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ABSTRACT

This paper proposes a variable selection method based on maximum mean dis-
crepancy (MMD) under sparsity. Our approach assigns weights to each variable
and optimizes them within a regularized MMD framework, where some weights
are pushed to zero, corresponding to variables that are not important. These op-
timized weights serve as an importance measure for variables contributing to the
difference between two distributions. We propose an object-oriented variable se-
lection approach, where the selected variables via the optimized weights also mini-
mize a specified loss function associated with particular objects or tasks. We focus
on two common scenarios—two-sample tests and classification—aiming to improve
the power of the MMD test and enhance the classification accuracy of classifiers.
Theoretical results on the consistency of the estimated weights and the conver-
gence of the accelerated algorithms are established. Simulations and real-data
analysis validate the effectiveness of the proposed method.

1 INTRODUCTION

Two-sample tests, which aim to determine whether two samples are drawn from the same distribu-
tion, have been extensively studied. Classical tests for the equality of two distributions, including
the Kolmogorov-Smirnov test (Smirnov, |1939) and the Cramér—von Mises test (Anderson, |1962),
are only effective for low-dimensional data. Recently, the literature has witnessed the development
of many non-parametric testing methods (Rosenbaum, [2005} [Székely & Rizzo\, 2013} |Gretton et al.}
2012; [Wang et al.l [2021) for multi-dimensional or even high-dimensional data. Among these, the
maximum mean discrepancy (MMD) test (Gretton et al.| [2012), which leverages kernel mean em-
beddings to quantify the discrepancy between two distributions, has gained significant attention.
The MMD test has found applications in various fields, such as generative models (Sutherland et al.,
2017; Binkowski et al., 2018)), transfer learning (Long et al., 2017} [Wei et al., 2019), and change-
point detection (Cheng & Xie, [2021). With the rising popularity of the MMD method, researchers
have proposed several refinements and enhancements (Sutherland et al., 2017} [Liu et al., 2020;
Biggs et al.| 2023) aimed at improving its test power in high-dimensional and complex data set-
tings, and some researchers have considered variants of the MMD statistic (Zaremba et al., 2013},
Chwialkowski et al.| 2015 [Ramdas et al., [2015a; [Shekhar et al.}|[2022)) to accelerate computation.

Motivation. In multi-dimensional or high-dimensional data, sparsity is a common phenomenon
where only a small proportion of important variables contribute to the differences between two dis-
tributions. Non-important variables, often referred to as noise or irrelevant features, can adversely
affect the performance of two-sample tests. As shown in|Mueller & Jaakkolal (2015)), an excessive
number of non-important variables may obscure the signals of important variables, making the dis-
tributions of the two samples become more similar and, consequently, reducing the power of the
MMD test. In addition, the binary classification also faces the issue of a sharp decline in classifi-
cation accuracy due to a large number of non-important variables. This motivates the great need to
identify important variables, also referred to as variable selection under sparsity.

Our approach. In this paper, we propose a variable selection method for two-sample problems un-
der the MMD framework. We first assign a non-negative weight to each variable and obtain the op-
timal weights by maximizing the MMD statistic. These optimal weights can serve as a reference for
variable importance. To prevent overemphasis on variables with strong signals, an {5-regularization
term is incorporated into the weighted MMD for variable selection. Variables with weights signif-
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icantly greater than O are then identified as important. Considering that variable selection is often
a preliminary task for other objectives, we propose an object-oriented approach, which selects vari-
ables via the optimized weights that minimize a specified loss function tied to specific objects or
tasks. Moreover, we introduce an algorithm to accelerate the computation of the optimal weights.

Related work. Yamada et al.[(2018)); Lim et al.| (2020) propose performing marginal MMD tests
on individual variables to identify important ones, but this approach overlooks interactions and de-
pendencies, failing to capture differences in joint distributions. Similarly, |Adamer et al| (2024)
ranks variable importance by optimizing feature weights but focus on marginal differences. [Wang
et al.[(2023)) select variables by maximizing the MMD estimator to boost test power. However, this
method requires specifying a fixed number of variables, d, which risks including irrelevant variables
or excluding crucial ones if chosen improperly.

The variable selection problem for binary classification has also attracted significant attention. Lo-
gistic regression with ¢;-regularization Hastie et al.| (2009) is widely used but assumes a specific
data model, limiting its applicability when the data deviates from this model. |van Reenen et al.
(2016); Bénard et al.|(2024)) propose model-free variable selection methods for binary classification,
but these also focus on marginal differences, overlooking dependence in joint distributions.

The selection of an appropriate regularization parameter in the regularization term is crucial for
achieving better model fitting. Consequently, methods for choosing the regularization parameter
have been extensively studied. A commonly used and effective method for selecting regularization
parameters is the cross-validation approach (Stonel |1974; |Arlot & Celisse}, [2010). In addition, infor-
mation criterion methods, such as AIC (Akaikel [1974])), BIC (Schwarz, [1978]) and GIC (Konishi &
Kitagawal |1996)) have also been widely applied. In addition, some researchers treat the regularization
parameter as a hyperparameter within the model and optimize it dynamically using gradient-based
methods (Bengiol 2000} [Luketina et al.| 2016} [Franceschi et al.| 2017)).

Contributions. The main contributions of this paper can be summarized as follows: (a) We pro-
pose a novel method for identifying important variables responsible for distributional differences in
sparse settings. Our approach leverages the advantages of the MMD test, which is non-parametric,
model-free, and accounts for dependence among variables. This allows our method to outperform
marginal approaches. (b) We propose an object-oriented variable selection method tailored to spe-
cific objectives, with applications in two-sample tests and classification. This approach significantly
enhances the performance of both two-sample tests and classification accuracy. (c¢) Given that the
weighted MMD statistic is a U-statistic, maximizing it over the weights using gradient-based itera-
tive algorithms often demands significant computational resources and time. To mitigate this chal-
lenge, we employ the first-order Taylor expansion of the weighted MMD statistic as a new objective
function, which accelerates the optimization process. Furthermore, we present the convergence of
this accelerated method and the convergence rate of the associated solving algorithm.

2 METHODOLOGY

2.1 PRELIMINARY ON MMD

Let X C RP be a metric space, and F and G be two p-dimensional distributions supported on X’
The two-sample hypothesis testing problem of interest is

Hy:F =G versus H;:F#G. (1)

The MMD, based on embeddings of F' and G into a reproducing kernel Hilbert space (RKHS) 7,
is introduced in [Gretton et al.| (2006; 2012) to test the hypothesis . Let k(-,-) : X x X — Rbe
a kernel of H with feature map k(-,x) € H. Given independent random vectors « and =’ from F,
and y and y’ independently from G, the squared population MMD under the conditions that k-, -)
is measurable, E[k(z, x)]'/? < 0o, and E[k(y, y)]'/? < oo is defined as follows:

MMD} = E:ﬂ,m’ [k(33a 33/)] - QEm,y [k‘(a}, y)] + Ey,y/ [k (ya yl)] .

When £k is characteristic, MMDj, = 0 if and only if F = Q. Many commonly used kernels, such
as Gaussian and Laplace kernels, are characteristic (Fukumizu et al., 2007). Therefore, the MMD
serves as an effective measure to quantify the differences between two multivariate distributions.
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Suppose we observe independent i.i.d. samples X, = {Xi,...,X,} ~ F and 9,, =
{Y1,...,Y,,} ~ G, an unbiased estimator of MMD% is given by

2 1 1
MMD, =—— k(X X)) 4 ———— k(Y. Y,
k n(n—l) Z ( 1 2)+m(m_1) Z ( Ji ]2)
1<i1#ia<n 1<j1#j2<m
2 n m
- 722]@’()@,)’}),
nme 4

which is referred to as the empirical squared MMD. The null hypothesis Hy : F = G is rejected

_—2
when MMD,, exceeds a critical value. The implementation of the MMD test typically employs a
permutation test (Sutherland et al., [2017)).

2.2  WEIGHTED MMD

When the null hypothesis in equation [I]is rejected, indicating a significant difference between the
two distributions F and G, a natural and important follow-up question is determining where these
differences occur. In sparse scenarios (Tibshiranil [1996), this reduces to identifying the variables
that contribute to the distributional discrepancy, which often involves a small subset of the total
dimensions. In addition, inspired by the fact that variable selection is often a preliminary task for
other objectives, in this paper, we consider the case where variable selection is guided by specific
objects or tasks, a problem we refer to as object-oriented variable selection.

One common scenario occurs in the two-sample testing problem. It is discovered in Ramdas et al.
(2015Db)) that the power of the MMD test diminishes as the number of non-informative variables
increases but the signal remains constant. A promising solution is to identify a subset of variables for
which the MMD test achieves optimal power (Mueller & Jaakkola,2015). Similarly, in classification
tasks, the goal is to select the subset of variables that maximizes classification accuracy, as the
inclusion of non-important variables can degrade the performance of many classifiers (Andrews &
McNicholas, 2013 /Chen & Lee, [2020).

In the original versions of the MMD test and many distance-based classifiers (e.g., k-nearest neigh-
bors and support vector machines), all variables are treated equally, with the same weight. However,
assigning too much weight to non-important variables can lead to issues such as reduced test power
and decreased classification accuracy. By contrast, if we assign higher weights to important vari-
ables and near-zero weights to non-informative ones, the negative impact of non-important variables
can be mitigated, potentially leading to increased test power and improved classification accuracy.

Figure [T]illustrates the impact of variable weighting on the power of the MMD test and the classi-
fication accuracy of a feedforward neural network with one hidden layer. In this toy example, the
data are drawn from X ~ N(pu1,%1) and Y ~ N(ug2,09) with w1, po, 31 and X specified under
different scenarios. The results clearly show that increasing the weights for the important variables
(the first three dimensions) while simultaneously decreasing the weights for other variables leads to
improvements in both MMD test power and classification accuracy. However, the optimal weighting
scheme may vary across different scenarios, even when aiming for the same target.

Motivated by the above discussion, we propose the weighted MMD, which serves as the foundation
for the regularized MMD. In this paper, we consider the isotropic kernel of the form & (x,y) =
f(llx—wyl|%/7), where f(-) is a real-valued function on [0, oc) and v > 0 is a bandwidth parameter.
This framework includes commonly used kernels such as the Gaussian kernel f(x) = exp(—x), the
Laplacian kernel f(z) = exp(—+/x), the rational quadratic kernel f(x) = (1+x)~“ for o > 0, and
so on (Yan & Zhang, 2023). For two random vectors & = (z1,...,7,) andy = (y1,...,yp) "
their Euclidean distance is defined as ||z — y|l2 = {>.7_, (z, — y,)?}'/2. Introducing a weight
vector w = (wq, ..., wp)T, we define the weighted Euclidean distance between @« and y as

» 1/2
lz —yllw = {Zwr(xr_yr)Q} :
r=1
Substituting the weighted distance into MMD, we obtain the weighted population MMD:
MMD} , = Eo o [f(l2 = 2'|5,/7)] = 2Eay [f(l2 =yl /)] + Eyy [fly = y'I%/7)] -

i
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Figure 1: The samples X,, and Q),,, are drawn from X ~ N(u1,%1), Y ~ N(p2,Xs2), with n =
m = 100 andp = 50. (a): M1 -:-(0.3;,01—7)T, M2 = 050, 21 = 22 = {(0.2)|Z_J|}1§i7j§50; (b)
p1 = p2 = 050, 31 = {(0.2)l"71} 1 o; ics0, To = diag(1s,047) + D13 (0): 1 = (43 ,04,T)7,

p2 = 050, 81 = o = {(0.2) 71} 1<; <505 (d): p1 = p2 = 050, 1 = {(0.2)F791}1 5 j<s0,
Yo = diag(4s,047) + X1. The curves show empirical power in (a) and (b) or classification accuracy

in (c) and (d) based on (w;/?)TX,,, and (w;/*)TQ),,, where w, = ((/3)13 , (50 — t)/47)1})7.

From another perspective, 1\/IMD27W can be viewed as the MMD applied to w'/2X and w'/2Y.
Given X,, and 9),,,, the empirical weighted squared MMD is defined as

WDy s 2 SUK = Xula/) — e S Y S(X - Vi)

1<iy #ia<n i=1 j=1
1
+m Z FIYG, = Y5 l%/7)-
1<j1#j2<m

which serves as an unbiased estimator of MMD? _ .

We now turn to identifying important variables using the assigned weights. Intuitively, increasing
the weight of important variables should result in a significant rise in the MMD, while increasing
the weight of non-important variables should have the opposite effect, diminishing the MMD. This
observation motivates us to maximize the weighted MMD with respect to the assigned weights.

2.3 REGULARIZATION ON WEIGHTED MMD

To obtain the optimal weight vector that maximizes MMD?,W, it is crucial to address the challenges
posed by significant differences in signal strength among important variables. When these differ-
ences exist, the process of maximizing the MMD tends to favor variables with higher signal strength,
resulting in an imbalance in weight allocation. Specifically, high-signal-strength variables receive
disproportionately large weights, while low-signal-strength variables are often overlooked. This dy-
namic can lead to the weights of less influential variables approaching zero, effectively rendering
them unselectable. To counter this bias, we propose incorporating a regularization term into the
objective function. This term mitigates the risk of excessively large weights for high-signal-strength
variables.

In this paper, we utilize ¢5-regularization (ridge penalty) for its computational flexibility, although
other types of regularization could also be employed. Additionally, the weights are further con-
strained to be non-negative and sum to p, as required under undisturbed conditions. In summary, the
optimal weights w* are obtained by solving the following constrained minimization problem:

P P
minimize — 1\/IMD27W +A Zw?, subject to ZWT =pand w, >0forr=1,...;p. (2)
r=1 r=1
where A > 0 is a tuning parameter. Let @ = {w:>*_ w, =p and w, > 0forr =1,...,p},
the optimization problem in equation [2|can then be rewritten as:

P
w) = argmin — MMD'Z,W +A Z w?.

weQ —1
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Suppose we observe independent random samples X,, and ),,,, the estimator of the optimal weight
vector wj is given by

P
2
wy = argmin  — MMD, ,, + A wa (3)

weQ —1

The optimal weights W, serve as important measures of variables that contribute to the differences
between two distributions. Variables with significantly positive weights, or weights exceeding a
pre-specified positive threshold, are considered important and selected. In contrast, variables with
weights close to zero are regarded as non-important.

When f(-) is a convex function, which is true for most kernel functions, W can be obtained by
combining the difference of convex functions algorithm (Thi & Dinh, |[2018)) with the mirror descent
algorithm (Amir, [2017) to solve equation[3] as detailed in Algorithm3|in Appendix[A.1.2} Addition-
ally, in the Appendix [A.2] we present the impact of the presence or absence of a regularization term
on variable selection under scenarios with significant differences in the signal strength of important
variables.

2.4 OBIJECT-ORIENTED VARIABLE SELECTION

Given that the optimization problem in equation [3]is equivalent to

p
——2
Wy =argmin — MMD , + A (w, —1)?,

weQ r=1

the tuning parameter A plays a crucial role as a regularization term that controls the number of
important variables. Specifically, it controls how much the weights are allowed to deviate from 1.
A larger A penalizes deviations from 1 more heavily, promoting a more uniform set of weights and
encouraging the inclusion of more variables. In contrast, a smaller A allows greater flexibility in
the weights, resulting in more extreme values where only the most significant variables are selected,
leading to a sparser model.

In practice, many variable selection problems serve as a guideline for subsequent tasks. For instance,
variable selection is commonly used to reduce the dimensionality of data in classification, thereby
addressing the challenges posed by high-dimensionality. In such cases, the primary objective is
to optimize classification accuracy. To this end, we propose an object-oriented variable selection
approach, wherein the tuning parameter is determined by optimizing a related task aligned with spe-
cific objectives. Let £(\) represent the loss function of the objective of interest, which is influenced
by the variable selection based on the regularized MMD and, consequently, depends on A. The tun-
ing parameter is then selected as the value of ) that minimizes #(\). In summary, the object-oriented
variable selection approach based on the regularized MMD can be expressed as follows:

W3 = argmin MMDf wtA ZwT, where A = argmin (()\). 4
wes —1 A>0

It is generally required that the data used for variable selection be independent of the data used
for the final objective (e.g., a two-sample test or classification). This can be achieved through data
splitting or cross-validation, ensuring that the selection process does not bias the final analysis.

We now illustrate the implementation of the proposed approach using two common applications: the
two-sample test and binary classification. In the two-sample test problem, it is reasonable to choose

the power function as —¢()\). The optimal tuning parameter ) is then determined by maximizing
this power function. As suggested by Sutherland et al.| (2017); [Liu et al.|(2020), the loss function
£()) can be expressed as:

—2
é()\) = _MMDf,vAvA /&f,v/%\a (5)

2
which is the main contribution term in the power function. Here, MMD g  is the empirical squared

MMD computed using the weight vector Wy, and 2 7w, 18 an estimator of its variance (Sutherland
et al., [2017; [Sutherland & Dekal [2022)), which is detailed in Appendix [A.3] To implement the
MMD test following object-oriented variable selection, the dataset needs to be split into two disjoint
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subsets. The first subset, the training set, is used to compute the optimal weight vector w5 by

optimizing the tuning parameter . The second subset, the test set, is used to perform the permutation
MMD test, utilizing the weighted MMD with the computed weight vector w . The complete process
is outlined in Algorithm|[I}

Algorithm 1 Regularized-MMD variable selection for two-sample test

Require:
Samples X,,, ., a sequence of tuning parameters Aq, - -+, Ag;
Split data as X = X" U X*¢ and @) = 9" U Yte.
#Phase 1: select the optimal tuning parameter.
Forj=1,...,qdo
Select \;, obtained W, by solving equation

2
Compute £(A;) = —MMD; & /a'f,vAvAj'

End for

Let A = argmm (X)), xté and EZJteh represents the test samples that contain only selected
Aj,j=1,

important variables by w;.
#Phase 2: permutation test based on Xf{ji, g)f{,;
2
Compute M,, = MMD, based on x%x and 2)2%.
. . t t . y y .
Randomly partition %VAZX Uy, into %%,i and @%V; Ny, times.
Compute M; = MMD, based on %f% and @f?v;, i=1,--,n,.

Ensure:
Wi, My, p-value: n, =t 3007 1(M; > My).

In binary classification, the loss function £(\) is chosen as the misclassification error, and the optimal

tuning parameter )\ is selected through cross-validation. The detailed procedure for classification
with object-oriented variable selection is outlined in Algorithm[2]in Appendix [A.T.1] This approach
is highly flexible and can be seamlessly integrated with any classification algorithm.

2.5 ACCELERATED COMPUTATION METHOD

Denote hyw(x,2";y,y") = f(l|lz — '||2 /9 + v~y "% /7) = fllz =y lI%/v) — fll=" -
y||%,/7). The empirical weighted MMD, MMD w18 @ two-sample U-statistic with kernel function
hiw(z,x';y,y') of degree (2,2), and its computational complexity is of order O(n?m?) (Huang
et al. 2023). This makes it computationally intensive for large sample sizes. Moreover, optimizing

2
equation (3| involves computing p statistics of the same order of complexity as MMD, ., at each
iteration, further escalating the computational cost. To mitigate this issue, we propose an accelerated

algorithm by applying a first-order Taylor expansion of MMD w around w = 1,,, transforming the
objective function into a linear form that simplifies optlmlzatlon and reduces computation time.

First, we present the first derivative of MMDQ’W at w = 1,. Assume that f(-) is differentiable,
and let f()(-) be its first derivative. Define df,.(x,y) = v *(z, — 3,.)2f P (||l& — y||?/7) for
r = 1,...,p. Assuming the exchangeability of differentiation and integration, the derivative of
MMD27W with respect to w,., evaluated at w = 1,,, is given by

oy OMMD7 . . .
dMMD T = Eq o [df (2, 2")] — 2Eq o [df, (2, y)] + Ey,y [df (y, ¥')],
r w=1,
forr =1,---,p. We can then perform a first-order Taylor expansion of MMDQ’W as follows

MMD?2 , = MMD? + [dMMD?2] * (w — 1,,) + O(||w — 1,]?),
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where dMMch = (dMMDi(l), e 7dMMD§(” ))T. Using this expansion, we propose the acceler-
ated version of the optimal weight vector w, solving the following optimization problem:

—armln—dMMD Tw+ A wy,
wi = | >

Given X,, and 2),,,, the estimator of the accelerated optimal weight vector is defined as

P
Wy = al;;gglnm — {dMMDf} WA W (6)
_— 2 _— 2(1) —— 2(p),
where dIMMD ¢ = (dAMMD; ,--- ,dMMD, ") " and
— 2(r) 1
dMMDf :m Z df (X117X12 - - szf XZ7 Y
1<ii1#i2<n i=1 j=1
1
_ df,(Y},,Y;
+ m(m _ 1) Z ( J1o )
1<j1#j2<m

To solve this optimization problem, the mirror gradient descent algorithm can be applied. The de-
tailed algorlthm is provided in Algorlthmlm Appendlxm [A.1.2] In Algorlthml 3] all partial derivatives
of f(||x — «'||2,/) need to be computed in each iteration. Therefore, given the iteration step size
T and T in Algorithm [3} its computational complexity is O(TTypnm) + O(Tp(n? + m?)). In
contrast, the accelerated algorithm only needs to compute all partial derivatives of f(|lx — z'[|2,/7)
once, so its computational complexity is O(p(nm + n? + m?)). Thus, the accelerated algorithm is
significantly faster than the original method.

Table [1| presents the computation times for obtaining the optimal weights through both the orig-
inal method based on equation [3] and the accelerated method derived from equation [6| The data
were from X ~ N(p1,%) and Y ~ N(po,X), where up = ((4,3,2,1)—'—,0;74)—'—, pe = 0,,
¥ = {(0.2)l"791}, <; j<, withn = m = 200. The results demonstrate that the accelerated algorithm
substantially reduces computation time compared to the original algorithm, particularly as the di-
mensionality p increases. Furthermore, Appendix [A.4] provides a comparative analysis of the results
obtained from both methods in the context of binary classification, highlighting that the accelerated
method maintains satisfactory performance while achieving significant savings in computation time.

Table 1: Computation times of the original method and the accelerated method (in seconds).

P 5 50 100 150
Original 4.61 11.7 5392 824
Accelerated 0.06 0.11 0.23 0.31

3 THEORETICAL PROPERTIES

In this section, we establish the theoretical properties of the optimal weight vector estimator Wy
obtained from the accelerated method. Specifically, we demonstrate the consistency of w and the
convergence of the accelerated mirror gradient descent algorithm.

Assumption 1. Let N = n+ m, there exists a constant 0 < ¢ < 1 such that limy oo n/N = ¢;.

Assumption 2. f(-) is differentiable with a first derivative f)(-) that satisfies sup,~, | fP (z)| <
By for some positive constant B;. -

Assumption 3. There exists a positive constant s > 4 such that
sup max E (|X1_T|25) < oo and sup max E (|Y1,,|2S) < 0.
p 1<r<p ' P 1<r<p ’
Assumption [I] ensures that the sample sizes n and m are of the same order. For the kernel of the

form f(||z — yl|3/7), Assumption [2|is satisfied by Gaussian kernel, Laplacian kernel, and so on.
Assumption[3]is a moderate moment condition that is satisfied by a wide range of distributions.
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Figure 2: The averages FDP (y-axis) over 250 replications across different dimensions (x-axis) in
binary classification. The solid curves correspond to cases with 4 important variables, and the dashed
curves represent cases with 8 important variables. The red curves represent rMMD-c, and the green
curves represent rMMD-c, while the blue lines depict the n-Lasso method.

Theorem 1. Under Assumptions — let W), be the accelerated optimal weight vector obtained
from equation|6] Then as N — oo, we have

~ P,

W — W)\.
Theorem 2. When applying the mirror descent algorithm to solve equation [ the optimal step size
for the iterative process at step T’ is given by

/2
ar = mLf , where szlrélfu%(p(

Moreover, let Zy(w) = — [dMMD?c]TW +A>°P_, w? and w' be the solution at the t-th iteration.
The convergence rate of the mirror descent algorithm, using the optimal step size and under the
sample space measured by the {1-norm, is given by:

— 2 — 2(r)
—dMMD —dMMD

| [y )

i Y) — mi </ =——L;.
Jin, Zy(w') = min Zy(w) </ 7 Ly

The optimal convergence rate indicates that after 7" iterations, ming—q,.. 7 Z N(wt) will converge
to the global minimum at the rate of O(1/v/T).

4 NUMERICAL EXPERMENTS

Methods. In two-sample tests, we employ Algorithm[I](tMMD-t), which uses the accelerated com-
putation method for variable selection, and compare it to the original MMD test (MMD) (Gretton
et al.}2012), which uses all variables. In this section, we present the results under the alternative hy-
pothesis holding. The results under the null hypothesis holding can be found in the Appendix[A.3.3}
For binary classification, we use Algorithm|2| (rMMD-c) with a feedforward neural network (FNN)
classifier, also based on the accelerated computation method for variable selection. This approach
is compared to an FNN model with variables selected by Lasso (Hastie et al.| 2009) (n-Lasso) and
an FNN model trained on all available variables (all). In addiction, Algorithm 2 (rMMD-k) with a
k-nearest neighbors (k-NN) classifier is also considered.

Synthetic Data 1. In the first set of synthetic data, the two samples differ only in their marginal
distributions. We consider six different cases for both binary classification and two-sample tests,
with detailed settings provided in Appendix [A.5.1] Table [2] presents the classification accuracy
across different scenarios, and the standard deviation is shown in parentheses. And test power is
shown in Table [7] Figure 2] plot the False Discovery Proportion (FDP) for variable selection in
binary classification under Cases 1.a—1.d. If no variables are selected, an FDP value of 1 is assigned.
The FDP results for the remaining two cases are reported in Appendix [A.5.4]

Synthetic Data 2. We explore a different scenario in the second set of synthetic data, where
the differences occur in the joint distributions rather than the marginals. The detailed settings for
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Table 2: Mean of classification accuracy in Synthetic Data 1.

method\ dimension 50 100 150 200 250
Case l.a,I* =4
rMMD-c 0.705 (0.035) 0.703 (0.038) 0.709 (0.034) 0.709 (0.037) 0.709 (0.035)
rMMD-k 0.753 (0.036)  0.750 (0.034) 0.752 (0.032) 0.751 (0.031) 0.702 (0.034)
n-Lasso 0.686 (0.035) 0.688 (0.036) 0.685 (0.036) 0.686 (0.035) 0.683 (0.037)
all 0.604 (0.044) 0.595 (0.031) 0.589 (0.026) 0.589 (0.021) 0.584 (0.039)
Case 1.b,I* =4
rMMD-c 0.708 (0.048)  0.722 (0.056) 0.688 (0.069) 0.644 (0.071) 0.618 (0.082)
rMMD-k 0.737 (0.033)  0.720 (0.043) 0.682 (0.042) 0.634 (0.040) 0.627 (0.045)
n-Lasso 0.508 (0.033) 0.502 (0.035) 0.503 (0.036) 0.503 (0.032) 0.503 (0.034)
all 0.500 (0.033)  0.500 (0.035) 0.499 (0.033) 0.498 (0.031) 0.500 (0.036)
Case l.c,I* =4
rMMD-c 0.914 (0.041) 0.914 (0.046) 0.912 (0.047) 0.914 (0.051) 0.913 (0.060)
rMMD-k 0911 (0.021) 0.912(0.020) 0.910 (0.018) 0.911 (0.021)  0.909 (0.020)
n-Lasso 0.903 (0.042) 0.896 (0.048) 0.897 (0.050) 0.891 (0.053) 0.891 (0.061)
all 0.848 (0.044)  0.820(0.031) 0.797 (0.026) 0.772 (0.021)  0.760 (0.016)
Case 1.d,I* =4
rMMD-c 0.740(0.028) 0.740 (0.030) 0.721 (0.034) 0.652 (0.036) 0.699 (0.041)
rMMD-k 0.776 (0.028) 0.774 (0.029) 0.763 (0.031) 0.721 (0.037) 0.721 (0.042)
n-Lasso 0.500 (0.033)  0.508 (0.035) 0.503 (0.033) 0.502 (0.034) 0.502 (0.035)
all 0.537 (0.034) 0.514 (0.036) 0.506 (0.035) 0.502 (0.037) 0.501 (0.034)
Case le, I* =4
rMMD-c 0.846 (0.033) 0.848 (0.036) 0.845(0.038) 0.830(0.041) 0.810 (0.047)
rMMD-k 0.860 (0.026) 0.860 (0.028) 0.858 (0.030) 0.842 (0.037) 0.816 (0.051)
n-Lasso 0.513 (0.032) 0.509 (0.034) 0.513(0.033) 0.505(0.035) 0.513 (0.037)
all 0.510(0.031) 0.520(0.033) 0.501 (0.029) 0.500 (0.035) 0.500 (0.033))
Case 1.f,I* =4
rMMD-c 0.838 (0.063) 0.701 (0.091) 0.614 (0.084) 0.576 (0.092) 0.553 (0.087)
rMMD-k 0.659 (0.092) 0.544 (0.046) 0.521 (0.032) 0.514 (0.036) 0.510 (0.035)
n-Lasso 0.524 (0.038) 0.506 (0.033) 0.507 (0.035) 0.508 (0.035) 0.513 (0.034)
all 0.633 (0.076)  0.520 (0.054) 0.506 (0.048) 0.500 (0.041) 0.503 (0.033)
Case l.a,I* =8
rMMD-c 0.744 (0.033)  0.741 (0.035) 0.744 (0.037) 0.742 (0.034) 0.743 (0.033)
rMMD-k 0.752 (0.031)  0.750 (0.034) 0.754 (0.040) 0.753 (0.041) 0.754 (0.048)
n-Lasso 0.729 (0.034) 0.715(0.035) 0.723 (0.036) 0.715(0.033) 0.718 (0.034)
all 0.652 (0.040) 0.637 (0.041) 0.638 (0.025) 0.628 (0.019) 0.625 (0.039)
Case 1.b, I* =8
rMMD-c 0.753 (0.032)  0.749 (0.037) 0.733 (0.056) 0.712 (0.051)  0.690 (0.066)
rMMD-k 0.746 (0.031)  0.742 (0.034) 0.719 (0.040) 0.654 (0.041)  0.690 (0.048)
n-Lasso 0.514 (0.033)  0.506 (0.033) 0.504 (0.035) 0.503 (0.033) 0.503 (0.034)
all 0.499 (0.032)  0.499 (0.036) 0.500 (0.034) 0.498 (0.033) 0.500 (0.035)
Case l.c,I* =8
rMMD-c 0.942 (0.045) 0.943 (0.047) 0.943 (0.051) 0.944 (0.050) 0.944 (0.047)
rMMD-k 0.948 (0.014)  0.927 (0.022) 0.949 (0.015) 0.950 (0.015)  0.951 (0.015)
n-Lasso 0.937 (0.050) 0.937 (0.049) 0.933 (0.052) 0.934 (0.056) 0.933 (0.059)
all 0.903 (0.051) 0.882(0.041) 0.858 (0.025) 0.849 (0.019) 0.826 (0.017)
Case 1.d,I* =8
rMMD-c 0.728 (0.033)  0.733 (0.037) 0.720 (0.035) 0.718 (0.037)  0.722 (0.039)
rMMD-k 0.773 (0.036)  0.746 (0.038) 0.733 (0.035) 0.721 (0.035) 0.720 (0.037)
n-Lasso 0.521 (0.036) 0.514 (0.035) 0.508 (0.033) 0.507 (0.034) 0.502 (0.036)
all 0.565 (0.033)  0.528 (0.037) 0.513(0.037) 0.507 (0.039) 0.502 (0.038)
Case l.e,I* =8
rMMD-c 0.819 (0.035) 0.819(0.039) 0.824 (0.042) 0.827 (0.044) 0.825 (0.048)
rMMD-k 0.863 (0.035) 0.861 (0.041) 0.857 (0.042) 0.844 (0.051) 0.821 (0.046)
n-Lasso 0.541 (0.036) 0.532 (0.035) 0.520(0.032 0.515(0.033) 0.511 (0.037)
all 0.521 (0.031)  0.499 (0.032) 0.499 (0.035) 0.497 (0.033) 0.496 (0.036)
Case 1.f,I* =8
rMMD-c 0.855 (0.062) 0.777 (0.069) 0.715 (0.084) 0.642 (0.091) 0.607 (0.099)
rMMD-k 0.655 (0.093) 0.584 (0.083) 0.536 (0.053) 0.523 (0.034) 0.515 (0.030)
n-Lasso 0.543 (0.040)  0.526 (0.037) 0.517 (0.035 0.513(0.036) 0.515 (0.035)
all 0.665 (0.063) 0.553 (0.055) 0.513(0.051) 0.502(0.042) 0.501 (0.034)

generating samples are outlined in Appendix [A.5.2] and the results are presented in Table [3land the
standard deviations of classification accuracy are shown in Table[§]

Gene expression dataset. We utilize GSE2034 gene dataset from the Gene Expression Profiles of
Breast Cancer study (Xie et al., [2017), which forms a binary classification problem. This dataset
contains 12,634 genes, and we preprocess it using Min-Max normalization. For the training set,
we select the first 75 recurrence tumor samples and the first 100 non-recurrence samples. The
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Table 3: Mean of classification accuracy and test power in Synthetic Data 2.

I* 3 6
method\ dimension 10 20 30 40 50 10 20 30 40 50
Classification accuracy

rMMD-c 0.610 0.596 0.556 0.526 0.511 0.668 0.660 0.647 0.619 0.588

rMMD-k 0.604 0.598 0.552 0.544 0.530 0.701 0.688 0.671 0.644 0.623

n-Lasso 0.505 0.498 0.503 0.500 0.502 0.509 0.504 0.502 0.502 0.503

all 0.568 0.516 0.500 0.500 0.504 0.639 0.544 0.516 0.503 0.502
Test power

rMMD-t 0.988 0.256 0.124 0.080 0.048 0.996 0.988 0.844 0.572 0.356

MMD 1.000 0.124 0.072 0.076 0.068 1.000 0.752 0.336 0.212 0.180

test set consists of 32 samples from each group. Feature filtering is conducted by selecting genes
with variation greater than the 85%-quantile of the variations across all genes (Hahne et al.|, |2008),
resulting in 1,895 genes for further analysis. Given that 1,895 dimensions are still too high for
Lasso, we first reduce the dimensionality using the Sure Independence Screening (SIS) method (Fan
& Songl 2009) before applying Lasso. The classification accuracy on the test set is presented in
Table ]

Experimental Results of Table 2} Table [7 and Figure 2} In Figure 2] I* represents the number
of true important variables. In binary classification, our method demonstrated robust performance,
achieving best values for both False Discovery Proportion (FDP) and accuracy across all cases, in-
dicating its superiority over the Lasso method. Except for Case 1.f, the classification accuracy of
our method remains stable as the dimension increases, showcasing its robustness and resilience in
high-dimensional scenarios. For the two-sample tests, Table[7)indicates that the test power after vari-
able selection consistently outperforms the original MMD test without variable selection in nearly
all cases, except in instances where both methods show poor performance, with power close to the
nominal size. Notably, in Case 2.e, the rMMD-t method demonstrates exceptional performance,
effectively distinguishing between the two samples by selecting the relevant variables.

Experimental Results of Table E} In binary classification, our

method achieved the highest classification accuracy, while models Tgple 4: Classification ac-
built using variables selected by Lasso performed worse than those curacy in real data.
constructed with all variables. This indicates that our method effec-

tively captures correlation differences, whereas Lasso fails completely Method Accuracy
in this scenario. Additionally, IMMD-t nearly outperforms MMD in MMD-c 0.594
two-sample tests, further emphasizing the necessity of variable selec- n-Lasso 0.484
tion for MMD tests. all 0.500

Experimental Results of Table[d From Table 4 rMMD-c achieves

the highest accuracy, while n-Lasso’s accuracy falls below 0.5, high-

lighting the effectiveness of our method and indicating that Lasso may no longer be suitable for
variable selection in this dataset. Furthermore, this suggests that the variables selected by rMMD-c
provide additional information that enhances the distinction between recurrence and non-recurrence
tumor samples.

5 CONCLUSION

This paper introduces a variable selection method based on the MMD framework. Our approach
assigns a weight to each variable, and the importance of variables is measured by solving an opti-
mization problem to obtain optimal weights. We then propose an object-oriented algorithm to select
variables for specific tasks, and the proposed accelerated algorithm significantly improves com-
putational efficiency. Numerical experiments demonstrate the reliability of the proposed method.
Although our approach is developed within the MMD framework, its underlying principles may
extend to other frameworks, such as the Wasserstein distance. Future research will explore these
possibilities.

10
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A APPENDIX

A.1 ALGORITHM IN SECTION 3

A.1.1 IMPORTANT VARIABLE SELECTION ALGORITHM IN BINARY CLASSIFICATION

Algorithm 2 Regularized MMD for variable selection algorithm in binary classification

Require:

Samples X, D, a sequence of tuning parameters A, - - - , Ay}
#Phase 1: select the optimal tuning parameter.
Forj=1,...,qdo

Select \;, obtained W, by solving equation

Split the samples %@Aj and Q‘)‘;,Aj that contain only selected important variables by w into
K equal-sized subsets.

Fork=1,...,K do

Use the k-th subsets as the test set X" and @gf .

W)\j

J
Use the remaining K — 1 folds as the training set %gf and @gf .
J J

Train a classifier 7% () based on training set.

Compute classification error E’)fj of the §7'F(x) on the test set.
End for
Compute the average misclassification error £()\;):

1 K
) =3 > EX,
k=1

End for
Let A = argmin £4()\;)), Xw, and Y represents the samples that contain only selected
Ajpd=1,5q
important variables by W .
#Phase 2: train a classifier §* (=) based on X and Qg .
Ensure:

w3, % (@).

A.1.2 DIFFERENCE OF CONVEX FUNCTIONS ALGORITHM AND MIRROR GRADIENT DECENT
ALGORITHM

Now, we introduce the difference of convex functions algorithm. If f(-) is a convex function, the
objective function equation [3|can be expressed as the difference between two convex functions:

P
2
~MMDy ,, +2 ) wf = g1(W) — g2(w),

r=1

where

gi(w) =AY w2t Y 0N F(IXG = Y /)
r=1

i=1 j—1
go(w) ={n(n—1)}"" > (X, — Xi /)
1<ii#ia<n
+{mm -1} Y f(I1X, = Xl /)
1<j1#j2<m

According to the difference of convex functions algorithm (Thi & Dinhl [2018), we first perform a
first-order Taylor expansion of g, (w) at w = w", where w" is an initial value. This transforms the

14
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objective function into:

. Dg2(w) !
arv%ergm {gl(w) - {8W W_WO} W}. (7

Note that equation [/|is a convex function, allowing us to employ a convex optimization algorithm
for its solution. We choose the mirror descent algorithm, utilizing the Bregman distance defined
as B(x,y) = Y_»_, ,log (2, /y:) to address this convex optimization problem. Since the mirror
descent algorithm is iterative, it provides only an approximate solution, which we use as the solution
for equation After completing one iteration, we denote the solution of equation as w'. We then
replace w® in equation [7| with w' and resolve the equation to obtain w2. This process is repeated
until we reach the specified number of iterations. The detailed steps are outlined in Algorithm

Algorithm 3 Difference of convex functions algorithm

- Input: initialize w° = 1, the iteration step 7" and 77, the iteration step size o .
:fort=0toT do

Compute Vgh =
t+

dg2(w)
ow ot
w=w

! = arg min {g1(W) - (Vgé)TW}’
weQ

A A A

w

where obtain w'*! by Algorithm 4] to solve, the initial value is w*, the iteration step is 7T},
and the iteration step size is ap, , for Algorithm 4]

end for

: Output: w’.

AN

For a p-dimensional convex function g(w), we introduce the mirror descent algorithm (Amir, 2017)
in Algorithm to solve the optimization problem argmin , o g(W).

Algorithm 4 Mirror gradient decent algorithm with Bregman distance B(x,y) =
2221 z, log (zr/yy)
1: Input: initialize w, the iteration step T', and the iteration step size a.
2: fort =0toT do
. t _ 9g(w)
3:  Compute Vg' = =5~

w=wt
t+1 _ wy—exp{—arVg; }
wy.

B
\

r=1,---,p and w't! = (Wit ... whth).

)

b

end for
: Output: w’.

@)}

A.2 THE ABLATION STUDY ABOUT REGULARIZATION TERM

Now, we conduct an ablation study about regularization term. We will compare the impact of the
presence or absence of a regularization term in the objective function on the selection of important
variables in a binary classification problem.

The experiment setting is as follows: X ~ N(u,¥q) and 9 ~ N(u,Xs), with u = 0,, o =
(0.2)/"=911 <, j < p,and By = By + X where & = diag((10, 10,1, 1),0,_4). The train sample
size is n = m = 200, and the test sample size is also n = m = 100. We compute accuracy on the
test samples, the selection rates of Xy, X9, X3, and X4. The results are presented in TableE}

A.3 ESITIMATOR OF MMD VARIANCE

The ¢ &, need to be estimated, according to [Sutherland et al.[(2017), when n = m,
2 2

. 4 n n 4 n n
Gran =52 | D hren (X X5 Y0 X)) | = — (D) hyw, (X0, X5 Y0, Y))
i=1 \j=1 i=1 j=1

where hy g, (@, 2"y, y') = f(le—2'l|%, /1) + Fly—y'l%, /1) — Fllz =15, /7) - f(ll=' -
yH\Qm /7). When n # m, please refer to|Sutherland & Deka (2022).
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Table 5: The selection rate of important variables.

method X, Xo X3 X4
p=2>50
Non-regularization 1.000 1.000 0.070 0.065
Regularization 1.000 1.000 0.130 0.170
p =100
Non-regularization 0.995 1.000 0.135 0.115
Regularization 0.995 1.000 0.225 0.255

A.4 COMPARISON BETWEEN THE ACCELERATED METHOD AND THE ORIGINAL METHOD

Now, we conduct a simulation experiment to compare the results of the accelerated method with the
original method in binary classification problems.

The experiment setting is as follows: X ~ N(u,X1) and 9 ~ N(u,X2), with p = 0,, Ly =
(0.2)1"7911 < 4,5 < p, and By = % + X where ¥y = diag(34,0,_4). The train sample size is
n = m = 100, and the test sample size is also n = m = 100. We compute accuracy on the test
samples, the selection rates of X1, X9, X3, and X4, and FDP.

Table 6: Accuracy, selection rate of important variables and FDP.

method Accuracy X, Xo X3 X4 FDP
p =30

Original 0.726 0940 0980 0940 0980 0.014

Accelerated 0.714 0.760  0.830 0.860 0.800 0.044
p =60

Original 0.721 0.990 1.000 0980 0980  0.033

Accelerated 0.695 0.780 0.780 0.820 0.830  0.113

From Table [f] we can see that the accelerated method has a slightly lower important variable se-
lection rate compared to the original method; however, it has almost no impact on classification
accuracy. This suggests that while the accelerated method may miss some variables, it still captures
most of the important ones and achieves similar classification accuracy. Considering the significant
computational time advantage of the accelerated method, we recommend prioritizing its use.

A.5 DETAILS OF THE NUMERICAL EXPERIMENTS

First, we provide the following symbols:
Symbols and their descriptions

Symbol Description

I* The number of important variables.

seq(a, b, t) The arithmetic sequence vector from a to b with a common
difference of ¢, for example seq(1,4,1) = (1,2, 3,4).

X=X, ,X p)T Representation of the population of samples X,,

Y =(Yy,---,Y,)" Representation of the population of samples ).,

A.5.1 SETTING IN SYNTHETIC DATA 1

In Synthetic Data 1, the number of important variables is 4 or 8. In binary classification, the training
and test sample sizes are set to ny = my, = 200 and nye = mye = 100, respectively. For two-
sample tests, the sample size is n = m = 200. These experiments were repeated 250 times.

For binary classification, the samples X,, and %), is obatained by the following six cases.
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Case la. X ~ N(u1, %), Y ~ N(p2, %), p1 =0,,, ¥ = {(0.2)=91}, ., ;<)
M2 = {Seq(l/l*a 17 1/1*)7 Op—I*}

Case 1.b. X ~ N(0,,%1), Y ~ N(0,,%5), B9 = {(0.2)1" 71} 1 j<p, B = Tg + Iy,
Yo = diag(seq(1/I*,1,1/1*),0,_1-)

Case l.c. X, ~ x?(1), Y, ~ x*(V;.), X,- and Y;. both are mutually independent,
(Vi,---,Vp) = {seq(1 +4/1%,5,4/T),1,_1- } .

Case 1.d. X ~ N(0,,%), ¥ = diag(3,), Y, are mutually independent,
Y, ~exp(1/3), r <I*; Y, ~ N(1,3),r > TI".
Case l.e. X ~ N(0,,%,), £; = diag(1,), Y, are mutually independent. In addition, let z ~
B(1,0.5), z and Y, are independent.
Y, ~zN(=2,1)+ (1 —2)N(2,1), r <I"; Y, ~ N(1,1), r > T".

Case 1.f. X, ~ U(0,1), X, and Y, both are mutually independent,
Y, ~ Beta(15,15), r < I*; Y, ~ U(0,1), r > I*.

For two-sample tests, the samples X,, and ),,, is illustrated by the following six cases.

The settings of Case 2.a, Case 2.d, Case 2.e, Case 2.f are the same as in Case 1.b, Case 1.d, Case
1l.e, and Case 1.f.

Case 2.b. X, ~ Cauchy(0,1), Y, ~ Cauchy(V,,1), X, and Y, both are mutually independent,
(Vi,---, V) = {seq(4/T",4,4/T"),0,_1- } .

Case 2.c. X, ~ Cauchy(0,1), Y, ~ Cauchy(0,V,), X, and Y, both are mutually independent,
(Vi,---, V) = {seq(1,9,8/I"),0,_1- } .

A.5.2 SETTING IN SYNTHETIC DATA 2

In Synthetic Data 2, involve either 3 or 6 important variables. For binary classification, the training
and test sample sizes are set to ny- = my, = 300 and nge = mye = 100, respectively. For two-
sample tests, the sample size is n = m = 300. Each experiment was repeated 250 times. The
samples X,, and ),,, is obtained by the following distributions.

X ~ N, %1), Y ~ N(u, %), where 1 = (0,), 37 = diag(1,),

1 .- 06

by 0 . .
Yo = < (1)=1 5, 2) ,with ¥y 1 = 056 1 , Yoo = diag(1,_1+).

)

I* xI*

A.5.3 TYPE-I ERROR STUDY

We now conduct a simulation experiment to demonstrate the performance of our method under the
null hypothesis holding. The experiment setting is as follows: X ~ N(u,X) and 9 ~ N(u, %),
with = 0, ¥ = (0.2)/"=711 <4, j < p, The sample size is n = m = 200. The significance level
o = 0.05 We compute empirical Type-I error.

From the Table [9] we can observe that under the null hypothesis holding, our method fluctuates
around the specified significance level a = 0.05, indicating that the I-Type error of our method is
effectively controlled.
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Table 7: Test power in Synthetic Data 1.

I* 4 8
method\ dimension 50 100 150 200 250 50 100 150 200 250
Test power
Case 2.a
rMMD-t 0.998 0.968 0.696 0.514 0.416 1.000 1.000 1.000 0.966 0.840
MMD 0.856 0.282 0.122 0.084 0.090 1.000 0.880 0.486 0.268 0.202
Case 2.b
rMMD-t 0.967 0.521 0.323 0.291 0.192 0.985 0.613 0.386 0.316 0.225
MMD 0.110 0.070 0.068 0.072 0.058 0.160 0.060 0.060 0.050 0.030
Case 2.c
rMMD-t 0.988 0.872 0.684 0.564 0.388 1.000 0.956 0.880 0.764 0.572
MMD 0.776 0.276 0.156 0.128 0.084 0984 0.612 0.368 0.228 0.148
Case 2.d
rMMD-t 0976 0.592 0.224 0.120 0.124 1.000 0.980 0.852 0.584 0.312
MMD 0.516 0.144 0.112 0.112 0.084 0.996 0.672 0.348 0.200 0.168
Case 2.e
rMMD-t 1.000 1.000 1.000 0.996 0.944 1.000 1.000 1.000 1.000 1.000
MMD 1.000 0.760 0.412 0.260 0.200 1.000 1.000 1.000 0.904 0.704
Case 2.f
rMMD-t 0.636 0.100 0.068 0.036 0.052 1.000 0.648 0.192 0.064 0.044
MMD 0.168 0.060 0.044 0.044 0.044 0.596 0.120 0.068 0.076 0.052
Table 8: The standard deviations of classification accuracy and test power in Synthetic Data 2.
I* 3 6
method\ dimension 10 20 30 40 50 10 20 30 40 50
Classification accuracy
rMMD-c 0.059 0.054 0.047 0.050 0.042 0.035 0.041 0.038 0.047 0.059
rMMD-k 0.061 0.047 0.055 0.038 0.040 0.029 0.034 0.037 0.039 0.038
n-Lasso 0.032 0.031 0.033 0.034 0.031 0.033 0.036 0.034 0.033 0.032
all 0.049 0.043 0.045 0.036 0.032 0.040 0.043 0.038 0.041 0.037

A.5.4 FDP FOR CLASSIFICATION

Figure [3|show the FDP varies with the dimensionality in Case 1.e and Case 1.f.

A.6 PROOFS OF THE THEOREMS

Lemma 1. Ler {X;,...,X,} and {Y1,...,Y.,,} be independent and identically distributed p-
dimensional random variables from distributions ¥ and G, respectively. Let p be a symmetric

kernel function, and define
n m

1

1j=1
Denote ¥ = EU,, ,,, = E{¢ (X1,Y1)}, and ng = min{n, m}.

(i) If the kernel function ¢ satisfies C,1 < ¢ < Cyo for some constants Cp1 < Cyo, then for any
€ > 0, we have

P (|Upm — 9] > €) < 2exp {7211062/ (Cpy — q,,l)Q} .

(ii) If there exists a positive constant s > 4 such that C1 = E{|p(X1,Y1)|°} < oo, then for any
e >0,

P(|Unm = 9] > €) < 2exp(=27"noe?/F) +nmC1 /(5.
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Table 9: Type-I error

method/dimension 50 100 150 200 250
rMMD-t 0.056 0.049 0.044 0.040 0.052
MMD 0.040 0.052 0.048 0.044 0.028
Case 1.e Case 1.f
1.00 1.0

0.75 08

o o
4 0.50 a ,
w w

0.25
0.4 U

0.00

50 100 150 200 250 50 100 150 200 250
p p

Figure 3: The averages FDP (y-axis) over 250 replications across different dimensions (x-axis)
in binary classification. The solid curves correspond to cases with 4 important variables, and the
dashed curves represent cases with 8 important variables. The red curves represent our method, and
the green curves represent rMMD-c, while the blue lines depict the n-Lasso method.

where (1 satisfies E[{o(X1, Y1) PPE{|p(X1, Y1)[*}/( < €2/16.

Proof. (i) Denote ¢ (T1,...,%n; Y1, -+ Ym) = Ng - S ¢ (x4, i), the two-sample U-statistic
U,.,m can be represented as

nm:n,m,zw FERRRE) 17L71/}17"'>}/j1,L)a
where n! and m/! are factorial, and the summation > __ is carried out over all permutation (i1, .. ., %5)
and (j1,...,Jm) of the numbers (1,...,n) and (1,...,m), respectively. As the exponential func-

tion is convex, by Jensen’s inequality, we have for any £ > 0,
E{exp(¢Unm)} < (n) 7' (m) ™1 Y Elexp{&(Xiy. .., X, Y, Y, )]

= Elexp{€(Xy,,.... X1,: Y1,,..., Y1,)}]
= (Elexp{ng ' €p(X1, Y1) }))",

The last equation holds because ¥(X1,,..., X1,;Y1,,..., Y1) = ng' .2 o(Xi;Y;) is the
summation of ng i.i.d random variables. According to Markov’s inequality and Lemma 8.1.1 of
Koroljuk & Borovskich|(1994),

P(Up,m — 9 > €) < Elexp{&§(Un,m — 9)}] exp(—Ee)

< (Elexp{ng '€p(X15 ¥1)}])™ exp(—€0) exp(—&e)
= (Elexp{ng "&(p(X15 Y1) — 9)}])" exp(—Ee)
< exp{—{e +¢&° (Coz — 0501)2/(8”0)}-
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Choosing & = 4nge/(Cypa — Cyp1)?, we arrive at
P(Upm—19>¢€) < exp{72n062/(0¢2 - C’m)Q}.
Then by the symmetric property of two-sample U-statistics, we complete the proof of (i).

(ii) Decompose the kernel function v as ¢ = @I(p < (1) + @I(¢ > (1), where (1 > 0 will be
specified later. Then U, ,,, can be written as

n m

Unm =n""'m™ 1> o( X3 Y5) (9( X3 Y5) < G1)
i=1 j=1

n m

+n7tm Y N o(Xa V) (p( X3 YG) > ()

i=1 j=1
=Unm,1 + Unm,2,

and 1} can be decomposed as ¥ = EU,, ,, = EUp 1 + EUp 2 1= 01 + Oa.

First, according to the result of (i), it is easy to obtain that for any € > 0,

P(|Un,m7l - 191| > 6/2) < 2eXp{—2_1n062/C12}.

Furthermore, by utilizing Cauchy-Schwartz and Markov’s inequality,
05 < E{o(X1; Y1)} P(o(X1; Y1) > 1) < E{p(X1; Y1) PPE[|o(X1; Y1) [°]/¢5
As E[|¢(X1;Y7)|%] < oo, for any € > 0, ¢ can be choose such that
E[{p(X1, Y1)’ |E{|o(X1, Y1)} /¢ < €/16.
In this situation, ¥ < €/4, from which we get
P(|Unm,2 = P2| 2 €/2) < P(|Unm2| = €/4).
If |Uym2| > €/4 is true, there must exist some ¢ € {1,...,n} or j € {1,...,m}, such that

©(X;;Y;) > (3. This can be proved by contradiction. Suppose ¢(X;;Y;) < (3 foralll <i<mn
and 1 < j <m, then U, ,,, 2 = 0 which is contradicted with |Uy, ,, 2| > €/4.

According to Markov’s inequality,
P(p(X1,Y1) > (1) < Eflp(X1; Y1) ]/ < Cr/G-
This leads to that
P(|Un’m72 — 192| > 6/2) < nmP(go(Xl,Yl) > Cl) < Clnm/C‘f

Finally,
P(|Upm — 9| > €) < P(|Unma — V1| > €/2) + P(|Unm,2 — V2| > €/2)
< 2exp{—2""nge? /(F} + Cinm /(3.
from which we complete the proof of this lemma.

O

Lemma 2. Let {X1,..., X, } be independent and identically distributed p-dimensional random
variables from the distribution F.

2
Uy=—"— h(X;, X;
1<i<j<n
is a U-statistic with a symmetric kernel function h. Let § = EU,, = E{h (X1, X2)}.

(i) If the kernel function h satisfies Cp1 < h < Chpso for some constants Cyp1 < Cha, then for any
e>0andn > 2,

P (U, — 0] > €) < 2exp {72[71/2162/ (Cha — c,ﬂ)?}
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(ii) If there exists a positive constant s > 4 such that Co = E{|h(X1, X2)|*} < oo, then for any
e>0andn > 2,

P(|Un = 0] > €) < 2exp(=271[n/2]€%/G3) + n(n = 1)C/C5.
where (y satisfies E[{h(X1, X2) }?]E{|h(X1, X2)|*}/¢5 < €2/16.

Proof. The proof of Lemma 2]is similar to the proof of Lemmal[l] O

2
Proof of Theorem[l} Firstly, let’s examine the boundary of P (|[dMMD ;] "w— [dMMD?] Tw|>e),
foranye > 0. Forr=1,...,d,

At (X0, Y1) =771 (X = V)PP O(1X = Y12 /),

with X7 = (X11... ,XLd)T and Y, = (Y14,... ,YLd)T. Under Assumptionand for any
~ > 0, the kernel function df,. (X7, Y7) satisfies

61 = E{|df (X1, Y1)[*} <y BE{(X1, — Y1,,)*} <229 *BiE (| X1 ,|* + [V1,*) < c0.

Similarly, 62 = E{|df, (X1, X2)|°} < oo and §5 = E{|df,(Y7,Y32)|°} < oco. By Bonferroni’s
inequality, for any w € €2 and € > 0, we have
> 6)

P< 25>_p(

.
[dej} w — [AMMD?] " w

[ 2() 2(r)
> (dMMD; " — dMMDT ) w,
r=1

p n o m
1 €
<D P [ 2o 22 (X0 Y) B [Af (X, Xo)l| 2 P
r=1 i=1 j=1
p
1 5
Pl|l——— At (X, X;,) — E[df, (X, X5)]| >
+ Z n(n — 1) Z ( 1 2) [ ( 1 2)] 4pwr
r=1 1<ii #ia<n

P
1
Pll— At (Y Y;,) — E[df, (Y1, Y5)]| >
+ Z m(m _ 1) Z ( J1 .72) [ ( 1 2)] 4pw'r
1<j1#j2<m
According to Lemma [T] (ii) and Lemma 2] (ii), we have
P ( > 5)

p
<> {2exp(—327'p 2w, Pnee? /C7) + nméy /¢

r=1

.
[dmﬂ w — [dMMD?] " w

+2exp(—327'p 2w, 2 [n/2]€%/C%) + n(n — 1)d2/¢°
+2exp(—327 p 2w 2 [m/2]e? /%) + m(m — 1)53/¢°} .

where ng = min{n, m} and ¢ satisfies

E[{df, (X1, Y1) PIE{|df, (X1, X2)|"}/¢* < €2/(256p°w7),
E[{df, (X1, Xo) PIE{|df, (X1, X2)|°}/¢* < €2/(256p°w7)
E[{df, (Y1, Xo) PPIE{|df, (X1, Y2)|°}/¢* < €2/(256p°w?) .
For any fixed ¢ > 0and 0 < k < 1/2 — 2/s, lete = ¢N~" and choose { = N* for some positive

¢ satisfying ¢ + k < 1/2 and st > 2. It follows that for sufficiently large NV, there exists a positive
constant ¢, such that

[

.
{dﬁﬁ)i] w — [AMMD?] " w

> cN“) <0 <pexp {—01p72N172(“+L)}) + 0 (pNQiSL) )
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T

T T
_— 2 _— 2
Let Zy(w) = — dMMDf} w4+ AP w?and Z(w) = — [dMMDf] w4+ AP w2
Therefore, when N — oo,

P <sup |Zn (W) — Z(w)| > 5) < sup P (|Zn(W) — Z(w)| > &) —0.
wEeQ weQ

It is easy to know that € is a convex set, and Zy (w), Z(w) are strongly convex functions, so the

minimum point is unique. According to sup |Zy(w) — Z(w)| L, 0 and the uniqueness of the
we

.. . . P
minimum point, we have W) — w3. O

Proof of Theorem[2] First, we show the Bregman distance used in the mirror descent algorithm,

B(x,y) = Z . log (1 /)
r=1

According to the iteration update formula of the mirror descent algorithm in Chapter 9|Amir| (2017),
given iteration step 7" and an iteration step size ., we have

P P p
witl — argmin {Z <aTdMMDf —1—1log (wﬁ)) wr + Zwr log wy- p )

weQ re1 r=1

By similar proof in[Amir| (2017) Example 3.71, the optimal solution of (8), we have

(r

-
wl — exp {—aT(—dMMDf : + 2)@5?)}

t+1
w?”

=p (k ,?":1,"',]).

JE
Sor_jwh —exp {—aT(—dMMDf : + 2)\w2)}

According Theorem 9.16 in Amir|(2017), the optimal iteration step size is

/20 (wY)
ap = ———=,
T LT+l
where Ly > || Z}(w)]|, for all w € € for some Ly > 0, ||-||, is dual norm, and Z)(w) =
— dMMD?» Tw+ AY P w2, Z{(w) is the first derivative of Z)(w). Assume that and © (w°)
satisfy

0 0
@(w ) z‘r)rvlgéB(w,w )

We consider ¢; norm as measurement of the sample space, thus |||,
norm, and we have

= [llocs where -] is foo

— 2(r
lZ\(wW)ll, = 1Z5(w)]l, < max{max —dMMDf( ) + 2w, }
weQ T
— 2(7) —— 2(7)
< max (|-dMMD; |, [-dMMD, = +2pA| .

(r) (r)

_—_ 2
Thus, let Ly = max (‘—dMMDf

2
, ’—dMMDf + 2p)\D. Since

p
0y _ —
gleaéB (w,w") = ggg;wr log (w,) =0,

we can let © (WO) = 1. If we consider ¢ norm as measurement of the sample space, we can obtain
I/, = |||, and the proof process is the same as under the ¢; norm. Finally, the optimal iteration
is obtained, and we can also immediately obtain the optimal convergence rate. [
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