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Abstract

Deep neural networks incorporating discrete la-
tent variables have shown significant potential
in sequence modeling. A notable approach is
to leverage vector quantization (VQ) to generate
discrete representations within a codebook. How-
ever, its discrete nature prevents the use of stan-
dard backpropagation, which has led to challenges
in efficient codebook training. In this work, we in-
troduce Meta-Quantization (MQ), a novel vector
quantization training framework inspired by meta-
learning. Our method separates the optimization
of the codebook and the auto-encoder into two
levels. Furthermore, we introduce a hyper-net to
replace the embedding-parameterized codebook,
enabling the codebook to be dynamically gener-
ated based on the feedback from the auto-encoder.
Different from previous VQ objectives, our in-
novation results in a meta-objective that makes
the codebook training task-aware. We validate
the effectiveness of MQ with VQVAE and VQ-
GAN architecture on image reconstruction and
generation tasks. Experimental results showcase
the superior generative performance of MQ, un-
derscoring its potential as a robust alternative to
existing VQ methods.

1. Introduction
Learning discrete latent variables is favorable for tasks natu-
rally modeled as sequences of discrete symbols, including
language and speech (Vinyals et al., 2015). Vector-quantized
networks (VQNs) provide an effective approach for this by
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Figure 1. Our framework is based on bi-level optimization.
Meta-quantization learns the codebook and encoder-decoder pair
using a bi-level optimization framework. At the lower level, the
encoder-decoder pair is trained to converge while keeping the
codebook fixed. At the upper level, the codebook is optimized via
hyper-gradient descent using the optimal encoder-decoder pair.

learning latent variables through vector quantization (VQ,
Gray (1984)), a process that quantizes features into clusters
referred to as codes. The concept of VQNs was first in-
troduced with the vector-quantized variational autoencoder
(VQVAE, van den Oord et al. (2017)) in the context of gen-
erative models. Subsequent research has demonstrated that
training autoregressive priors on discrete representations ob-
tained via vector quantization yields highly effective models
for image generation (Razavi et al., 2019; Roy et al., 2018;
Ramesh et al., 2021; Esser et al., 2021; Chang et al., 2023).
Beyond image generation, VQNs have achieved notable
success in speech generation (Dhariwal et al., 2020) and
have extended their utility to other domains, such as im-
age representation learning (Caron et al., 2020) and speech
representation learning (Chung et al., 2020).

The training approach for vector-quantized networks
(VQNs), as implemented in VQVAE, involves learning a
codebook C to represent compressed semantic data. The
encoder Fϕ maps input data to an embedding, which is sub-
sequently quantized by selecting the nearest neighbor in
C. The selected code replaces the embedding and is then
passed to the decoder Gθ to produce the output. Since the
quantization operation introduces a non-differentiable bot-
tleneck, a straight-through estimator (STE, Bengio et al.
(2013)) is employed to enable gradient flow through the
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VQ layer to the encoder during backpropagation. However,
because the backpropagated gradient bypasses the codebook
in the STE framework, the codebook is instead optimized
using a vector quantization objective. This objective aligns
the distribution of the encoder embeddings with the selected
codes to achieve distribution matching.

Despite its effectiveness, the current training framework for
vector quantization faces several challenges. First, vector
quantization often suffers from a phenomenon known as
index collapse, where only a small subset of codes remains
active during training (Kaiser et al., 2018). This issue arises
because frequently optimized token embeddings gradually
align more closely with the feature map distributions, while
less frequently or never-optimized token embeddings (inac-
tive tokens) are excluded from the training process. These
inactive tokens remain unused during inference, leading to
suboptimal codebook utilization. Second, the codebook is
optimized solely using the vector quantization objective,
which focuses on distribution matching. However, due to
the straight-through estimator (STE), gradients from the
task loss bypass the codebook during backpropagation. As
a result, codebook updates are agnostic to the specific task,
potentially undermining its effectiveness for the overall ob-
jective of image modeling.

Drawing inspiration from meta-learning (Finn et al., 2017),
we propose a novel vector quantization training framework
termed Meta Quantization (MQ). Our method builds di-
rectly on the vector quantization mechanism and reparam-
eterizes the codebook by introducing a separate hyper-net
Hψ. The hyper-net predicts the parameter matrices of the
codebook from a learned embedding. While maintaining the
same expressivity at the quantization bottleneck, the hyper-
net aggregates gradient feedback from all matched codes
and generates the codebook holistically. This design acceler-
ates convergence without introducing additional complexity
to the quantization operation and enables seamless integra-
tion with existing approaches. The theoretical advantages
(for example, accelerating convergence) of such an overpa-
rameterized architecture have been studied in Arora et al.
(2018). Moreover, we formulate an asymmetric bi-level
optimization problem to allow the hyper-net to learn quan-
tization in a meta-learning fashion. In this framework, the
hyper-net functions as a meta-learner (analogous to the hy-
perparameters in meta-learning), while the encoder-decoder
pair acts as a task-specific learner. As illustrated in Figure 1,
the hyper-net and the encoder-decoder pair are optimized
at the upper and lower levels, respectively. At the upper
level, the hyper-net anticipates the encoder-decoder pair’s
future performance by tentatively training them until conver-
gence (unrolling for one step as a practical surrogate) while
keeping the codebook fixed. Subsequently, the hyper-net
is updated via hyper-gradient descent to minimize the loss
for one step, leveraging the optimal encoder and decoder as

functions of the hyper-net. At the lower level, the tentative
optimization steps of the encoder-decoder pair from the first
stage are undone, as a better hyper-net is identified in the
previous step. Instead, the encoder and decoder are opti-
mized for one step using gradient descent with the updated
hyper-net. These two levels of optimization are performed
iteratively until convergence.

Figure 2 provides a detailed illustration of the training
procedure and gradient flow in our proposed framework.
Specifically, the meta-objective is implemented by unrolling
the lower-level training for several steps, with its gradient
computed through hypergradient descent (i.e., optimizing
through the inner gradient descent path). The hypergradient
paths demonstrate how the gradient from the task loss can
now reach the codebook through multiple routes. This con-
trasts with previous codebook training strategies, where the
task loss has no direct gradient impact on the codebook. A
practical advantage of our framework is that the hyper-net
can be discarded after training, retaining only the generated
weights of the codebook. This means the downstream does
not suffer from additional inference burden. Furthermore,
the bi-level training procedure does not affect downstream
tasks, as the parameters trained in the first stage are fixed.
This makes meta-learned codebooks as efficient as their
conventional counterparts.

We evaluate the effectiveness of our framework across the
VQVAE and VQGAN architectures on standard image re-
construction and generation tasks. The results show that the
MQ approach consistently outperforms multiple baselines
and ablation methods, underscoring its superiority. Impor-
tantly, we modify only the codebook training procedure
without altering the quantization mechanism or downstream
autoregressive model training. Thus, our work is comple-
mentary to ongoing advancements in these areas.

The remainder of this article is organized as follows. Section
2 presents related work. Section 4 details our proposed
method. Experimental setup and results are discussed in
Section 5. The paper is concluded in Section 6.

2. Related Work
2.1. Vector-Quantized Networks

Vector quantization networks (VQNs), initially proposed for
image generation as VQVAE, map continuous embeddings
to discrete codebook representations using vector quantiza-
tion (VQ). The non-differentiable nature of VQ is addressed
via straight-through estimators (STE, Bengio et al. (2013)).
However, this presents the index collapse issue during code-
book training, where only a small number of codes are ac-
tive. To prevent the issue, Łańcucki et al. (2020); Zeghidour
et al. (2021); Dhariwal et al. (2020) propose to reset unused
codes periodically. In contrast, Kaiser et al. (2018) proposes
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Figure 2. Gradient paths in meta-quantization. The lower level is optimized by gradient descent. The upper level is optimized by
hyper-gradient descent with direct hyper-gradient and indirect hyper-gradient. Here, we use L∗

task, L∗
commit and L∗

codebook to denote the
corresponding loss computed with ϕ∗(ψ) and θ∗(ψ).

performing quantization in lower dimensionality to improve
codebook utilization. Gumbel-VQ (Karpathy, 2021) enables
differentiable quantization through continuous approxima-
tion of the argmin operator. Other approaches include
affine reparameterization (Huh et al., 2023), l2 normaliza-
tion (Yu et al., 2022), probabilistic formulations (Roy et al.,
2018; Takida et al., 2022). More recently, VQGAN-LC
(Zhu et al., 2024a) scales up the codebook size by initial-
izing codebooks with features extracted by a pre-trained
vision encoder, and focuses on training a projector that
aligns the entire codebook with the feature distributions of
the encoder. SimVQ (Zhu et al., 2024b) achieves even supe-
rior results by reparameterizing the code vectors through a
linear transformation layer based on a learnable latent basis.

Other works, including FSQ (Mentzer et al., 2024) and LFQ
(Yu et al., 2024), have explored using non-learnable, implicit
codebooks. They replace the vector quantizer with scalar
quantization schemes through rounding, making the code-
book predefined and non-learnable. However, such methods
suffer from reduced expressiveness due to the finite set of
possible code values (specifically, a grid of integer values).
Furthermore, FSQ and LFQ require representation to be
projected into a reduced dimensionality, leading to signifi-
cant information loss. These constraints motivate our focus
on explicit codebook improvements. Our method shares
certain similarities with them when viewing the codebook
as a hyperparameter. FSQ and LFQ treat the codebook
as a predefined hyperparameter; our work, on the other

hand, searches for the optimal hyperparameter following
the well-studied bi-level optimization-based hyperparameter
optimization literature (Pedregosa, 2016; Finn et al., 2017).

2.2. Bi-level Optimization

Bi-level optimization (BLO) has found wide applicability
in various machine learning tasks, with meta-learning (Finn
et al., 2017; Rajeswaran et al., 2019) being one of its most
notable applications. Other areas where BLO has been suc-
cessfully employed include neural architecture search (NAS,
Liu et al. (2019); Zhang et al. (2021)) and hyperparameter
optimization (HPO, Lorraine et al. (2020); Franceschi et al.
(2017)). Despite its broad usage, solving BLO problems
remains challenging due to the inherently nested structure
of the two optimization tasks. Gradient-based BLO (Choe
et al., 2023) has garnered significant attention due to its scal-
ability to high-dimensional problems with a large number
of trainable parameters.

In this work, we extend the application of gradient-based
BLO to propose a novel approach for codebook training
within the vector quantization framework. Inspired by meta-
learning, our MQ framework treats the codebook as hyper-
parameters, which are parameterized by a hyper-net. The
meta-objective is to enhance the training of the encoder and
decoder, replacing the previous VQ loss. The effectiveness
of the codebook generated by the hyper-net is validated by
assessing the performance of the encoder and decoder. This
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process mirrors the practice of validating model initializa-
tion in meta-learning. A similar strategy involving hyper-
gradient descent with inner loop unrolling is employed in
our work, a technique that is also commonly found in the
meta-learning literature.

3. Preliminary
A vector-quantized network (VQN) is a neural network
that incorporates a vector-quantization (VQ) layer hC(·), as
described by the following equation:

y = Gθ(hC(Fϕ(x))) = Gθ(hC(ze)) = Gθ(zq) (1)

Here, ze denotes the embedding obtained by applying the en-
coder Fϕ (parameterized by ϕ) to the input x. zq represents
the quantized embedding, which is obtained by applying the
VQ layer hC to ze. The output y is generated by the decoder
Gθ (parameterized by θ), which takes zq as input.

The VQ layer hC(·) performs quantization on ze by select-
ing a vector from the codebook C = {e1, e2, . . . , eK} based
on a distance measure d(·, ·),

zq = ek, where k = argmin
j
d(ze, ej) (2)

Here, a learned vector ei is referred to as the code, and
the index i denotes the corresponding code. The Euclidean
distance is commonly used as the distance measure for d(·, ·)
(van den Oord et al., 2017). The quantized embedding zq
is a subset of C, and updating zq corresponds to partially
updating C.

The task loss Ltask(Gθ(hC(Fϕ(x))),y) is not continuously
differentiable due to the argmin operator in hC . To address
this issue, a straight-through estimator (STE, Bengio et al.
(2013)) is applied, where the non-differentiable part ∂zq

∂ze
is

ignored:

∂Ltask

∂ϕ
≈ ∂Ltask

∂y

∂y

∂zq

∂ze
∂ϕ

(3)

To ensure an accurate STE, ze and zq are aligned using two
additional losses:

Lcommit(zq, ze) = d (ze, sg [zq]) (4)
Lcodebook(zq, ze) = d (sg [ze] , zq) (5)

Here, sg denotes the stop-gradient operator, which treats
the entire term as a constant with zero partial derivatives.
The commitment loss Lcommit encourages the embedding
to move toward the selected codes, whereas the codebook
loss Lcodebook, also known as the vector quantization objec-
tive, pushes the selected codes toward the centroids of the
embedding.

Overall, a differentiable objective is minimized:

min
ϕ,θ,C

E(x,y)∼D [Ltask (Gθ(hC(Fϕ(x))),y)

+α · Lcommit(hC(Fϕ(x)), Fϕ(x)) (6)
+β · Lcodebook(hC(Fϕ(x)), Fϕ(x))] (7)

where α and β are scalars that balance the loss combination.
In this training framework, the decoder optimizes the first
term, the encoder optimizes both the first and the middle
terms, and the codebook is optimized only by the last term.

4. Methodology
4.1. Hyper-Net Reparameterization

We avoid directly optimizing the codebook by introducing a
hyper-net Hψ, which takes as input a learnable embedding
Eψ and predicts the codes in the codebook, which are then
used for vector quantization. More formally, this can be
expressed as C = Hψ(Eψ). As shown on the right side
of Figure 1, the trainable parameters (denoted by ψ) in
the quantization layer are the hyper-net and the learnable
embedding rather than the codebook itself. For notation
simplicity, we use Hψ to denote Hψ(Eψ) in the remaining
parts of this paper.

Once the first stage of image modeling is completed, the
hyper-net can be discarded, retaining only the generated
codebook for downstream tasks. This codebook acts as a
direct replacement for the codebook used in previous train-
ing procedures. Furthermore, since the generated codebook
is a complicated non-linear combination of the learnable
embedding through the mapping of the hyper-net, even if
only a few codes are selected, a substantial part of the hyper-
net still receives gradients. This allows the hyper-net to
generate a codebook that better aligns with the embedding
distribution.

4.2. A Bi-level Optimization Framework

In the spirit of meta-learning, we propose to optimize the
hyper-net and encoder-decoder pair by solving a bi-level
optimization problem. Specifically, we optimize the hyper-
net Hψ at the upper level and the encoder Fϕ and decoder
Gθ at the lower level. In both levels, we consider a loss L
defined in the same form as in Equation (7), i.e., the sum of
Ltask, Lcommit, and Lcodebook.

Lower Level At the lower level, we train the encoder Fϕ
and decoder Gθ by minimizing L(ϕ, θ, ψ). Specifically, we
aim to find the optimal values of ϕ and θ with ψ temporarily
fixed, resulting in the following optimization problem:

ϕ∗(ψ), θ∗(ψ) = argmin
ϕ,θ

L(ϕ, θ, ψ) (8)
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Here, ϕ∗(ψ) and θ∗(ψ) denote the optimal solutions for
ϕ and θ, which are functions of ψ, since the lower-level
problem does not take ψ as an argument.

Upper Level At the upper level, the hyper-net Hψ is
trained by minimizing the loss of the same functional form
but using ϕ∗(ψ) and θ∗(ψ) that were optimally learned at
the lower level as arguments. The loss then only depends on
ψ, and the upper-level optimization problem is formulated
as:

min
ψ

L(ϕ∗(ψ), θ∗(ψ), ψ) (9)

A Bi-level Optimization Framework By integrating the
two levels of optimization problems, we present the overall
bi-level optimization problem as:

min
ψ

L(ϕ∗(ψ), θ∗(ψ), ψ)

s.t. ϕ∗(ψ), θ∗(ψ) = argmin
ϕ,θ

L(ϕ, θ, ψ) (10)

The two levels of optimization problems are mutually depen-
dent on each other. The solution to the optimization problem
at the lower level, ϕ∗(ψ) and θ∗(ψ) serves as a parameter for
the upper-level problem, while the non-optimal variable ψ at
the upper level acts as a parameter for the lower-level prob-
lem. By solving the two interconnected problems jointly,
we can learn ϕ∗, θ∗, and ψ∗ in an end-to-end manner.

Algorithm 1 Meta-Quantization

Require: Dataset D
1: Initialize ϕ, θ and ψ for Fϕ, Gθ, Hψ and Eψ .
2: while not converged do
3: Update ψ by gradient descent as

∇ψL(ϕ− ξ∇ϕL(ϕ, θ, ψ), θ − ξ∇θL(ϕ, θ, ψ), ψ)
4: (ξ = 0 if using alternated optimization)
5: Update ϕ and θ by gradient descent as ∇ϕL(ϕ, θ, ψ)

and ∇θL(ϕ, θ, ψ)
6: end while

Ensure: ϕ∗, θ∗ and ψ∗

Optimization Algorithm We employ an efficient
gradient-based optimization algorithm to solve the bi-level
optimization problem presented in Equation (10), with the
two levels optimized iteratively until convergence. Related
convergence analyses of this type of gradient-based bi-level
optimization algorithm can be found in Pedregosa (2016),
Rajeswaran et al. (2019), and references therein.

Gradient descent can be applied directly to the lower-level
problem; however, a significant challenge arises at the upper
level: computing the hyper-gradient, i.e., the gradient of
the upper-level objective with respect to ψ, can be computa-
tionally prohibitive due to the lack of an analytical solution

for ϕ∗(ψ) and θ∗(ψ). To address this, we adopt a one-step
approximation (Finn et al., 2017):

∇ψL(ϕ∗(ψ), θ∗(ψ), ψ)
≈ ∇ψL(ϕ− ξ∇ϕL(ϕ, θ, ψ), θ − ξ∇θL(ϕ, θ, ψ), ψ)

(11)

where ξ is the learning rate for the lower-level problem.
One-step unrolled approximated solutions, ϕ′(ψ) = ϕ −
ξ∇ϕL(ϕ, θ, ψ) and θ′(ψ) = θ − ξ∇θL(ϕ, θ, ψ), are used
as surrogates for ϕ∗(ψ) and θ∗(ψ). This is equivalent to
introducing a surrogate objective L(ϕ−ξ∇ϕL(ϕ, θ, ψ), θ−
ξ∇θL(ϕ, θ, ψ), ψ) that closely resembles the upper-level
objective in Equation (9).

Existing meta-learning methods compute Equation (11) by
either backpropagating through the optimization process at
the lower level (Finn et al., 2017) or applying implicit dif-
ferentiation with a Hessian matrix of the inner optimization
problem (Rajeswaran et al., 2019). However, as the problem
size scales, the memory and computational burden grow
significantly. Therefore, we employ a further approximation
by noticing that Equation (11) can be computed using the
chain rule, followed by a finite difference approximation
(Liu et al., 2019) as:

∇ψL(ϕ− ξ∇ϕL(ϕ, θ, ψ), θ − ξ∇θL(ϕ, θ, ψ), ψ) (12)
=∇ψL(ϕ′, θ′, ψ) (13)

− ξ∇2
ψ,ϕL(ϕ, θ, ψ)∇ϕ′L(ϕ′, θ′, ψ)

− ξ∇2
ψ,θL(ϕ, θ, ψ)∇θ′L(ϕ′, θ′, ψ) (14)

≈∇ψL(ϕ′, θ′, ψ) (15)

− ξ
∇ψL(ϕ+, θ, ψ)−∇ψL(ϕ−, θ, ψ)

2ϵ

− ξ
∇ψL(ϕ, θ+, ψ)−∇ψL(ϕ, θ−, ψ)

2ϵ
(16)

where ϕ± = ϕ ± ϵ∇ϕ′L(ϕ′, θ′, ψ), θ± = θ ±
ϵ∇θ′L(ϕ′, θ′, ψ), and ϵ is a small scalar. The finite dif-
ference is applied to approximate the matrix-vector multi-
plication term in Equation (14) for efficient computation.

4.3. Gradient Analysis

Essentially, meta-quantization introduces a meta-objective
L(ϕ∗(ψ), θ∗(ψ), ψ) in place of the VQ objective for the
quantizer training. While it shares the same functional form
as the previous framework (Equation (7)), the arguments ϕ
and θ are set to their optimal values ϕ∗(ψ) and θ∗(ψ). We
demonstrate that this meta-objective improves the gradient
guidance for ψ by performing a gradient analysis on the
one-step-unrolled surrogate loss using the chain rule.

Define L′(ϕ, θ, ψ) = L(ϕ′(ψ), θ′(ψ), ψ) = L(ϕ −
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ξ∇ϕL(ϕ, θ, ψ), θ − ξ∇θL(ϕ, θ, ψ), ψ). We then have

dL′

dψ
=
∂L′

∂ψ
+
∂ϕ′

∂ψ
× ∂L′

∂ϕ′
+
∂θ′

∂ψ
× ∂L′

∂θ′
(17)

The last two terms on the right-hand side, especially ∂ϕ′

∂ψ and
∂θ′

∂ψ , referred to as the best-response Jacobian in the literature
(Choe et al., 2023), capture how the encoder-decoder pair
reacts to changes of the quantizer. Therefore, the update of
ψ must consider not only the direct gradient from the loss
(∂L

′

∂ψ ) for minimizing quantization error but also additional
information about indirect gradients—how the encoder and
decoder would respond to changes in the quantizer (∂ϕ

′

∂ψ and
∂θ′

∂ψ ), and their performance potential (∂L
′

∂ϕ′ and ∂L′

∂θ′ ). The en-
coder and decoder select their best response by conducting
gradient descent, which the quantizer accounts for. This fa-
cilitates the finding of a globally optimal quantizer, thereby
improving its stability and robustness. See also Figure 2 for
the gradient path and hyper-gradient path used in the lower
and upper levels, respectively. Additionally, we observe that
by employing this strategy, ψ can now receive a gradient
from Ltask. For example, the first terms of L′, i.e., L′

task,
depend on ϕ′, which in turn depends on ψ. This joint effort
enables the Ltask to influence ψ during backpropagation.

5. Experiment
In this section, we first evaluate MQ on image generative
modeling, including image reconstruction and image gener-
ation, using the VQVAE architecture (van den Oord et al.,
2017). The experiments are done on small-scale datasets:
CIFAR10 (Krizhevsky et al., 2009) and CelebA (Liu et al.,
2015). We then scale up to a larger experimental setting
on FFHQ (Karras et al., 2019) and ImageNet (Deng et al.,
2009) with VQGAN (Esser et al., 2021), which involves
perceptual loss and adversarial loss as task losses. We re-
fer to the resulting methods combined with MQ “MQVAE”
and “MQGAN”, respectively. For the bi-level optimization
algorithm implementation, our code is mainly based on the
Betty library (Choe et al., 2023). We release our code at
GitHub 1 for future research.

5.1. Evaluation with VQVAE

Setup We first show preliminary experimental results with
the VQVAE architecture on CIFAR10 (Krizhevsky et al.,
2009) at 32 × 32 resolution and CelebA (Liu et al., 2015)
at 128× 128 resolution. For CelebA, images undergo ran-
dom cropping to 140× 140 pixels, followed by resizing the
smaller dimension to 128 while maintaining aspect ratio.
No additional augmentations are used for CIFAR10.

The backbone architecture of the autoencoder for all com-
1https://github.com/t2ance/MQVAE

pared methods follows Takida et al. (2022) with 64 channels.
A codebook size of 1024 is used across all methods. For
the hyper-net configuration, an MLP is used. It first lifts
the 32-dimensional learned embedding to 256 dimensions,
then projects it back to 32 dimensions to form the code-
book entries for quantization, using Tanh as the activation
function.

Models are trained using Mean Squared Error (MSE) as the
reconstruction loss; no perceptual or discriminative losses
are used. We employ the Adam optimizer (Kingma & Ba,
2015) with momentum set to (0.9, 0.95) and an initial learn-
ing rate of 1e-4. The learning rate follows a linear warmup
for the first 10% of epochs, then a half-cycle cosine de-
cay. No weight decay is applied to the quantizer. Training
runs for a maximum of 90 epochs, with early stopping if
performance saturates.

Evaluation metrics include MSE (the same as training loss),
LPIPS (Zhang et al., 2018), and model perplexity. Perplexity
is defined as 2H(p), where H(p) is the entropy over the
codebook likelihood; a higher value is preferred as it implies
more uniform code usage.

Our method is compared against VQVAE (van den Oord
et al., 2017), SQVAE (Takida et al., 2022), and Gumbel-
VQVAE (Karpathy, 2021; Esser et al., 2021). Comparisons
also include VQ training techniques such as l2 normaliza-
tion (Yu et al., 2022), least-recently-used (LRU) replace-
ment (Łańcucki et al., 2020), affine reparameterization, and
synchronized training (OPT) (Huh et al., 2023). For other
unspecified configurations, experimental settings from Huh
et al. (2023) are adopted, and their results are cited for
comparison.

Image Reconstruction Table 1 shows that almost all base-
lines significantly improve training stability and the recon-
struction performance of generative models. However, as
analyzed in the previous section, existing methods suffer
from the limitations that lack a direct gradient flow from
task loss to codebook, resulting in degraded reconstruction
performance. Notably, our method provides the best im-
provements, particularly with respect to the MSE, which is
the task loss. This verifies the effectiveness of our method
for achieving superior image quality and codebook utiliza-
tion.

Image Generation We extend our results to the image
generation task using MaskGIT (Chang et al., 2022) on
CelebA, utilizing the codebook trained in the first stage
directly. A slimmed-down version of MaskGIT (Huh et al.,
2023) is used: VQGAN using 32 channels instead of 128
and transformer using 8 blocks instead of 24. In Table 2,
the generation results improve from the baseline by 90.4
FID and 74.8 FID from the best-performing variation. In
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Table 1. Comparison between various methods on image recon-
struction task.

Method MSE (10−3) Perplexity LPIPS

C
IF

A
R

10

VQVAE (van den Oord et al., 2017) 5.65 14.0 0.54
l2 (Yu et al., 2022) 3.21 57.0 0.36
LRU (Łańcucki et al., 2020) 4.07 109.8 0.43
l2 + LRU 3.24 115.6 0.35
SQVAE (Takida et al., 2022) 3.36 769.3 0.39
Gumbel-VQVAE (Karpathy, 2021) 6.16 20.3 0.57
Affine (Huh et al., 2023) 5.15 69.5 0.51
OPT (Huh et al., 2023) 4.73 15.5 0.48
Affine + OPT (Huh et al., 2023) 4.00 79.3 0.43

MQVAE (ours) 3.05 783.4 0.29

C
E

L
E

B
A

VQVAE(van den Oord et al., 2017) 10.02 16.2 0.27
l2 (Yu et al., 2022) 6.49 188.7 0.18
LRU (Łańcucki et al., 2020) 4.77 676.4 0.16
l2 + LRU 4.93 861.7 0.15
SQVAE (Takida et al., 2022) 9.17 769.1 0.27
Gumbel-VQVAE (Karpathy, 2021) 7.34 96.7 0.23
Affine(Huh et al., 2023) 7.47 112.6 0.22
OPT(Huh et al., 2023) 7.78 30.5 0.23
Affine + OPT (Huh et al., 2023) 6.60 186.6 0.18

MQVAE (Ours) 3.10 877.8 0.14

contrast, our method improves the FID to 70.5, achieving
the best performance among all baselines.

Table 2. Image generation on CelebA using MaskGIT.

Method FID

MaskGIT (Chang et al., 2022) 90.4
l2 (Yu et al., 2022) 81.5

LRU (Łańcucki et al., 2020) 79.7
Affine + OPT (Huh et al., 2023) 74.8

MQVAE (Ours) 70.5

5.2. Evaluation with VQGAN

Setup In this subsection, we evaluate the scalability of
our method using the VQGAN (Esser et al., 2021) archi-
tecture, with all compared methods utilizing its original
encoder and decoder. These backbone architecture choices
directly follow Esser et al. (2021) to ensure comparable
results. Experiments were conducted on the ImageNet-1K
(Deng et al., 2009) and FFHQ (Karras et al., 2019) datasets.
For ImageNet-1K, input images were processed at 128×128
pixels. This involved resizing the image’s smaller dimen-
sion to 128 while maintaining aspect ratio, followed by a
128 × 128 random crop and a 50% probability horizontal
flip. FFHQ images were processed at 256× 256 pixels di-
rectly. The U-Net-based encoder (Ronneberger et al., 2015)
downsamples input images to a 16 × 16 feature map for
each case. The quantizer then converts this into a token

Table 3. Reconstruction performance on FFHQ.

Method Utilization (%) rFID LPIPS

VQGAN† (Esser et al., 2021) 2.3 5.25 0.12
VQGAN-FC† (Yu et al., 2022) 10.9 4.86 0.11
VQGAN-EMA† (Razavi et al., 2019) 68.2 4.79 0.10
VQGAN-LC (Zhu et al., 2024a) 99.9 4.65 0.10
MQGAN (Ours) 100.0 4.25 0.08

Table 4. Reconstruction performance on ImageNet-1k with a reso-
lution of 128× 128.

Method Utilization (%) rFID LPIPS

VQGAN (Esser et al., 2021) 1.4 3.74 0.17
VQGAN-EMA (Razavi et al., 2019) 4.5 3.23 0.15
VQGAN-FC (Yu et al., 2022) 100.0 2.63 0.13
FSQ (Mentzer et al., 2024) 100.0 2.80 0.13
LFQ (Yu et al., 2024) 100.0 2.88 0.13
VQGAN-LC (Zhu et al., 2024a) 100.0 2.40 0.13
SimVQ (Zhu et al., 2024b) 100.0 2.24 0.13

MQGAN (Ours) 100.0 2.13 0.12

Table 5. Image generation on FFHQ.

Method Utilization (%) FID

VQGAN-FC† (Yu et al., 2022) 10.9 3.23
VQGAN-EMA† (Razavi et al., 2019) 68.2 4.87
VQGAN-LC (Zhu et al., 2024a) 99.9 3.05

MQGAN (Ours) 99.9 2.87

map of the same dimensions (256 tokens), which the U-
Net-based decoder uses for image reconstruction. For the
hyper-net configuration, an MLP is used. It first lifts the
32-dimensional learned embedding to 256 dimensions, then
projects it back to 32 dimensions to form the codebook
entries for quantization, using Tanh as the activation func-
tion. The number of codes is set to 65, 536 for ImageNet
and 16, 384 for FFHQ, consistent with comparison meth-
ods. For initialization, codebook embeddings are initialized
using a simple Gaussian distribution, avoiding the need for
a pretrained model as in Zhu et al. (2024a). The hyper-net
transformation uses PyTorch’s default initialization.

We train for 20 epochs on ImageNet-1K and 800 epochs on
FFHQ, employing early stopping if performance saturates.
The Adam optimizer (Kingma & Ba, 2015) with optimizer
momentum of (0.5, 0.9) is used with an initial learning rate
of 1e-4. The learning rate undergoes a linear warmup for the
first 10% of epochs, followed by a half-cycle cosine decay
schedule. Evaluation involves several metrics. Reconstruc-
tion FID is measured using the GAN-trained autoencoder
with validation images passed through the quantized autoen-
coder; this reflects the FID a Stage II transformer could
achieve with perfect data modeling. Codebook usage is
determined by the fraction of codewords utilized at least
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once when encoding the validation set, following (Mentzer
et al., 2024) and (Zhu et al., 2024b). Additionally, genera-
tion FID is reported for the second stage involving a trained
transformer, obtained by decoding representations sampled
(potentially class-conditionally) with the transformer.

Our method is compared against several baselines: standard
VQGAN (Esser et al., 2021), VQGAN-FC (Yu et al., 2022),
VQGAN-EMA (Razavi et al., 2019), VQGAN-LC (Zhu
et al., 2024a), SimVQ (Zhu et al., 2024b), and implicit
codebook methods FSQ (Mentzer et al., 2024) and LFQ (Yu
et al., 2024).

Image Reconstruction In the image reconstruction task,
we evaluate performance using rFID, LPIPS, PSNR, and
SSIM metrics on the validation sets of ImageNet and FFHQ.
Table 3 and Table 4 present the reconstruction performance
for FFHQ and ImageNet, respectively. For FFHQ, results
cited from Zhu et al. (2024a) are denoted by †. For Im-
ageNet, all results of baselines are cited from Zhu et al.
(2024b).

We make the key observation that our method consistently
achieves the best performance with a codebook utilization
rate of over 99% on both datasets. When compared with
implicit codebooks such as FSQ (Mentzer et al., 2024) and
LFQ (Yu et al., 2024) in Table 4, MQGAN also achieves
superior performance. This can be attributed to the reduction
of expressiveness and model capacity in FSQ and LFQ,
while our method follows a learnable, explicit codebook
approach, leading to better performance when the codebook
utilization rate is high.

Image Generation We follow VQGAN, using a causal
Transformer decoder (Radford et al., 2019) with 24 layers,
16 heads per attention layer, and a latent dimension of 1024.
For FFHQ, the FID score is determined using 50K gener-
ated images in comparison with the combined training and
validation sets of FFHQ. Table 5 displays the unconditional
generation results on the FFHQ dataset. Compared with
baselines, the generative model GPT demonstrates improved
performance and codebook utilization with the integration
of our MQGAN.

5.3. Ablation Studies

Table 6. Ablation study on bi-level optimization (BLO).

Perplexity MSE PSNR SSIM

w/o BLO 836.4 3.65 28.3 77.8
w/ BLO (ξ = 0) 851.4 3.61 28.8 80.3
w/ BLO 877.8 3.10 29.4 82.1

Unless otherwise specified, we evaluate reconstruction per-
formance in terms of PSNR and SSIM (image quality), and

Table 7. Ablation study on hyper-net.

Hyper-net type Perplexity MSE PSNR SSIM

Identity 9.3 5.54 25.7 70.5
Linear-1 334.28 3.50 28.4 78.6
Linear-2 52.8 4.25 27.2 75.2
MLP 877.8 3.10 29.4 82.1

MSE (task loss) on CelebA across all studies.

Effectiveness of Bi-level Optimization In Equation (14),
we see that ξ controls the influence of task-specific objec-
tives. We set the value of ξ to zero to investigate the effec-
tiveness of indirect gradient, denoted by “w/ BLO (ξ = 0)”.
We also provide the results of “w/o BLO”, which denotes
using hyper-net reparameterization without bi-level opti-
mization in MQ.

From Table 6, we draw the observation that using a meta-
learning-inspired objective significantly improves image
modeling ability. This improvement validates the core idea
of our approach to directly incorporate task loss into the
codebook training via the meta-objective.

Type of Hyper-Net We evaluate the effectiveness of the
hyper-net by varying its specific parameterization. We com-
pare the following types:

1. Identity: A simple baseline without hyper-net.

2. Linear-1: A linear layer that projects an embedding
E ∈ RK×d′ to C ∈ RK×d, i.e., each code is projected
to a different dimensionality.

3. Linear-2: A linear layer that projects an embedding
E ∈ RK′×d to C ∈ RK×d, i.e., each code is a learned
linear combination of the basis E.

4. MLP: An MLP with one hidden layer which first
projects an embedding E ∈ RK×d′ to hidden neu-
rons of RK×d′′ , and then to C ∈ RK×d, constituting a
universal approximator to almost any continuous func-
tions.

For all ablative methods, we set d = d′ = 32 and K =
K ′ = 1024. Table 7 shows that employing a more complex
hyper-net consistently leads to better performance. This is
attributed to the enhanced meta-learner, resulting in better
generative modeling performance. Therefore, we employ
an MLP reparameterization in all our experiments.

5.4. Visualization of Embedding and Code Distributions

Figure 3 shows the distribution of the extracted features
and codes for two models: VQGAN and our MQGAN.
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The visualization is created using t-SNE (Van der Maaten
& Hinton, 2008). The codebook entries are highlighted
in blue, while the extracted features are shown in red. A
larger amount of overlaying denotes a higher utilization rate.
Results show that MQGAN tends to have a larger overlap
between two distributions than naive VQGAN, and is able
to enhance code utilization.

(a) Code distribution of VQ (b) Code distribution of MQ

Figure 3. Comparison between code distribution. Notably, MQ
has a larger overlap area between code and extracted embedding,
resulting in a higher code utilization rate.

5.5. Visualization between Direct and Indirect
Gradients

The hyper-gradient consists of two parts- the direct and
indirect gradients- and it is worth seeing whether both of
them play an important role. We visualize the norm of direct
and indirect gradients of the hyper-gradient during a single
run. A similar pattern can be observed in all the experiments.
As shown in Figure 4, both of the norms are in a magnitude
of 1e-2. Additionally, the cosine similarity remains close to
zero during training, therefore, neither of them should be
excluded from training.

Figure 4. Visualization between direct and indirect gradients. (a)
Comparison in terms of gradient norm. (b) Cosine similarity
between the two gradients.

5.6. Qualitative Evaluation

In Figure 5, we present the reconstruction results at a reso-
lution of 256× 256 for our MQGAN. The introduction of
diversified gradient paths and a large-scale codebook facili-
tates the generation of images, as revealed by the qualitative
results.

5.7. Training Cost Comparison

We conducted additional experiments to show the efficiency
of MQ training. We compare VQVAE and MQVAE in terms

(a) Samples from dataset (b) Samples generated

Figure 5. Qualitative evaluation of reconstruction

of time and memory cost. When evaluated on the CelebA
dataset with a batch size of 128, the increase in memory
usage is marginal and acceptable in practice. For time com-
parison, we set VQVAE as the baseline, which needs around
3.6 hours to finish the training of 50k steps (and does not
improve after that). In Table 8, we observe that MQVAE
only requires 2.4 hours to reach the same LPIPS score as
VQVAE (around 9.5k steps), and can keep improving after
that. This demonstrates that our method converges much
faster than VQVAE and is able to outperform baselines with
extended training time.

Table 8. Comparison between various methods on time and mem-
ory cost.

Method Memory (GB)
Wall time to

reach VQVAE (h)
Total wall
time (h)

VQVAE 7.29 3.6 3.6
MQVAE 7.35 2.4 12.2

6. Conclusion
We propose meta-quantization (MQ), a novel bi-level
optimization-based vector-quantization framework inspired
by meta-learning. Building upon prior VQ mechanisms, our
method trains the quantizer and the autoencoder at different
levels within a bi-level optimization problem. Furthermore,
we reparameterize the codebook using a hyper-net, which
generates the codebook from a learnable embedding and
updates it holistically. In essence, our approach replaces the
VQ objective of the codebook with a meta-objective, which
aims to optimize the learning potential of the autoencoder.
This facilitates a gradient flow from the task loss to the
quantizer, thereby improving overall performance. Empiri-
cal studies across various experimental settings demonstrate
that MQ outperforms the prior VQ method and its variants,
underscoring its effectiveness.
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G., and Sabato, S. (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pp. 20987–21012. PMLR,

2022. URL https://proceedings.mlr.press/
v162/takida22a.html.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. In Guyon, I., von
Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp.
6306–6315, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/
7a98af17e63a0ac09ce2e96d03992fbc-Abstract.
html.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. Show
and tell: A neural image caption generator. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp.
3156–3164. IEEE Computer Society, 2015. doi: 10.1109/
CVPR.2015.7298935. URL https://doi.org/10.
1109/CVPR.2015.7298935.

Yu, J., Li, X., Koh, J. Y., Zhang, H., Pang, R., Qin, J., Ku,
A., Xu, Y., Baldridge, J., and Wu, Y. Vector-quantized
image modeling with improved VQGAN. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/
forum?id=pfNyExj7z2.

Yu, L., Lezama, J., Gundavarapu, N. B., Versari, L., Sohn,
K., Minnen, D., Cheng, Y., Gupta, A., Gu, X., Haupt-
mann, A. G., Gong, B., Yang, M., Essa, I., Ross, D. A.,
and Jiang, L. Language model beats diffusion - tok-
enizer is key to visual generation. In The Twelfth Inter-
national Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
id=gzqrANCF4g.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and
Tagliasacchi, M. Soundstream: An end-to-end neural
audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:495–507, 2021.

Zhang, M., Su, S. W., Pan, S., Chang, X., Abbasnejad,
M. E., and Haffari, R. idarts: Differentiable architecture
search with stochastic implicit gradients. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 12557–12566. PMLR,

12

https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
http://proceedings.mlr.press/v139/ramesh21a.html
http://proceedings.mlr.press/v139/ramesh21a.html
https://proceedings.neurips.cc/paper/2019/hash/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Abstract.html
https://arxiv.org/abs/1805.11063
https://proceedings.mlr.press/v162/takida22a.html
https://proceedings.mlr.press/v162/takida22a.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.1109/CVPR.2015.7298935
https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=pfNyExj7z2
https://openreview.net/forum?id=gzqrANCF4g
https://openreview.net/forum?id=gzqrANCF4g


Meta-Quantization

2021. URL http://proceedings.mlr.press/
v139/zhang21s.html.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E.,
and Wang, O. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 586–595. IEEE Computer Society,
2018. doi: 10.1109/CVPR.2018.00068. URL http:
//openaccess.thecvf.com/content_cvpr_
2018/html/Zhang_The_Unreasonable_
Effectiveness_CVPR_2018_paper.html.

Zhu, L., Wei, F., Lu, Y., and Chen, D. Scaling the
codebook size of VQ-GAN to 100, 000 with a uti-
lization rate of 99%. In Globersons, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J. M.,
and Zhang, C. (eds.), Advances in Neural Informa-
tion Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024a. URL http://papers.
nips.cc/paper_files/paper/2024/hash/
1716d022edeac750e57a2986a7135e13-Abstract-Conference.
html.

Zhu, Y., Li, B., Xin, Y., and Xu, L. Addressing representa-
tion collapse in vector quantized models with one linear
layer. arXiv preprint arXiv:2411.02038, 2024b.

13

http://proceedings.mlr.press/v139/zhang21s.html
http://proceedings.mlr.press/v139/zhang21s.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.html
http://papers.nips.cc/paper_files/paper/2024/hash/1716d022edeac750e57a2986a7135e13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1716d022edeac750e57a2986a7135e13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1716d022edeac750e57a2986a7135e13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1716d022edeac750e57a2986a7135e13-Abstract-Conference.html

	Introduction
	Related Work
	Vector-Quantized Networks
	Bi-level Optimization

	Preliminary
	Methodology
	Hyper-Net Reparameterization
	A Bi-level Optimization Framework
	Gradient Analysis

	Experiment
	Evaluation with VQVAE
	Evaluation with VQGAN
	Ablation Studies
	Visualization of Embedding and Code Distributions
	Visualization between Direct and Indirect Gradients
	Qualitative Evaluation
	Training Cost Comparison

	Conclusion

