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ABSTRACT

Zero-shot semantic segmentation (ZS3) aims at learning to classify the never-seen
classes with zero training samples. Convolutional neural networks (CNNs) have
recently achieved great success in this task. However, their limited attention abil-
ity constraints existing network architectures to reason based on word embed-
dings. In this light of the recent successes achieved by Swin Transformers, we
propose SwinZS3, a new framework exploiting the visual embeddings and seman-
tic embeddings on joint embedding space. The SwinZS3 combines a transformer
image encoder with a language encoder. The image encoder is trained by pixel-
text score maps using the dense language-guided semantic prototypes which are
computed by the language encoder. This allows the SwinZS3 could recognize the
unseen classes at test time without retraining. We experiment with our method
on the ZS3 standard benchmarks (PASCAL VOC and PASCAL Context) and the
results demonstrate the effectiveness of our method by showing the state-of-art
performance.

1 INTRODUCTION

Semantic segmentation is at the foundation of several high-level computer vision applications such
as autonomous driving, medical imaging, and so on. Recent deep learning has achieved great suc-
cess in semantic segmentation Chen et al. (2018); Long et al. (2015); Ronneberger et al. (2015);
Zhao et al. (2017b). However, the fully-supervised semantic segmentation models usually require
extensive collections of labeled images with pixel-level annotations. And it could only handle the
pre-defined classes. Considering the high cost of collecting dense labels, recently weakly supervised
semantic(WSSS) segmentation methods have been explored. WSSS are often based on easily ob-
taining annotations, such as scribbles Sun et al.,bounding boxes Dai et al. (2015), and image-level
labels Hou et al. (2018). Among them, a popular trend is based on network visualization techniques
like classification activation map generating pseudo ground-truths Zeiler & Fergus (2014); Zhang
et al. (2020). However, these methods also require the networks to have labeled images.

On the contrary, humans could recognize novel classes with only descriptions. With the inspira-
tion of this, some recent methods seek zero-shot semantic segmentation (ZS3) Zhao et al. (2017a);
Bucher et al. (2019); Gu et al. (2020); Li et al. (2020) . ZS3 benefits from semantic level supervi-
sion from texts by exploiting the semantic relationships between the pixels and the associated texts,
which makes it enjoy a cheaper source of training data. The ZS3 methods could be categorized
into generative and discriminative methods Baek et al. (2021). Both could predict unseen classes
using only language-guided semantic information of the corresponding classes. For the generative
ZS3 methods Creswell et al. (2018); Kingma & Welling (2013), segmentation networks are first
trained with only seen classes labeled data. Then, they freeze the feature extractor to extract seen
classes’ visual features and train a semantic generator network to translate the language embedding
to visual space. By doing this, the semantic generator could generate visual features conditioned on
language embedding vectors. Finally, a classifier is trained to classify the features combined with
features produced by the feature extractor on seen classes and generated features produced by the
semantic generator from language embeddings on unseen classes. With generative methods achieve
impressive performance in zero-shot semantic segmentation tasks. The methods are limited by a
multi-stage training strategy, and the visual features extracted from the feature extractor not con-
sidering the language information during training. This will cause a seen bias problem towards the
visual and generated features.

1



Under review as a conference paper at ICLR 2023

Ground Truth Deeplabv3+ SwinZS3 SwinZS3+aux

Figure 1: Effects of transformer’s global reason and the score map decision boundary for zero-shot
semantic segmentation. The motorbike(blue) is the unseen class. The existing solutions Deeplabv3+
often yield inaccurate segmentation results with limited receptive field and attention ability, losing
fine-grained details. Using the transformer extractor significantly improves the prediction accuracy
of the unseen classes. But there is still seen bias problem, which classifies the unseen class pixels
into seen classes. So, our SwinZS3 proposes a language-guided score map to reduce it

To overcome the limitation, we introduce a discriminative approach for ZS3 that exploits to train
visual and language encoders on a joint embedding space. During the training time, we avoid the
multi-stage training strategy. We alleviate the seen and unseen bias problem by minimizing the
euclidean distances and using the pixel-text score maps between the semantic prototypes produced
by the language encoder and the visual features of corresponding classes. At test time, we use the
learning discriminative language prototypes and combine the pixel-text score map with the euclidean
distance as the decision boundary to avoid retraining.

Improving the network backbone of zero-shot networks is another effective way to reduce the bias
problem. As shown in Figure.1 We argue that a shared shortcoming of previous ZS3 models falls in
the reduced receptive field of CNNs and less using attention mechanisms for extracting the global
relations of visual features conditioned with language semantic information. The local nature of
convolutions leads CNNs to extract visual features missing long-range relationships across the same
image. CNNs based frameworks sometimes fail to extract language-guided activation fields for lack-
ing the global perceiving attention mechanism. Recently, transformers Vaswani et al. (2017) have
significant breakthroughs in both of natural language processing(NLP) and computer vision(CV)
field Xie et al. (2021a); Zheng et al. (2021); Arnab et al. (2021). Dosovitskiy et al. (2020) (ViT) is
the first work to apply the transformer architecture to image classification. Moreover, the Liu et al.
(2021) (swin-transformer) presents a new architecture for more general-purpose vision tasks, espe-
cially dense predicting. We argue that the self-attention mechanism benefits the zero-shot semantic
segmentation tasks and the semantic information supervisor. The transformer-based model could
capture the global feature relations and the semantic information in visual features by multi-head
self-attention(MHSA).

This paper takes this missing step and explores the swin-transformer for ZS3. It combines convolu-
tional layers and transformer blocks to model the global information guided by pixel-text distances
and score maps. We also improve the decision boundary by modifying the Nearest Neighbor(NN)
Classifier with weighted euclidean distance by score map. We demonstrate the effectiveness of our
approach on standard zero-shot semantic segmentation benchmarks, achieving state-of-the-art per-
formance on PASCAL-VOC Everingham et al. (2010) and PASCAL-Context Mottaghi et al. (2014).

Some methods based on CLIP (Radford et al. (2021)Xu et al. (2022)Ding et al. (2022)Arnab et al.
(2021) Xu et al. (2021)) often claim to be zero-shot learning methods. However, those methods usu-
ally use all classes of images and text labels during training, which will cause supervision leakage.

2 RELATED WORK

Semantic segmentation: Semantic segmentation has made great advancements due to the rise of
deep learning. Most recent state-of-the-art models are based on fully convolutional neural networks
Long et al. (2015) and assume that all the training data have pixel-level annotations. DeepLab
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Figure 2: The overall framework of our approach SwinZS3. SwinZS3 first extracts the image visual
embeddings using a transformer-based feature extractor and K-class semantic prototypes using a
language encoder. The prototypes will have a regression loss with the visual features and their inter-
relationship are transferred from the language embeddings (word2vec) using semantic consistency
loss. And then SwinZS3 calculates pixel-text score maps in a hyper-sphere space for the projected
visual features and semantic prototypes. The score maps are supervised by the ground-truth labels.
The visual features are also fed into a classifier for being supervised by ground-truth labels with
cross-entropy loss.

exhibited distinct performance improvement on the PASCAL VOC2012 Everingham et al. (2010)
and MS-COCO Lin et al. (2014) by using the multiple scales Li et al. (2020); Zhang et al. (2018) and
dilated convolution Chen et al. (2014; 2017). Other methods like UNet Ronneberger et al. (2015) and
SegNet Badrinarayanan et al. (2017) also achieve an impressing performance by different strategies.
The ViT Dosovitskiy et al. (2020) is the first work to use transformer architecture for recognition
task. And swin transformer extends transformer to the dense prediction task and achieved the state-
of-the-art performance. But they all heavily rely on expensive pixel-level segmentation labels, and
they assume that training data for all categories is available beforehand. Recently, lots of weakly
supervised semantic segmentation (WSSS) methods which are based on easily obtained annotations
such as bounding boxes Dai et al. (2015), scribbles Sun et al. and image-level labels Hou et al.
(2018) have been explored. The key to prevailing pipeline WSSS is to generate the pseudo-labels,
especially network visualization techniques like CAM. And some works use growing strategies to
grow the CAM ground-truth regions to the entire objects . But it is still difficult to get the pseudo-
labels revealing entire object areas with accurate boundaries for the ill-posed procedure Singh &
Lee (2017); Li et al. (2018).

Zero-shot semantic segmentation: The ZS3 networks could be categorized into discriminative and
generative methods. For the discriminative approach, the work of Zhao et al. (2017a) focuses on
hierarchical predicting unseen classes by adopting the discriminative approach. SPNet Xian et al.
(2019) exploits a semantic embedding space by mapping visual features to fixed semantic ones.
JoEm Baek et al. (2021) propose to align visual and semantic featuers in joint embedding space.
In contrast to discriminative methods, ZS3Net Bucher et al. (2019) synthesize visual features by a
generative moment matching network (GMMN). However, the ZS3Net training pipeline consists of
three stages that will cause the bias problem. CSRL Li et al. (2020) exploit the relations of both
seen and unseen classes to preserve them to synthesized visual features. CaGNet Gu et al. (2020)
proposes to use the channel-wise attention mechanism in dilated convolutional layers for extracting
visual features.

Visual-language learning: Recently years, image-language pairs learning is a rapidly growing field.
There are some representative works such as CLIP Radford et al. (2021) and ALIGN Jia et al. (2021)
which are pretrained on hundreds of millions of image-language pairs. Yang et al. (2022) presents
the unified contrastive learning method that can leverage both the image-language methods and
image-label data. And our work further extends the method to pixel-level on ZS3.
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Figure 3: Compare the difference between the decision boundary without and with the score map.
We visualize the visual features by circles and the semantic prototypes by triangles. Because of the
bias problem in zero-shot learning, the visual features of seen classes are tightly, and the unseen
classes’ semantic prototypes and visual features are biased. (a) We show one of the situations where
the euclidean distance d1 is smaller than d2. So, the unseen classes’ pixels will be classified into
seen classes. However, for score map distance show a1 is bigger than a2, which inspires us to use
the score map distance to modify the euclidean distance. After adjusting, we could get the (b) view.
It is crucial to improve the performance in ZS3.

3 METHOD

3.1 MOTIVATIONS

Unlike supervised semantic segmentation methods, The unseen classes prototypes of discriminative
zero-shot semantic segmentation rely on joint optimization of the visual encoder and language en-
coder. Thus, to achieve good performance, this formulation requires the network to perceive the
language context structure. Current network Baek et al. (2021) adopt traditional convolutional lay-
ers for aggregating language information. However, the intrinsic locality and weak attention of the
convolution operator can hardly model long-range and accurate visual-language joint features. So,
we propose to use transformer-based blocks to address the limitation. Another limitation of ZS3 is
the seen bias problem. Lacking the unseen classes labeled data, it is difficult for the visual encoder
to extract distinguishable features. As shown in Fig.3, modulating the decision boundary could also
reduce the bias problem. We analyze the shortcomings of traditional NN classifiers and use the new
decision boundary to improve the performance. Driven by this, we design our SwinZS3 framework.
As shown in Fig.2.

3.2 OVERVIEW

Following the common practice, we divide classes into seen classes S and unseen classes U . Dur-
ing the training time, we train our model, which includes a visual feature extractor and a semantic
prototype encoder with the seen classes set S only. Zero-shot semantic segmentation aims to allow
the model to recognize both seen classes S and unseen classes U in the test time. We use the visual
extractor to extract visual features and input language embeddings (word2vec) to the language en-
coder for obtaining semantic prototypes of corresponding classes. The visual features will be input
into a classifier and supervised by ground-truth labels. The language prototypes will have a regres-
sion loss with the visual features. And the prototypes’ inter-relationship are transferred from the
language embeddings like word2vec using the semantic-consistency loss. And then SwinZS3 cal-
culates pixel-text score maps in a hyper-sphere space for the projected visual features and semantic
prototypes. These score maps are also supervised by the ground-truth labels. The visual features are
also fed into a classifier for being supervised by ground truth labels. In the following, we describe
our framework in detail.
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3.3 TRANSFORMER BACKBONE

Our framework uses the transformer Liu et al. (2021) as backbone that an input image is split into
non-overlapping h×w patches. The patches will be projected to h×w tokens. The multi-head self-
attention (MHSA) layer is used for the transformer block to capture the global features information.
In MHSA, the patch tokens are projected to queries Q ∈ Rhw×dk , keys K ∈ Rhw×dk , and values
V ∈ Rhw×dv . h and w are the shapes of feature maps. dk and dv denote the dimension of features.
Based on Q, K, and V , outputs X are

X = softmax(
QKT

√
d

)V (1)

The MHSA is the core operation of the transformer block. The transformer backbone’s final output
is produced by stacking multiple transformer blocks.

3.4 NETWORK TRAINING

As shown in Fig.2, our framework consists of four loss terms : cross-entropy loss Lce Misra &
Maaten (2020), pixel-wise regression loss Lr, pixel-text score map loss Laux, semantic consistency
loss Lsc. The overall loss is finally formulated as

L = Lce + Lr + λ1Lsc + λ2Laux (2)

where λ1 and λ2 balance the contributions of different losses.

Cross-entropy loss: Given the final outputs of feature maps υ ∈ Rh×w×c, where h, w, and c are
the height, width, and the number of channels. Then, υ will be put into a classifier head fc. For
the zero-shot setting, the classifier could learn the seen classes. So, we apply the cross-entropy loss
Murphy (2012) that is widely adopted in supervised semantic segmentation on the seen classes set
S as follows:

Lce = − 1!
c∈S | Nc |

"

c∈S

"

p∈Nc

log(
ewcυ(p)

!
j∈S ewj(υ(p))

) (3)

where Nc indicates a set of locations labeled as the class c in ground-truth.

Regression loss: Although the lce could train the model to a discriminative embedding space on
seen classes S. However, the model is not adaptable to classify the unseen classes U while the clas-
sifier head does not learn the unseen classes prototypes. At test time, we want to use the language
prototypes of both seen and unseen classes as the classifier to recognize the dense visual features
extracted by the transformer backbone. For this, the distances of visual features and corresponding
language prototypes should be minimized in embedding space. To address it, we introduced regres-
sion loss lr. As the lce, we first get the final outputs visual feature maps υ ∈ Rh×w×c. Then, we
get semantic feature maps s ∈ Rh×w×d where each pixel sc of s is a word or language embedding
and the same class with corresponding visual feature pixel. Given the language embedding maps,
we input them to semantic encoder fs as follows:

µ = fs(s) (4)

where µ ∈ Rh×w×c. We denote each pixel of µc is a semantic prototype for a class c. So, the
regression loss as follows:

Lr =
1!

c∈S | Rc |
"

c∈S

"

s∈Rc

d(υ(s), µ(s)) (5)

where d() is the euclidean distance metric. Rc means the regions labeled with the same class in the
ground truth. The lr give a promise that the dense visual features and semantic prototypes will be
projected to a join embedding space where the pixels of corresponding classes will be close. But, for
ZS3, there are similar limitations with lce: The lr deal with pixel-wise visual features and semantic
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Figure 4: An illustrative similarity matrix comparisons between different losses : N is the number
of pixel samples fro image features extracted by visual encoder. K is the number of classes. (a)
The cross-entropy loss could be considered as pixel-label learning by assigning pixels to ground-
truth labels, and the relationship between the pixels and labels is many-to-one. (b) The pixel-text
score map loss focuses on the relationship for the semantic prototypes and the visual features, which
means a semantic prototype will be assigned to many pixels. (c) For semantic-consistency loss, it
keeps the structure of language embedding like word2vec.

prototypes independently but ignore explicitly considering the other pixels’ relationship between
them. To address it, we proposed to use the contrastive loss.

Pixel-text score map: In our framework, we use the score map to reduce the seen bias problem in
ZS3. As shown in Fig.4, to get the discriminative joint embedding space, we compute the pixel-
text score maps using the language prototypes µc ∈ Rk×c and the final outputs of feature maps
υ ∈ Rh×w×c by:

s = υ̂µ̂T
c , s ∈ Rh×w×k (6)

where µ̂c and υ̂ are the l2 normalized version of υ and µc along the channel dimension. By the
way, the µc in the score map must use the seen classes prototypes only. Otherwise, it will make the
unseen bias problem more serious. The score maps characterize the results of visual features pixel
and language-guided semantic prototypes matching, which is one of the most crucial parts of our
SwinZS3. First, we use the score maps to compute an auxiliary segmentation loss:

laux = CrossEntropy(Softmax(s/τ), y) (7)
where τ is a temperature coefficient which we set 0.07 and y is the ground truth label. The auxiliary
segmentation loss can make the joint embedding space more discriminative which is beneficial to
zero-shot semantic segmentation.

Semantic consistency loss: The semantic consistency loss lsc could transfer the relationship of
word2vec to the semantic prototypes embedding space. For adopting the pre-trained word em-
bedding features, lsc could keep the class contextual information. The lsc defines the relation of
prototypes as follows:

rµij =
e−τµd(µi,µj)

!
j∈S e−τµd(µi,µj)

(8)

where d() is the distance between two prototypes and τµ is a temperature parameter. Then for word
embedding space, the relationship could be defined:

rij =
e−τsd(si,sj)

!
j∈S e−τsd(si,sj)

(9)
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So, the semantic consistency loss is defined as follows:

Lsc = −
"

i∈S

"

j∈S

rij log
rµij
rij

(10)

The lsc could distill the word embedding contextual information to the prototypes.

3.5 NETWORK INFERENCE

During the inference, we use the semantic prototypes, which are the outputs of the semantic encoder
as a NN classifier Cover & Hart (1967). We compute the euclidean distances and score maps from
individual visual features to language prototypes, and classify each visual feature to the nearest
language prototypes as follows:

ŷ(p) = argmin
c∈S∪U

d(υ(p), µc)(1− sigmoid(s)) (11)

where d is the euclidean distance metric and s is the score map. For the unseen classes U still being
biased towards the seen classes S, we adapted the work of Baek et al. (2021), which proposed the
Apollonius circle. The top2 nearest language prototypes with individual visual features are d1 and
d2. d1 is the euclidean and score distance with the language prototype µ1 and d2 is the distance with
language prototype µ2 where we denote c1 and c2 as the class of µ1 and µ2. The decision rule is
defined with the Apollonius circle as follows:

ŷ(p) =

#
c(p) c1 ∈ S and c2 ∈ U

c1 otherwise
(12)

where

c(p) = c1Π[
d1
d2

≤ γ] + c2Π[
d1
d2

> γ] (13)

We denote Π as an function whose value 1 if the argument is true, and 0 otherwise. The γ is an
adjustable parameter which could modulate the decision boundary.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Training: For transformer backbone, we use the swin transformer (swin-tiny) proposed in Singh &
Lee (2017), which is a baseline for transformer-baed ZS3 task. To avoid supervision leakage from
unseen classes Xian et al. (2018), the backbone parameters are initialized with self-supervised model
MoBY Xie et al. (2021b) pre-trained on Imagenet. We use an AdamW optimizer as the optimizer
to train SwinZS3. For the backbone, we set the initial learning rate as 1 × 10−4, and it uses the
polynomial scheduler to decay at every iteration. The other parameters’ learning rate is 10 times the
backbone parameters’ learning rate. The weight decay factor is set as 0.01. For data augmentation,
we keep the same setting with Baek et al. (2021). For other parameters (λ, γ), we set λ1, λ2 to 0.1
and the γ is 0.6.

Dataset split: We perform experiments on PASCAL VOC and PASCAL Context. The PASCAL-
VOC2012 dataset contains 1464 training images and 1449 validation images with a total of 21 cate-
gories (20 object categories and background). The PASCAL Context dataset contains 4998 training
and 5105 validation samples of 60 classes with 59 different categories and a single background
class. Following the common practice, we adopt the 10582 augmented training samples for PAS-
CAL VOC. For the zero-shot semantic segmentation network, we divide Pascal-VOC2012 training
samples according to N-seen and 20-N unseen classes. For example, we choose cow and motorbike
as unseen categories. Then we filter out those samples with cow and motorbike labels and train
the segmentation network using the remaining samples. During the training time, the segmentation
model should keep the mIOU of unseen classes 0. We follow the experiment settings provided
by ZS3Net which dividing the Pascal-VOC 2012 training samples 20 object classes into four splits
(1) 18-2 classes (cow, motorbike), (2) 16-4 classes (cat, sofa), (3) 14-6 classes (boat, fence), and
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Figure 5: Qualitative results on PASCAL VOC. The unseen classes is ”cow”,”motobike”,”cat”. We
compare the results of the other state-of-art method and our SwinZS3.

Table 1: Ablation study on the unseen-6 split of PASCAL Context by comparing mIoU scores using
different loss terms.

method lce lr lsc laux mIoUs mIoUu hIoU
Deeplabv3+ ! ! ! 33.4 8.4 13.4
Deeplabv3+ ! ! ! 36.2 23.2 28.3
Deeplabv3+ ! ! ! ! 37.7 25.0 30.2

SwinZS3 ! ! ! 25.8 12.0 16.4
SwinZS3 ! ! ! 37.1 24.3 29.3
SwinZS3 ! ! ! ! 39.3 26.2 31.4

(4) 12-8 classes (bird,tvmonitor). Each split contains previous unseen classes gradually. Then the
model is evaluated on the full 1449 validation images.

Evaluation metrics: We use the mean intersection-over-union (mIoU ) as evaluation metrics Long
et al. (2015). In detail, we separately count the metrics of the seen classes and the unseen classes
which are denoted by mIoUs and mIoUu. We also adopt the harmonic mean (hIoU ) of mIoUs

and mIoUu for the arithmetic mean might be dominated by mIoUs.

4.2 ABLATION EXPERIMENT AND RESULTS

Ablation study: In the table 1, we present an ablation analysis on two aspects: (a) CNNs vs Trans-
former (b) Whether to use the score map (laux) to modulate the decision boundary. For cross-entropy
loss and regression loss are crucial to recognize the unseen classes, we choose the Deeplabv3+ with
lce, lr and lsc as our baseline. For the first row, we report the baseline IoU scores without laux.
Then, we compare swin transformer (swin-tiny) backbone with Deeplabv3+ and transformer back-
bone gives gain of hIoU 1.0 over the baseline. The second and third rows show that the laux respec-
tively give gain of mIoUu 3.0 and 3.1 over the baseline and 1.9, 2.1 over the SwinZS3 baseline.
This shows a significant improvement for the ZS3 and gives a demonstration of the effectiveness of
the two methods. Finally, we combine the transformer and score maps, and report the best mIoU
scores.

Comparison to state-of-the-Arts: As showed in table 2, we compare our approach with other
state-of-art methods on PASCAL VOC and Context. We report the best scores of different split
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Table 2: Quantitative results on the PASCAL VOC and Context validation sets. The numbers in
bold are the best performance.

VOC Context

K method mIoUs mIoUu hIoU mIoUs mIoUu hIoU

2

DeViSE 68.1 3.2 6.1 35.8 2.7 5.0
SPNet 71.8 34.7 46.8 38.2 16.7 23.2
ZS3Net 72.0 35.4 47.5 41.6 21.6 28.4
CSRL 73.4 45.7 56.3 41.9 27.8 33.4
JoEm 68.9 43.2 53.1 38.2 32.9 35.3
Ours 69.2 45.8(+2.6) 55.3 39.8 33.5(+(0.6)) 36.3(+(1.0))

4

DeViSE 64.3 2.9 5.5 33.4 2.5 4.7
SPNet 67.3 21.8 32.9 36.3 18.1 24.2
ZS3Net 66.4 23.2 34.4 37.2 24.9 29.8
CSRL 69.8 31.7 43.6 39.8 23.9 29.9
JoEm 67.0 33.4 44.6 36.9 30.7 33.5
Ours 68.9 34.4(+1.0) 45.7(+1.1) 38.7 33.5(+2.8) 35.1(+1.6)

6

DeViSE 39.8 2.7 5.1 31.9 2.1 3.9
SPNet 64.5 20.1 30.6 31.9 19.9 24.5
ZS3Net 47.3 24.2 32.0 32.1 20.7 25.2
CSRL 66.2 29.4 40.7 35.5 22.0 27.2
JoEm 63.2 30.5 41.1 36.2 23.2 28.3
Ours 62.6 31.6(+1.1) 42.0(+0.9) 39.3(+3.1) 26.2(+3.0) 31.4(+3.1)

8

DeViSE 35.7 2.0 3.8 22.0 1.7 3.2
SPNet 61.2 19.9 30.0 28.6 14.3 19.1
ZS3Net 29.2 22.9 25.7 20.9 16.0 18.1
CSRL 62.4 26.9 37.6 31.7 18.1 23.0
JoEm 58.5 29.0 38.8 32.4 20.2 24.9
Ours 60.2 29.6(+0.6) 39.9(+1.1) 35.0(+2.6) 21.4(+1.2) 26.6(+1.7)

settings. And the other reported mIoU are from Baek et al. (2021). For PASCAL Context dataset,
the comparison shows that : we outperform the second best method JoEm by large margins, for
the 6-split setting, we outperform 3.0 in mIoUu and 3.1 in hIoU . It is remarkably outperforming
for the ZS3. We outperform the best generative ZS3 method GSRL Li et al. (2020) and give a
mIoUu gain of 4.4 and hIoU gain of 4.2, which shows the effectiveness and convenience of
the discriminative method. And the CSRL has to be retrained when the novel unseen classes are
added. However, our framework adopts one-stage training strategy (2) We achieve state-of-the-art
performance on almost all the zero-shot settings like unseen-2,4,6,8 splits on mIoUu and hIoU . It
confirms our approach could learn the discriminative representations. The PASCAL VOC dataset
experiments emphasize the above analysis. The PASCAL VOC experiment shows a competitive
performance.

Qualitative results. Fig.5 reports some qualitative examples from PASCAL VOC, with SwinZS3
modeling the unseen classes more accurately than its competitors. We notice that SwinZS3 can
effectively reduce the false positive prediction. reports some qualitative examples from PASCAL
VOC, with SwinZS3 modeling the unseen classes more accurately than its competitors.

5 CONCLUSION

We have proposed a transformer-based framework that exploits the visual and language features
on the joint embedding space for zero-shot semantic segmentation. We have proposed to use the
language-guided score map to better learn the discriminative space while innovatively modifying
the decision boundary to reduce the seen bias problem. Finally, we experiment with our approach
on standard ZS3 benchmarks and achieve a new state-of-the-art performance.
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