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ABSTRACT

Foundation models exhibit broad knowledge but limited task-specific reasoning,
motivating post-training strategies such as RL with verifiable rewards (RLVR) and
inference scaling with outcome or process reward models (ORM/PRM). While
recent work highlights the role of exploration and entropy stability in improving
pass@K, empirical evidence points to a paradox: RLVR and ORM/PRM typi-
cally reinforce existing tree-like reasoning paths rather than expanding the rea-
soning scope, raising the question of why exploration helps at all if no new pat-
terns emerge. To reconcile this paradox, we adopt the perspective of Kim et al.
(2025), viewing easy (e.g., simplifying a fraction) versus hard (e.g., discovering
the some symmetry) reasoning steps as low versus high probability Markov tran-
sitions, and formalize post-training dynamics through Multi-task Tree-structured
Markov Chains (TMC). In this tractable model, pretraining corresponds to tree-
graph discovering, while post-training corresponds to CoT reweighting. We prov-
ably show that several phenomena recently observed in empirical studies arise
naturally in this setting: (1) RLVR induces a squeezing effect, reducing CoT en-
tropy and forgetting some correct paths; (2) population rewards of ORM/PRM
encourage consistency rather than accuracy, thereby favoring common patterns;
and (3) certain rare, high-uncertainty CoTs by base model are responsible for
solving hard problem instances. Together, these explain why exploration—even
when confined to the base model’s tree scope—remains essential: it preserves ac-
cess to rare but crucial CoTs needed for difficult cases, which are squeezed out by
RLVR or unfavored by inference-scaling. Building on this, we further prove that
exploration strategies such as rejecting easy instances and KL regularization help
preserve rare CoTs. Empirical simulations corroborate our theoretical results.

1 INTRODUCTION

Foundation models provide broad knowledge and versatile capabilities across tasks, yet their task-
specific reasoning remains constrained. For reasoning datasets with only 0/1 verifiers, many studies
explore post-training strategies, including Reinforcement Learning with Verifiable Reward (RLVR)
finetuning (Xin et al., 2024; Shao et al., 2024; Guo et al., 2025a; Yu et al., 2025), as well as inference
scaling with Outcome Reward Models (ORM) or Process Reward Models (PRM) (Lightman et al.,
2023; Snell et al., 2024), both aiming to obtain task-specific experts.
Recently, a line of work has emphasized maintaining exploration and entropy stability to prevent
entropy collapse, and observed that suitable entropy preservation during post-training yields sys-
tematic performance gains, such as improved pass@K on math benchmarks (Xiong et al., 2025; Li
et al., 2025b; Ren & Sutherland, 2025; Wang et al., 2025; Cui et al., 2025; Zuo & Zhu, 2025).
However, seemingly paradoxical findings emerge: RLVR typically aligns models with target ob-
jectives by reinforcing existing reasoning paths, rather than expanding their tree-like reasoning
scope (Snell et al., 2024; Yue et al., 2025; AI et al., 2025; Gandhi et al., 2025). Similarly,
ORM/PRM-guided inference scaling biases models toward pre-existing Chain-of-Thought (CoT)
patterns instead of incentivizing genuinely new branches. This raises a natural question:

Why can exploration help, given post-training cannot explore beyond the base model’s tree scope?

Our work takes a first step toward reconciling this tension, motivated the key phenomena below.
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Phenomenon 1: Squeezing Effect of RLVR. RLVR implicitly reduces CoT entropy (Li et al.,
2025a; Wu et al., 2025; Deng et al., 2025), shrinking confidence over CoTs with high frequency
to be correct, and sometime at the cost of forgetting certain correct CoTs within the base model’s
scope (Wu et al., 2025; Shao et al., 2024; Wen et al., 2025).
Phenomenon 2: Neural Verifier Checks Consistency, Not Accuracy. Inference-scaling with OR-
M/PRM may avoid the learner’s squeezing effect, yet empirical evidence shows that neural scorers
are prone to reward consistency rather than true accuracy (Xu et al., 2025; Guo et al., 2025b). As a
result, they would favor CoTs that follow common, high-frequency reasoning patterns.
Phenomenon 3: Merits of Rare CoTs. A widely-utilized difficulty measure for reasoning dataset
(e.g., GSM8K (Cobbe et al., 2021) and AQuA (Ling et al., 2017)) is the pass rate (i.e., the frequency
with which a base model correctly solves an instance under parallel attempts) (Tong et al., 2024;
Parashar et al., 2025). This implies that hard instances correspond to rare-but-correct CoTs with low
model confidence, whereas common CoTs typically reflect frequent patterns to easier instances.
Taken together, these observations suggest a resolution:

Exploration, even when confined within the existing tree scope, helps prevent the model from en-
tirely forgetting rare CoTs that may be crucial for hard instances, and preserved broad-capability.

Our Contributions. In this work, we rigorously formalize and prove these phenomena within a
tractable theoretical framework. Motivated by the view that discrete graphs naturally abstract the
sequential structure of complex reasoning (Xu et al., 2019; Sanford et al., 2024; Abbe et al., 2024;
Besta et al., 2024), we model each reasoning step as a Markov state transition following Kim et al.
(2025). Pretraining is framed as a tree-graph discovering process over child states across tasks, while
post-training CoT generalization is modeled by a Multi-task Tree-structured Markov Chain (TMC).
We prove that our toy model captures key Phenomena 1–3 with population 0/1 reward (expected
accuracy), and then provide theoretical justification for exploration techniques such as rejecting easy
questions (Yu et al., 2025; Xiong et al., 2025; Zhang et al., 2025a) and KL regularization. Our paper
is organized as below.

• Sec. 2 introduces a multi-task Tree-structured Markov chain model to capture diverse CoT
reasoning patterns across tasks, explicitly linking instance difficulty with pass rate.

• Sec. 3 analyzes a simple softmax model and shows that RLVRs inherit a simplicity bias,
over-favoring easier CoTs due to the advantage-driven squeezing effect. We further provide
theoretical justification for rejecting easy instances and applying KL regularization, which
both promote valid hard CoT learning.

• Sec. 4 demonstrates that inference-scaling with ORM/PRM assigns credit to CoTs by their
accuracy likelihood, leading to overemphasis on easier CoTs. We further show that PRMs
with BoN can be interpreted as special cases of a more general Doob h’s Transformed-
induced PRM (DPRM). In principle, DPRM is equivalent to soft-BoN (Verdun et al.,
2025) asymptotically, enabling adjustable preservation of base-model capabilities and bet-
ter alignment with hard-to-reason and cross-task patterns.

Discussions of additional related work are in App. D. All proofs are deferred to the appendix.
Humble Remark. While we prove Phenomena 1–3 and the benefits of those existing techniques
in our theory-friendly setting that captures partial but crucial rationales, we do not overclaim their
direct applicability to GPT or large-scale models, given the many unmodeled complexities, as dis-
cussed in App. E and G.4.

2 TREE-STRUCTURED MULTI-TASK REASONING

2.1 MULTI-TASK COT AS TREE-STRUCTURED MARKOV CHAINS

We propose Tree-structured Markov Chain (TMC) framework to abstractly model the tree-like rea-
soning capability of base model, following Kim et al. (2025); Nichani et al. (2024).
Definition 1 (Tree-structured Markov Chains (TMC).). A process X = (Xt)t≥0 is defined on a
finite state space S =

⋃L
l=1 Sl, where Sl ∩ Sl′ = ∅ for l ̸= l′, and transitions occur from Sl to Sl+1

with probability kernel P(·|ol) for ol ∈ Sl. Define M0 = |S1| and M = maxl,ol∈Sl
|Col |, where

Col ⊂ Sl+1 is the high-probability transition subset. The TMC satisfies:

• Root states o1 ∈ S1 are sampled with PTMC(o1) = Θ(1/M0).
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Figure 1: Left: abstraction of a 3-layer TMC. Nodes are states grouped into layers S1–S3; solid arrows denote
high-prob (confident) transitions and dashed arrows denote low-prob (unsure) transitions. A task is a tuple
(q,a,k), where q ∈ {q, q′} is the question state, a ∈ {a1, a2, a3} is the answer state, and k ∈ [5]; Right:
a concrete illustration of a 5-task, 3-layer Multi-task TMC. x, y in q represent real numbers (with decimals),
whereas A,B in q′ represent integers. We here use two instances, namely 3.9 > 3.11? of q and 3 > 3?
of q′ to describe the five tasks: (T1) decimal version ordering (3.9 < 3.11); (T2) real-number comparison
(3.9 > 3.11); (T3) integer equality (3 − 3 = 0); (T4) integer-part version ordering (e.g., 3.9 = 3.11); and
(T5) integer-part real-number comparison (3.9 = 3.11). Tasks 1–3 are common and each admits ≥ 1 easy-
to-reason CoT, while Tasks 4–5 are rare and admit only hard-to-reason CoTs. For Task 2, there are two valid
CoTs: q → o22 → a2 (where o22 merely left-to-right compares number) and q2 → o32 → a2 (where o32 performs
the arithmetic calculation). The instance 3.9 > 3.11? admits both CoTs correct. However, for hard question
instances such as 0.8 + 3.1 > 2.11 + 1.0?, only the hard-to-reason CoT q2 → o32 → a2 is correct, since it
requires explicit calculation—left-to-right token comparison alone doesn’t suffice.

• For ol ∈ Sl and ol+1 ∈ Col , we have PTMC(ol+1 | ol) = Θ(1/M), while if o′l+1 /∈ Col ,
PTMC(o

′
l+1 | ol) = o(1/M2) (feeble, ≥ c > 0) or 0.

• The topology ensures that for each q ∈ S1 there are nq = O(1) ≥ 1 high probability CoT
traces (q = o1, . . . , oL), i.e. traces with ol+1 ∈ Col ,∀l ∈ [L− 1].

In our TMC (Def. 1), states represent logical assertion (e.g., a sentence or mathematical expression)
rather than surface tokens (Kim et al., 2025). Especially, the CoTs with ≥ 1 sparse edge (i.e.,
edge with feeble transition probability o(1/M2)) are called hard-to-reason CoTs, otherwise easy-
to-reason CoTs. The following definition formalizes the reason we called them “easy” or “hard”
based on their uncertainty, modeling after the widely utilized difficulty measure–namely pass rate–
for reasoning dataset (e.g., GSM8K (Cobbe et al., 2021) and AQuA (Ling et al., 2017)).
Definition 2 (Multi-task Capability in TMC. (Informal)). Let X = (Xt)t≥0 be a TMC (Def. 1), and
let T be a set of tasks. Each task k ∈ T is specified by a collection of state tuples (q, a, k), where all
tuples have distinct q and a. Among these CoTs, a nonempty subset is valid for (q, a, k), satisfying:

(i) all easy-to-reason CoTs are valid for (q, a, k) and invalid for any k′ ̸= k;
(ii) every nonzero transition in TMC appears in ≥ 1 valid CoT across all tasks;

(iii) each (q, a, k) induces a QA distribution Dq,k
a , and for any sampled instance (Q,A) ∼

Dq,k
a , only a determined subset of valid CoTs is correct, where the probability that any

valid CoT is correct for the (Q,A) is proportional to its likelihood among valid CoTs.

A task is common if it admits ≥ 1 valid easy-to-reason CoTs, and rare otherwise.

Fig. 1 illustrates Def. 1 and Def. 2; a more detailed version of Def. 2 (Def. 4) is given in Sec. H.
Condition (i) avoids major task conflicts, (ii) removes redundancy so every edge contributes, and
(iii) links model confidence to pass rate per Phenomenon 3, enabling error analysis. We distinguish
two notions of CoT:

• Validity1: a task-level property, indicating whether it solves any (Q,A) under (q, a, k).
• Correctness: an instance-level property, deterministically defined for a specific (Q,A).

Why this definition? First, Phenomenon 1 directly motivates us to formally bridge uncertainty and
pass rate across tasks. Yet, not all rare outputs are useful—some may be not correct for all instances
of the current task, surfacing only due to shared reasoning states across tasks. This motivates our
definition of validity to distinguish useful task-specific CoTs. Second, the key property inherent

1Our validity also speaks that no all hard-to-reason CoTs useful, see App. E a discussion.
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from the pass rate is that, easy-to-reason CoTs cover most instances in Dq,k
a , but some instances can

still only be correctly solved by hard-to-reason CoTs. Our Multi-task TMC framework highlights
the importance of such rare reasoning paths, consistent with large-scale evidence that many errors
on GSM8K, AQuA, and MATH arise from misapplied common patterns (e.g., assuming overlapping
events are independent) per observed in Sun et al. (2025); more relevant empirical examples appear
in Rmk. 5. We can then define outcome signal to verify correctness as follow.
Outcome Reward Signal. Let ol ∈ R|S| be the one-hot encoding of observation ol, and o =
(o1, . . . ,oL)

⊤ the full trajectory. In mathematical reasoning tasks, the correctness of a CoT trace
is deterministic and verifiable Yue et al. (2025); Xiong et al. (2025); Setlur et al. (2025a; 2024;
2025b), typically via formal systems such as Lean4 Yang et al. (2023). Hence, for any QA pair
(Q,A) ∼ Dq,k

aq
in task k ∈ T , we define the Rk

(Q,A)(·) : R
L×|S| → {0, 1} as

Rk
(Q,A)(o) = 1

(
o ∈ G(k)Q,A

)
, (1)

where G(k)Q,A is the deterministic set of correct CoTs for Q within the valid CoT collection for task
tuple (q, a, k)–in practice, Lean4 only certifies the overall correctness of a CoT trace—providing an
outcome reward signal—without verifying individual process reasoning steps.

2.2 PRETRAINED BASE MODEL

Base Model. For simplicity, following Kim et al. (2025), we model the LLM base model using a
straightforward linear softmax predictor:

p̂θ(·|x) = softmax(⟨θ, x⟩), (2)

where θ ∈ R|S|×|S| and x ∈ {0, 1}|S| is a one-hot vector. This formulation is theoretically tractable
and plausible, as noted by Li et al. (2025b); Ren & Sutherland (2025); Chen et al. (2025), which
highlight that the LLM’s final layer employs logits hθ(·,x), encoded in the last token, to generate a
softmax distribution over the vocabulary as the predictive probability for the next token. Following
Kim et al. (2025), we train the base model through entropy loss as below, akin to the next-token
prediction process despite in the Markov chain setting.

Theorem 1 (Informal Version of Thm. 8). Let X0 ∼ Unif(S \ SL) and X1 ∼ P(·|X0) be
random samples from the TMC X in Def. 1, the softmax predictor trained by cross-entropy
LCE = EX0,X1 [log p̂θ(t−1)(X1|X0)] via Alg. 1 achieves the following: (1) After T1 = Õ(M2)

iterations, the uniform convergence error of the predictor is Õ(
√
M/T ). (2) After thresholding, the

predictor converges linearly to the true probabilities with error decaying as Õ(e−Ω(T )).

Similar to the treatment in Kim et al. (2025), in the subsequent sections, we suggest that the pre-
trained θ⋆ achieve the exact transition probability as the TMC model p̂θ⋆ = P after pretraining. This
is plausible given the longer timescales of pretraining relative to finetuning and inference.

3 SIMPLICITY BIAS OF RLVR FINETUNING: CHALLENGE AND ANTIDOTE

In this section, we first analyze the inherent simplicity biases of the standard RLVR finetunings, and
then provide theoretical justifications for certain strategies that can alleviate this issue. Throughout,
the expectation E[·] is operated on oi

1 ∼ P k(Qk), (Q,A) ∼ Dq,k
aq

, {oi}Gi=2 ∼ p̂kθk(O|oi
1).

REINFORCE & RAFT. In terms of mathematics dataset, the standard REINFORCE objective
maximizes the correctness of the sampled CoTs Xiong et al. (2025); Setlur et al. (2025a) (i.e.,
Rk

(Q,A)(o) = 1 in our case). Separately, RAFT (Rejection Sampling Finetuning) Dong et al. (2023);
Touvron et al. (2023); Yuan et al. (2023) maximize cross-entropy on successful CoT sampled from
current policy. Their objectives in our TMC case are

JREINFORCE(θ
k) = E

[
Rk

(Q,A)(o)
]
, (3)

JRAFT(θ
k) = E

[∑L−1
l=1 log p̂θk(ol+1|ol)R

k
(Q,A)(o)

]
. (4)

PPO & GRPO. Proximal Policy Optimization (PPO) Schulman et al. (2017); OpenAI (2018) and
Group Relative Policy Optimization (GRPO) Shao et al. (2024) both optimize clipped surrogate
objectives with temperature β > 0:

4
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J k
PPO(θ

k) = E

[
1
L

∑L−1
l=1 min

(
p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)

Ap̂θ,k
l+1 , clip

(
p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)
, 1− ϵ, 1 + ϵ

)
Ap̂θ,k

l+1

)]
, (5)

J k
GRPO(θ

k) = E

[
1

GL

∑G,L−1
i=1,l=1 min

(
p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)

Âk
i,l+1, clip

(
p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)
, 1− ϵ, 1 + ϵ

)
Âk

i,l+1

)]
− βDKL[p̂θk ||p̂θ⋆ ]. (6)

Here, the RL advantage Levine (2018) at reasoning step l for task k and predictor p̂θ is
Ap̂θ,k

l+1 (ol,ol+1) = Qp̂θ,k(ol,ol+1) − V p̂θ,k(ol), where V p̂θ,k(ol) := E
[
Rk

(Q,A)(o)
∣∣∣ol

]
and

Qp̂θ,k(ol,ol+1) := E
[
V p̂θ,k(ol)|ol+1

]
. PPO (5) typically estimates Ap̂θ,k

l+1 via GAE with an addi-
tional critic model, while GRPO (6) employs group-normalized advantages Âk

i,l+1 = (Rk
(Q,A)(o

i)−
µ)/σ computed across sampled CoTs, with µ, σ the group mean and std across G sampled CoTs.
The following theorem shows that the above methods are inherently biased toward easy-to-reason
CoTs per Phenomenon 1 (Wu et al., 2025; Deng et al., 2025), resulting failure over hard instances.
Theorem 2 (Squeezing Effect of RL-finetuning). Consider a base model θ⋆ defined in Sec. 2.2
and a targeted task k ∈ T with Θ(M) valid hard-to-reason CoTs. Suppose we apply one of
the following finetuning algorithms: REINFORCE, RAFT, PPO, or GRPO (without KL regular-
ization) with access to the expected gradient oracle. For PPO/GRPO, assume the advantage is
estimated accurately and the clipping threshold are functioning. Then, for any ϵ > 0, there exists
t ≥ Ω

(
η−1L2ML log(ML/ϵ)

)
such that for any valid hard to reason CoT ohard for task k, we have

Pr(ohard
2:L ∼ p̂kθk,(t)(·|ohard

1 )) ≤ ϵ.

Therefore, for any (Q,A) of task k, if all correct CoTs solving (Q,A) are hard-to-reason, then the
finetuned model p̂θk,(t) satisfies

Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk

(Q,A)(o)
]
≤ ϵ.

Sketch of Proof. The key observation is the following proposition, showing that along any easy-to-
reason CoT for a task, the hard-to-learn CoT deviate from it would have smaller advantage.
Proposition 1 (Advantage Gap between Easy and Hard CoT). Let X be a Multi-task TMC as in
Def. 1 and 2, fix a common task state tuple (q, a, k). Then, for the shared states ol, l ∈ [L − 1] of
any valid easy-to-reason CoT oeasy and hard-to-learn CoT ohard, then there exists c > 0, such that
Ap̂θ⋆ ,k

l+1 (ol,o
easy
l+1) ≥ c > Ap̂θ⋆ ,k

l+1 (ol,o
hard
l+1),∀l ∈ [L− 1].

We then denote PO as the algorithm of the PPO/GRPO in Thm. 2, through standard policy gradient
derivation, it holds that

∇θkJREINFORCE(θ
k) =

∑L−1
l=1 E[∇θk log p̂θk(ol+1|ol)R

k
(Q,A)(o)], (7)

∇θkJRAFT(θ
k) =

∑L−1
l=1 E[(1 + log p̂θk(ol+1|ol))∇θk log p̂θk(ol+1|ol)R

k
(Q,A)(o)], (8)

∇θkJPO(θ
k) =

∑L−1
l=1 E

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1)∇θk log p̂θk(ol+1|ol)
]
, (9)

where ∇θk log p̂θk(ol+1 | ol) = ol+1 −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1 | ol)o

′
l+1 holds in linear case. For valid hard

CoTs ohard,i and easy CoTs oeasy,j sharing the same ol but a different ohard,i
l+1 ,oeasy,j

l+1 at l ∈ [L− 1] , where
i, j are index of hard and easy valid CoTs, the logits update difference under JREINFORCE(θ

k) is

∆hθk(ohard,i
l+1 ,ol)−∆hθk(oeasy,j

l+1 ,ol) = η[∇θk

o
hard,i
l+1

,ol

JREINFORCE(θ
k)−∇θk

o
easy,j
l+1

,ol

JREINFORCE(θ
k)]

= η[(Ap̂
θk ,k(ol,o

hard,i
l+1 )−Ap̂

θk ,k(ol,o
easy,j
l+1 ))

+ V p̂
θk ,k(ol)(p̂θk(ohard,i

l+1 |ol)− p̂θk(oeasy,j
l+1 |ol))] < 0.

Here, the inequality follows from Prop. 1 together with p̂θk(ohard,i
l+1 |ol) ≤ p̂θk(oeasy,j

l+1 |ol). As a result,
the ratio p̂θk(ohard,i

l+1 |ol)
/
p̂θk(oeasy,j

l+1 |ol) strictly decreases after each gradient update. From Eq.(8 and
Eq.(9, RAFT’s gradient further amplifies this gap through the (1+log(p)) factor, while PPO’s update
similarly magnifies it via the term (1+(21(A ≥ 0)−1)ϵclip)A. By induction, the disparity between
easy and hard CoTs compounds over iterations, and the convergence proof then follows directly.
Antidote 1: Rejection of Easy Questions. Recent studies Yu et al. (2025); Xiong et al. (2025);
Zhang et al. (2025a) show that rejecting instances, where all parallelly sampled CoTs are correct,
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improves performance. In our setting, such instances correspond to those solvable by already well-
learned easy CoTs. By discarding them and retaining only hard CoT correct-only instances, the
model gradually shifts its focus toward harder reasoning paths. Formally, we define RL-rej as
any algorithm in Thm. 2 augmented with rejection: whenever a sampled CoT has probability mass
above M−1(1 − ϵ) by the current model, it is discarded. This ensures training emphasizes harder
CoTs gradually in the small learning rate regime, prevents collapse into easy ones, and in the end
secure all valid CoTs with probability at least M−1(1− ϵ). We summarize this finding per below.
Corollary 1 (RL-rej Enables Hard-CoT Learning). Under the identical setting and assump-
tions of Thm. 2, consider applying RL-rej. Then, for any ϵ ≥ 0, there exists t ≥
Ω(η−1L2ML log(ML/ϵ)) such that for any valid hard to reason CoT ohard for task k, we have

Pr(ohard
2:L ∼ p̂kθk,(t)(·|ohard

1 )) ≥ 1− ϵ

M
.

Therefore, for any (Q,A) of task k with ≥ 1 correct CoTs, the finetuned model p̂θk,(t) satisfies

Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk

(Q,A)(o)
]
≥ 1− ϵ

M
.

That is, with K ≥ M
1−ϵ (log(ϵ

−1)), we have pass@K performance no worse than 1− ϵ.

Notably, after sufficient iterations, the algorithms in Thm. 2 and Cor. 1 concentrate probability mass
on valid CoTs of the targeted task up to Θ(1 − ε) from its start state. Consequently, the generation
probability of CoTs for other tasks sharing some state would be less than o(ε), eroding cross-task
capability. In what follows, we discuss an alternative exploration approach, which in design can
preserve such meta-capabilities.
Antidote 2: KL-regularization. It is also worth noting that GRPO typically is equipped with a KL
regularization term, as in Eq.(6. The formulation of KL-regularized Reinforcement Learning has
been noticed as a distribution optimization (Fan et al., 2023; Black et al., 2024; Clark et al., 2024;
Uehara et al., 2024; Marion et al., 2024; Kawata et al., 2025). In theory, the solution is a tilted (or
Gibbs) distribution (Csiszár, 1975), as characterized below.
Lemma 1 (Optimal Sampling of GRPO Variants). For each task k ∈ T , let θ⋆ denote the pretrained
Foundation Model. Then the GRPO induces an optimal step-wise sampling distribution:

p̂PO
θk (ol+1 | ol) ∝ p̂θ⋆(ol+1 | ol) · exp

(
r̂ · A

k
l (ol+1)

β

)
, (10)

where r̂ ≤ Θ(M) and Ak
l (ol+1) is the accurate RL advantage.

Notably, the induced Gibbs distribution is governed by the KL-regularization temperature β > 0:
a larger β reduces the gap between CoTs with high and low advantage. The following corollary
formalizes this intuition, showing that p̂PO

θk can, in principle, preserve the broad capability.
Corollary 2 (KL-regularization Enables Hard-CoT learning and Maintain Cross-task Capability).
Consider a base model θ⋆ defined in Sec. 2.2, a targeted task k ∈ T and a different task k′ ̸= k,
denote p̂PO

θk as the learner in Eq.(10). For any start state o1 = q of task k, suggest the number of
CoTs starting from o1 is No1 . Then for any ϵ′ satisfying 1/No1 > ϵ′ ≥ ϵ > 0, denote p̂k

θk,(t) as the
PPO/GRPO in Thm. 2 with ϵ, then there exists β = Ω(ML/ log(ϵ′

−1
)), such that

1. Capable of Hard CoTs: For instance (Q,A) with only some hard-to-reason CoTs correct:

Eo2:L∼p̂PO

θk (·|o1)

[
Rk

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk

(Q,A)(o)
]
.

2. Preserve Multi-task: For instance (Q,A) belonging to untargeted task k′ ̸= k:

Eo2:L∼p̂PO

θk (·|o1)

[
Rk′

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk′

(Q,A)(o)
]
.

The pass@K performance of any task could be adjusted by temperature β given K and ϵ′.

4 SIMPLICITY BIAS OF POPULATION REWARD INFERENCE-SCALING:
CHALLENGE AND ANTIDOTE

ORM Mode. At inference time, the outcome reward model (ORM) evaluates entire trajectories via
an outcome-level reward Rk

out(o) (e.g., a neural scorer), guiding solution generation through Best-
of-N (BoN) sampling (Lightman et al., 2023). We define the natural ORM as Rk

out(o) = E
[
Rk(o)

]
6
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(i.e., the expectation of instance-level rewards). Statistically, Rout is the Bayes-optimal L2 predictor
(and the MLE under Gaussian noise). A neural scorer Rk

θ (·) is then trained to approximate Rk
out(·)

by argminθ E
[
(Rk

θ (o)−Rk
out(o))

2
]

which under standard conditions converges to Rk
out.

PRM Mode. Instead of outcome-level scoring, the process reward model (PRM) provides interme-
diate rewards along the reasoning trajectory: Rk

pro(ol) = g(o1, . . . ,ol), l ∈ {1, . . . , L}, where
g(·) estimates step-wise utility Shao et al. (2024); Snell et al. (2024); Wang et al. (2024); Li et al.
(2023). PRM can be integrated into structured decoding, e.g., BoN Lightman et al. (2023) (selecting
top PRM-scoring step) or Beam Search (BS) Snell et al. (2024) (augmenting beam scores). Since
process-level annotations are costly, most approaches design PRMs heuristically via likelihood-
based estimates, which predict the expected final correctness given the current prefix:

Rk
likelihood(ol) = V p̂θ⋆ (ol) = E

[
Rk(o)

∣∣ol

]
, (11)

for all ol ∈ Sl. The expectation, which is operated on o1 ∼ P k(Qk), (Q,A) ∼ Dq,k
aq

,o ∼
p̂kθ⋆(O|o1), is typically approximated by Monte Carlo rollouts or by training a neural scorer Rθ with
squared loss argminθ E

[
(Rθ(ol)−Rlikelihood(ol))

2
]
.

Indeed, our following theorem shows that the above two “population rewards” (i.e., expectation-
based ORM/PRM) check consistency instead of correctness, per Phenomenon 2 (Xu et al., 2025).

Theorem 3 (Failure of Inference-Scaling with ORM/PRM). Under the setting of Thm. 2, consider
the ORM Rk

out(o) = E[Rk(o)], the PRM Rk
likelihood(ol) and inference methods: (i) ORM + BoN,

(ii) PRM + BoN (step-wise), or (iii) PRM + BS with width N and beam size B ≥ 1. For any instance
(Q,A) of task (o1, a, k), suppose all correct CoTs are hard-to-reason and their ≥ 1 sparse edges
diverge from shared states with some valid easy-to-reason CoT. Then, for any ϵ > 0:

• If N ≥ Ω(log(ϵ)/log
(
ML−M

ML

)
), method (i) fails with probability at least 1− ϵ.

• If N ≥ Ω(log(ϵ)/log
(
M−1
M

)
), methods (ii) and (iii) fail with probability at least 1− ϵ.

Sketch of Proof. Our key observation is the following Prop. 2, which reveals that population rewards
systematically favor easy CoTs, assigning higher scores to oeasy than ohard.

Proposition 2 (Population Rewards Favor Easy CoTs). Under the same settings as Thm. 3, let oeasy

be any valid easy-to-reason CoT and ohard any valid hard-to-reason CoT under (q, a, k). Then,

Rk
out(o

easy) > Rk
out(o

hard), Rk
likelihood(o

easy
l ) > Rk

likelihood(o
hard
l ), ∀l ∈ [L], oeasy

l ̸= ohard
l , oeasy

l−1 = ohard
l−1 .

Proof. The first inequality follows from Def. 2(iii): an easy-to-reason CoT has a larger probability
of being correct over the distribution, whereas a hard-to-reason CoT, carries higher uncertainty and
thus a smaller population-level chance of correctness. The second inequality follows from Prop. 1
by noting that Rk

likelihood(ol) = Ap̂θ⋆ ,k
l+1 (ol−1,ol) + V p̂θ⋆ ,k(ol−1).

Given Prop. 2, the remaining proofs for Thm. 3 follow by choosing N sufficiently large so that oeasy

(or oeasy
l ) is sampled at least once across the N parallel trials.

Antidote: Gibbs Sampling. Soft Best-of-N sampling (Soft-BoN) (Verdun et al., 2025) is designed
to approximate the gibbs distribution P k

Gibbs(o) with O(N−1) error, which is defined as

P k
Gibbs(o) ∝ (p̂θ⋆(o) exp

(
λRk

out(o)
)
, (12)

for o1 = q ∼ P k(Qk). Akin to Eq.(10), the distribution P k
Gibbs(o) also can control the trade-off

between reward maximization and the divergence from the base model’s predictive power.

Corollary 3. (Csiszár, 1975) Consider a base model θ⋆ defined in Sec. 2.2, a targeted task k ∈ T
and ORM Rk

out(o) = E[Rk(o)]. For λ > 0, the Eq.(12) is the solution of:

maxPk
new

EPk
new
[Rk

out(o)]− 1
λDKL(P

k
new∥p̂θ⋆). (13)

Indeed, through the statistical merit of Doob’s h-transform techniques Uehara et al. (2024); Kawata
et al. (2025); Rogers & Williams (2000); Chopin et al. (2023); Heng et al. (2024), we provably show
that there is a principled framework to design process reward, which could mathematically generate
the same CoT distribution as Eq.(12) with a temperature λ > 0.

7
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Definition 3. Doob’s h-Transform-induced Process Reward Model (DPRM). Consider a base
model θ⋆ defined in Sec. 2.2, a targeted task k ∈ T and ORM Rk

out(o) = E[Rk(o)]. The DPRM
Adjuested Sampling (DPRM-AS) defines the process reward at step l via harmonic function hk(·),
and sample according to step-wise distribution adjustment with λ > 0:

Rk
DPRM(ol) =

1
λ log hk(ol), where hk(ol) = Eol+1:L∼p̂θ⋆

[
exp

(
λRk

out(o)
)
| ol

]
,

p̂new,k
θ (ol+1 | ol) = p̂θ⋆(ol+1 | ol) · hk(ol+1)

hk(ol)
∝ p̂θ(ol+1 | ol) exp(λR

k
DPRM(ol+1)),

(14)

where the first-step is initialized as p̂new,k
θ (o1 | o0) := Eo1∼Pk(Qk)[exp(λR

k
DPRM(o1))]. Then, the

induced distribution P k
DPRM(o) :=

∏L−1
l=0 p̂new,k

θ (ol+1|ol)) satisfies P k
DPRM(o) = P k

Gibbs(o).

Remark 4. By P k
DPRM(o) = P k

Gibbs(o) as shown above, the Soft-BoN method is a realization of the
induced distribution, with a convergence rate O(N−1) (Verdun et al., 2025). Notably, Rk

DPRM(·)
and heuristic Rk

likelihood(·) are both state-conditioned expectations with equivalent estimation cost.

Inherently, we provably show the asymptotic equivalence between DPRM and heuristically-
designed PRM Rk

likelihood(·) with certain sampling strategies, which we formalized as below.
Corollary 4. Under the same settings as Def. 3, for 0 < λ < ∞, it holds that BoN/BS with
Rk

DPRM(ol) is equivalent to BoN/BS with Rk
likelihood(ol).

Sketch of Proof. The key observation is by the monotonicity of exp(·) and log(·), it holds that

argmaxol∈SBoN
l

Rk
DPRM(ol) = argmaxol∈SBoN

l
Rk

likelihood(ol),

where SBoN
l = {o1

l , . . . ,o
N
l } is the set of BoN candidates.

Through the similar techniques in Cor. 2, one can also show that P k
DPRM(o) = P k

Gibbs(o) preserved
the broad capability in principle, as below.

Corollary 5 (Gibbs Distribution Preserves Meta-Capability). Under the same settings in Cor. 2, for
any ϵ′ satisfying 1/No1 > ϵ′ ≥ ϵ > 0. Then there exists λ = O(log(ϵ′

−1
)/ML), denote p̂kIS(·) as

any of the inference predictors (i)-(iii) in Cor. 2 with N ≥ Ω(log(ϵ)/log
(
ML−M

ML

)
), it holds that

1. Capable of Hard CoTs: Eo∼Pk
Gibbs(o)

[
Rk

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo∼p̂k

IS(o)

[
Rk

(Q,A)(o)
]
.

2. Preserve Multi-task: Eo∼Pk
Gibbs(o)

[
Rk′

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo∼p̂k

IS(o)

[
Rk

(Q,A)(o)
]
.

The pass@K of Soft-BoN (o( 1
N ) error to gibbs sampling (Verdun et al., 2025)) for any task could

then be adjusted by temperature β given K and ϵ′.

5 EMPIRICAL SIMULATIONS

To validate our theoretical findings, we run simulations on an abstract Tree-structured Markov Chain
(TMC) with two tasks (TASK 1 is the target), as shown in Tab. 1 below.

Table 1: Task definition and CoTs characteristics in our Multi-Task TMC simulation.

Task Path Index State Transition Type Probability Expected Correctness over Dq,k
a

TASK1

0 S1[0]→ S2[0]→ S3[0]→ S4[0] EASY-To-REASON 0.413223 0.727995
1 S1[0]→ S2[0]→ S3[1]→ S4[0] HARD-To-REASON 0.075131 0.132363
2 S1[0]→ S2[1]→ S3[0]→ S4[0] HARD-To-REASON 0.004132 0.007280
3 S1[0]→ S2[1]→ S3[1]→ S4[0] HARD-To-REASON 0.075131 0.132363

TASK2

0 S1[1]→ S2[0]→ S3[0]→ S4[1] EASY-To-REASON 0.413223 0.955691
1 S1[1]→ S2[0]→ S3[1]→ S4[1] HARD-To-REASON 0.007513 0.017376
2 S1[1]→ S2[1]→ S3[0]→ S4[1] HARD-To-REASON 0.004132 0.009557
3 S1[1]→ S2[1]→ S3[1]→ S4[1] HARD-To-REASON 0.007513 0.017376

The TMC has L = 4 layers with two nodes each (|Sl| = 2). In layers 1–3, each state has one high-
probability outgoing edge. Pretraining runs for T1 = 2000 and T2 = 500 steps (error < 0.001);
fine-tuning for T = 1000 steps with learning rate 0.05. Estimation of the Rewards/advantages use
1000/200 Monte Carlo samples; temperature λ = 0.5; BoN uses N = 15. Training and testing each
use 200 question instances sampled per Def. 2; BoN and Gibbs-style methods are fully enumerated.
TASK 1 requires reaching S4[0] from S1[0]; TASK 2 requires S4[1] from S1[1]. A CoT is valid here

8
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Table 2: CoT generation statistics for different strategies on TASK1 and TASK2. Values represent percentages
of valid easy CoTs, valid hard CoTs, and invalid CoTs generated by each method.

Strategy TASK1 Valid TASK1 Valid TASK1 Invalid TASK2 Valid TASK2 Valid TASK2 Invalid
Easy CoTs (%) Hard CoTs (%) CoTs (%) Easy CoTs (%) Hard CoTs (%) CoTs (%)

Base Model 21.67% 8.07% 70.27% 20.03% 1.10% 78.87%

Finetuned Methods
REINFORCE 94.33% 3.43% 2.23% 1.52% 0.87% 97.62%
RAFT 95.22% 2.33% 2.45% 2.30% 0.92% 96.78%
PPO (Eq.11) 91.82% 5.40% 2.78% 2.23% 1.03% 96.73%
RL-rej (Sec.3.1) 49.62% 17.42% 32.97% 30.63% 2.27% 67.10%
GRPO-KL (Eq.13) 46.47% 16.27% 37.27% 54.18% 1.68% 44.13%

Inference Scaling Methods
Soft-BoN 8.98% 19.30% 71.72% 7.00% 17.27% 75.73%
ORM-BoN w. Rk

out(·) 21.00% 7.30% 71.70% 20.23% 0.97% 78.80%
PRM-BoN w. Rk

likelihood(·) 99.13% 0.87% 0.00% 13.42% 36.77% 49.82%
DPRM-BoN 99.52% 0.48% 0.00% 13.40% 37.02% 49.58%
DPRM-AS (implemented by step-wise Soft-BoN) 17.23% 36.10% 46.67% 12.02% 38.02% 49.97%

if it connects the start and end states; among valid paths, only the one via S2[0]→ S3[0] is easy, all
others are hard. We report the proportions of easy, hard, and invalid CoTs from S1[0] (TASK 1) and
S1[1] (TASK 2), as well as the expected correctness over the population per Def. 2.
Findings in Tab. 2. REINFORCE, RAFT, and PPO heavily favor easy-to-reason CoTs in TASK 1,
suppressing hard-to-reason CoTs in TASK 1 and valid CoTs in TASK 2, showing clear simplicity
bias and forgetting. In contrast, diversity-promoting methods (RL-rej, GRPO-KL, Soft-BoN,
DPRM-AS) balance easy/hard-to-reason CoTs in TASK 1 and preserve TASK 2 CoT’s generation
capability, thanks to shared sparse edges in the TMC (two nodes per layer, see Table 1). ORM/PRM-
BoN, relying on population rewards Rk

out(·), also overfavor easy-to-reason CoTs; PRM-BoN and
DPRM-BoN behave similarly, as predicted. Further details are available in App. F.

Table 3: Theoretical comparison between RLVR and inference-scaling under our TMC setting. The first col-
umn indicates pass@K performance. The second and third columns assess whether a method assigns highest
credit to easy-to-reason CoTs and whether it can also sample hard-to-reason CoTs with suitable temperature.
The fourth column evaluates whether the method preserves the base model’s multi-task capability. The re-
sults suggest that post-training methods tend to favor easy-to-reason CoTs, and that only methods capable of
sampling hard-to-reason CoTs can achieve satisfactory pass@K.

Methods Succeed w. pass@K Prefer Easy CoT Capable of Hard CoT Preserve Multi-task
REINFORCE (Eq.(3) / RAFT (Eq.(4) ✗ ✓ ✗ ✗
PPO (Eq.(5) ✗ ✓ ✗ ✗
RL-rej (Sec 3) ✓ ✓ ✓ ✗
KL-regularized PO (Eq.(6) ✓ ✓ ✓ ✓

ORM/PRM-BoN/BS (Sec 4) ✗ ✓ ✗ ✗
Soft-BoN/DPRM-AS (Sec 4) ✓ ✓ ✓ ✓

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We introduced a Tree-structured Markov toy framework to model foundation model’s diverse multi-
task reasoning patterns, and theoretically shows that both RLVR and inference-scaling exhibit a
simplicity bias, favoring easier, common reasoning paths (consistency) rather than true correct-
ness (Wang et al., 2022). Building on this, we demonstrated the benefit of exploration within
the tree—mitigating this bias and preserving rare but crucial CoTs—as summarized in Tab. 3.
Our analysis further highlights a sharp contrast with traditional RL (e.g., AlphaGo (Silver et al.,
2016)): whereas RL advantages promote effective state-space exploration in standard RL, in post-
training they instead push models to overemphasize easy (high-pass-rate) paths within the model’s
scope (Yue et al., 2025). This negative insight may also explain why Setlur et al. (2025a) employ
independent models that reinterpret RL advantage differently for finetuning and PRM scoring.
Inside our proofs, the central clue lies in the expectation (population)-based reward estimators,
namely Rk

out(o) = E[Rk(o)] and Rk
likelihood(ol) = V p̂θ⋆ (ol) = E[Rk(o) | ol]. While these

estimators are Bayes-optimal in the L2 sense, they inherently favor frequent patterns, thereby down-
weighting rare-but-valuable CoTs. This bias highlights the necessity of more reliable reward de-
signs, as also discovered by Xu et al. (2025). Also, our current TMC framework is deliberately
abstract and restrictive (see App. E and G.4), and could be generalized to more realistic reasoning
models with variable depths. Another promising direction is to apply TMC analysis to reflective
behavior and aha moments (Yu et al., 2025).
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A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research involves the development and evalua-
tion of inference scaling methods for large language models, which does not involve human subjects
or sensitive data collection. All experiments are conducted in our toy settings with clear condi-
tions and hyperparameters. Our methods aim to democratize access to advanced AI capabilities
by reducing computational requirements, which we believe has positive societal implications. We
have no conflicts of interest to declare, and this work was conducted independently without external
sponsorship that could influence our findings.

B REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive details throughout the paper. All
experimental configurations, hyperparameters, and implementation details are specified in the main
text and appendix. Our code implementation will be made available as supplementary material,
including the complete training scripts, evaluation protocols, and data processing pipelines. For the
theoretical analysis, we provide complete proofs and derivations in the appendix. All experimental
results can be reproduced using the provided code and configuration files. We have also included
detailed computational resource requirements and training time estimates to facilitate reproduction
of our results.

C LLM USAGE

We used a large language model (LLM) as a writing assistant to polish the English presentation
of certain paragraphs. The LLM was not involved in research ideation, technical derivations, or
experimental design. All scientific contributions and claims are solely by the authors.

D ADDITIONAL RELATED WORK

LLMs as Markov Processes. A growing body of work has drawn connections between large lan-
guage models (LLMs) and Markovian dynamics. Zekri et al. (2024) established a theoretical equiv-
alence between next-token prediction in LLMs and finite-state Markov chains, deriving scaling laws
for in-context learning when prompted with such chains. Nichani et al. (2024) demonstrated that
disentangled transformers are capable of learning Markov chains in context. Ildiz et al. (2024) stud-
ied how a single self-attention layer can simulate context-conditioned Markov chains, while Ding
et al. (2025) showed that multi-layer transformers can approximate preconditioned gradient descent
over Markovian distributions. Edelman et al. (2024) analyzed the distinct phases of training as
transformers learn Markov chains, and Makkuva et al. (2024) investigated the function landscape of
single-layer transformers on Markovian data, revealing challenges in learning higher-order chains.
Rajaraman et al. (2024) proved that constant-depth transformers can learn k-order Markov processes
when the next-token distribution depends on the previous k tokens. Furthermore, Cao et al. (2025)
showed that transformers can simulate the maximum likelihood estimation (MLE) algorithm for
learning Bayesian networks, which subsume Markov chains as a special case. Despite these ad-
vances, most prior works focus on modeling sequential variable dependencies, without abstracting
the structure to chain-of-thought (CoT) reasoning. The most relevant exception is the recent work
of Kim et al. (2025), which investigates CoT processes under metastable Markov chain assump-
tions. They show the necessity of search, RL-based finetuning, and distillation to navigate sparse
transition spaces, also under a softmax modeling assumption. Their proposed algorithm is tailored
specifically for such metastable settings. Instead, motivated by real-world multi-task, tree-structured
reasoning tasks with binary (0-1) rewards, our work aims to theoretically compare the intrinsic bi-
ases of RL-based finetuning and inference sampling, and to connect these with recent discussions
on the squeezing effect, the benefits of reasoning diversity, and the inherent limitations of RL-based
fine-tuning.

Spectral Bias. The study of spectral bias in deep learning is extensive, with many works showing
that neural networks tend to learn low-frequency or simple patterns with high signal-to-noise ratio
first (Arpit et al., 2017; Valle-Perez et al., 2018; Kalimeris et al., 2019; Chen et al., 2023a; Abbe
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et al., 2023; Molina et al., 2024). Edelman et al. (2024) demonstrated that this simplicity bias during
training can delay convergence to the correct solution in Markov chain learning. Chen et al. (2023b)
observed that shallow layers in neural networks prioritize fitting lower-order functions, while Allen-
Zhu & Li (2023) showed that this tendency in shallow networks can lead to drastically increased
sample complexity due to their bias toward low-order polynomials. Tian (2024) examined simplicity
bias from the perspective of algebraic structure learning. Other works have highlighted potential
downsides: Shah et al. (2020); Yang et al. (2024) showed that such biases can be detrimental, causing
models to overlook important features or be misled by spurious correlations. Recent work Ren &
Sutherland (2025) identified the squeezing effect of Direct Preference Optimization: probability
mass becomes increasingly concentrated on the outut that was most confident prior to the update.
A following-up work Deng et al. (2025) identified similar phenomenon of GRPO. Separately, Li
et al. (2025b) analyzes the nature of the cross-entropy loss, showing that it systematically shifts
probability mass from non-target tokens to target tokens—regardless of the quality of the non-target
options—ultimately leading to distribution collapse during finetuning. However, prior work has
not systematically characterized how this squeezing effect influences fine-tuning dynamics. In our
study, under the Tree-structured Markov Chain (TMC) framework and a linear softmax model, we
show that binary outcome rewards can potentially amplify this effect, favoring simple reasoning
paths during fine-tuning and contributing to the model’s inductive bias.

Process Reward Models (PRMs) & Reinforcement Learning with Verifiable Rewards (RLVR).
Process Reward Models (PRMs) and Reinforcement Learning with Verifiable Rewards (RLVR) both
employ external verifiers to reward reasoning steps, with PRMs guiding inference Lightman et al.
(2023); Li et al. (2023); Snell et al. (2024) and RLVR enhancing finetuning Wang et al. (2025);
Foster et al. (2025). Setlur et al. (2025b) show that verifier-based scaling outperforms verifier-free
approaches when the reward distributions have anti-concentration and heterogeneity properties. Fos-
ter et al. (2025) also analyzed on linear softmax model, for which they designed an algorithm that is
computationally efficient, and showed the necessity of coverage within their framework. Yue et al.
(2025) find RLVR’s gains limited to small k, with base models matching or surpassing it at large
k, suggesting RLVR reinforces existing reasoning rather than fostering new patterns—echoing our
finding that RL finetuning overfits to simpler paths due to the squeezing effect. Schmied et al. (2025)
highlight RLVR’s "greediness", favoring easy actions akin to our findings, while Yu et al. (2025)’s
DAPO and Xiong et al. (2025)’s minimalist approaches counter this by rejecting overly-correct sam-
ples, promoting diverse reasoning and keeping steady entropy, whose merits are also theoretically
justified in our settings. Wang et al. (2025) also empirically showed the critical role of promoting
exploration with diverse reasoning patterns. Setlur et al. (2025a) propose a separate prover policy to
enhance exploration, noting the base model’s advantage calculation limits diversity—supporting our
observation of RLVR’s bias toward simpler paths. Li et al. (2025b) add that cross-entropy finetun-
ing reduces sampling diversity, reinforcing the need for varied inference strategies. These findings
collectively underscore the value of diverse reasoning, motivating our comparison of RL and PRM
under binary outcome rewards.

E LIMITATIONS AND BROADER IMPACT

Unmodeled Complexity in Large-Scale. While our theoretical analysis introduces new perspec-
tives on finetuning and inference-scaling under binary (0–1) outcome supervision, several limitations
remain. First, the latent reasoning model and neural formulation may require further refinement to
better align with practical scenarios, including: handling varying reasoning depths; incorporating
structural priors (e.g., multi-index models); modeling with nonlinear transformers instead of a lin-
ear softmax model (per discussed in App. G.4); and analyzing parameter-efficient tuning methods
like LoRA Hu et al. (2021).

Reward Hacking, and the benefit of consistency. Even within the TMC framework, our formula-
tion does not fully capture challenges such as robustness to noisy rewards, hallucinations, or reward
hacking. For example, in Fig. 1, the trajectories q → o12 → a3 (valid for Task 4) and q → o22 → a3
(valid for Task 5) share the same endpoints but are invalid for each other’s task, illustrating a form
of reward misalignment or hallucination. This warrants deeper investigation. A concurrent study
by Wen et al. (2025) raised a concern: rather than rewarding rare reasoning paths, they classified
them as incorrect CoTs and treated common paths as logically coherent-which they assumed cor-
rect. They further advocated for stronger verifiers and new RLVR algorithms explicitly designed to
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incentivize correct reasoning paths—a perspective we share. In our Multi-task TMC (Def. 2), our
“validity” notion is to distinguish in-correct rare paths for a task with those correct ones. We left a
more detailed discussions of the pros and cons of the simplicity bias an important future direction.

Faster-vs-Better Trade-Off. Moreover, although our results highlight the value of diver-
sity—particularly when a non-negligible fraction of instances require hard-to-reason CoTs—our
analysis does not quantify the additional computational cost such diversity induces. This reflects
an inherent tradeoff: overfitting to simpler reasoning paths enables faster finetuning when the target
is improving overall accuracy within certain iterations, while supporting diverse reasoning incurs
greater complexity—a “no free lunch” scenario.

Non-Markovianity of LLM Reasoning. Markov-chain (MC) abstractions—where transition prob-
abilities encode step difficulty—are well-established in prior theory (Xu et al., 2019; Sanford et al.,
2024; Abbe et al., 2024; Besta et al., 2024; Kim et al., 2025). In particular, Kim et al. (2025) model
LLM inference as a metastable MC and design algorithms showing benefits of search and distil-
lation. Building on empirical evidence of tree-alike reasoning (Lightman et al., 2023; Snell et al.,
2024; Yue et al., 2025; AI et al., 2025; Gandhi et al., 2025), and observed real-world hardness met-
rics (base-model pass rates Tong et al. (2024)), our Multi-task TMC is arguably more aligned with
practice than prior work. We acknowledge that MC models cannot perfectly capture actual LLM
inference, per Zhang et al. (2025b) on LLM non-Markovianity. Nonetheless, this does not diminish
the value of MC-based theories: conclusions remain informative and can often be generalized to
non-Markovian settings with suitable extensions.

While our findings are theoretical, they provide high-level justification for recent empirical efforts
that promote reasoning diversity and reject overly easy instances, offering useful insights for future
work on RL fine-tuning, PRM design, and inference strategies in LLMs. We do not anticipate any
direct societal risks arising from this research.

F ADDITIONAL EXPERIMENTS

F.1 COMPREHENSIVE PERFORMANCE AND COVERAGE ANALYSIS

Building upon the empirical simulations presented in Section 5, we provide additional experimental
results that further validate our theoretical findings. The following analysis examines both perfor-
mance metrics (Pass@K rates) and coverage characteristics (valid CoT generation patterns) across
different sampling strategies for both TASK1 and TASK2.

F.1.1 PERFORMANCE ANALYSIS

Figure 2 and Figure 3 present the Pass@30 performance for TASK1 and TASK2, respectively, across
all evaluated sampling strategies. The results demonstrate several key patterns that align with our
theoretical predictions:

TASK1 Performance: The performance across different strategies shows relatively consistent re-
sults, with Pass@30 rates ranging from 0.65 to 0.73. Notably, DPRM achieves the highest per-
formance (0.73), followed closely by Reinforce-rej (e.g. RL-rej) and GRPO-KL (both at 0.72).
The base model performs moderately well (0.71), while PRM-BoN shows the lowest performance
(0.65). This suggests that while most strategies can achieve reasonable performance on the primary
task, there are meaningful differences in their effectiveness.

TASK2 Performance: The results reveal a stark contrast, with performance ranging from 0.35 to
0.95. The base model and diversity-promoting methods (Reinforce-rej (e.g. RL-rej), GRPO-
KL) achieve the highest performance (0.95), demonstrating their ability to maintain capability on
secondary tasks. In contrast, standard RL fine-tuning methods (REINFORCE, RAFT, PPO) show
significantly degraded performance (0.35-0.48), confirming the forgetting phenomenon predicted by
our theoretical analysis.
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Figure 2: Pass@30 Performance for TASK1 across different sampling strategies. The results show relatively
consistent performance across most methods, with DPRM achieving the highest rate of 0.73.

Figure 3: Pass@30 Performance for TASK2 across different sampling strategies. The results demonstrate sig-
nificant performance degradation for standard RL methods (REINFORCE, RAFT, PPO) compared to diversity-
promoting approaches, confirming the forgetting phenomenon.

F.1.2 COVERAGE ANALYSIS

The coverage analysis, presented in Figure 4 and Figure 5, provides insights into the types of CoTs
generated by each strategy. These stacked bar charts show the proportion of invalid, hard valid, and
easy valid CoTs generated by each method.

TASK1 Coverage: The results reveal distinct patterns across different strategy categories. Standard
RL fine-tuning methods (REINFORCE, RAFT, PPO) and PRM-based methods (PRM-BoN, DPRM-
BoN) generate predominantly easy valid CoTs (90-98%) with minimal invalid CoTs, demonstrating
strong simplicity bias. In contrast, diversity-promoting methods (Reinforce-rej (e.g. RL-rej),
GRPO-KL) show a more balanced distribution, with substantial proportions of both easy and hard
valid CoTs. The base model and ORM-based methods generate a high proportion of invalid CoTs
(70-72%), indicating limited effectiveness in generating task-appropriate reasoning paths.

TASK2 Coverage: The coverage patterns for TASK2 are markedly different, reflecting the task’s
increased difficulty. Most strategies generate a high proportion of invalid CoTs, with standard RL
methods showing particularly poor performance (97-98% invalid). However, diversity-promoting
methods (GRPO-KL, PRM-BoN, DPRM-BoN, DPRM) achieve significantly better coverage, with
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45-55% valid CoTs. This demonstrates the importance of diversity-promoting mechanisms for
maintaining capability across multiple tasks.

Figure 4: Valid CoT Coverage for TASK1 (K=30, N=15, 200 trials). The stacked bars show the proportion of
invalid (gray), hard valid (red), and easy valid (green) CoTs generated by each strategy. Standard RL methods
show strong simplicity bias with predominantly easy valid CoTs.

Figure 5: Valid CoT Coverage for TASK2 (K=30, N=15, 200 trials). The stacked bars show the proportion of
invalid (gray), hard valid (red), and easy valid (green) CoTs generated by each strategy. Diversity-promoting
methods achieve significantly better coverage compared to standard RL approaches.

F.1.3 KEY INSIGHTS AND IMPLICATIONS

These comprehensive results provide several important insights that extend our theoretical analysis:

Simplicity Bias Confirmation: The coverage analysis clearly demonstrates the simplicity bias in
standard RL fine-tuning methods, which overwhelmingly favor easy-to-reason CoTs while sup-
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Table 4: Summary of Notations

Notation Description

Sl, S State space at layer l; S =
⋃L

l=1 Sl is the full state space.
o, O, o, ol, ol O denotes a trajectory; o its one-hot form; ol, ol are step-l token and embedding.
P(·|·) or PTMC(·|·), p̂θ(·|·) P(·|·) or PTMC(·|·): TMC kernel in Def. 1; p̂θ(·|·): softmax predictor based on θ.
Col , Dol High probability transition subset in Sl+1; Non-zero probability transition subset.
Qk, (q, aq, k) Qk ⊆ S1: question states in task k; (q, aq, k): task tuple with q 7→ aq .
Dq,k

aq
,G(k)Q,A Instance Distribution over task tuple (q, aq, k); Correct CoTs for (Q,A) ∼ Dq,k

aq
.

G(k)q,aq ,G
(k),easy
q,aq ,G(k),hard

q,aq Valid CoTs set for (q, aq, k); partitioned into easy and hard subsets.
I(k)ol+1,ol , S

(k)
ol , S(k),easy

ol , S(k),hard
ol Valid CoTs passing (ol, ol+1); subset of reachable ol+1 from ol in valid CoTs; easy/hard-to-reason subsets.

θ⋆, θk, θk,(t) θ⋆: base model in Sec. 2.2; θk: task-k model; superscript (t): iteration.
Rk

out(o), R
k
out

p̂
(o) Rk

out(o): Expected accuracy over (Q,A) ∼ Dq,k
aq

for sampled CoT o, by p̂θ⋆ or p̂.
Rk

likelihood(ol), R
k
DPRM(ol) Expected accuracy of ol; DPRM reward in Eq.(14).

Ap̂θ,k
l+1 (ol,ol+1), Q

p̂θ,k(ol,ol+1), V
p̂θ,k(ol) RL’s Advantage for task k; Expected accuracy of state ol+1 and ol.

pkacc(o) Success probability of CoT o for task k.
β, λ Temperature parameters of p̂PO

θk in Eq.(10) and P k
Gibbs(o) in Eq.(12).

Pass@Kp̂
q,k Probability that p̂ generates at least one correct CoT in K samples for (q, aq, k).

O(·), Ω(·), Θ(·) Standard asymptotic notation: upper, lower, and tight bounds, respectively.

pressing hard-to-reason alternatives. This bias is particularly pronounced in TASK1, where RE-
INFORCE, RAFT, and PPO generate 90-95% easy valid CoTs.

Forgetting Phenomenon: The dramatic performance degradation on TASK2 for standard RL meth-
ods (from 0.70-0.72 on TASK1 to 0.35-0.48 on TASK2) provides empirical evidence for the forget-
ting phenomenon predicted by our theoretical analysis. This confirms that overfitting to the primary
task can severely compromise performance on secondary tasks.

Diversity-Promoting Benefits: Methods that promote diversity (Reinforce-rej (e.g. RL-rej),
GRPO-KL, DPRM variants) demonstrate superior performance on TASK2 while maintaining rea-
sonable performance on TASK1. This validates our theoretical prediction that diversity-promoting
mechanisms are crucial for multi-task scenarios.

Inference Scaling Effectiveness: The PRM-based and DPRM-based inference methods show par-
ticularly interesting behavior, achieving high performance on TASK1 while maintaining reasonable
coverage on TASK2. This suggests that process reward models can effectively guide reasoning
without the computational overhead of fine-tuning.

These results collectively support our theoretical findings and provide practical guidance for design-
ing effective multi-task reasoning systems in large language models.

G DETAILS OF REWARD MODELS AND METHODS

G.1 SUMMARY OF NOTATIONS

We remark that in our setting, for all l ∈ [L], ol = eol
∈ R|S| denotes the one-hot encoding

of token ol from the vocabulary. In practice, language models typically apply a softmax over the
entire vocabulary to produce next-token probabilities. Hence, for simplicity, we do not distinguish
between ol and ol in notation, and treat them interchangeably throughout the paper. We summarize
our notation in Table 4.

Let Qk ⊆ S1 be the set of question states for task k ∈ T . Suggest P k is a distribution over the
question states Qk associated with task k, denote Rk

out(o) = E(Q,A)∼Dq,k
aq

[Rk
(Q,A)(o)] Setlur et al.

(2025a; 2024) as the population reward over Dq,k
aq

of the task tuple (q, aq, k).

G.2 RLVR FINETUNING

REINFORCE. The classical REINFORCE algorithm Williams (1992) maximizes the expected re-
ward from sampled trajectories. For mathematical reasoning, a standard approach is using 0 − 1
correctness of reasoning answer as the reward Xiong et al. (2025); Setlur et al. (2025a). In our TMC
setting, for task k and given prompt q, the REINFORCE objective is

JREINFORCE(θ
k) = Eo1=q∼Pk(Qk),(Q,A)∼Dq,k

aq ,{oi}G
i=2∼p̂

θk (O|oi
1)

[
1(o ∈ G(k)Q,A)

]
, (15)
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where o1:L denotes the trajectory sampled from the policy, and 1(o ∈ G(k)Q,A) ∈ {0, 1} indicates
whether the final output yields the correct answer. In our scenario, the objective would become

JREINFORCE(θ
k) = Eo1=q∼Pk(Qk),o2:L∼p̂

θk

[
Rk

out(o)
]
.

RAFT (Rejection Sampling Fine-tuning) optimizes LLMs by sampling multiple responses from a
policy, using a reward signal to select the best one, and then fine-tuning the policy using supervised
learning on the selected best responses Xiong et al. (2025); Dong et al. (2023). The objective is to
maximize the likelihood of these high-reward outputs:

JRAFT(θ) = E[(q,o∗)∼DRAFT][log πθ(o
∗|q)], (16)

where DRAFT is a dataset constructed from queries q and their corresponding best sampled re-
sponses o∗, as determined by a reward function. Xiong et al. (2025) found that a minimal RL
approach to finetune the base model is to reject both the entirely correct and incorrect responses. In
our TMC case, we have

JRAFT(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k
ao1

,o2:L∼p̂k

θk (O|o1)

[
L−1∑
l=1

log p̂θk(ol+1|ol)R
k
(Q,A)(o)

]

Direct Preference Optimization (DPO) optimizes the policy directly using a dataset of human
preferences, provided as pairs of preferred (ow) and dispreferred (ol) responses for a given prompt
q Rafailov et al. (2024). It avoids explicit reward model training or reinforcement learning, instead
optimizing a loss based on the policy’s probability ratio relative to a reference policy πref :

JDPO(θ) = E[(q,ow,ol)∼DDPO][log σ

(
β log

πθ(ow|q)
πref (ow|q)

− β log
πθ(ol|q)
πref (ol|q)

)
], (17)

where DDPO is the preference dataset, σ is the logistic sigmoid function, and β is a temperature
hyperparameter that scales the difference in log-probabilities.

In our TMC setting, for task k, suppose for each prompt q, the reference model (base model p̂θ⋆ or
current model p̂kold) produces two candidate trajectories: a preferred one o+

1:L, and a dispreferred one
o−
1:L, where Rk

(Q,A)(o
+
L) = 1 > Rk

(Q,A)(o
−
L ) = 0. The DPO objective for the current policy p̂θk is:

JDPO(θ
k) :=

∑
(q,o+,o−)∈Dk

log σ

(
β ·
[
log

p̂θk(o+
2:L|o

+
1 )

p̂kold(o
+
2:L|o

+
1 )
− log

p̂θk(o−
2:L|o

−
1 )

p̂kold(o
+
2:L|o

+
1 )

])
, (18)

where σ(·) is the sigmoid function and β > 0 is a temperature hyperparameter controlling prefer-
ence sharpness. This objective promotes the likelihood ratio of preferred over dispreferred CoTs as
measured under p̂θk , relative to the fixed reference p̂θ⋆ used for sampling.

Proximal Policy Optimization (PPO) Schulman et al. (2017) optimizes LLMs by maximizing the
following surrogate objective OpenAI (2018):

JPPO(θ) =E[q∼P (Q),o∼πθold
(O|q)]

1

|o|
|o|∑
t=1

min[
πθ(ot|q, o<t)

πθold
(ot|q, o<t)

At, clip(
πθ(ot|q, o<t)

πθold
(ot|q, o<t)

, 1− ϵ, 1 + ϵ)At],

(19)

where At is the advantage computed via Generalized Advantage Estimation (GAE), requiring an
additional critic model. ϵ is a clipping-related hyperparameter.

In our TMC setting, we have the advantage function as

Ap̂θ,k
l+1 (ol,ol+1) := Qp̂θ,k(ol,ol+1)− V p̂θ,k(ol). (20)

Here the transition-value and state-value functions are
Qp̂θ,k(ol,ol+1) := Eo1=q∼Pk(Qk), ol+2:L∼p̂θ

[
Rk

out(o)
∣∣ol,ol+1

]
, (21)

V p̂θ,k(ol) := Eo1=q∼Pk(Qk), ol+1∼p̂θ(·|ol)

[
Qp̂θ,k(ol,ol+1)

]
. (22)
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The PPO objective OpenAI (2018) in our scenario is

JPPO(θ
k) =Eq∼Pk(Qk),(Q,A)∼Dq,k

aq ,{oi}G
i=2∼p̂

θk (O|oi
1)

[
1

L

L−1∑
l=1

min[
p̂θk(oi

l+1|oi
l)

p̂kold(o
i
l+1|oi

l)
Ap̂θ,k

l+1 ,

clip(
p̂θk(oi

l+1|oi
l)

p̂kold(o
i
l+1|oi

l)
, 1− ϵ, 1 + ϵ)Ap̂θ,k

l+1 ]

]
.

(23)

In our modeling setup, the advantage estimate Ap̂θ,k
l+1 aims to approximate Eq.(20), the gap between

the value of making a particular transition at step l, versus the expected value of acting from state ol

without knowledge of ol+1.

GRPO Shao et al. (2024), in contrast, samples a group of output trajectories {oi}Gi=1 from πθold
and

optimizes:

J k
GRPO(θ) =E[q∼P (Q),{oi:}G

i=1∼πθold
(O|q)]

1

G

G∑
i=1

1

|oi: |

|oi: |∑
t=1

{min[
πθ(o

i
t|q, oi<t)

πθold
(oit|q, oi<t)

Âi,t, clip(
πθ(o

i
t|q, oi<t)

πθold
(oit|q, oi<t)

, 1− ϵ, 1 + ϵ)Âi,t]

− βDKL[πθ||πref ]},
(24)

where Âi,t is computed based on relative rewards within the sampled group, and β controls KL
regularization.

In our scenario, the formulation of GRPO Shao et al. (2024) equates

J k
GRPO(θ

k) = Eq∼Pk(Qk),(Q,A)∼Dq,k
aq ,{oi}G

i=2∼p̂
θk (O|oi

1)

[
1
G

∑G
i=1

1
L

∑L−1
l=1

{
min

[
p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)
Âk

i,l+1,

clip
(

p̂
θk (o

i
l+1|o

i
l)

p̂k
old(o

i
l+1|o

i
l)
, 1− ϵ, 1 + ϵ

)
Âk

i,l+1

]}
− βDKL[p̂θk ||p̂θ⋆ ]

]
,

(25)

Outcome Supervision RL with GRPO. A outcome reward model assigns scores r = {rk1 , ..., rkG}
to sampled outputs, which are then normalized: r̃i =

rki,index(l)−mean(rk)
std(rk) within the group. The

advantage is set as Âk
i,l+1 = r̃ki ,∀l ∈ [L − 1], aiming to approximate Eq. (20). Here, for the task

k ∈ T , if we consider an offline scenario, our outcome reward model is rki,index(l) = Rk
out(·) defined

in Sec. 4.

Process Supervision RL with GRPO. Instead of a single reward per output, a process reward model
assigns step-wise rewards R = {{rk1,index(1), ..., r

k
1,index(L)}, ...}, where index(l) denotes the l-th

step’s end token index. Rewards are normalized: r̃ki,index(l) =
rki,index(l)−mean(R)

std(R) . The advantage is
computed as:

Âk
i,l =

∑
index(j)≥l

r̃ki,index(j), (26)

and the policy is optimized via Eq. (6). Specifically, we could adopt rki,index(l) = Rk
pro(o

i
l),∀i ∈

[G], l ∈ {1, · · · , L} in Sec. 4. However, this approach is unnatural - since Rk
DPRM(·) is designed

for temperature-controlled adjusted sampling. Instead, a more common approach is to choose the
Rk

likelihood(ol) in Eq.(11) and Rk
potential(ol).

In this work, following Xiong et al. (2025); Yu et al. (2025), we only studied the properties of
GRPO with outcome reward. However, our theorem can include the GRPO with process reward by
assuming that the advantage calculated in Eq.(26) is approximating Eq.(20) accurately.
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G.3 REWARD-BASED SAMPLING

ORM Mode. Given an input x, the model generates an CoT trajectory o1, · · · , oL. Define ol ∈ R|S|

as the one-hot vector representing o1, o = (o1, · · · ,oL)
⊤ ∈ RL×|S| as the trajectory vector. An

outcome reward model (ORM) Rk
out(·) assigns a scalar score based on the entire output:

Rk
out(o) = f(o), (27)

where f(·) usually evaluates correctness, coherence, or other task-specific criteria Shao et al. (2024);
Wang et al. (2024); Li et al. (2023); Snell et al. (2024).

PRM Mode. Instead of rewarding only the final output, a process reward model (PRM) assigns
intermediate rewards along the reasoning trajectory:

Rk
pro(ol) = g(o1, ...,ol), l ∈ {1, ..., L}, (28)

where g(·) estimates step-wise utility using heuristics, verification signals, or learned evaluation
metrics Shao et al. (2024); Snell et al. (2024); Wang et al. (2024); Li et al. (2023). Designing process
rewards from outcome rewards is essential due to the high cost of human annotation. However,
existing approaches are largely heuristic—either based on (i) the expected correctness of the final
answer from the current state, typically via Monte Carlo rollouts Setlur et al. (2025a; 2024); Wang
et al. (2024):

Rk
likelihood(ol) = Eol+1:L∼p̂θ⋆

[
Rk

out(o) | ol

]
, (29)

and (ii) using binary signals to indicate whether the current state can still reach a correct solu-
tion Snell et al. (2024); Setlur et al. (2025b):

Rk
potential(ol) = sup

o′:o′
l=ol,o′∈Tall

Rk
out(o

′) = 1
{
∃o′ ∈ Tall : R

k
out(o

′, a)
}
, (30)

for all ol ∈ Sl, l ∈ {1, . . . , L}. Here, Tall is typically approximated typically by Monte Carlo
rollouts.

Temperature-controlled Adjusted Sampling. Here, we consider refinubf the sampling distribution
using the reward model Rk

out. Define the original sampling probability of a trajectory o under θ⋆ as:

p̂θ⋆(o) = Ptest
ρ (o1)

L−1∏
l=1

p̂θ⋆(ol+1|ol),

where Ptest
ρ (o1) = Θ(1/M0) is the initial distribution over S1. The adjusted sampling distribution,

guided by Rk
out, is defined as:

P k
Gibbs(o) =

p̂θ⋆(o) exp
(
λRk

out(o)
)∑

o′∈Tall
p̂θ⋆(o′) exp

(
λRk

out(o
′)
) ∝ p̂θ⋆(o) exp

(
λRk

out(o)
)
. (31)

for a temperature parameter λ > 0, with normalization over Tall. The estimation of the Tall is
typically through Monte Carlo Rollout. This discrete distribution reweights the pretrained model’s
probabilities to favor trajectories with higher estimated rewards, consistent with traditional sam-
pling literature where the exponential form amplifies the influence of the reward signal. The form
P k
Gibbs(o) ∝ p̂θ⋆(o) exp(λRk

out(o)) mirrors soft policy sampling in RL and NLP literature (e.g.,
REINFORCE or importance sampling). λ controls the trade-off: large λ heavily biases toward
high-reward trajectories; small λ preserves the original distribution.

G.4 DISCUSSION ON BROADER FINETUNING SETTINGS

Nonlinear Logits. When the model’s logits deviate from the linear form in Eq.(2 and instead follow
the general parameterization of Eq.(90, i.e., p̂θ(· | x) = softmax(hθ(·,x)) for x ∈ {0, 1}|S|, the
fine-tuning dynamics become considerably more complex.

As noted in Remark 14, Lemma 7 depends on a set of extended conditions, notably the Parame-
ter Isolation condition (Eq.(109), which typically fails to hold in practice. In large language models
(LLMs), token representations are entangled via shared parameters across layers and positions, mak-
ing it impossible to isolate updates per token. This design is aligned with in-context learning Nichani
et al. (2024), where sequential dependencies are a fundamental modeling assumption.
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Why, then, is the linear model still meaningful? Our formulation models reasoning as a discrete
Markov chain—an abstraction used in several recent studies Xu et al. (2019); Sanford et al. (2024);
Abbe et al. (2024); Besta et al. (2024); Kim et al. (2025)—where the current state encodes all infor-
mation for current reasoning step. Thus, global token dependencies are captured in state transitions,
eliminating the need for positional entanglement. Prior work Nichani et al. (2024); Edelman et al.
(2024) has shown that transformers can successfully learn Markovian dynamics, and in our setting,
the linear softmax model is already overparameterized enough to capture the TMC structure.

To understand the impact of nonlinearity more concretely, we adopt a first-order approximation of
the logit update at transition ol → ol+1 following Proposition 1 in Ren & Sutherland (2025):

∆ log p̂θ(·|ol) = η[∇h(·,ol) log p̂θ(·|ol)]E{Kθ(ol,o
train
l )[∇h(·,ol)J

train(otrain
l+1,o

train
l )]}+O(η2∥∇θhθ(·,ol)∥op)

= η(I− 1p̂θ(·|ol)
⊤)E{Kθ(ol,o

train
l )[∇h(·,ol)J

train(otrain
l+1,o

train
l )]}+O(η2∥∇θhθ(·,ol)∥op)

where J train is the state-wise loss function (e.g. entropy loss or expected accuracy Q(otrain
l+1,o

train
l )),

Kθ is the empirical NTK (eNTK) defined as Kθ = (∇θhθ(·,ol)∇θhθ(·,ol)
⊤), and the expectation

is taken over question states q = o1 ∼ P k(Qk), training instances (Q,A) ∼ Dq,k
aq

, and sampled
CoTs otrain ∼ p̂θk(·|q). In contrast to the linear case where Kθ = olo

⊤
l , the nonlinear update

depends on the learned geometry of the representation space.

The squeezing effect occurs if

p̂θk(o′
l+1 | ol)

p̂θk(ol+1 | ol)
≤ 1 ⇐⇒ ∆ log p̂θ(o

′
l+1) ≥ ∆ log p̂θ(ol+1),

for o′l+1 ∈ Col and ol+1 ∈ Dol \ Col . The update difference satisfies:

∆ log p̂θ(o
′
l+1|ol)−∆ log p̂θ(ol+1|ol) = η[o′

l+1 − ol+1]
⊤Θ((I− 1p̂θ(·|ol)

⊤)E{Kθ(ol,o
train
l )[∇h(·,ol)J train(otrain

l+1,o
train
l )]}.

This shows that the relative update magnitudes—and thus the squeezing effect—depend on the
eNTK structure and how different CoT representations interact. If the non-linear representations
of hard and easy CoTs are highly correlated, their learning dynamics may reinforce or suppress each
other, analogous to the phenomenon in Ren & Sutherland (2025), where learning digit 4 accelerates
digit 9 but impedes unrelated classes. In our setting, this implies that whether the squeezing effect
persists under nonlinearity hinges on structural coupling between CoTs in the representation space.
In real-world, different reasoning patterns do have co-relations, and we left the broader investiga-
tions with certain assumptions as an important future direction.

DPO. Recall from Eq.(18 that the DPO objective is defined as:

JDPO(θ
k) :=

∑
(q,o+,o−)∈Dk

log σ

(
β ·
[
log

p̂θk(o+
2:L | o

+
1 )

p̂kold(o
+
2:L | o

+
1 )
− log

p̂θk(o−
2:L | o

−
1 )

p̂kold(o
−
2:L | o

−
1 )

])
,

where Rk
(Q,A)(o

+
L) = 1 > Rk

(Q,A)(o
−
L ) = 0. As discussed in Ren & Sutherland (2025), DPO can

exhibit a squeezing effect, and such dynamics might also apply under our TMC reasoning frame-
work. However, DPO is not a natural fit for our setting: we are concerned with correctness rather
than relative preferences over reasoning paths. As such, the data required to support DPO—pairs
(q,o+,o−) indicating relative preference—is not directly meaningful in our binary (0–1) reward for-
mulation. For this reason, while the objective form is stated for reference, we do not pursue further
theoretical development of DPO in this work. Nonetheless, it may serve as a promising direction
for future study of RLHF under the TMC framework with additional assumptions on preference
structure.

H DETAILS AND PROOFS OF TMDP

Remark 5. For the reader’s high-level understanding, we here list some scenarios where the com-
mon valid reasoning patterns do not suffice for specific instance.

• Problem type: Algebra (quadratic equations)
Common Valid CoT: applying factorization method to solve quadratic equations.
Scenario it is not Correct: when the quadratic polynomial is irreducible over integers (e.g.,
x2 + x+ 1 = 0), factorization fails.
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• Problem type: Geometry (triangle side relations)
Common Valid CoT: applying the Pythagorean theorem to relate side lengths of triangles.
Scenario it is not Correct: when the triangle is not right-angled, Pythagoras’ theorem does
not hold.

• Problem type: Probability (complex event calculation)
Common Valid CoT: applying the law of total probability to compute probabilities.
Scenario it is not Correct: when the partition of events is not mutually exclusive, leading
to double counting.

• Problem type: Number theory (modular arithmetic)
Common Valid CoT: reasoning with modular addition to check congruences.
Scenario it is not Correct: when an incorrect modulus is used (e.g., reducing modulo 6
instead of 7).

• Problem type: Combinatorics (counting problems)
Common Valid CoT: applying permutation and combination formulas.
Scenario it is not Correct: when order vs. unordered distinction is misapplied, such as
using combinations when permutations are required.

This view is supported by recent large-scale error analyses on real math datasets. Sun et al. (2025)
construct MWPES-300K (304,865 erroneous solutions across 15 LLMs and 4 datasets: SVAMP,
GSM8K, AQuA, MATH) and discover that (i) error patterns diversify with dataset difficulty (e.g.,
MATH consistently elicits more diverse error types than GSM8K/SVAMP), indicating that simple
“valid” patterns cease to be correct on harder instances; (ii) many failures arise from mis-applied
common patterns, such as Assumed independence of overlapping events (AIO), Misapplication of
probability formulas for independent events (MPI), Incorrect combinatorial principles (ICP), Unit/-
Conversion errors (UNE/FAC), or algebraic manipulation mistakes (MAM), showing that widely used
CoT routes are not instance-wise reliable; and (iii) Error-Aware Prompting (EAP) selectively diverts
models from their default CoT routes and yields sizable per-category gains on hard cases (e.g., AIO
+6.1pp, MPI +6.5pp, UNE +6.5pp, FAC +13.5pp), evidencing the value of rarer, problem-specific
reasoning paths over frequent but brittle patterns.

This aligns with recent findings Xiong et al. (2025); Li et al. (2025b); Ren & Sutherland (2025);
Wang et al. (2025) highlighting the role of reasoning diversity and entropy stability in post-training,
albeit evidence shows that post-training and inference-scaling do not explore beyond base model’s
tree-search knowledge Yue et al. (2025); AI et al. (2025); Gandhi et al. (2025).
Definition 4 (Formal Version of Def. 2). Let X = (Xt)t≥0 be a Tree-structured Markov Chain
(TMC) as defined in Def. 1, and let T be a collection of tasks. Each task k ∈ T specifies a set of
different question state Qk ⊂ S1, where each q ∈ Qk has a corresponding unique correct answer
akq under task k. For (q, akq ) ̸= (q′, akq′) ∈ Qk we have q ̸= q′, akq ̸= akq′ .

A state tuple (q, aq = akq , k) is called common if there exists at least one easy-to-reason chain of
thought (CoT) (o1, . . . , oL) from q to aq , and rare otherwise. Each such state tuple is associated
with a set G(k)q,aq ⊂ S1 × · · · × SL of valid CoTs.

1. All easy-to-reason CoTs from q to aq belong to G(k)q,aq ;

2. These CoTs are not valid for any task k′ ̸= k;

3. Hard-to-reason CoTs may or may not belong to G(k)q,aq ;

4. Every edge (ol → ol+1) with non-zero transition probability appears in some valid CoT
for some task;

5. Each task state tuple (q, aq, k) induces a QA distribution Dq,k
a , and the probability that

a valid CoT o1:L ∈ G(k)q,aq is correct for a concrete instance (Q,A) ∼ Dq,k
a is given by

pkacc(o):

pkacc(o) =

∏L−1
l=1 PTMC(ol+1 | ol)∑

o′1:L∈G(k)
q,aq

∏L−1
l=1 PTMC(o′l+1 | o′l)

. (32)
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Further, we assume that the correctness of any different o ̸= o′ ∈ G(k)q,aq for any instance
(Q,A) ∼ Dq,k

a is independent.

A task k is denoted rare if there is no valid easy-to-reason CoT in its G(k)q,aq for any question-answer
state pair (a, aq) ∈ Qk, and common other wise.
Remark 6. Here, the fifth condition is to provide merits for the probability distribution of the orig-
inal TMC X (PTMC) that models after real-world LLM. Typically, the predictive distribution ob-
tained from pretraining would match the “frequency” of whether a CoT be valid for certain task.
That is, through the 5-th condition, we justify why the original TMC X (PTMC) would be equipped
its distribution–driven by inherent chance to become a valid CoT for some reasoning task.

The independence assumption in the 5-th condition is for technical convenience. This defini-
tion would also induces instance (Q,A) under task k that has no correct CoT, with probability∏

o∈G(k)

o1,ak
o1

(1 − pkacc(o)). In real-world, the situation is far more complex, and we left the consid-

eration of theory that assumes the interaction and co-relationship of the correctness of CoTs with
different difficulty level for future work.

Some examples of Valid-not-Correct:

For some task tuple (o1, ao1 , k), denote G(k),easy
o1,ak

o1

⊆ G(k)
o1,ak

o1

as the subset of valid easy-to-reason

CoTs inside the valid CoTs for task k, and G(k),hard
o1,ak

o1

:= G(k)
o1,ak

o1

\ G(k),easy
o1,ak

o1

the subset of valid hard-

to-reason CoTs. For any sampled instance (Q,A) ∼ Dq,k
a , it has the following two scenarios:

• With probability
∏

o∈G(k),easy

o1,ak
o1

(1−pkacc(o)), the (Q,A) can only be correctly solved by some

valid hard-to-reason CoTs in G(k),hard
o1,ak

o1

.

• With probability 1−
∏

o∈G(k),easy

o1,ak
o1

(1− pkacc(o)), the (Q,A) can be correctly solved by some

easy-to-reason CoTs in G(k),easy
o1,ak

o1

.

This division of probability space would equip bounding the pass@K performance when the model
is only capable of all valid easy-to-reason CoTs. After the finetuned model is also capable of the

hard-to-reason CoTs in G̃(k),hard
o1,ak

o1

, we turn to be interested in the following division of probability
space to discuss the pass@K performance:

• With probability
∏

o∈G(k),easy

o1,ak
o1

∪ ˜G(k),hard

o1,ak
o1

(1− pkacc(o)), the (Q,A) can only be correctly solved

by some unlearned valid hard-to-reason CoTs in G(k),hard
o1,ak

o1

\ G̃(k),hard
o1,ak

o1

.

• With probability 1−
∏

o∈G(k),easy

o1,ak
o1

∪ ˜G(k),hard

o1,ak
o1

(1− pkacc(o)), the (Q,A) can be correctly solved

by some easy-to-reason CoTs or learned valid hard-to-reason CoTs in G(k),easy
o1,ak

o1

∪ G̃(k),hard
o1,ak

o1

.

We can characterize the breadth of tasks encoded in the topology of TMC as follows.
Corollary 6 (Cardinality of Multi-task TMC). Let M0 = |S1|, ML = |SL|, and for each q ∈ S1

define

A(q) =
{
a ∈ SL : ∃ easy-to-reason CoT q ⇝ a

}
, R(q) =

{
a ∈ SL : ∃ CoT q ⇝ a

}
.

By Def. 1, we have |A(q)| = nq = O(1), and nq ≥ 2 for all q. Define the set of all tasks as

T = { k : S1 → SL }, Tcommon = { k : k(q) ∈ A(q) for all q }, Trare = T \ Tcommon.

Then
|Tcommon| =

∏
q∈S1

|A(q)| = Θ(cM0), 2 ≤ c ≤ max
q

nq = O(1),
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and
|T | ≤

∏
q∈S1

|R(q)| ≤MM0

L , |Trare| = |T | −Θ(cM0).

In particular, although the total number of tasks grows exponentially in M0, the number of common
tasks is exponentially smaller whenever ML ≫ c.

Proof.Proof of Lemma 6. Each task k ∈ T is a function k : S1 → SL, so |T | ≤
∏

q∈S1
|R(q)|,

where R(q) contains all reachable answers (via any CoT) from q. The set Tcommon consists of tasks
for which k(q) ∈ A(q) for all q, so

|Tcommon| =
∏
q∈S1

|A(q)| =
∏
q∈S1

nq = Θ(cM0),

with c ∈ [2,maxq nq] = O(1). The rest follows directly by subtraction.
Lemma 2. Consider a TMC X = (Xt)t≥0 defined in Def. 1, and a specific task k ∈ T defined
in Def. 2. Then, for any fixed q = o1 ∈ S1 and corresponding correct answer a = oL ∈ SL,
with non-trivial probability, there exists at least one hard-to-reason CoT trajectory (i.e., a path
containing at least one sparse edge) from q to a. Specifically, the probability of having at least one
such hard-to-reason trajectory, denoted Pdeg(oL = a|o1 = q), is lower bounded as:

Pdeg(oL = a|o1 = q) ≥ Θ(ϵ ·ML−3) ≥ c ≥ Θ(M−2) > 0,

for some constant c, where ϵ = O(1/ML−2) is the transition probability of a sparse edge.

Proof of Lemma 2. Fix q = o1 and a = oL. Let Π be the set of all length-L trajectories τ =
(o1, . . . , oL) with oL = a. We split Π = Πnd ∪Πdeg according to whether τ has zero or at least one
sparse edge.

By Def. 1, there exist O(1) “easy-to-reason” trajectories from q ∈ S1 to a ∈ SL, each consist-
ing entirely of high-probability transitions Col . Each transition ol → ol+1 along these paths has
probability Θ(1/M). Therefore, for a trajectory of L− 1 steps, the total probability of such a path
is:

Phigh = O(1) ·
(
Θ

(
1

M

))L−1

= O
(
M−(L−1)

)
.

Similarly, as the number of hard-to-reason CoT is below Θ(M), given that Psparse ≤ Θ(1/ML−2),
we conclude the total probability by union bound PTMC(oL = a | o1 = q) = Θ(M−(L−1)).

Theorem 7 (Intrinsic Properties of Multi-task TMC). Let X = (Xt)t≥0 be a Tree-structured
Markov Chain (TMC) and T a set of tasks, per defined in Def. 1 and 2.

1. (Task Interference) Let tasks k, k′ ∈ T share at least one question state q ∈ S1 or answer
state a ∈ SL, with distinct valid QA pairs (q, aq) ∈ Qk and (q′, aq′) ∈ Qk′ . Suppose the
transition probabilities along edges in G(k)q,aq are amplified such that the TMC reaches aq

with probability 1 − δ (where δ = o(M−L) << 1) via valid CoTs in G(k)q,aq . Then for all

shared q or a, every originally easy-to-reason CoT in G(k
′)

q′,aq′
must satisfy:

PTMC(ol+1|ol) = o(1/M2) ∃(ol → ol+1) ∈ τ and τ ∈ G(k
′)

q′,aq′
,

i.e., all such CoTs degenerate into hard-to-reason paths. Similarly, for any task k̂ ̸= k ∈ T
whose valid CoT set G(k̂)q̂,aq̂

has at least one easy-to-reason CoT ô sharing some transitions

ôl → ôl+1 with the CoTs in G(k)q,aq . Then ô becomes hard-to-reason.

2. (Correctness Bottleneck) Suppose the probability mass of valid hard-to-reason CoTs trav-
eling from q to aq for task k in the original TMC X (PTMC) is ∆.
Then suppose a model p̂ satisfies:

• The total probability mass from q to a is 1− C.
• The fraction of easy-to-reason CoTs among CoTs traveling from q to aq is 1− ϵ.
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Then the expected correctness over the QA distribution Dq,k
aq

is upper bounded by:

Rk
out

p̂
(o) ≤ Θ((1− C)[(1− ϵ)

1

1 + ∆ML−1
+ ϵ

∆ML−1

1 + ∆ML−1
])

Besides, we denote the pass@K performance of model p̂ for task tuple (q, aq, k) (the prob-
ability that at least succeed once among K trials) as Pass@Kp̂

q,k:

Pass@Kp̂
q,k := Pr

{oi}i∈[K]∼p̂(O|q)
(Q,A)∼Dq,k

aq

[

K⋃
i=1

1
(
oi ∈ G(k)Q,A

)
]. (33)

When C = 0, Pass@Kp̂
q,k is upper bounded by

Pass@Kp̂
q,k ≤ Θ([(

∆ML−1

1 + ∆ML−1
)nq (1− (1− ε)K)])︸ ︷︷ ︸

upper bound of pass@K of instance that cannot be solved by easy CoTs

+ Θ([(1− (
∆ML−1

1 + ∆ML−1
)nq )(1− εK)])︸ ︷︷ ︸

upper bound of pass@K of instance that can be solved by some easy CoT

).

If

ε = o(
K

√
1− CErr/(

∆ML−1

1 + ∆ML−1
)nq ))

for some CErr ∈ (0, ( ∆ML−1

1+∆ML−1 )
nq ), then we have the pass@K performance upper

bounded by

1− Ω(CErr) = o(1),

with constant error Ω(CErr) = Θ(1).
When C = ϵ = 0, we have

Rk
out

p̂
(o) ≤ Θ(

1

1 +∆ML−1
)

And the pass@K performance is upper bounded by

Pass@Kp̂
q,k ≤ Θ(1− (

∆ML−1

1 + ∆ML−1
)nq ).

Proof.Proof of Thm. 7.

1. non-negligible decay of transitions for other tasks when overfit a target task.

Fix a shared question state q ∈ S1. By Def. 2(ii), the easy-to-reason CoTs in G(k)q,aq and G(k
′)

q,aq′ are
disjoint. The amplification condition implies:∑

τ∈G(k)
q,aq

P(τ |q) ≥ 1− δ = 1− o(M−L).

Since
∑

τ∈all CoTs from q P(τ |q) = 1, the remaining CoTs (including those in G(k
′)

q,aq′ ) must satisfy:∑
τ∈G(k′)

q,a
q′

P(τ |q) ≤ δ = o(M−L) << 1.

For any easy-to-reason CoT τ = (q, o2, . . . , oL = aq′) ∈ G(k
′)

q,aq′ , the original transition probabilities
satisfy PTMC(ol+1|ol) = Θ(1/M) for all edges. However, since the total probability mass for τ is
now o(M−L), we have:

L−1∏
l=1

PTMC(ol+1|ol) = o(M−L).
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Give PTMC(ol+1|ol) ≤ Θ(1/M), this forces at least one transition term to decay to o(1/M2).
Otherwise, if any edge retained PTMC(ol+1|ol) = Θ(1/M), the product would be Θ(M−(L−1)),
contradicting P(τ |q) = o(M−L).

For a shared answer state a ∈ SL, as well as ô in othe task sharing some transition with CoTs in
G(k)q,aq , the same logic applies.

2. non-negligible error when only favoring easy-to-learn CoTs.

We have the total mass of the valid CoTs for task k in the original X as

Z ≥ Θ(
1

ML−1
)︸ ︷︷ ︸

Zeasy

+ ∆︸︷︷︸
Zhard

By Def. 2, where the expected correctness over a QA sample is proportion to the CoT’s likelihood in
the original X , we can combine the components to upper bound the expected correctness:

Rk
out

p̂
(o) = E(Q,A)∼Dq,k

aq

o∼p̂(·|q)

[1(o ∈ G(k)Q,A)] ≤Θ((1− C)[(1− ϵ)
1

1 + ∆ML−1
+ ϵ

∆ML−1

1 + ∆ML−1
])

Especially, by the first discussion of division of probability space in Remark 6, it is direct to deduce
that the probability that one specific (Q,A) ∼ Dq,k

aq
cannot be solved by every easy-to-reason CoT

is ∏
o∈G(k),easy

o1,ak
o1

(1− pkacc(o)) = Θ((1− 1

1 + ∆ML−1
)nq ) = Θ((

∆ML−1

1 + ∆ML−1
)nq )

When facing these instances, we have the probability of success to be at most ε when C = 0.

Besides, the probability that (Q,A) ∼ Dq,k
aq

can be solved by some easy-to-reason CoT is

1−Θ((
∆ML−1

1 + ∆ML−1
)nq )

When facing these instances, we have the probability of success to be at most 1− ε when C = 0.

Therefore, collaborating with nq = O(1),∀q ∈ S1, the pass@K performance (the probability that
at least succeed once among K trials) is upper bounded by

Θ([(
∆ML−1

1 + ∆ML−1
)nq (1− (1− ε)K)])︸ ︷︷ ︸

upper bound of pass@K of instance that cannot be solved by easy CoTs

+ Θ([(1− (
∆ML−1

1 + ∆ML−1
)nq )(1− εK)])︸ ︷︷ ︸

upper bound of pass@K of instance that can be solved by some easy CoT

).

If

ε = o(
K

√
1− CErr/(

∆ML−1

1 + ∆ML−1
)nq )),

for some CErr ∈ (0, ( ∆ML−1

1+∆ML−1 )
nq ), then we have the pass@K performance upper bounded by

1− Ω(CErr) with constant error Θ(CErr) = Θ(1).

When C = ϵ = 0, we have Rk
out(o) ≤ Θ( 1

1+∆ML−1 ). The pass@K performance is upper bounded
by

Θ(1− (
∆ML−1

1 + ∆ML−1
)nq ).

Lemma 3 (Formal Version of Prop. 1). Let θ⋆ be the base model in Eq.(2 that exact predicts the
distribution of a Multi-task TMC as in Def. 1 and 2, fix a common task state tuple (q, a, k). For any
valid easy-to-reason CoT oeasy and hard-to-learn CoT ohard that share the states ol, and deviate at the
l+1 layer (i.e., oeasy

l = ohard
l = ol, o

easy
l+1 ̸= ohard

l+1), if the total number of valid hard-to-reason CoTs is
bounded by Θ(M), we have Ap̂θ⋆ ,k

l+1 (ol,o
easy
l+1) ≥ c1 > 0, Ap̂θ⋆ ,k

l+1 (ol,o
hard
l+1) ≤ −c2 < 0,∀l ∈ [L−1]

for some constants c1, c2 > 0.
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Proof of Lemma 3.

First, it is direct to see that given any valid easy-to-learn CoT oeasy ∈ G(k)q,aq and hard-to-learn CoT
ohard ∈ G(k)q,aq for task tuple (q, a, k), we have∏L−1

l=1 PTMC(o
easy
l+1 | ol)∑

o′1:L∈G(k)
q,aq

∏L−1
l=1 PTMC(o′l+1 | o′l)

/

∏L−1
l=1 PTMC(o

hard
l+1 | ol)∑

o′1:L∈G(k)
q,aq

∏L−1
l=1 PTMC(o′l+1 | o′l)

≥ Θ(M−1)

o(M−1)
> Ω(M),

(34)
by Eq.(32).

That is, the expected accuracy of oeasy on any instance from Dq,k
aq

, denoted as pkacc(o
easy) is larger

than the ohard, denoted as pkacc(o
hard), with a ratio no less than Θ(M).

Fix l and ol. Write

Qp̂θ⋆ ,k(ol,o
easy
l+1) = Eq=o1∼Pk(Qk)

o∼p̂θ⋆ (·|o1)

[1(oL = aq)p
k
acc(o) |

ol=ol
ol+1=oeasy

l+1
],

and
V p̂θ⋆ ,k(ol) =

∑
ol+1∈Sl+1

p̂θ⋆(ol+1 | ol)Q
p̂θ⋆ ,k(ol,ol+1).

By definition and Lemma 2 there are Θ(1) length-(L − l) continuations each with probability
Θ(M−(L−l)). Hence

Qp̂θ⋆ ,k(ol,o
easy
l+1) = Θ

(
M−(L−l)E[pkacc(o) |

ol=ol
ol+1=oeasy

l+1
]
)
,

Also we see oeasy
l+1 ∈ Col . Then Pr[oeasy

l+1 | ol] = Θ(1/M), thus

V p̂θ⋆ ,k(ol) ≥ Θ
(
M−(L−l+1)E[pkacc(o) |

ol=ol
ol+1=oeasy

l+1
]
)
.

Therefore, we have

Ap̂θ,k
l+1 (ol,o

easy
l+1) = Qp̂θ⋆ ,k(ol,o

easy
l+1)− V p̂θ⋆ ,k(ol) ≥ Θ

(
M−(L−l+1)E[pkacc(o) |

ol=ol
ol+1=oeasy

l+1
]
)
> 0

ohard
l+1 /∈ Col . Then Pr[ohard

l+1 | ol] = o(M−2), and the best possible continuations contribute at most
Θ(M−(L−l−1)) each. Thus

Qp̂θ⋆ ,k(ol,o
hard
l+1) ≤ o(M−2) ·O

(
M−(L−l−1)

)
E[pkacc(o) |

ol=ol
ol+1=ohard

l+1
]

= o
(
M−(L−l+1)E[pkacc(o) |

ol=ol
ol+1=ohard

l+1
]
)
.

Therefore

Ap̂θ,k
l+1 (ol,o

hard
l+1) = Qp̂θ,k

l+1 (ol,o
hard
l+1)− V p̂θ⋆ ,k(ol)

= o
(
M−(L−l+1)E[pkacc(o) |

ol=ol
ol+1=ohard

l+1
]
)
−Θ

(
M−(L−l+1)E[pkacc(o) |

ol=ol
ol+1=oeasy

l+1
]
)

< 0.

Given that for a chosen TMC PTMC(· | ·) = p̂θ⋆(·|·), the E[pkacc(o) |
ol=ol

ol+1=oeasy
l+1

],E[pkacc(o) |
ol=ol

ol+1=ohard
l+1

] are constants. Therefore, by choosing some positive constants c1 = Θ(M−(L+1−l)), c2 =

Θ(M−(L+1−l)) to bound the advantages, we complete the proof.

I DETAILS AND PROOFS OF PRETRAINING

Following Kim et al. (2025), we could have the following theorem.
Theorem 8. Let X0 ∼ Unif(S \ SL) and X1 ∼ P(·|X0) be random samples from the TMC X in
Def. 1. Let X0 ∼ Unif(S \ SL) and X1 ∼ P(·|X0) be random samples from the TMC X defined in
Def. 1. For i ∈ Sl, define:

Dol = {ol+1 : PTMC(ol+1|ol) > 0}, c = min
ol+1∈Dol

PTMC(ol+1|ol) > 0,

then the softmax predictor trained via Algorithm 1 satisfies:
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Algorithm 1 Pretraining of Foundation Model Kim et al. (2025)

1: set θ(0) = 0, η = O(M),
2: T1 = Õ(M2c−2), T2 = Õ(Mc−2)
3: for t = 1, · · · , T1 do
4: θ(t) = θ(t−1) + η∇EX0,X1

[log p̂θ(t−1)(X1|X0)]
5: end for
6: θ

(T1)
ij ← −∞ if p̂θ(ol+1|ol)(T1) < cthres {thresholding}

7: for t− T1 = 1, · · · , T2 do
8: θ(t) = θ(t−1) + η∇EX0,X1 [log p̂θ(t−1)(X1|X0)]
9: end for

1. After T iterations with η = Θ(M), the uniform convergence rate is:

sup
l∈[L−1],ol∈Sl

ol+1∈Sl+1

|p̂θ(t)(ol+1|ol)− PTMC(ol+1|ol)| ≤ Õ

(√
M

T

)
(35)

where Õ hides log(TMc−1) factors.

2. For threshold cthres = Θ(1), after T1 = Θ̃(M2c−2) steps:{
p̂θ(ol+1|ol) = 0 if PTMC(ol+1|ol) = 0

PTMC(ol+1|ol)− Õ(c) ≤ p̂θ(ol+1|ol) ≤ PTMC(ol+1|ol) + Õ(c) otherwise
(36)

3. Post-thresholding, linear convergence occurs:

sup
(ol,ol+1)∈
supp(P)

|p̂θ(T1+T )(ol+1|ol)− PTMC(ol+1|ol)| ≤ Õ(e−Ω(c2T )) (37)

Remark 9. The logarithmic factors in Õ terms explicitly track:

• log(T1) = log(M2c−2) for thresholding

• log(c−1) for initialization dependence

• logM for high-probability transition

Since we are considering a vanilla regression setting, the proof is standard following Kim et al.
(2025); Ji & Telgarsky (2019). For the convenience of readers, we provide the proof here.

Proof.We analyze each part of Thm. 8 systematically.

Proof of Item 1: Uniform Convergence. Let El,l+1 = {(ol, ol+1) : ol ∈ Sl, ol+1 ∈ Sl+1} de-
note all potential transitions. For each (ol, ol+1) ∈ El,l+1, define the parameter error ∆

(t)
ol,ol+1 =

p̂θ(t)(ol+1|ol)− PTMC(ol+1|ol). For a given state ol, the cross-entropy loss is:

Lol(θ) = −
∑

ol+1∈Sl+1

PTMC(ol+1|ol) log p̂θ(ol+1|ol)

where the model’s predicted probability is:

p̂θ(ol+1|ol) =
eθol,ol+1∑

o′l+1
e
θol,o

′
l+1

Similar to Lemma 6, the gradient component for parameter θol,ol+1
is:

∇θol,ol+1
Lol = −

∑
o′l+1

PTMC(o
′
l+1|ol)∇θol,ol+1

log p̂θ(o
′
l+1|ol) (38)
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= −
∑
o′l+1

PTMC(o
′
l+1|ol)

∇θol,ol+1
p̂θ(o

′
l+1|ol)

p̂θ(o′
l+1|ol)

(39)

= −PTMC(ol+1|ol)
∇p̂θ(ol+1|ol)

p̂θ(ol+1|ol)
−

∑
o′l+1 ̸=ol+1

PTMC(o
′
l+1|ol)

∇p̂θ(o′
l+1|ol)

p̂θ(o′
l+1|ol)

(40)

Using the softmax derivative property:

∇θol,ol+1
p̂θ(o

′
l+1|ol) =

{
p̂θ(ol+1|ol)(1− p̂θ(ol+1|ol)) if o′l+1 = ol+1

−p̂θ(ol+1|ol)p̂θ(o
′
l+1|ol) if o′l+1 ̸= ol+1

(41)

Substituting these derivatives yields:

∇θol,ol+1
Lol = −PTMC(ol+1|ol)(1− p̂θ(ol+1|ol)) +

∑
o′l+1 ̸=ol+1

PTMC(o
′
l+1|ol)p̂θ(ol+1|ol) (42)

= −PTMC(ol+1|ol) + p̂θ(ol+1|ol)
∑
o′l+1

PTMC(o
′
l+1|ol)︸ ︷︷ ︸

=1

(43)

= p̂θ(ol+1|ol)− PTMC(ol+1|ol) (44)
Then the gradient descent update rule is:

θ(t)
ol,ol+1

= θ(t−1)
ol,ol+1

+ η (PTMC(ol+1|ol)− p̂θ(t−1)(ol+1|ol))

This corresponds to the classical softmax parameter updates. The key challenge lies in the hetero-
geneous transition probabilities:

• For ol+1 ∈ Col : PTMC(ol+1|ol) = Θ(1/M), with |Col | ≤M

• For ol+1 ∈ Dol \ Col : PTMC(ol+1|ol) ≥ c but o(1/M)

• For ol+1 /∈ Dol : PTMC(ol+1|ol) = 0

Phase 1 - High-probability edges: Let M0 = |S1| = Θ(M). The initial parameters θ(0) = 0 yield
uniform distribution:

p̂(0)(ol+1|ol) =
1

|Sl+1|
≤ 1

M0
= O(1/M)

For ol+1 ∈ Col , the initial error is Θ(1/M)− O(1/M) = Θ(1/M). Each gradient step updates p̂
by η ·Θ(1/M). To reach ϵ-accuracy for these edges, we need T ≥ Ω(M2/ϵ2).

Phase 2 - Low-probability edges: For ol+1 ∈ Dol \ Col , the signal-to-noise ratio is weaker. The
gradient signal is PTMC(ol+1|ol) − p̂ ≥ c − O(1/M). Using the regret bound for online gradient
descent (Hazan, 2023, Theorem 3.1):

T∑
t=1

(p̂(t) − P)2 ≤ O

(
log |Sl+1|

η
+ ηTc2

)
Optimizing η yields T ≥ Ω̃(M/(c2ϵ2)) for ϵ-accuracy. Combining both phases via union bound
over O(M) edges per layer and O(L) = O(1) layers gives:

sup |∆(T )| ≤ O

(√
M log T

T
· log

(
TM

c

))
This matches Equation equation 35 after constant absorption.

Proof of Item 2: Support Recovery via Thresholding. After T1 = Õ(KM2c−2) iterations:
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• Zero-probability edges: For ol+1 /∈ Dol , the true probability P = 0. The empirical estimate
satisfies:

p̂(T1)(ol+1|ol) ≤

√
2 log(1/δ)

T1
+O

(
1

M

)
via Azuma’s inequality for martingales. Setting δ = cthresc and T1 ≥ Ω̃(M2c−2) ensures
p̂ ≤ cthresc.

• Non-zero edges: From Item 1, for ol+1 ∈ Dol :

|p̂(T1) − P| ≤ O

(√
M

T1
log T1

)
= o(c)

Thus p̂(T1) ≥ P− o(c) ≥ c− o(c) > cthresc for proper cthres < 1.

Thresholding at cthresc thus exactly recovers the support while maintaining Equation equation 36.

Proof of Item 3: Linear Convergence. Post-thresholding, the parameter space restricts to Dol
edges. The Hessian of Lpre becomes:

∇2Lpre(θ)(ol,ol+1),(ol,o′l+1)
= Cov(p̂θ(ol+1|ol), p̂θ(o

′
l+1|ol))

Under the TMC structure, the Fisher information matrix I(θ) satisfies λmin(I) ≥ Ω(c2) since all
active transitions have probability ≥ c. By (Ji & Telgarsky, 2019, Theorem 4.1), gradient descent
on strongly convex objectives achieves:

∥∆(T1+t)∥2 ≤ exp(−Ω(c2t))∥∆(T1)∥2

Given ∥∆(T1)∥ = O(
√
M/T1 log T1) = O(log c−1) from Item 2, we obtain Equation equation 37.

J DETAILS AND PROOFS OF RLVR FINETUNING

During the gradient update, for any ol ∈ Sl, l ∈ [L − 1] that appears as the transition in the valid
CoT set ∪q∈Qk

G(k)q,aq for task k ∈ T , we define the following notations (summarized in Table 4)

• I(k)ol+1,ol ⊆ ∪q∈Qk
G(k)q,aq as the subset of valid CoTs satisfies ∀oi ∈ I(k)ol+1,ol , oil = ol, o

i
l+1 =

ol+1.

• S(k)ol := {ol+1 ∈ Sl | I(k)ol+1,ol ̸= ∅} ⊆ Sl+1 as the subset of l + 1-th layer states collecting
the states such that for any valid CoT o for task k passing o′l, ol+1 ∈ S(k)o′l

.

• S(k),easy
ol ⊆ S(k)ol contains the subset of l + 1-th layer’s states in S(k)ol passed by at least one

easy-to-reason CoTs (in the original TMC PTMC) for task k, and S(k),hard
ol := S(k)ol \S

(k),easy
ol

contains the l + 1-th layer’s states only passed by valid hard-to-reason CoTs for task k.

• G(k),easy
o1,ak

o1

⊆ G(k)
o1,ak

o1

as the subset of valid easy-to-reason CoTs inside the valid CoTs for

task k, and G(k),hard
o1,ak

o1

:= G(k)
o1,ak

o1

\ G(k),easy
o1,ak

o1

the subset of valid hard-to-reason CoTs.

• θk,(t) be the finetuned model for the task k at post-training iteration t

• For any CoT o ∈ G(k)
o1,ak

o1

, the probability that o is correct for a sampled instance

(Q,A) ∼ Do1,k
ao1

is given by pkacc(o), which, per Condition (iv) in Def. 2, is proportional to

its likelihood among G(k)o1,ao1
:

pkacc(o) =

∏L−1
l=1 PTMC(ol+1 | ol)∑

o′1:L∈G(k)
o1,ao1

∏L−1
l=1 PTMC(o′l+1 | o′l)

,
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where PTMC(· | ol) = p̂θ⋆(· | ol), ol ∈ Sl, is the transition kernel of our Multi-task TMC.

• The gradient update objectives JREINFORCE(θ
k) and JRAFT(θ

k) represent

JREINFORCE(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k
ao1

,o2:L∼p̂k

θk (O|o1)

[
Rk

(Q,A)(o)
]
,

JRAFT(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k
ao1

,o2:L∼p̂k

θk (O|o1)[
L−1∑
l=1

log p̂θk(ol+1|ol)R
k
(Q,A)(o)

]
.

(45)

• The objective of RL-rej JRein−rej(θ
k), in our case, is training using the REINFORCE

objective on a online distorted data distribution Do1,k
rej,(t), formally

JRein−rej(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k

rej,(t)
,o2:L∼p̂k

θk (O|o1)

[
Rk

(Q,A)(o)
]
. (46)

Here, Do1,k
rej,(t) := {(Q,A) ∼ Do1,k

ao1
| Pro∼p̂

θk,(t) (·|o1)[
⋃G

i=1 1
(
oi /∈ G(k)Q,A

)
] = Θ(1)},

where G = O(1) is the (offset) time of parallel experiments. That is, the algorithm rejects
samples with Pro∼p̂

θk,(t) (·|o1)[
⋂G

i=1 1
(
oi ∈ G(k)Q,A

)
= Θ(1), which represents instances

that the model confidently predicts its correct CoTs of G times in parallel. Therefore,
idealistically, instance sampled from Do1,k

rej,(t) would have some correct CoTs that is not
well-learned by the current model θk,(t).

Theorem 10 (Squeezing Effect and Merits of Rejecting Correct (Full Version of Thm. 2 and Cor. 2)).
Let θ⋆ be the base model in Eq.(2 that exact predicts the distribution of a Multi-task TMC as in Def. 1
and 2, and θk the current model to be finetuned from θ⋆ for task k ∈ T . Denote the task tuples of
task k ∈ T as (q, akq , k), where akq ∈ SL is the sole answer state under task k. Assume for each
(o1, ao1 , k) under task k, the number of hard-to-reason CoTs from o1 to ao1 is bounded by O(M).
Let the question distribution during finetuning of task k be P k(Qk) (i.e., o1 ∼ P k(Qk)). Then,
when finetuning the base model using REINFORCE and RAFT objectives in Eq.(45), we have

1. Squeezing Effect & Difference of Logit Update. For any different state pair ohard
l+1 ̸= oeasy

l+1 ∈
S(k)ol denoting two l + 1-th states in some valid hard-to-reason and easy-to-reason CoT
sharing the l-th state ol for task k, we have

∆θk,REINFORCE
oeasy
l+1,ol

:= η∇θk

o
easy
l+1

,ol

JREINFORCE(θ
k) > 0,

∆θk,REINFORCE

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JREINFORCE(θ
k) < 0.

∆θk,RAFT
oeasy
l+1,ol

:= η∇θk,RAFT

o
easy
l+1

,ol

JRAFT(θ
k) > 0,

∆θk,RAFT

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JRAFT(θ
k) < 0.

(47)

In addition, we have the difference of the logits’ update ∆hθk(ohard
l+1,ol)−∆hθk(oeasy

l+1,ol)
in Reinforce as:

∆θk,REINFORCE

ohard
l+1,ol

−∆θk,REINFORCE
oeasy
l+1,ol

<η[p̂θk(ohard
l+1|ol)− p̂θk(oeasy

l+1|ol)] Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]

· [E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)

· E[pkacc(õ) |
õl=ol

õL=ak
õ1

õl+1=o′l+1

])]

<0.

(48)
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Also, for RAFT, the difference of logits update ∆hθk(ohard
l+1,ol)−∆hθk(oeasy

l+1,ol) is

∆θk,RAFT

ohard
l+1,ol

−∆θk,RAFT
oeasy
l+1,ol

<η[p̂θk(ohard
l+1|ol)(1 + log p̂θk(ohard

l+1|ol))− p̂θk(oeasy
l+1|ol)(1 + log p̂θk(oeasy

l+1|ol))]

·

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])


· Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]
<0.

(49)

2. Convergence of Finetuning & Constant Error of Pass@K. For ∀ϵ ∈ (0, 1/2), there exists
T ≥ Ω(η−1L2ML log(ML/ϵ)), for t ≥ T , the probability that p̂θk,(t)(·|o1) (trained by
REINFORCE or RAFT) reach the ao1 is converged:

Pr
o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 ] ≥ Pr
o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 , o
′ ∈ G(k),easy

o1,ak
o1

] ≥ 1− o(ϵ). (50)

Then, suggest the probability mass of valid hard-to-reason CoTs traveling from some o1 ∼
P (Qk) to ao1 for task k in the original TMC X (PTMC) is ∆. Then it holds that

Rex
p̂
θk,(t)

o1,k
(o) ≤ Θ((1− ϵ)

1

1 + ∆ML−1
+ ϵ

∆ML−1

1 + ∆ML−1
). (51)

Further, the pass@K performance Pass@Kp̂
q,k := Pr{oi}i∈[K]∼p̂(O|q)

(Q,A)∼Dq,k
aq

[
⋃K

i=1 1
(
oi ∈

G(k)Q,A

)
] is upper bounded by

Pass@K
p̂
θk,(t)

o1,k
≤ Θ([(

∆ML−1

1 + ∆ML−1
)nq (1− (1− ϵ)K)])︸ ︷︷ ︸

Solved by hard CoTs

+Θ([(1− (
∆ML−1

1 + ∆ML−1
)nq )(1− ϵK)])︸ ︷︷ ︸

Solved by some easy CoTs

).

(52)

When ϵ = o( K

√
1− CErr/(

∆ML−1

1+∆ML−1 )nq )) → 0, the pass@K performance suffer from

constant error: 1− Pass@K
p̂
θk,(t)

o1,k
= Θ(1).

3. Curriculum Learning of RL-rej. For any ϵ ∈ (0, 1/2), suppose setting G = 1 inDo1,k
rej,(t)

(Eq.(46) excludes all (Q,A) pairs containing correct CoTs that the current model p̂θk,(t)

predicts with non-trivial probability Θ((1− ϵ)/M). Then, optimizing Eq.(46 via RL-rej
leads to the following:

(i) The model first learns the easy-to-reason CoTs within Θ(η−1L2ML log(ML/ϵ)) steps.

(ii) Once its predictive mass over G(k),easy
o1,ao1

reaches Θ((1−ϵ)/M), learning begins on sparse

edges in S(k),hard
ol = S(k)ol \ S

(k),easy
ol . Hard-to-reason CoTs in G(k),hard

o1,ao1
are progressively

learned, with those sharing more edges with G(k),easy
o1,ao1

being learned earlier.

(iii) Let ∆ denote the total probability mass of valid hard-to-reason CoTs from o1 to ao1 in
the original TMC X (under PTMC). Suppose after T2 = Ω(η−1L2ML log(ML/ϵ)), there
are n′o1 hard-to-reason CoTs each with likelihood ratio scale Θ(ρ) < 1 in the G(k)o1,ao1

have
been well-learned with predictive probability Θ((1 − ϵ)/M). Then the pass@K is at the
scale:

Pass@K
p̂
θk,(t)

o1,k
=Θ

[
(1− ρ)n

′
o1 (

∆ML−1

1 + ∆ML−1
)no1

(
1− (1− ϵ)K

)]
︸ ︷︷ ︸

instances unsolvable by learned CoTs

+Θ

[(
1− (1− ρ)n

′
o1 (

∆ML−1

1 + ∆ML−1
)no1

)
(1− ϵK)

]
︸ ︷︷ ︸

instances solvable by some learned CoT

.

This bound tends to 1 as (1 − ρ)n
′
o1 → 0 and ϵ → 0, showing the superiority of RL-rej

when the probability mass ∆ is non-negligible.
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Proof.Proof of Thm. 10. In our proofs, we first prove the results of REINFORCE, and the results of
RAFT follows directly with a more serious of squeezing effect.

Proof of Item 1: Difference of Logit Update.

Recall that by Lemma 9, we have

∇θkJREINFORCE(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
,

∇θkJRAFT(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (1 + log p̂θk(ol+1|ol))(eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
.

(53)

Per conditions in our item, there are valid easy-to-reason and hard-to-reason CoTs passing ol.

Collaborating Eq.(53) with definitions in Item 1 and base model formula in Eq.(2), we have
∇θk

o
easy
l+1

,ol

JREINFORCE(θ
k) = E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rexo1,k(o) · (1(o ∈ I

(k)

oeasy
l+1,ol

)

−
∑

o′l+1∈S(k)
ol

1(o ∈ I(k)o′l+1,ol
)p̂θk(oeasy

l+1|ol))
]

= E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
1(oL = ako1)(p

k
acc(o)1(o ∈ I

(k)

oeasy
l+1,ol

)

− pkacc(o)
∑

o′l+1∈S(k)
ol

1(o ∈ I(k)o′l+1,ol
)p̂θk(oeasy

l+1|ol)
]

= Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol,o

′
L = ako′1

]
[p̂θk(oeasy

l+1|ol)E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

]p̂θk(oeasy
l+1|ol))]

= Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol,o

′
L = ako′1

]
p̂θk(oeasy

l+1|ol)
[
E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])
]

(54)

where the first equality is by Eq. (124) in Lemma 9; the second equality is by the definition of
Rk

out(·), Condition (iv) in Def. 2 and pkacc(o) in Eq.(32); the third equality is by the condition in
our item that ol ∈ Sl, l ∈ [L − 1] appears as the transition in the valid CoT set as well as the
definition of I(k)ol+1,ol . Given that for different easy-to-reason CoT sharing ol, the p̂θk(oeasy

l+1|ol) is
within the same range, starting from the scale Θ(M−1). Therefore, it is safe to conclude that
∇θk

o
easy
l+1

,ol

JREINFORCE(θ
k) > 0.

Similarly, we have

∇θk

ohard
l+1

,ol

JREINFORCE(θ
k) = Pr

o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol,o

′
L = ako′1

]
p̂θk(ohard

l+1|ol)
[
E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=ohard
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])
]

(55)

Notably, we have the condition in our item that ol ∈ Sl, l ∈ [L− 1] appears as the transition in the
valid CoT set. Then, by Eq.(32) as well as the low-probability nature of the sparse edge in Def. 1,
similar to Eq.(34) we see that

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

] > Ω(ME[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=ohard
l+1

]) (56)

Therefore, given that nq = O(1) in Def. 1 as well as p̂θk(oeasy
l+1|ol) ≥ Θ(M−1), we have

p̂θk(oeasy
l+1|ol)E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

] > Ω(E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=ohard
l+1

]).
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That is, the rightest term in Eq.(55) is strictly lower than 0, making∇θk

ohard
l+1

,ol

JREINFORCE(θ
k) < 0,

a serious squeezing effect such that ∆θk,REINFORCE

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JREINFORCE(θ
k) < 0. The

proof of RAFT is similar–the only difference in Eq.(53) is the ultra (1 + log p̂θk(ol+1|ol)), where
the easy-to-reason’s value is larger than the hard-to-reason ones due to the monotonicity of log(·).
Also, noted that 1+ log p̂θk(ol+1|ol) ∈ (1+ log c, 1), which could be scaling as O(1) such that our
results of REINFORCE directly applies.

Therefore, it holds that

∇θk

ohard
l+1

,ol

JREINFORCE(θ
k)−∇θk

o
easy
l+1

,ol

JREINFORCE(θ
k) = Pr

o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]{
p̂θk(ohard

l+1|ol)

·
[
E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=ohard
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])
]

− p̂θk(oeasy
l+1|ol)

[
E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])
]}

=(Ap̂
θk ,k(ol,o

hard
l+1)−Ap̂

θk ,k(ol,o
easy
l+1))

+ V p̂
θk ,k(ol)(p̂θk(ohard

l+1|ol)− p̂θk(oeasy
l+1|ol))

< Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]
· [p̂θk(ohard

l+1|ol)− p̂θk(oeasy
l+1|ol)][

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]

− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])
]

(57)

Then, during every update, it holds that ∆θk,REINFORCE
ol+1,ol

:= η∇θk
ol+1,ol

JREINFORCE(θ
k) with η

as the step size. Then we have

∆θk,REINFORCE

ohard
l+1,ol

−∆θk,REINFORCE
oeasy
l+1,ol

< η[p̂θk(ohard
l+1|ol)− p̂θk(oeasy

l+1|ol)] · Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]

·

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])


Similarly,

∆θk,RAFT

ohard
l+1,ol

−∆θk,RAFT
oeasy
l+1,ol

< η[p̂θk(ohard
l+1|ol)(1 + log p̂θk(ohard

l+1|ol))− p̂θk(oeasy
l+1|ol)(1 + log p̂θk(oeasy

l+1|ol))]

· Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]

·

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])


Proof of Item 2: Convergence and Failure. Per conditions in our item, there are valid easy-to-
reason and hard-to-reason CoTs passing ol. Recall that θk,(0) = θ⋆ at the iteration t = 0 as the
base model to be finetuned, θk,(t) be the finetuned model for the task k at post-training iteration t.
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For any w ∈ (cw/L
2, o(1/L)) for some small positive constant cw > 0, we consider the finetuning

dynamics during:∑
o′l+1∈S(k),hard

ol

p̂θk,(t)(o′
l+1|ol) ≤ w,

∑
o′l+1∈S(k),easy

ol

p̂θk,(t)(o′
l+1|ol) ≥ 1− w. (58)

Then for REINFORCE we have the lower bound over the ∆θ
k,(t)

oeasy
l+1,ol

for any oeasy
l+1 ∈ S

(k)
ol as

∆θ
k,(t)

oeasy
l+1,ol

≥η Pr
o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]
p̂θk(oeasy

l+1|ol)

·

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

]− (
∑

o′l+1∈S(k)
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])


≥Θ(

η

ML−1
· 1

M
· [E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

]w − E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=ohard
l+1

]w])

≥Θ(
η

ML
· E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

](w − 1

M
w))

=Θ(
η

ML
· (M − 1)w

M
E[pkacc(ô) |

ôl=ol
ôL=ak

ô1

ôl+1=oeasy
l+1

])

For a given TMC PTMC(· | ol) = p̂θ⋆ ,∀l ∈ [L− 1], the values of

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=oeasy
l+1

], E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=ohard
l+1

]

are indeed deterministic positive constants within (0, 1), for any valid CoTs oeasy ∈ S(k)ol and ohard ∈
S(k)ol passing ol. That is, we could omit it in O(1):

∆θ
k,(t)

oeasy
l+1,ol

≥ Θ(
η

ML
· (M − 1)w

M
). (59)

Similarly, recall that

Dol = {ol+1 : PTMC(ol+1|ol) > 0}, c = min
ol+1∈Dol

PTMC(ol+1|ol) > 0,

For neuron oother
l+1 ∈ Dol \ S

(k)
ol , then by similar derivations we have

∆θ
k,(t)

oother
l+1,ol

≤ −Θ(
η

ML
· ( (M + 1)w

M
) = −Θ(

η(M + 1)w

ML+1
). (60)

Therefore, by choosing T ≥ Ω(η−1L2ML log(ML/ϵ)) where 0.5 > ϵ > wL > 0 is a small
constant, we have

∑
ol+1∈S(k),easy

ol

p̂θk,(t)(ol+1|ol) =

∑
ol+1∈S(k),easy

ol

e
θk,(T )
ol+1,ol∑

ol+1∈Dol
eθ

k,(T )
ol+1,ol

=

∑
ol+1∈S(k),easy

ol

e
θ⋆
ol+1,ol

+
∑T−1

t=0 ∆θk,(t)
ol+1,ol∑

ol+1∈Dol
e
θ⋆
ol+1,ol

+
∑T−1

t=0 ∆θ
k,(t)
ol+1,ol

≥

∑
ol+1∈S(k),easy

ol

e
θ⋆
ol+1,ol

+T [ η

ML · (M−1)w
M ]

∑
ol+1∈S(k),easy

ol

e
θ⋆
ol+1,ol

+T [ η

ML · (M−1)w
M ]

+
∑

ol+1∈Col
\S(k),easy

ol

e
θ⋆
ol+1,ol +

∑
ol+1∈Dol

\Col
e
θ⋆
ol+1,ol

≥ Θ(
eT [ η

ML · (M−1)w
M ]

eT [ η

ML · (M−1)w
M ] + (M − 1) +

∑
ol+1∈Dol

\Col
M−1

)

≥ Θ(
eT [ η

ML · (M−1)w
M ]

eT [ η

ML · (M−1)w
M ] +M

) = Θ(
eT [ ηw

ML ]

eT [ ηw

ML ] +M
)

≥ 1− o(
ϵ

L
)

(61)
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Here, the first inequality is by the negative updates in Eq.(47) and Eq.(60) as well as the update lower
bound in Eq.(59); the second inequality is by dividing

∑
ol+1∈S(k),easy

ol

e
θ⋆
ol+1,ol term, |S(k),easy

ol | ≤
no1 = O(1) by Def. 1, M = maxl,ol∈Sl

|Col |, as well as

p̂θk,(t)(ol+1|ol)

p̂θk,(t)(o′
l+1|ol)

≥ PTMC(ol+1|ol)
PTMC(o′l+1|ol)

≥ Ω(M),

for ∀ol+1 ∈ Col , o
′
l+1 ∈ Dol \Col ; the third inequality is by the condition in our item |Dol \Col |=

O(M); the last inequality is by choosing T ≥ Ω(η−1L2ML log(ML/ϵ)).

Then
Pr

o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 ] ≥ Pr
o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 , o
′ ∈ G(k),easy

o1,ak
o1

]

≥ (1− o(
ϵ

L
))L−1 = 1− o(ϵ).

(62)

Therefore, suggest the probability mass of valid hard-to-reason CoTs traveling from some o1 ∼
P (Qk) to ao1 for task k in the original TMC X (PTMC) is ∆. Then by Thm. 7, we have

Rex
p̂
θk,(t)

o1,k
(o) ≤ Θ((1− ϵ)

1

1 + ∆ML−1
+ ϵ

∆ML−1

1 + ∆ML−1
). (63)

Also, by Thm. 7 the pass@K performance (the probability that at least succeed once among K trials)
is upper bounded by

Pass@K
p̂
θk,(t)

o1,k
≤ Θ([(

∆ML−1

1 + ∆ML−1
)nq (1− (1− ϵ)K)])︸ ︷︷ ︸

upper bound of pass@K of instance that cannot be solved by easy CoTs

+ Θ([(1− (
∆ML−1

1 + ∆ML−1
)nq )(1− ϵK)])︸ ︷︷ ︸

upper bound of pass@K of instance that can be solved by some easy CoT

).

Also, by Thm. 7 we see that, when ϵ = o( K

√
1− CErr/(

∆ML−1

1+∆ML−1 )nq )) → 0, the pass@K perfor-
mance would suffer from constant error.

The proof of RAFT is similar–the only difference in Eq.(53) is the ultra (1+log p̂θk(ol+1|ol)), where
the easy-to-reason’s value is larger than the hard-to-reason ones due to the monotonicity of log(·).
Also, noted that 1+ log p̂θk(ol+1|ol) ∈ (1+ log c, 1), which could be scaling as O(1) such that our
results of REINFORCE directly applies.

Proof of Item 3: Curriculum Learning of RL-rej.

Per Remark 6, we see that in our case, after T1 ≥ Ω(η−1L2ML log(ML/ϵ)) for a small ϵ, RL-rej
would learn valid easy-to-reason CoTs in G(k),easy

o1,ak
o1

well with non-trivial predictive probability Θ((1−
ϵ)/M), and start to reject the (Q,A) ∼ Dq,k

a that can be solved by those CoTs. That is, there
exists T1 = Ω(η−1L2ML log(ML/ϵ)), for t ∈ (0, T1], the RL-rej behaves exactly the same with
REINFORCE. After t ≥ T1 we have

∇θk

o
easy
l+1

,ol

JRein−rej(θ
k) = Pr

o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]
p̂θk(oeasy

l+1|ol)

0− (
∑

o′l+1∈
∑

o′
l+1

∈S(k),hard
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])

 < 0,

(64)
for all oeasy

l+1 ∈ S
(k),easy
ol ,∀l ∈ [L−1], where the correctly predicted easy-to-reason CoTs are rejected

according to the condition in our item. Similarly, for ohard
l+1 ∈ S

(k),hard
ol = S(k)ol \S

(k),easy
ol ,∀l ∈ [L−1]

we have

∇θk

ohard
l+1

,ol

JRein−rej(θ
k) = Pr

o′
1∼Pk(Qk)

o′∼p̂
θk (·|o1)

[
o′
l = ol, o

′
L = ako′1

]
p̂θk(ohard

l+1|ol)

E[pkacc(ô) |
ôl=ol

ôL=ak
ô1

ôl+1=ohard
l+1

]− (
∑

o′l+1∈
∑

o′
l+1

∈S(k),hard
ol

p̂θk(o′
l+1|ol)E[pkacc(õ) |

õl=ol
õL=ak

õ1

õl+1=o′l+1

])

 > 0,

(65)
where the inequality is by the feeble p̂θk(o′

l+1|ol) = o(1/M), o′l+1 ∈
∑

o′l+1∈S(k),hard
ol

.

Therefore, we have

∆θk,Rein−rej
oeasy
l+1,ol

:= η∇θk

o
easy
l+1

,ol

JRein−rej(θ
k) < 0, ∆θk,Rein−rej

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JRein−rej(θ
k) > 0,
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and thus the p̂θk,(t)(ohard
l+1|ol)/p̂θk,(t)(o

easy
l+1|ol) would strictly increase.

By Eq.(61), similarly there exists T2 = T1 + Θ(η−1L2ML log(ML/ϵ)), the predictive probability
p̂θk,(T2) of some valid hard-to-reason CoTs in G(k),hard

o1,ao1
would reach Θ((1− ϵ)/M). Simultaneously,

we see that by adjusting the learning rare to be appropriately small, the predictive probability of
easy-to-reason CoTs in G(k),easy

o1,ao1
would not decay below the scale Θ((1 − ϵ)/M), other wise it

would be re-collected in the Do1,k
rej,(t) at that iteration t according to our condition setting in item

3. That is, the model p̂θk,(t) would gradually increase the predictive probability of sparse edges in
S(k),hard
ol = S(k)ol \S

(k),easy
ol for ∀l ∈ [L−1], and thus the CoTs in G(k),hard

o1,ao1
sharing the most common

edges with some CoTs in G(k),easy
o1,ao1

, would first be learned. Afterwards, more and more hard-to-reason

CoTs in G(k),hard
o1,ao1

is getting learned, until the point where further learning a new sparse edge in some

S(k),hard
ol , l ∈ [L − 1] will make another already learned CoT’s predictive probability to be lower

than the scale o(1− ϵ).

Suppose the probability mass of valid hard-to-reason CoTs traveling from o1 to ao1 for task k in the
original TMC X (PTMC) is ∆. Suggest after T2 = Ω(η−1L2ML log(ML/ϵ)), there are n′o1 hard-
to-reason CoTs each with likelihood ratio scale Θ(ρ) < 1 in the G(k)o1,ao1

have been well-learned
with predictive probability Θ((1− ϵ)/M), then, similar to Thm. 7, we have

Pass@K
p̂
θk,(t)

o1,k
= 4Θ([(1− ρ)n

′
o1 (

∆ML−1

1 + ∆ML−1
)no1 (1− (1− ϵ)K)])︸ ︷︷ ︸

upper bound of pass@K of instance that cannot be solved by easy CoTs

+ Θ([(1− (1− ρ)n
′
o1 (

∆ML−1

1 + ∆ML−1
)no1 )(1− ϵK)])︸ ︷︷ ︸

upper bound of pass@K of instance that can be solved by some easy CoT

)

which would tends to 1 when (1− ρ)n
′
o1 → 0, ϵ→ 0.

RL-rej with algorithms other than REINFORCE directly follows.

Theorem 11 (Advantage-based Finetuning Favors Easy-to-Reason CoTs (Formal Version of
Thm. 2)). Let θ⋆ be the base model in Eq.(2 that exact predicts the distribution of a Multi-task
TMC as in Def. 1 and 2, and θk the current model to be finetuned from θ⋆ for task k ∈ T . De-
note the task tuples of task k ∈ T as (q, akq , k), where akq ∈ SL is the sole answer state under
task k. Assume for each (o1, ao1 , k) under task k, the number of hard-to-reason CoTs from o1 to
ao1 is bounded by O(M). Let the question distribution during finetuning of task k be P k(Qk)
(i.e., o1 ∼ P k(Qk)). Suppose the estimates of the RL advantage of PPO / GRPO (without the
KL term) by some outer oracle or group-level normalization are accurate during the finetuning:
A

p̂
θk ,k

l+1 , Âk
i,l+1 = A

p̂
θk ,k

l+1 (ol,ol+1) for any CoT o, and the p̂kold is appropriately chosen that clip
operation is always functioning starting from the finetuning with ϵclip = o(1) such that

(1 + ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) ≤
p̂θk(ol+1|ol)

p̂kold(ol+1|ol)
A

p̂
θk ,k

l+1 (ol,ol+1), if A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0,

(1− ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) ≤
p̂θk(ol+1|ol)

p̂kold(ol+1|ol)
A

p̂
θk ,k

l+1 (ol,ol+1), if A
p̂
θk ,k

l+1 (ol,ol+1) ≤ 0,

(66)

Then the shared form of objective as

JPO = E
o1∼Pk(Qk),(Q,A)∼Do1,k

ao1
,o2:L∼p̂k

θk (O|o1)

[ 1
L

L−1∑
l=1

(1 + (21(A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1)}
]
,

(67)
where ϵclip > 0 is a offset clipping parameter, and by Eq.(20),

Ap̂θ,k
l+1 (ol,ol+1) = Eo1=q∼Pk(Qk),ol+2:L∼p̂θ

[
Rk

out(o)
∣∣ol+1

]
− Eo1=q∼Pk(Qk),ol+1:L∼p̂θ

[
Rk

out(o)
∣∣ol

]
.

(68)
Favor Easy CoTs. For any different state pair ohard

l+1 ̸= oeasy
l+1 ∈ S

(k)
ol denoting two l + 1-th states in

some valid hard-to-reason and easy-to-reason CoT sharing the l-th state ol for task k, it holds that

∆θk,PO
oeasy
l+1,ol

:= η∇θk

o
easy
l+1

,ol

JPO(θ
k) > 0, ∆θk,PO

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JPO(θ
k) < 0,

∆θk,PO
o′l+1,ol

:= η∇θk
o′
l+1

,ol

JPO(θ
k) < 0,

(69)
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for ∀o′l+1 ∈ Dol \ S
(k)
ol . There exists T ≥ Ω(η−1L2ML log(ML/ϵ)), for t ≥ T , the probability

that p̂θk,(t)(·|o1) reach the ao1 is converged:

Pr
o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 ] ≥ Pr
o′
1∼Pk(Qk)

o′∼p̂
θk,(t) (·|o1)

[o′L = ako′1 , o
′ ∈ G(k),easy

o1,ak
o1

] ≥ 1− o(ϵ). (70)

Further, the pass@K performance Pass@Kp̂
q,k := Pr{oi}i∈[K]∼p̂(O|q)

(Q,A)∼Dq,k
aq

[
⋃K

i=1 1
(
oi ∈ G(k)Q,A

)
] is upper

bounded by

Pass@K
p̂
θk,(t)

o1,k
≤ Θ([(

∆ML−1

1 + ∆ML−1
)nq (1− (1− ϵ)K)])︸ ︷︷ ︸

Solved by hard CoTs

+Θ([(1− (
∆ML−1

1 + ∆ML−1
)nq )(1− ϵK)])︸ ︷︷ ︸

Solved by some easy CoTs

). (71)

When ϵ = o( K

√
1− CErr/(

∆ML−1

1+∆ML−1 )nq )) → 0, the pass@K performance suffer from constant

error: 1− Pass@K
p̂
θk,(t)

o1,k
= Θ(1).

Proof.By Prop. 1, for each l we have

Ap̂θ⋆ ,k
l+1 (ol,o

easy
l+1 ) = aleasy ≥ Θ(M−(L+1−l)) > 0, Ap̂θ⋆ ,k

l+1 (ol,o
hard
l+1 ) = −alhard ≤ −Θ(M−(L+1−l)) < 0,

(72)
for constants aeasy, ahard > 0.

Also, for ∀o′l+1 ∈ Dol \ S
(k)
ol , by definition it directly holds that

Ap̂θ⋆ ,k
l+1 (ol,o

′
l+1) < A

p̂⋆
θ,k

l+1 (ol,o
hard
l+1 ) = −alhard < −Θ(M−(L+1−l)) < 0. (73)

Therefore, by Lemma 9 as well as the property of TMC, it holds that

∇θkJPO(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · (eol+1,ol −
∑

o′
l+1∈Dol

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
.

Therefore, collaborating with Eq.(72) and Eq.(73), for t = 0 where p̂θk,(0) = p̂θ⋆ , we directly have

∆θk,PO
oeasy
l+1,ol

:= η∇θk

o
easy
l+1

,ol

JPO(θ
k) > 0, ∆θk,PO

ohard
l+1,ol

:= η∇θk

ohard
l+1

,ol

JPO(θ
k) < 0,

∆θk,PO
o′l+1,ol

:= η∇θk
o′
l+1

,ol

JPO(θ
k) < 0,

(74)

for ∀o′l+1 ∈ Dol \ S
(k)
ol . Indeed, following the proof strategies in Lemma 9, we directly see

that when the transitions of ol → oeasyl+1 is further strengthened and the transitions of ol →
ohardl+1 is further weaken, the A

p̂
θk,(t) ,k

l+1 (ol,o
easy
l+1 ) is strictly increasing along the iterations, and

A
p̂
θk,(t) ,k

l+1 (ol,o
hard
l+1 ), A

p̂
θk,(t) ,k

l+1 (ol,o
′
l+1),∀o′l+1 ∈ Dol \ S

(k)
ol is strictly decreasing. This makes

Eq.(72), Eq.(73) and Eq.(69) hold during the finetuning iterations.

Specifically, for any different state pair ohard
l+1 ̸= oeasy

l+1 ∈ S
(k)
ol and ∀o′l+1 ∈ Dol \ S

(k)
ol , it holds that
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∆θ
k,(t)

oeasy
l+1,ol

≥Θ(ηM−(L+1−l)(1−
∑

o′
l+1∈S

(k),easy
ol

p̂θk(o′
l+1|ol)

+
∑

o′
l+1∈Dol

\S(k),easy
ol

p̂θk(o′
l+1|ol))) > 0,

∆θ
k,(t)

ohard
l+1,ol

≤−Θ(ηM−(L+1−l)(1 +
∑

o′
l+1∈S

(k),easy
ol

p̂θk(o′
l+1|ol)

−
∑

o′
l+1∈Dol

\S(k),easy
ol

p̂θk(o′
l+1|ol))) < 0,

∆θ
k,(t)
o′l+1,ol

≤−Θ(ηM−(L+1−l)(1 +
∑

o′
l+1∈S

(k),easy
ol

p̂θk(o′
l+1|ol)

−
∑

o′
l+1∈Dol

\S(k),easy
ol

p̂θk(o′
l+1|ol))) < 0,

where the inequalities is by Eq.(72), Eq.(73), as well as ϵclip = o(1).

Similar to the techniques in Thm. 10, given that M−(L+1−l) > M−L+1 and pkacc ≤ 1, after T ≥
Ω(η−1L2ML log(ML/ϵ)) iterations, the remaining proofs and results follows as in Thm. 10.

Remark 12. To simplify the discussion of the policy gradient case and avoid the non-convexity of
min{·}, we assume the clip operation with ϵclip = o(1) and Eq. (66). However, our results still hold
without this assumption.

Specifically, when the min does not select the clipped term, we instead encounter:

∇θk

[
p̂θk(ol+1|ol)

p̂old(ol+1|ol)
p̂θk(ol+1|ol)

]
= 2

p̂θk(ol+1|ol)

p̂old(ol+1|ol)
∇θk p̂θk(ol+1|ol)

= 2
p̂θk(ol+1|ol)

2

p̂old(ol+1|ol)
∇θk log p̂θk(ol+1|ol)

= E
[
2
p̂θk(ol+1|ol)

p̂old(ol+1|ol)
∇θk log p̂θk(ol+1|ol)

]
,

(75)

instead of
∇θk [(1± ϵclip)p̂θk(ol+1|ol)] = (1± ϵclip)p̂θk(ol+1|ol)∇θk log p̂θk(ol+1|ol)

= (1± ϵclip)E [log p̂θk(ol+1|ol)] .

Since clearly p̂θk(oeasy
l+1|ol) > p̂θk(ohard

l+1|ol), Eq. (75) shows that the gradient magnitude for easy
edges dominates that of sparse ones. Thus, the squeezing effect persists even without the assumption.
We adopt the assumption in our theorem purely to reduce discussion complexity.
Lemma 4. [Detailed Version of Lemma 1] Let θ⋆ be the base model in Eq.(2 that exact predicts the
distribution of a Multi-task TMC as in Def. 1 and 2, and θk the current model to be finetuned from θ⋆

for task k ∈ T . Suppose the estimates of RL advantage by GRPO through group-level normalization
is accurate as Ap̂θ⋆ ,k

l+1 (ol,ol+1) for any CoT o. The optimal step-wise sampling distribution of the
KL-regularized GRPO objective in Eq.(6) is:

p̂PO
θk (ol+1|ol) ∝ p̂θ⋆(ol+1|ol) exp

(
r̂
Ap̂θ⋆ ,k

l+1 (ol,ol+1)

β

)
, (76)

where r̂ ≤ max{1 + ϵclip, c
−1,Θ(M)}.

Proof.This result is standard in RL and distribution optimization literature Ziebart (2008); Levine
(2018); Foster et al. (2025); Kawata et al. (2025); Fan et al. (2023); Black et al. (2024); Clark et al.
(2024); Uehara et al. (2024). The proofs mirror the proof of Corollary 3 in Sec. K, and we therefore
omit their full proofs for brevity.
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Corollary 7 (Full Version of Corollary 2). Let θ⋆ be the base model in Eq.(2 that exactly predicts
the distribution of a Multi-task TMC as in Defs. 1 and 2. For any target task k ∈ T , consider the
following two categories of instances:

1. Istances (Q,A) whose correct CoTs only lie in G(k),hard
q,ak

q
.

2. Instances (Q,A) sampled from another task k′ ̸= k.

For PPO/GRPO without KL regularization that satisfy the conditions in Thm. 11, the pass@K upper
bound for these instances after T ≥ Ω(η−1L2ML log(ML/ϵ)) is

(
1− (1− ϵ)K

)
.

In contrast, for the optimal sampler p̂PO
θk in Eq. (76), for any ϵ′ satisfying 1/No1 > ϵ′ ≥ ϵ > 0,

denote p̂k
θk,(t) as the PPO/GRPO in Thm. 2 with ϵ, if

β >
2r̂(L− 1)

ln

(
1

ϵ′
∏L−1

l=1 |Dol
|

) ,

then the pass@K performance of p̂PO
θk is strictly better than that of PPO/GRPO without KL regular-

ization under the same conditions:

1. Capable of Hard CoTs: For instance (Q,A) with only some hard-to-reason CoTs correct:

Eo2:L∼p̂PO

θk (·|o1)

[
Rk

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk

(Q,A)(o)
]
.

2. Preserve Multi-task: For instance (Q,A) belonging to untargeted task k′ ̸= k:

Eo2:L∼p̂PO

θk (·|o1)

[
Rk′

(Q,A)(o)
]
≥ ϵ′ ≥ ϵ ≥ Eo2:L∼p̂k

θk,(t)
(·|o1)

[
Rk′

(Q,A)(o)
]
.

Proof.

It suffices to prove that with a large β, any non-zero transition within the TMC is larger than ϵ′ <
N−1

o1 := |Dol |.
By the definition of the advantage function in Eq.(20, we have

−1 ≤ Ap̂θ⋆ ,k
l+1 (ol,ol+1) ≤ 1.

Therefore, from Eq.(76, the minimum sampling probability over any edge in Dol is

p̂PO
θk (ol+1|ol) ≥

e−
r̂
β

|Dol |e
r̂
β

=
e−

2r̂
β

|Dol |
.

Hence, for any trajectory of length L, the probability of sampling a specific terminal state oL from
any starting state o1 whose ol+1 transitions are in Dol is lower bounded by

L−1∏
l=1

e−
2r̂
β

|Dol |
= e−

2r̂(L−1)
β ·

L−1∏
l=1

1

|Dol |
.

Define C :=
∏L−1

l=1
1

|Dol
| . We seek the condition on β such that this probability is at least ϵ′, i.e.,

C · e−
2r̂(L−1)

β ≥ ϵ.

Dividing both sides by C and taking logarithms yields

−2r̂(L− 1)

β
≥ ln

(
ϵ′

C

)
, so β ≥ 2r̂(L− 1)

ln
(

1
ϵ′C

) .
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Substituting C =
∏L−1

l=1
1

|Dol
| , we obtain the desired bound:

β >
2r̂(L− 1)

ln

(
1

ϵ′
∏L−1

l=1 |Dol
|

) .

That is, the probability of the path (o1, o2, · · · , oL), ol+1 ∈ Dol ,∀l ∈ [L− 1] is larger than ϵ′. This
ensure that the model is more capable of sampling valid hard-to-reason CoTs for current task as
well as valid CoTs for other tasks, as long as the path with transition probability larger than zero
(c > 0) in Def. 1.

K DETAILS AND PROOFS OF REWARD-BASED SAMPLING

Lemma 5 (BoN/BS with Ground-true Signal Oracle). Let θ⋆ be the base model in Eq.(2 that exactly
predicts the distribution of a Multi-task TMC as defined in Definitions 1 and 2. Under task tuple
(q, a, k), consider the ORMs Rk

Q,A(·), as well as the PRM given in Eqs. 11. For any target task
k ∈ T and instance distribution Da,k

aq
, if the total number of valid hard-to-reason CoTs is Θ(M),

then during pass@K sampling:

• ORM/PRM-based BoN or BS achieves success probability Θ(1) on task k;

• ORM/PRM-based BoN or BS fails on any other task k′ ̸= k.

Proof.Consider task tuple (q, a, k) and an instance (Q,A) ∈ Da,k
aq

that is solvable, i.e., it admits

at least one valid CoT in G(k)q,aq . Since the base model θ⋆ assigns Θ(cL−1) sampling probability to
a correct CoT, the success probability of ORM-based BoN using the ground-truth reward Rk

Q,A(·)
satisfies:

pass@K = Θ
(
1− (1− cL−1)NK

)
= Θ(1),

where the final equality holds for sufficiently large K.

For ORM-based BoN under outcome-population reward Rk
out(·), the CoT credit depends on relative

likelihood. Consider the worst case where there is exactly one correct CoT with success probability
Θ(cL−1), while each incorrect but valid CoT has sampling probability Θ(1/ML−1) (by Lemma 2),
and dominates Rk

out(·). Then the probability of sampling the correct CoT at least once in N at-
tempts, while avoiding any misleading CoTs, is:

Θ

([
1− 1

ML−1

]N
·
[
1− (1− cL−1)N

])
.

Hence, the pass@K success probability is lower bounded by:

Θ

1−

(
1−

[
1− 1

ML−1

]N
·
[
1− (1− cL−1)N

])K
 = Θ(1),

again holding when K is large.

Now consider PRM-based BoN under Eq.(11. At each step, the minimal success probability is:

Θ
(
[1− 1

M ]N · [1− (1− c)N ]
)
,

so across L− 1 steps, the overall probability is:

Θ
(
[1− 1

M ]N(L−1) · [1− (1− c)N(L−1)]
)
,

and the corresponding pass@K is lower bounded by:

Θ

(
1−

(
1− [1− 1

M ]N(L−1) · [1− (1− c)N(L−1)]
)K)

= Θ(1).
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Now consider any different task k′ ̸= k. By Definitions 1 and 2, the oracle rewards Rk
Q,A(·), as

well as the PRMs in Eqs. 11, all assign zero credit to instances sampled from k′. Therefore, all
ORM/PRM-based BoN or BS strategies fail on task k′.

For Beam Search (BS), the result follows by analogous arguments since BS depends on the same
reward signals layer-wise.

Proof of Thm. 3. Fix any instance (Q,A) of task (o1, a, k) and assume the premise of the theorem:
all correct CoTs are hard-to-reason and there exists at least one depth l⋆ ∈ [L] at which the hard
CoTs diverge from a valid easy-to-reason CoT (“sparse edge”). Let oeasy denote one such easy CoT
and ohard any hard CoT. By Prop. 2, population-level ORM and PRM scores strictly prefer the easy
branch whenever they differ:

Rk
out(o

easy) > Rk
out(o

hard), Rk
likelihood(o

easy
l ) > Rk

likelihood(o
hard
l ) for all l with oeasy

l ̸= ohard
l .

(A)

We analyze (i) and (ii)&(iii) separately. Throughout, M is the per-node branching factor and L is
the CoT length. We take the conservative lower bounds that (a) at each node a particular child has
sampling probability at least 1/M , and (b) samples across the N trials are i.i.d.

(i) ORM + BoN. Best-of-N (BoN) first draws N full trajectories (CoTs) i.i.d. from the generator
and then selects the one with the largest ORM score Rk

out(·). By equation A, if among the N samples
there exists at least one oeasy, BoN will select an easy CoT, hence it will fail under the theorem’s
premise (easy branch is valid but leads away from any correct hard solution due to the sparse-edge
divergence).

We bound the probability that at least one oeasy appears among N samples. Consider any fixed easy
CoT oeasy that agrees with ohard on the prefix up to (but excluding) l⋆ and then takes a different
child at l⋆. A conservative lower bound on the probability of sampling this specific easy CoT in one
draw is

ptraj ≥
(

1
M

)L−1

= 1
ML−1 ,

since at L− 1 branching decisions (excluding the terminal) we multiply the minimal per-step mass
1/M . Hence the probability that none of the N i.i.d. draws equals this easy trajectory is

(1− ptraj)
N ≤

(
1− 1

ML−1

)N
=
(

ML−M
ML

)N
.

Therefore, with probability at least 1− (1− 1/ML−1)N an easy CoT appears among the N draws,
and by equation A BoN selects it and thus fails. Imposing(

1− 1
ML−1

)N
≤ ϵ ⇐⇒ N ≥ log(ϵ)

log
(
ML−M

ML

) ,
ensures that the failure probability is at least 1− ϵ, which proves the first bullet.

(ii) PRM + BoN (step-wise) and (iii) PRM + Beam Search (width N , beam B ≥ 1). PRM-based
inference expands partial CoTs and uses the local PRM score Rk

likelihood(ol) to select among can-
didates. Consider the first divergence depth l⋆. In each expansion round at depth l⋆, the procedure
proposes N children i.i.d. (BoN: propose and take the best child by PRM; Beam: propose N and
keep the top-B by PRM). Let

pchild ≥ 1
M

be the conservative lower bound that a given proposal at depth l⋆ takes the (PRM-favored) easy
child rather than the hard sparse edge. Thus the probability that none of the N proposals includes
the easy child at that step is

(1− pchild)
N ≤

(
1− 1

M

)N
=
(

M−1
M

)N
.

Consequently, with probability at least 1 − (1 − 1/M)N the easy child appears among the N
proposals at depth l⋆. By equation A, PRM strictly prefers that easy child over the hard child at
depth l⋆, so:
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• PRM + BoN (step-wise): the chosen next token is the easy child, irrevocably steering the tra-
jectory onto the easy branch. Repeating this argument at later depths where branches differ
keeps the easy path strictly preferred, so the final selection is easy and the method fails under the
theorem’s premise.

• PRM + Beam Search: since B ≥ 1, any PRM-strictly-better easy child is ranked above the hard
child and therefore included in the beam at depth l⋆; by standard beam monotonicity with strictly
better local scores at each subsequent divergence, the easy branch remains in the top-B and
dominates the final selection, hence failure.

Imposing (
1− 1

M

)N
≤ ϵ ⇐⇒ N ≥ log(ϵ)

log
(
M−1
M

) ,
ensures that an easy child appears at the first divergence step with probability at least 1− ϵ, and by
the PRM preference this forces selection of the easy branch, completing the second bullet.

Conclusion. In all cases, Prop. 2 ensures a strict scoring advantage for the easy branch whenever it
is present among candidates; the displayed lower bounds control the probability that such an easy
candidate does appear given N proposals. Choosing N to satisfy(

1− 1
ML−1

)N
≤ ϵ (ORM + BoN),

(
1− 1

M

)N
≤ ϵ (PRM + BoN/BS),

yields failure probability at least 1− ϵ for (i) and for (ii)&(iii), respectively.

Proof.Heuristic Proof of Corollary 3. Let (Ω,F , µ) be a base measure space where p̂θ⋆ ≪ µ
with Radon-Nikodym derivative dp̂θ⋆/dµ > 0 µ-a.e. We consider the optimization over absolutely
continuous measures P k

new ≪ p̂θ⋆ .

The objective functional can be written as:

J(P k
new) = EPk

new
[R(o)]− 1

λ
DKL(P

k
new∥p̂θ⋆) (77)

where R(o) := Rk
out(o). We require:

(C1) R ∈ L1(p̂θ⋆) (finite expected reward)

(C2) ∃ϵ > 0 s.t. p̂θ⋆ ≥ ϵ µ-a.e. (strict positivity)

High-levelly, the remaining proof is convex optimization in probability space. Define the Lagrangian
with measure-theoretic notation:

L(P, η) =
∫

RdP − 1

λ

∫
log

(
dP

dp̂θ⋆

)
dP + η

(
1−

∫
dP

)
(78)

Require:

(C3) P ∈ P(Ω), the space of probability measures absolutely continuous to µ

(C4) log(dP/dp̂θ⋆) ∈ L1(P ) (finite KL divergence)

For P ∈ P(Ω), consider variation Pϵ = P + ϵQ where Q is a signed measure with
∫
dQ = 0. The

Gâteaux derivative is:

d

dϵ
L(Pϵ, η)

∣∣∣
ϵ=0

=

∫
RdQ− 1

λ

∫ (
log

dP

dp̂θ⋆

+ 1

)
dQ− η

∫
dQ (79)

For optimality, this must vanish for all admissible Q, requiring:

R(o)− 1

λ

(
log

dP

dp̂θ⋆

(o) + 1

)
− η = 0 P -a.s. (80)

Rearranging gives:

log
dP

dp̂θ⋆

= λR(o)− (1 + λη) (81)
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Exponentiating both sides:

dP = p̂θ⋆(o) exp(λR(o)) exp(−1− λη)dµ(o) (82)

Normalization requires:

exp(1 + λη) =

∫
p̂θ⋆ exp(λR)dµ =: Z (83)

Thus the optimal measure is:

dP k
adjusted =

1

Z
p̂θ⋆ exp(λR)dµ (84)

First verify P k
adjusted ∈ P(Ω):

• Absolute continuity: Immediate from p̂θ⋆ ≪ µ and Z−1 exp(λR) > 0

• Integrability: By (C1) and exp(λR) ≤ exp(λ∥R∥∞) <∞ from R ≤ 1

Second, confirm stationarity. For any Q ∈ TPk
adjusted
P(Ω) (tangent space):

dL(P k
adjusted, η)(Q) =

∫ [
R− 1

λ
(log

dP k
adjusted

dp̂θ⋆

+ 1)− η

]
︸ ︷︷ ︸

=0

dQ = 0 (85)

Substitute P k
adjusted into J:

J(P k
adjusted) = EPk

adjusted
[R]− 1

λ
EPk

adjusted

[
log

P k
adjusted

p̂θ⋆

]

= EPk
adjusted

[R]− 1

λ
(λE[R]− logZ)

=
1

λ
logZ

By Gibbs’ inequality, this maximizes the trade-off between expected reward and KL regularization.

To validate our conditions required, we summarized:

• (C1): Holds as ∥R∥∞ ≤ 1 by assumption

• (C2): Guaranteed by model construction p̂θ⋆ = softmax(·) > 0

• (C3): Inherited from base measure µ

• (C4): Satisfied because DKL(P
k
adjusted∥p̂θ⋆) = logZ − λE[R] <∞

Thus under these conditions, P k
adjusted is the unique maximizer of J(P k

new) in P(Ω).

Proof.Proof of the legitimacy of Def.3. To show hk(·) is a harmonic function, let us verify

1 =
∑

o′
l+1∈Sl+1

p̂new,k
θ (o′

l+1|ol) =
∑

o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)

hk(o
′
l+1)

hk(ol)
.

By the fact that

hk(ol) = Eol+1:L∼p̂θ⋆

[
exp

(
λRk

out(o)
)
| ol

]
=

∑
o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)Eo′

l+2:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| o′

l+1

] (86)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

we see that∑
o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)

hk(o
′
l+1)

hk(ol)

=
∑

o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)

Eo′
l+2:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| o′

l+1

]
Eol+1:L∼p̂θ⋆

[
exp

(
λRk

out(o)
)
| ol

]
=

∑
o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)

Eo′
l+2:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| o′

l+1

]∑
o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol)Eo′

l+2:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| o′

l+1

] = 1

Recall the definition of our DPRM:

Rk
DPRM(ol) =

1

λ
log
(
Eo′

l+1:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| ol

]
.
)
, (87)

p̂new,k
θ (ol+1|ol) = p̂θ⋆(ol+1|ol)

hk(ol+1)

hk(ol)
=

p̂θ⋆(ol+1|ol) exp
(
λRk

DPRM(ol+1)
)

Zl(ol)
,

where Zl(ol) =
∑

o′
l+1∈Sl+1

p̂θ⋆(o′
l+1|ol) exp

(
λRk

DPRM(o′
l+1)

)
. Collaborating with Eq.(88) as

well as the definition of Rk
DPRM(ol), we can equate:

exp
(
λRk

DPRM(ol)
)
= hk(ol) = Eo′

l+1:L∼p̂θ⋆

[
exp

(
λRk

out(o
′)
)
| ol

]
.

Therefore, it holds that

p̂new,k
θ (ol+1 | ol) = p̂θ⋆(ol+1 | ol) ·

hk(ol+1)

hk(ol)
∝ p̂θ(ol+1 | ol) exp(λR

k
DPRM(ol+1)).

Recall:
hk(ol) = Eol+1:L∼p̂θ⋆

[
exp

(
λRk

out(o)
)
| ol

]
,

so hk(oL) = exp(λRk
out(o)) and hk(o0) = Z :=

∑
o′∈Tall

p̂θ⋆(o′) exp
(
λRk

out(o
′)
)
. The h-

transformed transition is:

p̂new,k
θ (ol+1|ol) = p̂θ⋆(ol+1|ol)

hk(ol+1)

hk(ol)
, (88)

yielding:

P k
DPRM(o) =

L−1∏
l=1

p̂θ⋆(ol+1|ol)
hk(ol+1)

hk(ol)
= p̂θ⋆(o)

hk(oL)

hk(o0)
= P k

Gibbs(o). (89)

The proof is completed.

Corollary 8. For the task k ∈ T , let θ⋆ be the pretrained Foundation Model from Thm. 8, and
Rk

out(·) be the ORM. Consider the ORM-equipped and DPRM-equipped adjusted sampling distri-
butions defined in Corollary 3.

• As the temperature parameter λ→∞, we have the following situation

1. ORM-Equipped Adjusted Sampling: The distribution in Eq.(12) converges to:

P k
Gibbs(o)

λ→∞−−−−→

{
1, if o = argmax

o′∈Tall

Rk
out(o

′)

0, otherwise

akin to a ORM-based BoN with Rk
out(·).
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2. DPRM-Equipped Adjusted Sampling: The step-wise distribution (14) with
Rk

DPRM(ol+1) =
1
λ log hk(ol+1) converges to:

p̂new,k
θ (ol+1 | ol)

λ→∞−−−−→

1, if ol+1 = argmax
o′∈Sl+1

Rk
likelihood(o

′)

0, otherwise

akin to a PRM-based BoN with Rk
likelihood(·).

• When the temperature parameter λ > 0, each step l ∈ {0, . . . , L− 1} satisfies:

argmax
ol∈SBoN

l

Rk
DPRM(ol) = argmax

ol∈SBoN
l

Eol+1:L∼p̂θ⋆R
k
likelihood(ol),

where SBoN
l = {o1

l , . . . ,o
N
l } denotes the N candidates sampled by the base model p̂θ⋆ .

Therefore, using λ > 0 with BoN, Beam Search or Lookahead Search equates to prior
PRM methods employing the same search strategies.

Proof.Proof of Corollary 4. We analyze the asymptotic behavior of the sampling distributions as
λ→∞.

For part (1), consider the ORM-equipped adjusted sampling distribution:

P k
Gibbs(o) =

Pθ⋆(o) exp
(
λRk

out(o)
)∑

o′∈Tall
Pθ⋆(o′) exp

(
λRk

out(o
′)
) ,

where Tall is the set of all possible trajectories. Let o∗ = argmaxo′∈Tall R
k
out(o

′), with maximum
reward Rk

out(o
∗). As λ → ∞, the term exp

(
λRk

out(o)
)

dominates for o with the largest Rk
out(o).

For o ̸= o∗, if Rk
out(o) < Rk

out(o
∗), then

exp
(
λRk

out(o)
)

exp
(
λRk

out(o
∗)
) = exp

(
λ(Rk

out(o)−Rk
out(o

∗))
)
→ 0,

since Rk
out(o) − Rk

out(o
∗) < 0. Assuming Rk

out(o) has a unique maximum (or summing over all

maximizers if not unique), the denominator is dominated by Pθ⋆(o∗) exp
(
λRk

out
k
(o∗)

)
. Thus,

P k
Gibbs(o)→

{
1, if o = o∗,

0, otherwise,

which matches the behavior of BoN Sampling, where the trajectory with the highest Rk
out

k
(o) is

selected.

For part (2), consider the DPRM-equipped step-wise distribution:

p̂new,k
θ (ol+1 | ol) = p̂θ⋆(ol+1 | ol)

hk(ol+1)

hk(ol)
,

with hk(ol+1) = Eol+2:L∼p̂θ⋆

[
exp

(
λRk

out(o)
)
| ol+1

]
, and Rk

DPRM(ol+1) = 1
λ log hk(ol+1).

Substituting hk, we get

p̂new,k
θ (ol+1 | ol) = p̂θ⋆(ol+1 | ol) exp

(
λ
(
Rk

DPRM(ol+1)−Rk
DPRM(ol)

)) 1

Z
,

where Z =
∑

ol+1∈Sl+1
p̂θ⋆(ol+1 | ol) exp

(
λRk

DPRM(ol+1)
)

is the normalizing constant. Let
o∗
l+1 = argmaxo′∈Sl+1

Rk
DPRM(o′). As λ → ∞, the term exp

(
λRk

DPRM(ol+1)
)

dominates for
ol+1 = o∗

l+1. For ol+1 ̸= o∗
l+1, if Rk

DPRM(ol+1) < Rk
DPRM(o∗

l+1), then

exp
(
λRk

DPRM(ol+1)
)

exp
(
λRk

DPRM(o∗
l+1)

) = exp
(
λ(Rk

DPRM(ol+1)−Rk
DPRM(o∗

l+1))
)
→ 0.

Thus, the distribution concentrates on o∗
l+1:

p̂new,k
θ (ol+1 | ol)→

{
1, if ol+1 = o∗

l+1,

0, otherwise,
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which mimics BoN Sampling by selecting the state with the highest Rk
likelihood by our last item.

For the last item, for step l ∈ {0, . . . , L − 1}, the DPRM with λ > 0 is given as Rk
DPRM(ol) =

logEol+1:L∼p̂θ⋆

[
exp

(
Rk

out
k
(o)
)
| ol

]
. Since log is strictly increasing, we have

argmax
ol∈SBoN

l

Rk
DPRM(ol) = argmax

ol∈SBoN
l

Eol+1:L∼p̂θ⋆

[
exp

(
Rk

out

k
(o)
)
| ol

]
.

Similarly, since exp is strictly increasing, the argmax over Eol+1:L∼p̂θ⋆

[
exp

(
Rk

out
k
(o)
)
| ol

]
is

equivalent to the argmax over Eol+1:L∼p̂θ⋆

[
Rk

out
k
(o) | ol

]
. Thus, given that Rk

likelihood(ol) =

Eol+1:L∼p̂θ⋆

[
Rk

out
k
(o) | ol

]
it holds that

argmax
ol∈SBoN

l

Rk
DPRM(ol) = argmax

ol∈SBoN
l

Eol+1:L∼p̂θ⋆R
k
likelihood(ol).

This shows that BoN Sampling with Rk
pro maximizes the expected outcome reward, aligning with

prior methods. The equivalence for Beam Search follows similarly by replacing the sampling strat-
egy with the respective search method, as they also maximize Rk

pro(ol). This completes the proof.

Proof.Proof of Cor. 5. The proof directly follows the proof of Cor. 7.
Corollary 9 (Extension: Comparison with Ground-true Oracle). Let θ⋆ be the base model in Eq.(2
that exactly predicts the distribution of a Multi-task TMC as in Definitions 1 and 2. Under task
tuple (q, a, k) ∈ S1 × SL × T , consider the ORMs Rk

Q,A(·) and Rk
out(·), and the PRMs of Eqs. 11.

For any target task k with instance distribution Da,k
aq

, suppose the number of hard-to-reason CoTs
is Θ(M) and the number of nonzero-probability CoTs from q to SL is Nq . Then under pass@K
sampling:

1. DPRM is More Capable of Hard CoTs. If a specific hard CoT has sampling probability
p = o(M−(L−1)) under the base model, then for any BoN budget

N = O
( log(1−N−1

q )

log(1−p)

)
,

there exists λ = o
(
ln (1−p)N

(Nq−1) (1−(1−p)N )

)
such that DPRM with temperature λ achieves

strictly higher pass@K than ORM-based or PRM-based BoN (or BS).

2. Preserve Multi-task. For any ε > 0, if

K = Ω
( ln ε

ln
( (Nq−1)eλ

1+(Nq−1)eλ

)),
then DPRM with λ > 0 attains pass@K ≥ 1− ε on any other task k′ ̸= k.

In both cases, adjusting the temperature λ > 0 controls the pass@K performance.

Proof.The arguments parallel those in Cor. 7, so we focus on the comparison of pass@K success
probabilities.

(i) Hard-CoT capability. Under ORM-based BoN with ground-truth reward, the success probability
for the unique hard CoT is

1− (1− p)N .

Under DPRM (Eq.(12), every valid CoT—including the correct one—has sampling probability at
least

1

Nq −M +Meλ
≥ 1

1 + (Nq − 1)eλ
.

Choosing λ = o
(
ln

(1− p)N

(Nq − 1) (1− (1− p)N )

)
ensures 1

1+(Nq−1)eλ
≥ 1 − (1 − p)N , so DPRM

outperforms ORM. Similarly, when the budget of PRM-based BoN (or BS) in pass@K is limited and
λ→ 0 would achieve more satisfactory success probability.
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(ii) Multi-task preservation. For any other task k′, DPRM still assigns probability at least
1

1+(Nq−1)eλ
to each valid CoT. Thus, with

K = Ω
( ln ε

ln
( (Nq−1)eλ

1+(Nq−1)eλ

)),
the pass@K guarantee 1−

(
1− 1

1+(Nq−1)eλ

)K ≥ 1− ε holds, completing the proof.

L AUXILIARY LEMMAS

Lemma 6. Let θ⋆ be the base model

p̂θ(·|x) = softmax(hθ(·,x)), x ∈ {0, 1}|S|. (90)

Then for ∀ol ∈ Sl,ol+1 ∈ Sl+1

∇θk log p̂θk(ol+1|ol) = ∇θkhθ(ol+1,ol)−
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol). (91)

Further, if the base model is Eq.(2), we have

∇θk log p̂θk(ol+1|ol) = eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkeo′l+1,ol

, (92)

where eol+1,ol := ol+1o
⊤
l ∈ {0, 1}|S|×|S| is the one-hot matrix with only the position corresponding

to (ol+1, ol) is 1 and 0 elsewhere.

Proof.By Eq. (90), we have

∇θk log p̂θk(ol+1|ol) = ∇θk log
ehθ(ol+1,ol)∑

o′
l+1∈Sl+1

ehθ(o′
l+1,ol)

= ∇θkhθ(ol+1,ol)−∇θk log
∑

o′
l+1∈Sl+1

ehθ(o
′
l+1,ol)

= ∇θkhθ(ol+1,ol)−
∇θk

∑
o′
l+1∈Sl+1

ehθ(o
′
l+1,ol)∑

o′
l+1∈Sl+1

ehθ(o′
l+1,ol)

= ∇θkhθ(ol+1,ol)−

∑
o′
l+1∈Sl+1

ehθ(o
′
l+1,ol)∇θkhθ(o

′
l+1,ol)∑

o′
l+1∈Sl+1

ehθ(o′
l+1,ol)

= ∇θkhθ(ol+1,ol)−
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol).

(93)

Besides, if the base model is p̂θ(·|x) = softmax(⟨θ, x⟩) by Eq.(2), we have

∇θkhθ(ol+1,ol) = ∇θk⟨θol+1,·,ol⟩ = eol+1,ol , (94)

Dragging Eq.(94) into Eq.(91), we could obtain Eq.(92).

The proof is completed.

Lemma 7 (Policy Gradient for REINFORCE & RAFT under TMC). Let θ⋆ be the base model in
Eq.(2) that exact predicts the distribution of Multi-task TMC as in Def. 1 and 2, and θk the current
model to be finetuned from θ⋆ for task k ∈ T . The gradient of the REINFORCE objective for task k
is given by:

∇θkJREINFORCE(θ
k) =

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
∇θk log p̂θk(ol+1|ol)R

k
out(o)

]
, (95)
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∇θkJRAFT(θ
k) =

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

(96)

[
(1 + log p̂θk(ol+1|ol))∇θk log p̂θk(ol+1|ol)R

k
out(o)

]
, (97)

where

JREINFORCE(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k
ao1

,o2:L∼p̂k

θk (O|o1)

[
Rk

(Q,A)(o)
]
, (98)

JRAFT(θ
k) = E

o1∼Pk(Qk),(Q,A)∼Do1,k
ao1

,o2:L∼p̂k

θk (O|o1)

[
L−1∑
l=1

log p̂θk(ol+1|ol)R
k
(Q,A)(o)

]
, (99)

Remark 13. In the main text, Eq.(4 contains a typo: the summation term “
∑L−1

l=1 ” inside the
expectation is omitted. The correct formulation is provided in Eq.(99. Additionally, the formal
versions of Eq.(7 and Eq.(8 are given as Eq.(95 and Eq.(97, respectively.

Proof.For any complete trajectory o = (o1, ..., oL):

p̂θk(o) = P k(Qk)

L−1∏
l=1

p̂θk(ol+1|ol) (100)

where P k(Qk) is the initial state distribution (parameter-independent by Def. 1). By the property of
TMC, we have

∇θkJREINFORCE(θ
k) = ∇θkEo1=q∼Pk(Qk),o2:L∼p̂k

θk (O|o1)

[
Rk

out(o)
]

(1)
= ∇θk

∫
OL

Rk
out(o)

[
P k(q)

L−1∏
l=1

p̂θk(ol+1|ol)

]
do1:L

(2)
=

∫
OL

Rk
out(o)P

k(q)∇θk

[
L−1∏
l=1

p̂θk(ol+1|ol)

]
do1:L

(3)
=

∫
OL

Rk
out(o)P

k(q)

[
L−1∏
l=1

p̂θk(ol+1|ol)

]
L−1∑
l=1

∇θk log p̂θk(ol+1|ol)do1:L

(4)
= Eo1∼Pk(Qk),o2:L∼p̂k

θk (O|o1)[
Rk

out(o)

L−1∑
l=1

∇θk log p̂θk(ol+1|ol)

]
(5)
=

L−1∑
l=1

Eo1∼Pk(Qk),o2:L∼p̂k

θk (O|o1)

[
∇θk log p̂θk(ol+1|ol)R

k
out(o)

]
.

(101)
Step (1) expands the expectation as an integral over trajectories using the MDP’s joint distribution
P k(q)

∏L−1
t=1 p̂θk(ot+1|ot);

Step (2) applies the Leibniz interchange under Markovian policy structure:

∇θk

∫
OL

Rk
out(o)p̂θk(o1:L)do1:L =

∫
OL

Rk
out(o)∇θk p̂θk(o1:L)do1:L (a.s.) (102)

valid when: (i) Policy Gradient Dominance: ∃h ∈ L1(µ) such that ∥Rk
out(o)∇θk p̂θk(o1:L)∥ ≤

h(o1:L) ∀θk ∈ Θk where Θk = R|S|×|S| denotes the parameter space; (ii) Pa-
rameterized Measure Continuity: The map θk 7→

√
p̂θk(o1:L) is W 1,1-continuous with:

lim∥v∥→0 Eµ

[∥∥∥∥√p̂
θk+v

−
√

p̂
θk

∥v∥

∥∥∥∥2
]

< ∞, which are all satisfied under our case since

∥Rk
out(·)∥∞ = O(1) and p̂θk(·|x) = softmax(⟨θ, x⟩) by Eq.(2);
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Step (3) decomposes using Markovian parameter isolation:

∇θk

L−1∏
l=1

p̂θk(ol+1|ol) =

L−1∑
l=1

(
L−1∏
m=1

p̂θk(om+1|om)

)
∇θk log p̂θk(ol+1|ol) (103)

valid under: (i) Disjoint Parameter Control: θk =
⊎L−1

l=1 θk
l where θk

l ∩ θk
l′ = ∅ for

l′ ̸= l, with each p̂θk(ol+1|ol) = fl(ol+1|ol;θ
k
l ) and ∂fl

∂θk
l′
≡ 0; (ii) Log-Smoothness:

p̂θk(ol+1|ol) > 0 µ-a.e. and ∇θk log p̂θk(ol+1|ol) ∈ L2(p̂θk ⊗ µ); (iii) Sequential Fubini Con-
dition:

∫
OL

∏L−1
l=1 p̂θk(ol+1|ol)do1:L =

∏L−1
l=1

∫
O p̂θk(ol+1|ol)dol+1 in terms of total variation

norm, which are all easily verified under our p̂θk(·|x) = softmax(⟨θ, x⟩) by Eq.(2);

Step (4) rewrites the integral as Eo1:L∼p̂
θk
[Rk

out(o)
∑L−1

l=1 ∇θk log p̂θk(ol+1|ol)];

Step (5) exchanges summation and expectation via Fubini’s theorem, valid when
E[|Rk

out∇θk log p̂θk |] <∞, which obviously hold in our setting. Similarly, we have

∇θkJRAFT(θ
k) = ∇θkEo1=q∼Pk(Qk)

ot+1∼p̂
θk (·|ot)

[
L−1∑
l=1

log p̂θk(ol+1|ol) ·Rk
out(o1:L)

]
(1)
=

L−1∑
l=1

∇θk

(∫
OL

Rk
out(o1:L) · P k(o1) ·

L−1∏
t=1
t ̸=l

p̂θk(ot+1|ot) ·
[
p̂θk(ol+1|ol) log p̂θk(ol+1|ol)

]
do1:L

)

(2)
=

L−1∑
l=1

∫
OL

Rk
out(o1:L) · P k(o1) ·

(
L−1∏
t=1
t̸=l

p̂θk(ot+1|ot)

)
· ∇θk

[
p̂θk(ol+1|ol) log p̂θk(ol+1|ol)

]
do1:L

(3)
=

L−1∑
l=1

∫
OL

Rk
out(o1:L) · P k(o1)

(
L−1∏
t=1

p̂θk(ot+1|ot)

)
·
∇θk

[
p̂θk(ol+1|ol) log p̂θk(ol+1|ol)

]
p̂θk(ol+1|ol)

do1:L

(4)
=

L−1∑
l=1

E o1∼Pk(Qk)
ot+1∼p̂

θk (·|ot)

[
Rk

out(o1:L)
(
1 + log p̂θk(ol+1|ol)

)
· ∇θk log p̂θk(ol+1|ol)

]
(5)
= E o1∼Pk(Qk)

ot+1∼p̂
θk (·|ot)

[
Rk

out(o1:L) ·
L−1∑
l=1

(
1 + log p̂θk(ol+1|ol)

)
· ∇θk log p̂θk(ol+1|ol)

]
(104)

Step (1) expands the expectation using the Markovianity’s factorized structure
P k(o1)

∏L−1
t=1 p̂θk(ot+1|ot), isolating the l-th transition’s p̂ log p̂ term while keeping others

as standard transitions, which is legitimate under our p̂θk(·|x) = softmax(⟨θ, x⟩) by Eq.(2);

Step (2) enforces parameter-localized differentiation through:
∑L−1

l=1 ∇θk

∫
Fldo =

∑L−1
l=1

∫
OL Rk

out(o1:L) · P k(o1) ·

(∏L−1
t=1
t̸=l

p̂θk(ot+1|ot)

)
· ∇θk

[
p̂θk(ol+1|ol) log p̂θk(ol+1|ol)

]
do1:L (a.s.)

(105)
where Fl = Rk

out(o1:L)·P k(o1)·
∏L−1

t=1
t ̸=l

p̂θk(ot+1|ot)·[p̂θk(ol+1|ol) log p̂θk(ol+1|ol)], valid when:

(i) Architectural Parameter Isolation: Policy parameters partition as θk =
⊎L−1

l=1 θk
l with:

∂

∂θk
m

p̂θk(ot+1|ot) =

{
∇θk

l
p̂θk(ol+1|ol) t = l and m = l

0 otherwise
(106)

which is satisfied as p̂θk(·|x) = softmax(⟨θ, x⟩) by Eq.(2); (ii) Localized Dominance: ∃hl ∈
L1(µl) where µl is the base measure on (ol,ol+1), such that:

|Rk
out(o1:L) · ∇θk [p̂θk(ol+1|ol) log p̂θk(ol+1|ol)]| ≤ hl(ol,ol+1), (107)

which clearly held under our condiions; (iii) Decoupled Integration: For each l,∫
OL

Fldo =

∫
o1

P k

∫
ol+1

[p̂θk log p̂θk ]

L−1∏
t=1
t ̸=l

∫
ot+1

p̂θkdot+1

 doldol+1 (108)
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with
∏L−1

t=1
t ̸=l

∫
p̂θkdot+1 = 1 µ-a.e. This condition holds apparently under our model p̂θk(·|x) =

softmax(⟨θ, x⟩) by Eq.(2), which linearly isolates each states; (iv) Transition Differentiability:

Each θk
l 7→ p̂θk(ol+1|ol) is Fréchet differentiable with: E

[∥∥∥∥∇
θk
l
p̂
θk (ol+1|ol)

p̂
θk (ol+1|ol)

∥∥∥∥2
]
<∞ which holds

in our softmax model;

Step (3) multiplies one p̂θk(ol+1|ol) in the front and divide it subsequently;

Step (4) uses the chain rule:

∇θk(p̂θk(ol+1|ol) log p̂θk(ol+1|ol)) = (1 + log p̂θk(ol+1|ol))∇θk p̂θk(ol+1|ol),

and reconstructs the expectation by recognizing
∏L−1

t=1 p̂t = p̂θk(o1:L)/P
k(o1), with cross-terms

vanishing due to Eom+1∼p̂m
[f(ol)] = E[f(ol)] for m ̸= l; Step (5) applies Fubini’s theorem to

exchange summation and expectation, valid by the fact E
[∑L−1

l=1 |(1 + log p̂l)∇ log p̂l Rex |
]
<∞

in our case.

Remark 14. When the base model is no longer in the linear form in Eq.(2), but a general form in
Eq.(90) with p̂θ(·|x) = softmax(hθ(·,x)), x ∈ {0, 1}|S|, the conclusions still holds when

• Architectural Conditions

– Parameter Isolation: θ =
⊎L−1

l=1 θl where θl ∩ θl′ = ∅ for l ̸= l′, with:

hθ(ol+1|ol) = hl(ol+1|ol;θl),
∂hl

∂θl′
≡ 0 ∀l′ ̸= l (109)

– Module Independence: Each hl(·;θl) uses distinct computational subgraphs without
parameter sharing across l

• Smoothness & Differentiability

– Lipschitz Continuity: ∃Cl > 0 s.t.

∥hl(·;θl +∆θ)− hl(·;θl)∥∞ ≤ Cl∥∆θ∥2 ∀θl (110)

– Twice Differentiability: hl ∈ C2(Θl) with bounded Hessians:

Eol

[
∥∇2

θl
hl∥2op

]
<∞ (111)

• Gradient Control

– Bounded Logits: ∃C <∞ s.t.

max
a
|hl(a,ol)| ≤ C ∀ol, l (112)

– Gradient Norm Bound:

Eol

[
∥∇θl

hl∥22
]
≤ Bl <∞ ∀l (113)

• Probability Regularity

– Strict Positivity: ∃ϵ > 0 s.t.

p̂θ(ol+1|ol) ≥ ϵ µ-a.e. ∀l (114)

– Measure Consistency: ∫
O
p̂θ(ol+1|ol)dol+1 = 1 ∀ol, l (115)

These conditions guarantee: 1. Leibniz rule applicability; through Lipschitz continuity 2. Fubini’s
theorem validity via measure consistency; 3. Gradient dominance via bounded logits; 4. Policy
smoothness via C2 differentiability; 5. Numerical stability through strict positivity.
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Lemma 8 (Policy Gradient for PO (Eq.(67)) under TMC). Let θ⋆ be the base model in Eq.(2) that
exact predicts the distribution of Multi-task TMC as in Def. 1 and 2, and θk the current model to
be finetuned from θ⋆ for task k ∈ T . Suggest the accurate A

p̂
θk ,k

l+1 (ol,ol+1) is available from some
outer oracle, the clip operation is always active, and Eq.(66) holds. The gradient of the PO objective
for task k is given by:

∇θkJPO(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · ∇θk log p̂θk(ol+1|ol)
]
,

(116)
(117)

where rl+1 =
p̂
θk (ol+1|ol)

p̂k
old(ol+1|ol)

. By the condition that the clip operation is always active, we have

JPO = E
o1∼Pk(Qk),(Q,A)∼Do1,k

ao1
,o2:L∼p̂k

θk (O|o1)

[ 1
L

L−1∑
l=1

(1 + (21(A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1)
]
,

(118)

Proof.It holds that

∇θkJPO = ∇θkE o1∼Pk

ot+1∼p̂
θk

[
1

L

L−1∑
l=1

(1 + (21(A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1)

]
(1)
=

1

L

L−1∑
l=1

∇θk

∫
OL

(1 + (21(A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1)P
k(o1)

L−1∏
t=1

p̂θk(ot+1|ot)do1:L

(2)
=

1

L

L−1∑
l=1

∫
OL

(1 + (21(A
p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · P k(o1)
L−1∏
t=1

p̂θk(ot+1|ot) · ∇θk log p̂θk(ol+1|ol)do1:L

(3)
=

1

L

L−1∑
l=1

E o1∼Pk

ot+1∼p̂
θk

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · ∇θk log p̂θk(ol+1|ol)
]

(119)
The methodologies follow Lemma 8.

Step (1) expands the expectation using the MDP factorization P k(o1)
∏L−1

t=1 p̂θk(ot+1|ot), noting
that p̂old is treated as fixed behavioral policy;

Step (2) applies parameter-localized differentiation through:

∇θk

L−1∏
t=1

p̂t =

L−1∏
t=1
t̸=l

p̂old,t · ∇θk p̂l (120)

with conditions similar in Lemma 7.

Step (3) reconstructs the expectation by recognizing
∏L−1

t=1 p̂t = p̂θk(o1:L)/P
k(o1), leveraging the

Markov property.

Key Conditions Inherited from REINFORCE/RAFT in Lemma 7: 1. Parameter Isolation: θk =⊎L−1
l=1 θk

l with disjoint subparameters 2. Policy Smoothness: p̂θk ∈ C2(Θ) with bounded Hessians
3. Measure Consistency:

∏
t ̸=l

∫
p̂tdot+1 = 1 µ-a.e. 4. Advantage Regularity: A

p̂
θk ,k

l+1 (ol,ol+1) is
σ(o1:l+1)-measurable and bounded.

Based on the policy gradient results, the logit update lemma is provided as below.

Lemma 9. Let θ⋆ be the base model in Eq.(2) that exact behave like a Multi-task TMC as in Def. 1
and 2, and θk the current model to be finetuned from θ⋆ for task k ∈ T . Then

∇θkJREINFORCE(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (∇θkhθ(ol+1,ol)−
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol))

]
,

(121)
∇θkJRAFT(θ

k) =
∑L−1

l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (1 + log p̂θk(ol+1|ol))(∇θkhθ(ol+1,ol)−
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol))

]
,

(122)
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∇θkJPO(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · (∇θkhθ(ol+1,ol)−
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol))

]
.

(123)

Further, we have

∇θkJREINFORCE(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
,

(124)

∇θkJRAFT(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (1 + log p̂θk(ol+1|ol))(eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
,

(125)
∇θkJPO(θ

k) =
∑L−1

l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
(1 + (21(A

p̂
θk ,k

l+1 (ol,ol+1) ≥ 0)− 1)ϵclip)A
p̂
θk ,k

l+1 (ol,ol+1) · (eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
.

(126)

Proof.By Eq. (95) and Eq.(90), we have

∇θkJREINFORCE(θ
k) =

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
∇θk log p̂θk(ol+1|ol)R

k
out(o)

]

=

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

Rk
out(o) · (∇θkhθ(ol+1,ol)−

∑
o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol))

 .

(127)
Similarly By Eq. (97), Eq.(90), we obtain the results of RAFT. Given Eq.(2), we have

∇θkJREINFORCE(θ
k) =

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
∇θk log p̂θk(ol+1|ol)R

k
out(o)

]

=

L−1∑
l=1

E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

Rk
out(o) · (∇θkhθ(ol+1,ol)−

∑
o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)∇θkhθ(o

′
l+1,ol))

 .

(128)
Given Eq.(2), by Eq.(92) we have

∇θkJREINFORCE(θ
k) =

∑L−1
l=1 E o1∼Pk(Qk)

{ol+1∼p̂
θk (·|ol)}L−1

l=1

[
Rk

out(o) · (eol+1,ol −
∑

o′
l+1∈Sl+1

p̂θk(o′
l+1|ol)eo′l+1,ol

)
]
.

The results of RAFT and PO follows.
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