenvectors are orthogonal and span R2np. A subspace of
this eigenspace corresponds to λ = 0, which is the tangent space of the manifold. We will study the tangent space in more
detail in the next section, but here we note that its dimension is np− n(n+1)

2 , which results from the degrees of freedom
(DOF) in W̃ in the equation of the manifold (W̃W̃ T = fixed). In this section, we will find the eigenspace corresponding to
λ ̸= 0 (i.e. the normal space), which, as a result, has the dimension np+ n(n+1)

2 .

We propose two sets of solutions for the equations above for λ ̸= 0. The first one satisfies:

Set 1: NU = −NT
W , NW = W̃W̃ TSW̃ +KW̃⊥, with λ = 2γ. (40)

where S is an arbitrary n× n symmetric matrix, K is an arbitrary n× (p− n) matrix, and W̃⊥ is a full-rank (p− n)× p
matrix whose rows are orthogonal to rows of W̃ . (it is straightforward to check that the above satisfies Eq.39 as the term in
the parentheses vanish i.e. NW W̃ T − W̃NT

W = 0). The total DOF in this solution is np− n(n−1)
2 resulting from DOF in

S and K. The second solution is:

Set 2: NW = ZW̃ , NU = W̃ TZ, whereZ satisfies − γZT + 2ZΣx − γΣ−1
x ZΣx − λZ = 0. (41)
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To solve the equation for Z ∈ Rn×n and λ, let’s assume (vi, si) are the eigenvectors/eigenvalues of Σx arranged in
descending order, i.e. s1 ≥ .. ≥ sn. By replacement, we can show that n2 solutions exists for (Z, λ) such that each solution
corresponds to a pair of input eigenvectors (vi,vj). Specifically, the solutions consists of: Zii = Ciiviv

T
i , λii = 2(si − γ) i ∈ [1, n]

Zij = Cij(κijviv
T
j + vjv

T
i ), λij = 2si − γ( sisj + κij) i, j ∈ [1, n], i ̸= j

(42)

for κij = sgn(i− j)(
√
1 + b2 − b), where b = (

1

γ
− si + sj

2sisj
)|si − sj |.

The normalization constants Cij can be found by imposing nT
knk = 1, which leads to Cij = [(1 + κ2

ij)(ωi + ωj)]
− 1

2 ,
where ωi := 1− γ

si
. It is also easy to check that nT

knl = 0 for k ̸= l. Since the number of solutions in this set is n2, we see
that the total number of solutions in the two sets for the Hessian eigenspace (1 and 2) add up to the dimension of the normal
space mentioned above. This shows that these two sets are the complete solutions.

Claim: For i < j, λij > λji > 0. (Proof. The left inequality results directly from writing the eigenvalues as a function of si
and sj noting that si ≥ sj > γ. For the second inequality, first note that 0 < κji ≤ 1. Additionally, we have sj(2− γ

si
) > γ,

which proves λji = 2sj − γ(
sj
si

+ κji) > 0 ). As a result, all the Hessian eigenvalues for the manifold of solution are
non-negative, which makes the manifold M a stable solution.

A.2.2. INSTABILITY OF THE OTHER CRITICAL POINTS

Here we show that the alternate critical points found in Section A.1 are unstable by showing that their Hessian spectrum
contains negative eigenvalues.

Zero solution: In this case all Λi are zero and we have W̃ = 0 and Ũ = 0. By replacement in Eq.36 we get:{
ΣxN

T
U = (γ − λ)NW

NT
WΣx = (γ − λ)NU

(43)

Since Σx is full-rank, to have non-zero solutions to the above we should have λ ̸= γ. Replacing NU from the second line
in the first one leads to the equation (Σ2

x − (γ − λ)2In)NW = 0. For a non-zero solution to exist, the determinant of the
term in the parentheses should be zero. This is equivalent to the following characteristic equations: s2i − (γ − λ)2 = 0,
for i ∈ [1, n]. Recalling from the assumptions that si > γ, there is a positive and a negative λ associated to each si:
λ+ = γ + si, and λ− = γ − si. Therefore, the zero solution is an unstable saddle point.

Mixed solutions: Recall from Section A.1 that for the mixed solution W = V Λ
1
2QT , where Λ is a diagonal matrix with

some entries equal to zero. For a given mixed solution, let I ⊂ [1, n] denote the indices of the zero entries of Λ, and
J = I⊥ the indices of the non-zero diagonal entries. We can show that for the mixed solution, a part of the Hessian
eigenspace (corresponding to indices J ) are similar to that of the manifold described in Section A.2.1. For example, it is
easy to check that for any j ∈ J and Zjj = Cjjvjv

T
j , the solution NW = ZjjW̃ , NU = W̃ TZjj satisfy the Hessian

equations (Eq.36) with positive eigenvalues λjj = 2(sj − γ). Similar to the case of the manifold, this part of the eigenspace
corresponds to positive eigenvalues. However, in the mixed case, other solutions to the Hessian equation exist that have
negative eigenvalues. Specifically, if qi are columns of Q, for any i ∈ I and α ∈ span({qr}) for r ∈ [1, p] − J , the
solution NW = NT

U = viα
T satisfy Eq.36 with the eigenvalue λ = γ − si, which is negative. Hence, in this case we have

both negative and positive eigenvalues. This proves that the mixed solutions are unstable saddle points.

A.3. Summary of the proof of Theorem 2.1

In Section A.1 we found all the critical points and classified them into three sets consisting of the manifold (M), the zero,
and the mixed solutions. In Section A.2.1, we showed that the Hessian eigenvalues are non-negative for the manifold (see
the Claim at the end of the section). Finally, in Section A.2.2, we showed that the other critical points are unstable saddle
points. This proves that M consists of all the stable critical points in the parameter space.

12



Representational Drift in a Two-Layer Neural Network

B. Tangent Space to the Manifold
In this section, we describe the first order differential geometry of the manifold (M) which will allow us to study the
dynamics near the manifold. In the two equations describing the manifold in Theorem 2.1, Ũ is simply the transpose of
W̃ , and hence the manifold can be studied by considering matrix W̃ ∈ Rn×p in the equation W̃W̃ T = In − γΣ−1

x . This
defines a matrix manifold in Rn×p. In the case of γ = 0, this simplifies to the Steifel manifold for which there are known
results (see Edelman et al. (1998) and Absil et al. (2009)). Inspired by those results, here we consider a more general but
similar case of γ ̸= 0. The next lemma describes the tangent space to the manifold.

Lemma 2.2. (Tangent space) The local tangent space to the manifold at point (W̃ T , W̃ ) is spanned by vectors t =
(T T

W ,TW ) with TW = W̃W̃ TΩW̃ +KW̃⊥, where Ω is an arbitrary n× n skew-symmetric matrix, K is an arbitrary
n× (p− n) matrix, and W̃⊥ is a full-rank (p− n)× p matrix whose rows are orthogonal to rows of W̃ .

Proof. First, we show that any vector t of the form above belongs to the tangent space of the manifold. This is equivalent to
showing that if we are on the manifold and get displaced by vector ε t = (εT T

W , εTW ) for a small ε, we stay on the manifold
to the first order of ε (i.e. the equations that define the manifold still hold to that order). From the two equations, the transpose
equation (Ũ = W̃ T ) is automatically satisfied as we have TU = T T

W . For the other equation (W̃W̃ T = I − γΣ−1
x ), we

show that the change in WW T is of the second order:

∆(WW T ) = εW̃T T
W + εTW W̃ T +O(ε2) (44)

= εW̃W̃ TΩTW̃W̃ T + εW̃W̃ T
⊥KT + εW̃W̃ TΩW̃W̃ T + εKW̃⊥W̃

T +O(ε2)

= O(ε2)

where in going from the second to the third line we used Ω = −ΩT and W̃⊥W̃
T = 0.

Next, we demonstrate that the dimension of the vector space spanned by t is the same as the dimension of the tangent
space. The dimension of the tangent space can be inferred from the difference between the parameters and the constraints
in W̃W̃ T = I − γΣ−1

x , which are np and n(n + 1)/2 respectively. Hence, the dimension of the tangent space is
np − n(n + 1)/2. To find the dimension of the space spanned by t, note that the transformation from (Ω,K) to TW is
one-to-one. This is simply because each of the mappings Ω → W̃W̃ TΩW̃ and K → KW̃⊥ are one-to-one (as W̃ and
W̃⊥ are full rank), and their ranges do not overlap (as the rows of W̃ and W̃⊥ are orthogonal). As a result, the dimension
of the space spanned by TW is equal to the dimension of the space spanned by the skew-symmetric Ω, which is n(n− 1)/2,
added to that of K, which is n(p− n). This becomes the same as the dimension of tangent space mentioned above. Since
we already showed that any vector t lies in the tangent space, the set of t’s span the tangent space. This completes the
proof.

With the definition of the Euclidean inner product in Eq.2, we can define notions of orthogonality and projection. In the
case of the two layer network (L = 2) with weights U and W , the inner product for two vectors e = (EU ,EW ) and
f = (FU ,FW ) becomes:

eTf = tr
(
ET

WFW

)
+ tr

(
ET

UFU

)
(45)

The normal space can be defined as the space orthogonal to the tangent space. This is the same as the eigenspace of the
Hessian corresponding to positive eigenvalues and was described in Section A.2.1 (similarly, vectors in the tangent space
corresponds to Hessian eigenvectors with zero eigenvalue, i.e. Ht = 0). Finally, the inner product of an arbitrary vector g
with vector t in the tangent space can be found from:

tTg = tr(T T
WGW ) + tr(T T

UGU ) = tr(TW (GT
W +GU )) (46)

where TW takes an appropriate form from Lemma 2.2. A natural basis for the tangent space can be constructed from
matrices Ωrs := (vrv

T
s −vsv

T
r )/

√
2ωrωs(ωr + ωs), for r, s ∈ [1, n] and r > s, as well as matrices Kuv with components

[Kuv]ij = δuvij (u, i ∈ [1, n], v, j ∈ [1, p− n]). Recall that ωi = 1− γ/si and (vi, si) are eigenvector/eigenvalue pairs of
the input covariance, and the normalization constants ensure tT t = 1. In Section D, we use these results to project the
gradient onto the tangent space.

13
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C. Calculation of the Fluctuations
In this section, we present additional results and derivations for the fluctuations in the normal space.

C.1. Derivation of the SDE for normal deviations

Here, we will derive the stochastic differential equation (SDE) for θN in Eq.7. Without loss of generality, at a given time,
we take θ̃ to be the closest point to θ, and also put the origin on it. Projecting both sides of the SGD equation (Eq.4) to the
normal space of the manifold, and by defining gN (x;θN ) = ΠN (g(x;θN )) to be the normal projection of the gradient, we
have:

∆θN = −ηgN = −η⟨g⟩x − ηe

where e = gN − ⟨g⟩x is a random variable with zero mean, and ⟨gN ⟩x = ⟨g⟩x is the average gradient is in the normal
direction. The above is the update in one training step which we take to be equivalent to the continuous time-difference
∆tstep ≡ η. Over large timescales (∆t = nη, with n ≫ 1), the update equation becomes:

∆θN = −nη⟨g⟩x − e′ (n steps) (47)

Here e′ = η
∑n

i=1 ei is a random variable with ⟨e′⟩ = 0 and var(e′) = nη2cov(e) = ∆t η cov(e). As a result, we can
approximate it as e′ ∼

√
η cov(e)B∆t where Bt is a multi-dimensional Brownian motion (Wiener process) with properties

such as independent Gaussian increments and a variance proportional to the time difference, i.e. Bt+u−Bt ∼ N (0, uI2np).
In the limit of ∆t → 0, we have the following continuous stochastic differential equation (SDE):

dθN = −⟨g⟩xdt+
√
ηCdBt (continuous) (48)

where C ≡
√

cov(e). Since e in general is a function of θN , we can write C(θN ) = C(0) +O(θN ). Near the manifold
we also have ⟨g⟩x = HθN +O(θ2N ). As a first approximation, we replace C(θN ) by C(0), which means the driver of the
stochasticity in the equation becomes the gradient on the manifold, i.e. g̃(x) := gN (x;0). Note that as the next section
shows, under the stationary solution θN ∼ √

η, which justifies the approximation in the second term of the equation for
small η (see also Mandt et al. (2017)).

C.2. Solution of the SDE for normal deviations

The solution to the SDE in Eq.7 (aka Ornstein Uhlenbeck process) has been discussed previously (Gardiner et al., 1985).
For completeness, we provide it here. The process was defined by:

dθN (t) = −HθN (t)dt+
√
ηCdBt (49)

We first perform the following change of variable:

θ′
N (t) := eHtθN (t) → θN (t) = e−Htθ′

N (t). (50)

By taking the differential of the above and replacement from Eq.49 we get:

dθ′
N (t) = HeHtθN (t)dt+ eHt(−HθN (t)dt+

√
ηCdBt) =

√
ηeHtCdBt (51)

After integration (Ito integral) and substitution from 50, we have:

θ′
N (t) = θ′

N (0) +
√
η

∫ t

0

eHuCdBu → θN (t) = e−HtθN (0) +
√
η

∫ t

0

e−H(t−u)CdBu (52)

For a given initial condition, the mean is:

⟨θN (t)⟩ = e−HtθN (0) (53)

which shows the stationary mean (t → ∞) is zero. Correspondingly, the correlation function is:

corr(θN (t),θN (s)) = ⟨[θN (t)− ⟨θN (t)⟩][θN (s)− ⟨θN (s)⟩]T ⟩ (54)

= η⟨
∫ t

0

e−H(t−u)CdBu[

∫ s

0

e−H(s−v)CdBv]
T ⟩

= η

∫ min(t,s)

0

e−H(t−u)CCT e−HT (s−u)du

14



Representational Drift in a Two-Layer Neural Network

where in the last line we used a property of Ito integral. Now recall the change of variable from the main text ρ =
NTθN (Eq.9), which means corr(ρ(t),ρ(s)) = NT corr(θN (t),θN (s))N . Additionally, we have the decomposition
H = NλNT , where λ = diag({λk}). Replacing these and CCT = ⟨g̃g̃T ⟩x in the above, the integral can be calculated
per component. Further, taking t, s → ∞ yields the correlation function for the stationary solution:

⟨ρk(t)ρl(s)⟩ =
η⟨nT

k g̃ n
T
l g̃⟩x

λk + λl
e−λk(t−s), (t ⩾ s). (55)

The covariance equation in the main text (Eq.10) results from the above under t = s.

C.3. Projection of the gradient onto the normal space (Proof of Proposition 2.3)

In Section A.2.1 we found the normal space which consisted of two sets of solutions (Eqns. 40 and 41). Here we show that
g̃(x) has no projection the first set. Recall that for the first solution we had: n = (−NT

W ,NW ) where NW W̃ T = W̃NT
W .

Using g̃(x) = (W̃ TZx,ZxW̃ ) from Eq.8, and the definition of the inner product (Eq.45), we have:

Set 1: nT g̃(x) = tr
(
NT

WZxW̃
)
− tr

(
NW W̃ TZx

)
= tr

(
NT

WZxW̃
)
− tr

(
W̃NT

WZx

)
= 0

where in the last equality we used the permutation property of the trace. This leaves us with the second set of solutions
which consisted of nij = (W̃ TZij ,ZijW̃ ) for i, j ∈ [1, n] (Eq.42). The projection on these eigenvectors can be found
similarly using the definition of inner product. By defining the coefficients

Sij
rs :=

κij

sr
+

1

ss
(notingκii ≡ 0), and ωi := 1− γ

si
, (56)

(see Section A.2.1 for definitions of κij and Cij), we will have:

Set 2: nT
iig̃ = γ

√
2ωi(1−

x2
i

si
), nT

ij g̃(i ̸=j) = −γ(ωi + ωj)CijS
ij
ijxixj , (57)

where xi := vT
i x. Hence the projections on set 2 are in general non-zero. This completes the proof.

C.4. Components of the fluctuation matrix

By replacing the projections from Eq.57 in Eq.10, the components of the covariance matrix can be calculated as:

⟨ρiiρpp⟩ =
ηγ2√ωiωp

si + sp − 2γ
(
⟨x2

ix
2
p⟩x

sisp
− 1), ⟨ρiiρpq⟩(p ̸=q) = ⟨ρijρpq⟩(i ̸=j) = 0 (58)

⟨ρijρpq⟩(i ̸=j,p ̸=q) =
ηγ2(ωi + ωj)(ωp + ωq)

λij + λpq
CijCpqS

ij
ijS

pq
pq ⟨xixjxpxq⟩x

where i, j, p, q ∈ [1, n].

C.5. Fluctuation of the representation norm

Consider hs = Ũvs to be the representation of stimulus vs. According to Proposition 2.3, displacement from the manifold
along vector ρ =

∑
ρknk in the normal space changes the first layer weight by ∆U = W̃ T

∑
i,j ρijCij(κijviv

T
j +vjv

T
i ).

This correspondingly changes the representation by ∆hs = ∆Uvs. The change in the representation norm can therefore be
calculated as:

ĥT
s ∆hs =

√
ωsv

T
s

n∑
i,j=1

ρijCij(κijviv
T
j + vjv

T
i )vs =

ρss√
2

(59)

where we used W̃W̃ Tvs = ωsvs and Css = 1/
√
2ωs. The variance in the norm becomes:

var(|hs|) =
⟨ρ2ss⟩
2

(60)

which is the first part of Eq.12 in the main paper. The right hand side of Eq.12 results simply by taking i = p = s in the first
equation of Eq.58 to calculate ⟨ρ2ss⟩.
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D. Tangential Projection of the Gradient (Proof of Theorem 2.5)
We first approximate the gradient near the manifold to the first order of ρ. We assume we are at point θ̃ + ρknk, where
θ̃ lies on the manifold, and nk = (W̃ TZk,ZkW̃ ) is a Hessian eigenvector (Eq.11). The gradient at this point can be
calculated by replacing W = (I + ρkZk)W̃ and U = W̃ T (I + ρkZk) in Eq.31. For ρk ≪ 1, we will ignore second and
higher order terms, to have:

g(x; θ̃ + ρknk) = (GU ,GW ); (61)

GW = (WU − I)xxTUT + γW

= [(I + ρkZk)W̃W̃ T (I + ρkZk)− I]xxT (I + ρkZ
T
k )W̃ + γ(I + ρkZk)W̃ +O(ρ2k)

= γ(I −Σ−1
x xxT )W̃ + ρk[(ZkW̃W̃ T + W̃W̃ TZk)xx

T − γΣ−1
x xxTZT

k + γZk]W̃ +O(ρ2k)

GU = W T (WU − I)xxT + γU

= W̃ T (I + ρkZ
T
k )[(I + ρkZk)W̃W̃ T (I + ρkZk)− I]xxT + γW̃ T (I + ρkZk) +O(ρ2k)

= γW̃ T (I −Σ−1
x xxT ) + ρkW̃

T [(ZkW̃W̃ T + W̃W̃ TZk)xx
T − γZT

k Σ
−1
x xxT + γZk] +O(ρ2k)

As was shown Section B, the dependency of the projection on the gradient is via GT
W +GU , which can be calculated as:

GT
W +GU = −γρijW̃

T (Zijxx
TΣ−1

x +ZT
ijΣ

−1
x xxT ) + 2W̃ T Sym(A) +O(ρ2ij)

= −γρijW̃
TCij

∑
q∈[1,n]

(Sij
qjxjxqviv

T
q + Sij

iqxixqvjv
T
q ) + 2W̃ T Sym(A) +O(ρ2ij). (62)

In the above, A = γ(In − xxTΣ−1
x ) + ρij [(ZijW̃W̃ T + W̃W̃ TZij)xx

T + γZij ], and Sij
rs are coefficients defined

in Eq.56. In the second line, we replaced Zk ≡ Zij = Cij(κijviv
T
j + vjv

T
i ) (Eq.11), x =

∑
q∈[1,n] xqvq, and used

Σ−1
x vq = s−1

q vq and vT
p vq = δqp.

The inner product of the gradient on a vector in the tangent space becomes tTg = tr(TW (GT
W +GU )) (Eq.46), where

from Lemma 2.2 we have TW = W̃W̃ TΩW̃ + KW̃⊥. Replacing the GT
W + GU term from Eq.62, we first see

that the gradient has no projection on the second term of the tangent vector containing K, as we have W̃⊥W̃
T = 0.

Further, the contribution of the term 2W̃Sym(A) in Eq.62 also disappears as the trace of the product of symmetric and
skew-symmetric matrices is zero. This leaves us with calculating the projection on tangent vectors corresponding to
Ω. As described in Section B, the associated basis vectors are trs = (T T

W ,TW ), where TW = W̃W̃ TΩrsW̃ , and
Ωrs := (vrv

T
s − vsv

T
r )/

√
2ωrωs(ωr + ωs). The projection on trs becomes:

tTrsg(x; θ̃+ρknk) = tr(W̃W̃ TΩrsW̃ (GT
W +GU ))

=
γρijCij

√
ωsωr√

2(ωs + ωr)
[xj(S

ij
sjxsδ

r
i − Sij

rjxrδ
s
i ) + xi(S

ij
isxsδ

r
j − Sij

irxrδ
s
j )] +O(ρ2ij)

= ρij
√

2(ωs + ωr)Gs,r
ij (x) +O(ρ2ij) (63)

where in the last line we defined the rank-3 tensor G with components that are:

Gs,r
ij (x) = −Gr,s

ij (x) =
γCij

√
ωrωs

2(ωr + ωs)
[xj(S

ij
sjxsδ

r
i − Sij

rjxrδ
s
i ) + xi(S

ij
isxsδ

r
j − Sij

irxrδ
s
j )]. (64)

(note that the lower index [k] is a composite index and we use it interchangeably with ij, i.e. Gs,r
k ≡ Gs,r

ij ). The projection
of the gradient on the tangent space becomes gT =

∑
r>s(t

T
rsg) trs = (GUT

,GT
UT

), where:

GUT
(x; θ̃+ρijnij) = ρijW̃

T
∑
r>s

Gs,r
ij (

√
ωr

ωs
vsv

T
r −

√
ωs

ωr
vrv

T
s ) +O(ρ2ij) (65)

= W̃ T (W̃W̃ T )−
1
2 (ρijG:,:

ij )(W̃W̃ T )
1
2 +O(ρ2ij)

(In the second line above we used G:,:
ij =

∑
s,r G

r,s
ij vsv

T
r ). Due to linearity, the tangential projection at point Nρ =∑

k ρknk can be found by summing over k, leading to Eq.14 in the main text:

GUT
(x; θ̃+Nρ) =

∑
k

GUT
(x; θ̃+ρknk) = W̃ T (W̃W̃ T )−

1
2 (
∑
k

ρkG:,:
k )(W̃W̃ T )

1
2 +O(|ρ|2) (66)
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Next, we will find the effect of the tangential gradient on the representations. For a given stimulus s, the change in its
representation due to the tangential gradient is ∆h = −ηGUT

s. Replacing GUT
from Eq.66, and using h = Us ≈ W̃ Ts

(for small deviations from the manifold), we have:

hT∆h = −ηsT (W̃W̃ T )
1
2 (
∑
k

ρkG:,:
k )(W̃W̃ T )

1
2 s = 0 (67)

The second equality results from the fact that the quadratic form of a skew-symmetric matrix (G:,:
k ) is zero. This shows

that, as expected, the tangential projection of the gradient is equivalent to a small rigid-body rotation of the representations
around the origin. Further, W̃ T on the left hand side of Eq.66 makes ∆h to be a linear combination of the columns of
W̃ T , keeping the representations in the column-space of W̃ T (note also that the column-space of W̃ T stays fixed over
a tangential update, which is again due to the W̃ T term on the left hand side of Eq.66). To characterize this rotation, we
measure its effect on the n representations vectors. Specifically, we define ∆φsr to be the the pairwise angular displacement
of representation hs ≈ W̃ Tvs toward hr ≈ W̃ Tvr:

∆φsr :=
h̃T
r ∆hs

|h̃r||h̃s|
= η

∑
k

ρkGs,r
k +O(|ρ|2), (68)

where we replaced ∆hs from the above and used |hs| =
√
ωs, and Gr,s

k = vT
r G

:,:
k vs. This is Eq.16 in the main text.

E. Derivation of the Diffusion Coefficients for the Case with a Frequent Stimulus
Here we derive approximate analytical solutions for the diffusion coefficients for the case with a frequent stimulus.

E.1. Approximation of the diffusion summation

Since in the Dsr summation in Eq.18, k ≡ (ij) and l ≡ (pq) are composite indices with i, j, p, q ∈ [1, n], the summation is
in general performed over n4 terms (first line of Eq.69 below). However, as we’ll see next, most of the terms are zero and
under different limits, we can further constrain it to a subset of indices.

n ≫ 1: If we consider the equation for Gr,s
ij for a given r and s (Eqn, 15), we see that it is non-zero only when at least either

i or j are equal to r or s. For a fixed r and s, looping over i, j ∈ [1, n] leads to a maximum of two non-zero components over
the Gr,s

ii terms, and up to ≈ 4n non-zero components over the Gr,s
ij(i ̸=j) terms. Hence, for large n, the terms corresponding

to the first set can be ignored. This leaves us with a summation over indices (ij, pq) for i ̸= j and p ̸= q, which consists of
up to ≈ 16n2 non-zero terms. Additionally, both ¯̄Gr,s

ij,pq and ⟨ρijρpq⟩ are proportional to terms like ⟨xr/sxi/jxr/sxp/q⟩x,
which are zero if an odd number of indices are equal. This leaves us with a summation over indices of (ij, ij) and (ij, ji),
where (i, j) ∈ C[ij] ∪ C[ji], for set C[ij] := {(i, j)|i ∈ {r, s}, j ∈ [1, n]\{r, s}} (this is shown in the second line of Eq.69
below). Since C[ij] contains ≈ 2n terms, the whole summation will have up to ≈ 8n terms.

α ≪ 1: For small α, we can further limit the summation to indices (ij, ij) for i > j. This is because the first order correction
to the summands in Eq.18 is: ≈ ⟨ρkρl⟩|α=0

¯̄Gr,s
k,l|O(α) + ⟨ρkρl⟩|O(α)

¯̄Gr,s
k,l|α=0, and so we can limit the sum to indices for

which ⟨ρkρl⟩|α=0 or ¯̄Gr,s
k,l|α=0 are non-zero. This corresponds to the previous Gaussian stimuli case and the terms were

calculated in Section 3 of the main text. To summarize:

Dsr = (η2/2)

n∑
i,j,p,q=1

⟨ρijρpq⟩ ¯̄Gr,s
ij,pq

≈ (η2/2)
∑

(i,j)∈C[ij]∪C[ji]

(⟨ρ2ij⟩ ¯̄G
r,s
ij,ij + ⟨ρijρji⟩ ¯̄Gr,s

ij,ji) n ≫ 1

≈ (η2/2)
∑

(i,j)∈(C[ij]∪C[ji])∧ (i>j)

⟨ρ2ij⟩ ¯̄G
r,s
ij,ij α ≪ 1, n ≫ 1 (69)

We see that for a given s and r, we will have up to ≈ 2n terms in the summation under the n ≫ 1 and α ≪ 1 limit.

To fully characterize the diffusion in the representation space, we only need to find two coefficients Dab (= Dba) and Dbc

(= Dcb), where a = 1, b ̸= c ∈ [2, n]. Without loss of generality, we take b = 2 and c = 3. We also take d = 4 to be
another index within the background subspace. In the next two sections, we calculate these coefficients under two limits.

17



Representational Drift in a Two-Layer Neural Network

E.2. Calculation for large n and small α

For small α, Dba and Dbc can be found by replacement in the last line of Eq.69:

Dba ≈ nη2

2
(⟨ρ2db⟩ ¯̄G

a,b
db,db + ⟨ρ2da⟩ ¯̄G

a,b
da,da) (α ≪ 1, n ≫ 1)

Dbc ≈
nη2

2
(⟨ρ2db⟩ ¯̄G

c,b
db,db + ⟨ρ2dc⟩ ¯̄G

c,b
dc,dc) (α ≪ 1, n ≫ 1)

The relevant components of tensor G can be calculated from Eq.15 for the case of frequent stimulus. For γ ≪ 1 we have
ωi ≈ 1, κij(i>j>1) = 1, Cij(i ̸=j>1) ≈ 1/2, ⟨x2

ix
2
j ⟩x(i ̸=j) = 1−α, and for small α: κi1(i>1) ≈ 1−α/γ. After replacement

and keeping the terms to the first order of α, the components of G and ¯̄G become:

Ga,b
db = γ

8
xaxd

sd
(1 + sd

sa
) ¯̄Ga,b

db,db =
γ2

64
⟨x2

ax
2
d⟩x

s2d
(1 + sd

sa
)2 = γ2

16

Ga,b
da = −γ

4
xbxd

sb
1+κda√
2(1+κ2

da)
≈ −γ

4
xbxd

sd
¯̄Ga,b
da,da = γ2

16
⟨x2

bx
2
d⟩x

s2d
= γ2

16 (1 + α)

Gc,b
db = γ

4
xcxd

sd
, ¯̄Gc,b

db,db =
γ2

16
⟨x2

cx
2
d⟩x

s2d
= γ2

16 (1 + α)

Gc,b
dc = −γ

4
xbxd

sd
, ¯̄Gc,b

dc,dc =
γ2

16
⟨x2

bx
2
d⟩x

s2d
= γ2

16 (1 + α)

Replacement of the above and the fluctuations from Eq.58 leads to Eq.27 of the main paper.

E.3. Calculation for large n and α ≫ γ

Here, we derive closed form solutions under the assumptions of γ ≪ 1 and sa, sb, sa − sb ≫ γ (equivalently α ≫ γ).
Using the second line of Eq.69, the pairwise diffusion coefficients become:

Dba ≈ nη2

2
(⟨ρ2db⟩ ¯̄G

a,b
db,db + ⟨ρ2da⟩ ¯̄G

a,b
da,da + ⟨ρ2ad⟩ ¯̄G

a,b
ad,ad + 2⟨ρadρda⟩ ¯̄Ga,b

ad,da) (n ≫ 1)

≈ η3γ4n

2
[
⟨x2

ax
2
d⟩⟨x2

bx
2
d⟩( 1

sa
+ 1

sb
)2

64s3b
+

⟨x2
ax

2
d⟩⟨x2

bx
2
d⟩

64s2as
3
b

+
⟨x2

ax
2
d⟩⟨x2

bx
2
d⟩

64sas4b
+

⟨x2
ax

2
d⟩⟨x2

bx
2
d⟩

16(sa + sb)sas3b
] (α ≫ γ)

=
η3γ4n

128

⟨x2
ax

2
d⟩⟨x2

bx
2
d⟩

s5b
[1 +

3sb
sa

+
2s2b
s2a

+
4s2b

sa(sa + sb)
]

=
η3γ4n

16(1− α)3
1

16
[1 + 3(1− α) + 2(1− α)2 +

4(1− α)2

2− α
] =

η3γ4n

16(1− α)3
[
16− 28α+ 15α2 − 2α3

8(2− α)
]

Dbc ≈
nη2

2
(⟨ρ2db⟩ ¯̄G

c,b
db,db + ⟨ρ2dc⟩ ¯̄G

c,b
dc,dc) (n ≫ 1)

=
η3γ4n

16

⟨x2
bx

2
d⟩⟨x2

cx
2
d⟩

s5b(1−
γ
sb
)

=
η3γ4n

16(1− α)3(1− γ
sb
)

γ≪1
≈ η3γ4n

16(1− α)3
(70)

In the above, we replaced the appropriate quantities of ⟨ρijρpq⟩ and ¯̄Gr,s
ij,pq, calculated from Eq.58 and Eq.15 respectively

(see below). In deriving these terms, we used ωi ≈ 1, ⟨x2
ix

2
j ⟩x(i̸=j) = 1− α, λdb = 2(sb − γ), Cdb = 1/(2

√
1− γ/sb),

18
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κij(i>j>1) = 1 and κad, κda ≈ 0, all of which result from the mentioned assumptions.

⟨ρ2db⟩ =
ηγ2

s3d
⟨x2

bx
2
d⟩ = ⟨ρ2dc⟩ =

ηγ2

s3d
⟨x2

cx
2
d⟩ =

ηγ2

(1− α)2

⟨ρ2da⟩ =
ηγ2(ωa + ωd)

2sd[2− γ(κda

sd
+ 1

sa
)]

(κda

sd
+ 1

sa
)2

1 + κ2
da

⟨x2
ax

2
d⟩x

α≫γ
γ≪1
≈ ηγ2

2s2asd
⟨x2

ax
2
d⟩x,

⟨ρ2ad⟩ =
ηγ2(ωa + ωd)

2sa[2− γ(κad

sa
+ 1

sd
)]

(κad

sa
+ 1

sd
)2

1 + κ2
ad

⟨x2
ax

2
d⟩x

α≫γ
γ≪1
≈ ηγ2⟨x2

ax
2
d⟩x

2sas2d
,

⟨ρadρda⟩ =
ηγ2(ωa + ωd)

[2sa − γ(κad +
sa
sd
)] + [2sd − γ(κda +

sd
sa
)]

(κad

sa
+ 1

sd
)(κda

sd
+ 1

sa
)√

1 + κ2
ad

√
1 + κ2

da

⟨x2
ax

2
d⟩x

α≫γ
γ≪1
≈ ηγ2⟨x2

ax
2
d⟩x

(sa + sd)sasd

Ga,b
db = γ

4

xaxd
√
ωa(

1
sa

+ 1
sd

)

ωa+ωd

¯̄Ga,b
db,db =

γ2

16

⟨x2
ax

2
d⟩xωa(

1
sa

+ 1
sd

)2

(ωa+ωd)2

γ≪1
≈ γ2

64

(
sd
sa

+1)2⟨x2
ax

2
d⟩x

s2d

Ga,b
da = −γ

2
xbxd

√
ωaωd

sb(ωa+ωd)3/2
1+κda√
1+κ2

da

¯̄Ga,b
da,da = γ2

4
⟨x2

bx
2
d⟩xωaωd

s2b(ωa+ωd)3
(1+κda)

2

1+κ2
da

α≫γ
γ≪1
≈ γ2

32
⟨x2

bx
2
d⟩x

s2d

Ga,b
ad = −γ

2
xbxd

√
ωaωd

sb(ωa+ωd)3/2
1+κad√
1+κ2

ad

¯̄Ga,b
ad,ad = γ2

4
⟨x2

bx
2
d⟩xωaωd

s2b(ωa+ωd)3
(1+κad)

2

1+κ2
ad

α≫γ
γ≪1
≈ γ2

32
⟨x2

bx
2
d⟩x

s2d

¯̄Ga,b
ad,da = γ2

4
⟨x2

bx
2
d⟩xωaωd

s2b(ωa+ωd)3
(1+κda)√

1+κ2
da

(1+κad)√
1+κ2

ad

α≫γ
γ≪1
≈ γ2

32
⟨x2

bx
2
d⟩x

s2d

Gc,b
db = γ

4
xcxd

sd
√
ωd

, ¯̄Gc,b
db,db =

γ2

16
⟨x2

cx
2
d⟩x

s2dωd
= γ2

16
1

(1−α)ωd

Gc,b
dc = −γ

4
xbxd

sd
√
ωd

, ¯̄Gc,b
dc,dc =

γ2

16
⟨x2

bx
2
d⟩x

s2dωd
= γ2

16
1

(1−α)ωd

Eq.30 in the main text can be derived from the above by using Da ≈ nDab and Db ≈ nDbc. These results reproduce the
numerically measured curves of diffusion as a function of α very well.
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