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Abstract
In the sequential decision making setting, an agent
aims to achieve systematic generalization over a
large, possibly infinite, set of environments. Such
environments are modeled as discrete Markov de-
cision processes with both states and actions rep-
resented through a feature vector. The underlying
structure of the environments allows the transi-
tion dynamics to be factored into two components:
one that is environment-specific and another one
that is shared. Consider a set of environments that
share the laws of motion as an illustrative example.
In this setting, the agent can take a finite amount
of reward-free interactions from a subset of these
environments. The agent then must be able to ap-
proximately solve any planning task defined over
any environment in the original set, relying on the
above interactions only. Can we design a provably
efficient algorithm that achieves this ambitious
goal of systematic generalization? In this paper,
we give a partially positive answer to this question.
First, we provide the first tractable formulation of
systematic generalization by employing a causal
viewpoint. Then, under specific structural assump-
tions, we provide a simple learning algorithm that
allows us to guarantee any desired planning error
up to an unavoidable sub-optimality term, while
showcasing a polynomial sample complexity.

1. Introduction
Whereas recent breakthroughs have established Reinforce-
ment Learning (RL) (Sutton and Barto, 2018) as a powerful
tool to address a wide range of sequential decision making
problems, the curse of generalization (Kirk et al., 2021) is
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still a main limitation of commonly used techniques. RL
algorithms deployed on a given task are usually effective
in discovering the correlation between an agent’s behav-
ior and the resulting performance from large amounts of
labeled samples. However, those algorithms are usually
unable to discover basic cause-effect relations between the
agent’s behavior and the environment dynamics. Crucially,
the aforementioned correlations are oftentimes specific to
the task, and they are unlikely to be of any use for address-
ing different tasks. Instead, some universal causal relations
generalize over the environments, and once learned can be
exploited for solving any task. Let us consider as an illustra-
tive example an agent interacting with a large set of physical
environments. While each of these environments can have
its specific dynamics, we expect the basic laws of motion
to hold across the environments, as they encode general
causal relations. Once they are learned, there is no need to
discover them again from scratch when facing a new task,
or an unseen environment. Even if the dynamics over these
relations can change, such as moving underwater is different
than moving in the air, or the gravity can change from planet
to planet, the underlying causal structure still holds. This
knowledge alone often allows the agent to solve new tasks
in unseen environments with a few, or zero, interactions.

We argue that we should pursue this kind of generalization in
RL, which we call systematic generalization, where learning
universal causal relations from interactions with a few envi-
ronments allows us to approximately solve any task in any
other environment without further interactions. Although
this problem setting might seem overly ambitious or even
far-fetched, in this document we provide the first tractable
formulation of systematic generalization (Section 3), thanks
to a set of structural assumptions that are motivated by a
causal viewpoint. Especially, we consider a large, poten-
tially infinite, set of reward-free environments, or a universe,
the agent can freely interact with. Crucially, these envi-
ronments share a common causal structure that explains a
significant portion, but not all, of their transition dynamics.
Can we design a provably efficient algorithm that guaran-
tees an arbitrarily small planning error for any possible task
that can be defined over the set of environments, by taking
reward-free interactions with a generative model?

In this document, we provide a partially positive answer to
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Figure 1: High-level illustration of causal model-based approach to systematic generalization.

this question by presenting a simple but principled causal
model-based approach (see Figure 1). This algorithm inter-
acts with a finite subset of the universe to learn the causal
structure underlying the set of environments in the form of a
causal dependency graph G (Wadhwa and Dong, 2021). The
causal transition model, which encodes the dynamics that is
common across the environment, is obtained by estimating
the Bayesian network PG over G (Dasgupta, 1997) from
a mixture of the environments. Then, the learned model
is employed by a planning oracle to provide an approxi-
mately optimal policy for a latent environment and a given
reward function. We can show that this simple recipe allows
achieving any desired planning error up to an unavoidable
error term, which is inherent to the setting. Especially, we
provide an analysis of the sample complexity (Section 4)
of the proposed approach, which is polynomial in all the
relevant quantities of the problem.

Finally, with this work we aim to connect several active
research areas on reward-free RL (Jin et al., 2020), multi-
task RL (Brunskill and Li, 2013), model-based RL (Sutton
and Barto, 2018), factored MDPs (Rosenberg and Mansour,
2021), causal RL (Zhang et al., 2020), experimental design
(Ghassami et al., 2018), independence testing (Canonne
et al., 2018), into a general framework where individual
progresses can be enhanced beyond the sum of their parts.

2. Notation
We will denote a set of integers {1, . . . , a} as [a], and the
probability simplex over the space A as ∆A. For any A ∈
A, we denote with A[Z] the vector (Ai)i∈Z . Given two
probability measures P and Q over a discrete spaceA, their
L1-distance is ∥P − Q∥1 =

∑
A∈A |P (A) − Q(A)|. We

will denote by UA the uniform distribution over A.

Graphs We define a graph G as a pair G := (V, E),
where V is a set of nodes and E ⊆ N ×N is a set of edges
between them. We call G a directed graph if all of its edges
E are directed. We also define the in-degree of a node to be
its number of incoming edges: degreein(A) = |{(B,A) :
(B,A) ∈ E,∀B}|. G is said to be a Directed Acyclic Graph
(DAG) if it is a directed graph without cycles. We call G a
bipartite graph if there exists a partition X ∪ Y = V such
that none of the nodes in X and Y are connected by an edge.

Causal Graphs and Bayesian Networks For a set X of

random variables, we represent the causal structure over X
with a DAG GX = (X , E),1 which we call the causal graph
of X . For each pair of variables A,B ∈ X , a directed edge
(A,B) ∈ GX denotes that B is conditionally dependent on
A. For every variable A ∈ X , we denote as Pa(A) the
causal parents of A, i.e., the set of all the variables B ∈ X
on which A is conditionally dependent, (B,A) ∈ GX . A
Bayesian network (Dean and Kanazawa, 1989) over the set
X is defined as N := (GX , P ), where GX specifies the
structure of the network, i.e., the dependencies between the
variables in X , and the distribution P : X → ∆X specifies
the conditional probabilities of the variables in X , such that
P (X ) =∏Xi∈X Pi(Xi|Pa(Xi)).

Markov Decision Processes We define a discrete episodic
Markov Decision Process (MDP) (Puterman, 2014) as
M := ((S, dS , n), (A, dA, n), P,H, r), where S is a set of
|S| = S states and A is a set of |A| = A actions, such that
every s ∈ S can be represented through a dS-dimensional
vector of discrete features taking value in [n], and a ∈ A
through a dA-dimensional vector of discrete features taking
value in [n].2 P is a transition model such that P (s′|s, a)
gives the conditional probability of the next state s′ having
taken action a in state s, H is the horizon of an episode,
and r : S × A → [0, 1] is a deterministic reward func-
tion. A stochastic policy πh(a|s) denotes the conditional
probability of taking action a in state s at step h. The
value function V π

h : S → R associated to π is defined as
V π
h (s) := Eπ

[∑H
h′=h r(sh′ , ah′)

∣∣ sh = s
]
. We will write

V π
M,r to denote V π

1 in the MDPM with reward function r.

3. Problem Formulation
In our setting, a learning agent aims to master a large, po-
tentially infinite, set U of environments modeled as discrete
MDPs without rewards, which we call a universe.

U :=
{
Mi = ((S, dS , n), (A, dA, n), Pi, µ)

}∞
i=1

,

The agent can draw a finite amount of experience by inter-
acting with the MDPs in U. From these interactions alone,
the agent aims to acquire sufficient knowledge to approxi-
mately solve any task that can be specified over the universe
U. Specifically, a task is defined as any pairing of an MDP

1We will omit the subscript X whenever clear from the context.
2Note that any tabular MDP can be formulated under this

alternative formalism by taking n = 2, dS = S, and dA = A.
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Figure 2: Illustration of the causal structure G of U.

M ∈ U and a reward function r, whereas solving it refers
to providing a slightly sub-optimal policy via planning, i.e.,
without taking additional interactions. We call this problem
systematic generalization.

Definition 1 (Systematic Generalization). For any latent
MDPM ∈ U and any given reward r : S × A → [0, 1],
the systematic generalization problem requires the agent to
provide a policy π, such that V ∗

M,r − V π
M,r ≤ ϵ up to any

desired ϵ > 0.

Since the set U is infinite, we clearly require additional struc-
ture to make the problem feasible. On the one hand, the
state space (S, dS , n), action space (A, dA, n), and initial
state distribution µ are shared acrossM ∈ U. The transi-
tion dynamics Pi is instead specific to each MDPMi ∈ U.
However, we assume the presence of a common causal struc-
ture that underlies the transition dynamics of the universe,
and relates the single transition models Pi.

3.1. The Causal Structure of the Transition Dynamics

To ease the notation, we denote the current state-action fea-
tures with a random vector X = (Xi)i∈[dS+dA], and the
next state features with a random vector Y = (Yi)i∈[dS ].
For each environmentMi ∈ U, the conditional dependen-
cies between Y and X are represented through a bipartite
dependency graph Gi. Clearly, each environment can dis-
play its own dependencies, but we assume there is a set
of dependencies that represent general causal relationships
between the features, and that appear in anyMi ∈ U. In
particular, we call the intersection G := ∩∞i=0Gi the causal
structure of U, which is the set of conditional dependencies
that are common across the universe. In Figure 2, we show
an illustration of such a causal structure. We assume the
causal structure G is time-consistent, i.e., G(h) = G(1) for
any step h ∈ [H], and sparse, which means that the number
of features X[z] on which a feature Y [j] is dependent on is
bounded from above.

Assumption 1 (Z-sparseness). Let Z ∈ N. The causal
structure G is Z-sparse if max

j∈[dS ]
degreein(Y [j]) ≤ Z.

ds{
X

Y

PG(Y | X) =

ds∏

j=1

Pj(Y [j] | X[Zj ])

Figure 3: Illustration of the causal transition model PG .

Given a causal structure G, and without losing generality,3

we can express each transition model Pi as

Pi(Y |X) = PG(Y |X)Fi(Y |X)

PG(Y |X) =

dS∏

j=1

Pj(Y [j]|X[Zj ]) (1)

in which PG is the Bayesian network over the causal struc-
ture G, whereas Fi includes environment-specific factors
affecting the conditional probabilities,4 the Zj are the set
of indices z such that (X[z], Y [j]) ∈ G. Since it represents
the conditional probabilities due to universal causal rela-
tions in U, we call PG the causal transition model of U,
for which we show an illustration in Figure 3. We assume
the causal transition model PG is also time-consistent, i.e.,
P

(h)
G = P

(1)
G ,∀h ∈ [H], and that it explains a significant

part of the transition dynamics ofMi ∈ U.

Assumption 2 (λ-sufficiency). Let λ ∈ [0, 1] be a constant.
The causal transition model PG is causally λ-sufficient if

sup
X
∥PG(·|X)− Pi(·|X)∥1 ≤ λ, ∀Pi ∈Mi ∈ U.

Notably, the parameter λ controls the amount of the transi-
tion dynamics that is due to the universal causal relations G
(λ = 0 means that PG is sufficient to explain the transition
dynamics of anyMi ∈ U, whereas λ = 1 implies no shared
structure between the transition dynamics of theMi ∈ U).
In this paper, we argue that learning the causal transition
model PG is a good target for systematic generalization and
we provide theoretical support for this claim in Section 4.

3.2. A Class of Training Environments

Even if the universe U admits the structure that we presented
in the last section, it is still an infinite set. Instead, the agent

3Note that one can always take PG(Y |Z) = 1, ∀(X,Y ) to
avoid shared structure on the transition dynamics.

4The parameters in Fi are numerical values such that Pi re-
mains a well-defined probability measure.
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can only interact with a finite subset of discrete MDPs

M := {Mi = ((S, dS , n), (A, dA, n), Pi, µ)}Mi=1 ⊂ U,

which we call a class of size M . Crucially, the causal
structure G is a property of the full set U, and if we aim to
infer it from interactions with a finite class M, we have to
assume that M is informative enough.

Assumption 3 (Diversity). Let M ⊂ U be class of size M .
We say M is causally diverse if G = ∩Mi=1Gi = ∩∞i=1Gi.

Analogously, if we aim to infer the causal transition model
PG from interactions with the transition models Pi of the
single MDPsMi ∈ M, we have to assume that M is bal-
anced in terms of the conditional probabilities displayed
by its components, so that the factors that do not represent
universal causal relations even out while learning.

Assumption 4 (Evenness). Let M ⊂ U. We say M is
causally even if Ei∼U[M]

[
Fi(Y [j]|X)

]
= 1,∀j ∈ [dS ].

Whereas in this paper we assume that M is diverse and even
by design, we leave as future work the interesting problem of
selecting such a class from active interactions with U, which
would add to our problem formulation flavors of active
learning and experimental design (Hauser and Bühlmann,
2014; Kocaoglu et al., 2017; Ghassami et al., 2018).

4. Sample Complexity of Systematic
Generalization with a Generative Model

We have access to a class M of discrete MDPs within a
universe U, from which we can draw interactions with a
generative model P (X). We would like to solve the sys-
tematic generalization problem as described in Definition 1.
This problem requires to provide, for any combination of
a (latent) MDPM ∈ U, and a given reward function r, a
planning policy π̂ such that V ∗

M,r − V π̂
M,r ≤ ϵ. Especially,

can we design an algorithm that guarantees this requirement
with high probability by taking a number of samples K
that is polynomial in ϵ and the relevant parameters of M?
Here we give a partially positive answer to this question,
by providing a simple but provably efficient algorithm that
guarantees systematic generalization over U up to an un-
avoidable sub-optimality term ϵλ that we will later specify.

The algorithm implements a model-based approach into two
separated components. The first, for which we provide the
pseudocode in Algorithm 1, is the procedure that actually
interacts with the class M to obtain a principled estimation
P̂Ĝ of the causal transition model PG of U. The second, is
a planning oracle that takes as input a reward function r
and the estimated causal transition model, and returns an
optimal policy π̂ operating on P̂Ĝ as an approximation of
the transition model Pi of the true MDPMi. We provide an
upper bound to the sample complexity of the Algorithm 1.

Algorithm 1 Causal Transition Model Estimation

Input: class of MDPs M, error ϵ, confidence δ
let K ′ = C ′(d2SZ2n log(2Md2SdA/δ)

/
ϵ2
)

set the generative model P (X) = UX
for i = 1, . . . ,M do

let Pi(Y |X) be the transition model ofMi ∈M
Ĝi ← Causal Structure Estimation (Pi, P (X),K ′) 2

end for
let Ĝ = ∩Mi=1Ĝi
let K ′′ = C ′′(d3Sn3Z+1 log(4dSn

Z/δ)
/
ϵ2
)

let PM(Y |X) be the mixture 1
M

∑M
i=1 Pi(Y |X)

P̂Ĝ ← Bayesian Network Estimation (PM, Ĝ,K ′′) 3
Output: causal transition model P̂Ĝ

Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete
MDPs, let δ ∈ (0, 1), and let ϵ > 0. The Algorithm 1 returns
a causal transition model P̂Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥
ϵ) ≤ δ with a sample complexity

K = O

(
Md3SZ

2n3Z+1 log
(4Md2SdAn

Z

δ

) /
ϵ2
)
.

Having established the sample complexity of the causal
transition model estimation, we can now show how the
learned model P̂Ĝ allows us to approximately solve, via a
planning oracle, any task defined by a combination of a
latent MDPMi ∈ U and a given reward function r.5

Theorem 4.2. Let δ ∈ (0, 1) and ϵ > 0. For a latent
discrete MDPM ∈ U, and a given reward function r, a
planning oracle operating on the causal transition model
P̂Ĝ as an approximation ofM returns a policy π̂ such that

Pr
(
V ∗
Mi,r − VMi,r ≥ ϵλ + ϵ

)
≤ δ,

where ϵλ = 2λH3dSn
2Z+1, and P̂Ĝ is obtained from Algo-

rithm 1 with δ′ = δ and ϵ′ = ϵ/2H3nZ+1.

Theorem 4.2 establish the sample complexity of systematic
generalization through Lemma 4.1. For the discrete MDP
setting, we have that Õ(MH6d3SZ

2n5Z+3), which reduces
to Õ(MH6S4A2Z2) in the tabular setting. Unfortunately,
we are only able to obtain systematic generalization up to
an unavoidable sub-optimality term ϵλ. This error term is
related to the λ-sufficiency of the causal transition model
(Assumption 2), and it accounts for the fact that PG cannot
fully explain the transition dynamics of eachM∈ U, even

5To provide this result in the discrete MDP setting, we have to
further assume that the transition dynamics Pi of the target MDP
Mi admits factorization analogous to (1), such that we can write
Pi(Y |X) =

∏dS
j=1 Pi,j(Y [j]|X[Z

′
j ]), where the scopes Z

′
j are

given by the environment-specific causal structure Gi, which we
assume to be 2Z-sparse (Assumption 1).
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when it is estimated exactly. This is inherent to the ambitious
problem setting, and can be only overcome with additional
interactions with the test MDPM.
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A. Proofs
Proofs of Section 3

Proposition 1. The causal structure G of U can be identified from purely observational data.

Proof. First, recall that with observational data alone, a causal graph can be identified up to its Markov equivalence
class (Hauser and Bühlmann, 2014). This means that its skeleton and v-structure are properly identified, meanwhile
determining the edge orientations requires interventional data in the general case. Since in the considered causal graph G the
edges orientations are determined a priori (as they follow the direction of time), the causal graph can be entirely determined
by using only observational data.

Proofs of Section 4: Causal Transition Model Estimation

Before reporting the proof of the main result in Theorem 4.2, it is worth considering a set of lemmas that will be instrumental
to the main proof.

First, we state the existence of a principled independence testing procedure.

Lemma A.1 (Diakonikolas et al. (2021)). There exists an (ϵ, δ)-independence tester I(A,B) for distributions PA,B on
[n]× [n], which returns with probability at least 1− δ

• yes, if A,B are independent,
• no, if infQ∈{∆A×∆B} ∥PA,B −Q∥1 ≥ ϵ,

with a sample complexity O(n log(1/δ)/ϵ2).

Second, we provide an upper bound to the L1-norm between the Bayesian network PG over a given structure G and the
Bayesian network PGϵ over the structure Gϵ, which is the ϵ-dependency subgraph of G as defined in Definition 2.

Lemma A.2. Let G a Z-sparse dependency graph, and let Gϵ its corresponding ϵ-dependence subgraph for a threshold
ϵ > 0. The L1-norm between the Bayesian network PG over G and the Bayesian network PGϵ over Gϵ can be upper bounded
as

∥PG − PGϵ
∥1 ≤ dSZϵ.

Proof. The proof is based on the fact that every edge (Xi, Yj) such that (Xi, Yj) ∈ G and (Xi, Yj) /∈ Gϵ corresponds to a
weak conditional dependence (see Definition 2), which means that ∥PYj |Xi

− PYj∥1 ≤ ϵ.

We denote with Zj the scopes of the parents of the node Y [j] in G, i.e., PaG(Y [j]) = X[Zj ], and with Zj,ϵ the scopes of
the parents of the node Y [j] in Gϵ, i.e., PaGϵ(Y [j]) = X[Zj,ϵ]. As a direct consequence of Definition 2, we have Zj,ϵ ⊆ Zj

for any j ∈ dS , and we can write

PG(Y |X) =

dS∏

j=1

Pj(Y [j] | X[Zj ]) =

dS∏

j=1

Pj(Y [j] | X[Zj,ϵ], X[Zj \ Zj,ϵ]), PGϵ(Y |X) =

dS∏

j=1

Pj(Y [j] | X[Zj,ϵ]).

Then, we let Zj \ Zj,ϵ = [I] overwriting the actual indices for the sake of clarity, and we derive

∥PG − PGϵ
∥1 ≤

dS∑

j=1

∥∥∥Pj(Y [j] | X[Zj,ϵ],∪Ii=1X[i])− Pj(Y [j] | X[Zj,ϵ])
∥∥∥
1

(2)

≤
dS∑

j=1

I∑

i′=1

∥∥∥Pj(Y [j] | X[Zj,ϵ],∪Ii=i′X[i])− Pj(Y [j] | X[Zj,ϵ],∪Ii=i′+1X[i])
∥∥∥
1

(3)

≤
dS∑

j=1

I∑

i′=1

ϵ ≤ dSZϵ, (4)

in which we employed the property ∥µ− ν∥1 ≤ ∥
∏

i µi −
∏

i νi∥1 ≤
∑

i ∥µi − νi∥1 for the L1-norm between product
distributions µ =

∏
i µi, ν =

∏
i νi to write (2), we repeatedly applied the triangle inequality ∥µ−ν∥1 ≤ ∥µ−ρ∥1+∥ρ−ν∥1
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to get (3) from (2), we upper bounded each term of the sum in (3) with ϵ thanks to Definition 2, and we finally employed the
Z-sparseness Assumption 1 to upper bound I with Z in (4).

Next, we provide a crucial sample complexity result for a provably efficient estimation of a Bayesian network P̂Ĝ over an
estimated ϵ-dependency subgraph Ĝ, which relies on both the causal structure estimation result of Theorem A.10 and the
Bayesian network estimation result of Theorem A.13.

Lemma A.3. LetM be a discrete MDP, let M = {M} be a singleton class, let δ ∈ (0, 1), and let ϵ > 0. The Algorithm 1
returns a Bayesian network P̂Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) ≤ δ with a sample complexity

K = O

(
d3S Z2 n3Z+1 log

( 4d2
SdAnZ

δ

)

ϵ2

)
.

Proof. We aim to obtain the number of samples K = K ′ +K ′′ for which Algorithm 1 is guaranteed to return a Bayesian
network estimate P̂Ĝ over a causal structure estimate Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) ≤ δ in a setting with a singleton
class of discrete MDPs. First, we derive the following decomposition of the error

∥P̂Ĝ − PG∥1 ≤ ∥P̂Ĝ ± PĜ ± PGϵ′ − PG∥1 ≤ ∥P̂Ĝ − PĜ∥1 + ∥PĜ − PGϵ′∥1 + ∥PGϵ′ − PG∥1 (5)

in which we employed the triangle inequality ∥µ− ν∥1 ≤ ∥µ− ρ∥1 + ∥ρ− ν∥1. Then, we can write

Pr
(
∥P̂Ĝ − PG∥1 ≥ ϵ

)
≤ Pr

(
∥P̂Ĝ − PĜ∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
Bayesian network estimation (⋆)

+Pr
(
∥PĜ − PGϵ′∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
∥PGϵ′ − PG∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
Bayesian network subgraph (⋄)

through the decomposition (5) and a union bound to isolate the three independent sources of error (⋆), (•), (⋄). To upper
bound the latter term (⋄) with 0, we invoke Lemma A.2 to have dsZϵ′ ≤ ϵ

3 , which gives ϵ′ ≤ ϵ
3dSZ . Then, we consider the

middle term (•), for which we can write

Pr

(
∥PĜϵ′

− PGϵ′∥1 ≥
ϵ

3

)
≤ Pr

(
Ĝ ≠ Gϵ

)
. (6)

We can now upper bound (•) ≤ δ/2 through (6) by invoking Theorem A.10 with threshold ϵ′ = ϵ
3dSZ and confidence

δ′ = δ
2 , which gives

K ′ = C ′
(
d
4/3
S Z4/3 n log1/3(2d2SdA/δ)

ϵ4/3
+

d2S Z2 n log1/2(2d2SdA/δ) + log(2d2SdA/δ)

ϵ2

)
. (7)

Next, we can upper bound (⋆) ≤ δ/2 by invoking Theorem A.13 with threshold ϵ′ = ϵ
3 and confidence δ′ = δ

2 , which gives

K ′′ = C ′′
(

d3S n3Z+1 log(4dSn
Z/δ)

ϵ2

)
. (8)

Finally, through the combination of (7) and (8), we can derive the sample complexity that guarantees Pr(∥P̂Ĝ − PG∥1 ≥
ϵ) ≤ δ under the assumption ϵ4/3 ≪ ϵ2, i.e.,

K = K ′ +K ′′ ≤
d3S Z2 n3Z+1 log

(
4d2

SdAnZ

δ

)

ϵ2
,

which concludes the proof.

Whereas Lemma A.3 is concerned with the sample complexity of learning the Bayesian network of a singleton class, we can
now extend the result to account for a class M composed of M discrete MDPs.
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Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), and let ϵ > 0. The Algorithm 1 returns a
causal transition model P̂Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) ≤ δ with a sample complexity

K = O

(
Md3SZ

2n3Z+1 log
(4Md2SdAn

Z

δ

) /
ϵ2
)
.

Lemma A.4. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), and let ϵ > 0. The Algorithm 1 returns a
Bayesian network P̂Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) ≤ δ with a sample complexity

K = O

(
M d3S Z2 (nm)3Z+1 log

( 4Md2
SdA(nm)Z

δ

)

ϵ2

)
.

Proof. We aim to obtain the number of samples K = MK ′ +K ′′ for which Algorithm 1 is guaranteed to return a Bayesian
network estimate P̂Ĝ over a causal structure estimate Ĝ such that Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) ≤ δ in a setting with a class of M
discrete MDPs. First, we can derive an analogous decomposition as in (5), such that we have

Pr
(
∥P̂Ĝ − PG∥1 ≥ ϵ

)
≤ Pr

(
∥P̂Ĝ − PĜ∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
Bayesian network estimation (⋆)

+Pr
(
∥PĜ − PGϵ′∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
∥PGϵ′ − PG∥1 ≥

ϵ

3

)

︸ ︷︷ ︸
Bayesian network subgraph (⋄)

through a union bound. Crucially, the terms (⋆), (⋄) are unaffected by the class size, which leads to K ′′ = (8) by upper
bounding (⋆), and ϵ′ ≤ ϵ

3dSZ by upper bounding (⋄), exactly as in the proof of Lemma A.3. Instead, the number of samples
K ′ has to guarantee that (•) = Pr(∥PĜ − PGϵ′∥1 ≥ ϵ/3) ≤ δ/2, where the causal structure Gϵ′ is now the intersection of
the causal structures of the single class componentsMi, i.e., Gϵ′ = ∩Mi=1Gϵ′,i. Especially, we can write

(•) = Pr
(
∥PĜ − PGϵ′∥1 ≥

ϵ

3

)
≤ Pr

(
Ĝ ̸= Gϵ′

)
≤ Pr

( M⋃

i=1

Ĝi ̸= Gϵ′,i
)
≤

M∑

i=0

Pr
(
Ĝi ̸= Gϵ′,i

)
, (9)

through a union bound on the estimation of the single causal structures Ĝi. Then, we can upper bound (•) ≤ δ/2 through (9)
by invoking Theorem A.10 with threshold ϵ′ = ϵ

3dSZ and confidence δ′ = δ
2M , which gives

K ′ = C ′
(
d
4/3
S Z4/3 n log1/3(2Md2SdA/δ)

ϵ4/3
+

d2S Z2 n log1/2(2Md2SdA/δ) + log(2Md2SdA/δ)

ϵ2

)
. (10)

Finally, through the combination of (10) and (8), we can derive the sample complexity that guarantees Pr(∥P̂Ĝ − PG∥1 ≥
ϵ) ≤ δ under the assumption ϵ4/3 ≪ ϵ2, i.e.,

K = MK ′ +K ′′ ≤
Md3S Z2 n3Z+1 log

(
4Md2

SdAnZ

δ

)

ϵ2
,

which concludes the proof.

It is now straightforward to extend Lemma 4.1 for a class M composed of M tabular MDPs.
Lemma A.5. Let M = {Mi}Mi=1 be a class of M tabular MDPs. The sample complexity of Lemma 4.1 reduces to

K = O

(
M S2 Z2 42Z log

(
4MS2A4Z

δ

)

ϵ2

)
.

Proof. To obtain K = MK ′ +K ′′, we follows similar steps as in the proof of Lemma 4.1, to have the usual decomposition
of the event Pr(∥P̂Ĝ − PG∥1 ≥ ϵ) in the (⋆), (•), (⋄) terms. We can deal with (⋄) as in Lemma 4.1 to get ϵ′ ≤ ϵ

3SZ . Then,
we upper bound (•) ≤ δ/2 by invoking Corollary A.11 (instead of Theorem A.10) with threshold ϵ′ = ϵ

3SZ and confidence
δ′ = δ

2M , which gives

K ′ = C ′
(
S4/3 Z4/3 log1/3(2MS2A/δ)

ϵ4/3
+

S2 Z2 log1/2(2MS2A/δ) + log(2MS2A/δ)

ϵ2

)
. (11)
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Similarly, we upper bound (⋆) ≤ δ/2 by invoking Corollary A.15 (instead of Theorem A.1) with threshold ϵ′ = ϵ
3 and

confidence δ′ = δ
2 , which gives

K ′′ =
18 S2 22Z log(4S2Z/δ)

ϵ2
. (12)

Finally, we combine 11 with 12 to obtain

K = MK ′ +K ′′ ≤ M S2 Z2 22Z log
(
4MS2A2Z

δ

)

ϵ2

Proofs of Section 4: Planning

For the sake of notational clarity within the following proofs we express

Theorem 4.2. Let δ ∈ (0, 1) and ϵ > 0. For a latent discrete MDPM ∈ U, and a given reward function r, a planning
oracle operating on the causal transition model P̂Ĝ as an approximation ofM returns a policy π̂ such that

Pr
(
V ∗
Mi,r − VMi,r ≥ ϵλ + ϵ

)
≤ δ,

where ϵλ = 2λH3dSn
2Z+1, and P̂Ĝ is obtained from Algorithm 1 with δ′ = δ and ϵ′ = ϵ/2H3nZ+1.

Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal policies as π∗ and π̂∗.
Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity, and refer with V̂ to the
value function of the MDP with transition model P̂Ĝ . As done in (Jin et al., 2020, Theorem 3.5), we can write the following
decomposition, where V ∗ := V π∗

.

Es1∼P

[
V ∗
1 (s1)− V π̂

1 (s1)
]
≤
∣∣∣Es1∼P

[
V ∗
1 (s1)− V̂ π̂∗

1 (s1)
]∣∣∣

︸ ︷︷ ︸
evaluation error

+Es1∼P

[
V̂ ∗
1 (s1)− V̂ π̂∗

1 (s1)
]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P

[
V̂ π̂∗

1 (s1)− V̂ π̂
1 (s1)

]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂
1 (s1)− V π̂

1 (s1)
]∣∣∣

︸ ︷︷ ︸
evaluation error

≤ 2nZ+1H3ϵ′︸ ︷︷ ︸
ϵ

+2n2Z+1dSH
3λ︸ ︷︷ ︸

ϵλ

where in the last step we have set to 0 the approximation due to the planning oracle assumption, and we have bounded the
evaluation errors according to Lemma A.6. In order to get 2nZ+1H3ϵ′ = ϵ we have to set ϵ′ = ϵ

2nZ+1H3 . Considering the
sample complexity result in Lemma 4.1 the final sample complexity will be:

K = O

(
M d3S Z2 n3Z+1 log

( 4Md2
SdAnZ

δ

)

(ϵ′)2

)
= O

(
4 M d3S Z2 n5Z+3 H6 log

( 4Md2
SdAnZ

δ

)

ϵ2

)

Lemma A.6. Under the preconditions of Theorem 4.2, with probability 1− δ, for any reward function r and policy π, we
can bound the value function estimation error as follows.

∣∣∣Es∼P

[
V̂ π
1,r(s)− V π

1,r(s)
]∣∣∣ ≤ nZ+1H3ϵ′︸ ︷︷ ︸

ϵ

+n2Z+1dSH
3λ︸ ︷︷ ︸

ϵλ

(13)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ϵ′ is the approximation error between P̂Ĝ and PG

studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .
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Proof. The proof will be along the lines of that of Lemma 3.6 in (Jin et al., 2020). We first recall (Dann et al., 2017, Lemma
E.15), which we restate in Lemma A.9. In this prof we consider an environment specific true MDPM with transition model
P , and an mdp M̂ that has as transition model the estimated causal transition model P̂Ĝ . In the following, the expectations
will be w.r.t. P . Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity. We can start
deriving

∣∣∣Es∼P

[
V̂ π
1 (s)− V π

1 (s)
]∣∣∣ ≤

∣∣∣EX

[ H∑

h=1

(P̂Ĝ − P )V̂ π
h+1(X)

]∣∣∣

≤ EX

[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ π
h+1(X)

∣∣∣
]

=

H∑

h=1

EX

∣∣∣(P̂Ĝ − P )V̂ π
h+1(X)

∣∣∣ (14)

We now bound a single term within the sum above as follows:

EX

∣∣∣(P̂Ĝ − P )V̂ π
h+1(X)

∣∣∣ = EX

∣∣∣(P̂Ĝ − PG + PG − P )V̂ π
h+1(X)

∣∣∣

= EX

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(X) + (PG − P )V̂ π

h+1(X)
∣∣∣

≤ EX

[∣∣∣(P̂Ĝ − PG)V̂
π
h+1(X)

∣∣∣+
∣∣∣(PG − P )V̂ π

h+1(X)
∣∣∣
]

= EX

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(X)

∣∣∣+ EX

∣∣∣(PG − P )V̂ π
h+1(X)

∣∣∣ (15)

We can now bound each term. Let us start considering the first term:

EX

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(X)

∣∣∣ = EX

∣∣∣P̂Ĝ V̂
π
h+1(X)− PG V̂

π
h+1(X)

∣∣∣

= EX

∣∣∣
∑

Y

P̂Ĝ(Y |X)V̂ π
h+1(Y )−

∑

Y

PG(Y |X)V̂ π
h+1(Y )

∣∣∣

= EX

∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π

[
r(X ′) + P̂Ĝ V̂

π
h+2(X

′)
]
−
∑

Y

PG(Y |X)EX′∼π

[
r(X ′) + PG V̂

π
h+2(X

′)
]∣∣∣

= EX

∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)
EX′∼π

[
r(X ′)

]

+
∑

Y

P̂Ĝ(Y |X)EX′∼π

[
P̂Ĝ V̂

π
h+2(X

′)
]
−
∑

Y

PG(Y |X)EX′∼π

[
PG V̂

π
h+2(X

′)
]∣∣∣

≤ EX

∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ (16)

+ EX

∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π

[
P̂Ĝ V̂

π
h+2(X

′)
]
−
∑

Y

PG(Y |X)EX′∼π

[
PG V̂

π
h+2(X

′)
]∣∣∣
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We can now bound the first term of (16):

EX

∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ = EX

∣∣∣∣∣
∑

Y

( dS∏

j=1

P̂j(Y [j]|X[Zj ])−
dS∏

j=1

Pj(Y [j]|X[Zj ])
)∣∣∣∣∣

≤ EX

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

X

Pπ
G (X)

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

Y

dS∑

j=1

∑

X[Zj ]

Pπ
G (X[Zj ])

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣ (17)

Due to the uniform sampling and Z-sparseness assumptions, we have PG(X[Zj ]) =
1
nZ , hence:

max
π†

Pπ†

G (X[Zj ])

PG(X[Zj ])
≤ 1

PG(X[Zj ])
= nZ

Therefore:
Pπ†

G (X[Zj ]) ≤ nZ · PG(X[Zj ])

Replacing this in (17) and marginalizing over Y \Y [j] we obtain:

EX

∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ = nZ
ds∑

j=1

∑

Y [j]

∑

X[Zj ]

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣PG(X[Zj ])

≤ nZ
dS∑

j=1

∑

Y [j]

ϵ′

dS

∑

X[Zj ]

PG(X[Zj ])

= nZ+1ϵ′

Where ϵ′

dS
is the approximation term of each component. By plugging this bound into (16) we get:

EX

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(X)

∣∣∣ ≤ nZ+1ϵ′ + EX

∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π

[
P̂Ĝ V̂

π
h+2(X

′)
]
−
∑

Y

PG(Y |X)EX′∼π

[
PG V̂

π
h+2(X

′)
]∣∣∣

≤
H∑

i=h+1

i · nZ+1ϵ′

≤ H2nZ+1ϵ′

where in the last step we have recursively bounded the right terms as in (24). By considering 2Z-sparseness, λ-sufficiency,
and that the transition model P factorizes, we can apply the same procedure to bound the second term of equation (15) as:

EX

∣∣∣(PG − P )V̂ π
h+1(X)

∣∣∣ ≤ H2nZ+1dSλ

Therefore the initial expression in (14) becomes:

∣∣∣Es∼P

[
V̂ π
1 (s)− V π

1 (s)
]∣∣∣ ≤

H∑

h=1

EX

∣∣∣(P̂Ĝ − P )V̂ π
h+1(X)

∣∣∣ (18)

≤
H∑

h=1

[nZ+1H2ϵ′ + n2Z+1dSH
2λ] (19)

≤ nZ+1H3ϵ′︸ ︷︷ ︸
ϵ

+n2Z+1dSH
3λ︸ ︷︷ ︸

ϵλ

(20)



Invariance Discovery for Systematic Generalization in Reinforcement Learning

Corollary A.7. For a tabular MDPM∈M, the result of Theorem 4.2 holds with ϵλ = 2λSAH3, ϵ′ = ϵ/2SAH3.

Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal policies as π∗ and π̂∗.
Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity, and refer with V̂ to the
value function of the MDP with transition model P̂Ĝ . As done in (Jin et al., 2020, Theorem 3.5), we can write the following
decomposition, where V ∗ := V π∗

.

Es1∼P

[
V ∗
1 (s1)− V π̂

1 (s1)
]
≤
∣∣∣Es1∼P

[
V ∗
1 (s1)− V̂ π̂∗

1 (s1)
]∣∣∣

︸ ︷︷ ︸
evaluation error

+Es1∼P

[
V̂ ∗
1 (s1)− V̂ π̂∗

1 (s1)
]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P

[
V̂ π̂∗

1 (s1)− V̂ π̂
1 (s1)

]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂
1 (s1)− V π̂

1
︸ ︷︷ ︸

evaluation error

(s1)
]∣∣∣

≤ 2SAH3ϵ′︸ ︷︷ ︸
ϵ

+2SAH3λ︸ ︷︷ ︸
ϵλ

where in the last step we have set to 0 the approximation due to the planning oracle assumption, and we have bounded the
evaluation errors according to Lemma A.8. In order to get 2SAH3ϵ′ = ϵ we have to set ϵ′ = ϵ

2SAH3 . Considering the
sample complexity result in Lemma A.5 the final sample complexity will be:

K = O

(
M S2 Z2 22Z log

(
4MS2A2Z

δ

)

(ϵ′)2

)
= O

(
4M S4 A2 H6 Z2 22Z log

(
4MS2A2Z

δ

)

ϵ2

)

Lemma A.8. Under the preconditions of Corollary A.7, with probability 1− δ, for any reward function r and policy π, we
can bound the value function estimation error as follows.

∣∣∣Es∼P

[
V̂ π
1,r(s)− V π

1,r(s)
]∣∣∣ ≤ SAH3ϵ′︸ ︷︷ ︸

ϵ

+SAH3λ︸ ︷︷ ︸
ϵλ

(21)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ϵ′ is the approximation error between P̂Ĝ and PG

studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .

Proof. The proof will be along the lines of that of Lemma 3.6 in (Jin et al., 2020). We first recall (Dann et al., 2017, Lemma
E.15), which we restate in Lemma A.9. In this prof we consider an environment specific true MDPM with transition model
P , and an mdp M̂ that has as transition model the estimated causal transition model P̂Ĝ . In the following, the expectations
will be w.r.t. P . Moreover, since the reward r is fixed, we remove it from the expressions for the sake of clarity. We can start
deriving

∣∣∣Es∼P

[
V̂ π
1 (s)− V π

1 (s)
]∣∣∣ ≤

∣∣∣Eπ

[ H∑

h=1

(P̂Ĝ − P )V̂ π
h+1(sh, ah)

]∣∣∣

≤ Eπ

[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ π
h+1(sh, ah)

∣∣∣
]

=

H∑

h=1

Eπ

∣∣∣(P̂Ĝ − P )V̂ π
h+1(sh, ah)

∣∣∣
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We now bound a single term within the sum above as follows:

Eπ

∣∣∣(P̂Ĝ − P )V̂ π
h+1(sh, ah)

∣∣∣ ≤
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s, a)

=
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π(a|s)

≤ max
π′

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π′(a|s)

= max
ν:S→A

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)1{a = ν(s)}

where in the last step we have used the fact that there must exist an optimal deterministic policy.
Due to the uniform sampling assumption, we have P (s, a) = 1

SA , hence:

max
π†

Pπ†
(s, a)

P (s, a)
≤ 1

P (s, a)
= SA

Therefore:

Pπ†(s, a) ≤ SA · P (s, a)

Moreover, notice that, since π′ is deterministic we have Pπ(s) = Pπ′
(s) = Pπ′

(s, a) ≤ SA · P (s, a). Replacing it in the
expression above we get

Eπ

∣∣∣(P̂Ĝ − P )V̂ π
h+1(sh, ah)

∣∣∣ ≤ SA ·
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π
h+1(s, a)

∣∣∣P (s)1{a = ν(s)}

≤ SA ·
∣∣∣(P̂Ĝ − P )V̂ π

h+1(s, a)
∣∣∣

≤ SA ·
∣∣∣(P̂Ĝ − PG)V̂

π
h+1(s, a)

∣∣∣+ SA ·
∣∣∣(PG − P )V̂ π

h+1(s, a)
∣∣∣ (22)

≤ SA ·
H∑

i=h+1

i · ϵ′ + SA ·
H∑

i=h+1

i · λ

≤ SAH2ϵ′ + SAH2λ (23)

where ϵ′ is the approximation error between P̂Ĝ and PG studied in Lemma 4.1, and in the penultimate step we have used the
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following derivation:

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(s, a)

∣∣∣ =
∣∣∣P̂Ĝ V̂

π
h+1(s, a)− PG V̂

π
h+1(s, a)

∣∣∣ (24)

=
∣∣∣
∑

s′

P̂Ĝ(s
′|s, a)V̂ π

h+1(s
′)−

∑

s′

PG(s
′|s, a)V̂ π

h+1(s
′)
∣∣∣

=
∣∣∣
∑

s′

P̂Ĝ(s
′|s, a)Ea′∼π

[
r(s′, a′) + P̂Ĝ V̂

π
h+2(s

′, a′)
]
−
∑

s′

PG(s
′|s, a)Ea′∼π

[
r(s′, a′) + PG V̂

π
h+2(s

′, a′)
]∣∣∣

=
∣∣∣
∑

s′

(
P̂Ĝ(s

′|s, a)− PG(s
′|s, a)

)
Ea′∼π

[
r(s′, a′)

]

+
∑

s′

P̂Ĝ(s
′|s, a)Ea′∼π

[
P̂Ĝ V̂

π
h+2(s

′, a′)
]
−
∑

s′

PG(s
′|s, a)Ea′∼π

[
PG V̂

π
h+2(s

′, a′)
]∣∣∣

≤ ϵ′ +
∣∣∣
∑

s′

P̂Ĝ(s
′|s, a)Ea′∼π

[
P̂Ĝ V̂

π
h+2(s

′, a′)
]
−
∑

s′

PG(s
′|s, a)Ea′∼π

[
PG V̂

π
h+2(s

′, a′)
]∣∣∣

= ϵ′ +
∣∣∣
∑

s′

P̂Ĝ(s
′|s, a)Ea′∼π

[∑

s′′

P̂Ĝ(s
′′|s′, a′)Ea′′∼π

[
r(s′′, a′′) + P̂Ĝ V̂

π
h+3(s

′′, a′′)
]]

−
∑

s′

PG(s
′|s, a)Ea′∼π

[∑

s′′

PG(s
′′|s′, a′)Ea′′∼π

[
r(s′′, a′′) + PG V̂

π
h+3(s

′′, a′′)
]]∣∣∣

≤ ϵ′ +
∑

s′,s′′,a′

∣∣∣P̂Ĝ(s
′|s, a)P̂Ĝ(s

′′|s′, a′)− PG(s
′|s, a)PG(s

′′|s′, a′)
∣∣∣
1
+ . . .

≤ ϵ′ +
∑

s′,s′′,a′

[∣∣∣P̂Ĝ(s
′|s, a)− PG(s

′|s, a)
∣∣∣
1
+
∣∣∣P̂Ĝ(s

′′|s′, a′)− PG(s
′′|s′, a′)

∣∣∣
1

]
+ . . .

≤ ϵ′ + 2ϵ′ + . . .

Hence, due to this recursive unrolling, we have:

∣∣∣(P̂Ĝ − PG)V̂
π
h+1(s, a)

∣∣∣ ≤
H∑

i=h+1

iϵ′ ≤ H2ϵ

Notice that the same argument holds also for the second term of (22), replacing ϵ′ with λ.

By plugging the result in equation (23) into the initial expression we get:

∣∣∣Es∼P

[
V̂ π
1 (s)− V π

1 (s)
]∣∣∣ ≤

H∑

h=1

Eπ

∣∣∣(P̂Ĝ − P )V̂ π
h+1(sh, ah)

∣∣∣

≤
H∑

h=1

SAH2ϵ′ + SAH2λ

= SAH3ϵ′ + SAH3λ

In the following we restate (Dann et al., 2017, Lemma E.15) for the case of stationary transition model.

Lemma A.9. For any two MDPsM′ andM′′ with rewards r′ and r′′ and transition models P ′ and P ′′, the difference in
value functions V ′, V ′′ w.r.t. the same policy π can be written as:

V ′
h(s)− V ′′

h (s) = EM′′,π

[ H∑

i=h

[r′(si, ai)− r′′(si, ai) + (P ′ − P ′′)V ′
i+1(si, ai)] | sh = s

]
(25)
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Algorithm 2 Causal Structure Estimation for an MDP

Input: sampling model P (Y |X), generative model P (X), batch parameter K
draw (xk, yk)

K
k=1

iid∼ P (Y |X)P (X)

initialize Ĝ = ∅
for each pair of nodes Xz, Yj do

compute the independence test I(Xz, Yj)

if a dependency is found add (Xz, Yj) to Ĝ
end for
Output: causal dependency graph Ĝ

Proofs of Section 4: Causal Discovery

We provide the proof of the sample complexity result for learning the causal structure of a discrete MDP with a generative
model.

Definition 2. We call Gϵ ⊆ G the ϵ-dependency subgraph of G if it holds, for each pair (A,B) ∈ G distributed as PA,B

(A,B) ∈ Gϵ iff inf
Q∈{∆A×∆B}

∥PA,B −Q∥1 ≥ ϵ.

Theorem A.10. Let M be a discrete MDP with an underlying causal structure G, let δ ∈ (0, 1), and let ϵ > 0. The
Algorithm 2 returns a dependency graph Ĝ such that Pr(Ĝ ̸= Gϵ) ≤ δ with a sample complexity

K = O
(
n log(d2SdA/δ)/ϵ

2
)
.

Proof. We aim to obtain the number of samples K for which Algorithm 2 is guaranteed to return a causal structure estimate
Ĝ such that Pr(Ĝ ̸= Gϵ) ≤ δ in a discrete MDP setting. First, we can upper bound the probability of the bad event
Pr(Ĝ ̸= Gϵ) in terms of the probability of a failure in the independence testing procedure I(Xz, Yj) for a single pair of
nodes Xz ∈ Gϵ, Yz ∈ Gϵ, i.e.,

Pr(Ĝ ≠ Gϵ) ≤ Pr

( dS+dA⋃

z=1

dS⋃

j=1

test I(Xz, Yj) fails
)
≤

dS+dA∑

z=1

dS∑

j=1

Pr

(
test I(Xz, Yj) fails

)
, (26)

where we applied an union bound to obtain the last inequality. Now we can look at the probability of a single independence
test failure. Especially, for a provably efficient independence test (the existence of such a test is stated by Lemma A.1, whereas
the Algorithm 2 in Diakonikolas et al. (2021) reports an actual testing procedure), we have Pr(test I(Xz, Yj) fails) ≤ δ′,
for any choice of δ′ ∈ (0, 1), ϵ′ > 0, with a number of samples

K ′ = C

(
n log1/3(1/δ′)

(ϵ′)4/3
+

n log1/2(1/δ′) + log(1/δ′)
(ϵ′)2

)
, (27)

where C is a sufficiently large universal constant (Diakonikolas et al., 2021, Theorem 1.3). Finally, by letting ϵ′ = ϵ,
δ′ = δ

d2
SdA

and combining (26) with (27), we obtain Pr(Ĝ ≠ Gϵ) with a sample complexity

K = O

(
n log(d2SdA/δ)

ϵ2

)
,

under the assumption ϵ2 ≪ ϵ4/3, which concludes the proof.

The proof of the analogous sample complexity result for a tabular MDP setting is a direct consequence of Theorem A.10 by
letting n = 2, dS = S, dA = A.

Corollary A.11. LetM be a tabular MDP. The result of Theorem A.10 reduces to K = O
(
log(S2A/δ)/ϵ2

)
.
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Algorithm 3 Bayesian Network Estimation for an MDP

Input: sampling model P (Y |X), dependency graph G, batch parameter K
let K ′ = ⌈K/dSn

Z⌉
for j = 1, . . . , dS do

let Zj the scopes (X[Zj ], Y [j]) ⊆ G
initialize the counts N(X[Zj ], Y [j]) = 0
for each value x ∈ [n]|Zj | do

for k = 1, . . . ,K ′ do
draw y ∼ P (Y [j]|X[Zj ] = x)
increment N(X[Zj ] = x, Y [j] = y)

end for
end for
compute P̂j(Y [j]|X[Zj ]) = N(X[Zj ], Y [j])/K ′

end for
let P̂G(Y |X) =

∏dS

j=1 P̂j(Y [j]|X[Zj ])

Output: Bayesian network P̂G

Proofs of Section 4: Bayesian Network Estimation

We first report a useful concentration inequality for the L1-norm between the empirical distribution computed over K
samples and the true distribution (Weissman et al., 2003, Theorem 2.1).

Lemma A.12 (Weissman et al. (2003)). Let X1, . . . , XK be i.i.d. random variables over [n] having probabilities Pr(Xk =

i) = Pi, and let P̂K(i) = 1
K

∑K
k=1 1(Xk = i). Then, for every threshold ϵ > 0, it holds

Pr

(
∥P̂K − P∥1 ≥ ϵ

)
≤ 2 exp(−Kϵ2/2n).

We can now provide the proof of the sample complexity result for learning the Bayesian network of a discrete MDP with a
given causal structure.

Theorem A.13. LetM be a discrete MDP, let G be its underlying causal structure, let δ ∈ (0, 1), and let ϵ > 0. The
Algorithm 3 returns a Bayesian network P̂G such that Pr(∥P̂G − PG∥1 ≥ ϵ) ≤ δ with a sample complexity

K = O
(
d3Sn

3Z+1 log(dSn
Z/δ)/ϵ2

)
.

Proof. We aim to obtain the number of samples K for which Algorithm 3 is guaranteed to return a Bayesian network
estimate P̂G such that Pr(∥P̂G − PG∥1 ≥ ϵ) ≤ δ in a discrete MDP setting. First, we note that

Pr
(
∥P̂G − PG∥1 ≥ ϵ

)
≤ Pr

( dS∑

j=1

∥P̂j − Pj∥1 ≥ ϵ

)
(28)

≤ Pr

(
1

dS

dS∑

j=1

∥P̂j − Pj∥1 ≥
ϵ

dS

)
(29)

≤ Pr

( dS⋃

j=1

∥P̂j − Pj∥1 ≥
ϵ

dS

)
(30)

≤
dS∑

j=1

Pr

(
∥P̂j − Pj∥1 ≥

ϵ

dS

)
, (31)

in which we employed the property ∥µ− ν∥1 ≤ ∥
∏

i µi −
∏

i νi∥1 ≤
∑

i ∥µi − νi∥1 for the L1-norm between product
distributions µ =

∏
i µi, ν =

∏
i νi to write (28), and we applied a union bound to derive (31) from (30). Similarly, we can
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write

Pr
(
∥P̂j − Pj∥1 ≥

ϵ

dS

)
≤ Pr

( ⋃

x∈[n]|Zj |

∥P̂j(·|x)− Pj(·|x)∥1 ≥
ϵ

dSn|Zj |

)
(32)

≤
∑

x∈[n]|Zj |

Pr

(
∥P̂j(·|x)− Pj(·|x)∥1 ≥

ϵ

dSn|Zj |

)
(33)

≤
∑

x∈[n]|Zj |

Pr

(
∥P̂j(·|x)− Pj(·|x)∥1 ≥

ϵ

dSnZ

)
(34)

by applying a union bound to derive (33) from (32), and by employing Assumption 1 to bound |Zj | with Z in (34). We can
now invoke Lemma A.12 to obtain the sample complexity K ′ that guarantees Pr(∥P̂j(·|x)− Pj(·|x)∥1 ≥ ϵ′) ≤ δ′, i.e.,

K ′ =
2n log(2/δ′)

(ϵ′)2
=

2 d2S n2Z+1 log(2dSn
Z/δ)

ϵ2
,

where we let ϵ′ = ϵ
dSnZ , δ′ = δ

dSnZ . Finally, by summing K ′ for any x ∈ [nm]|Zj | and any j ∈ [dS ], we obtain

K =
∑

j∈[dS ]

∑

x∈[n]|Zj |

K ′ ≤ 2 d3S n3Z+1 log(2dSn
Z/δ)

ϵ2
,

which proves the theorem.

To prove the analogous sample complexity result for a tabular MDP we can exploit a slightly tighter concentration on the KL
divergence between the empirical distribution and the true distribution in the case of binary variables (Dembo and Zeitouni,
2009, Theorem 2.2.3)6, which we report for convenience in the following lemma.

Lemma A.14 (Dembo and Zeitouni (2009)). Let X1, . . . , XK be i.i.d. random variables over [2] having probabilities
Pr(Xk = i) = Pi, and let P̂K(i) = 1

K

∑K
k=1 1(Xk = i). Then, for every threshold ϵ > 0, it holds

Pr

(
dKL

(
P̂K ||P

)
≥ ϵ

)
≤ 2 exp(−Kϵ).

We can now provide the proof of Corollary A.15.

Corollary A.15. LetM be a tabular MDP. The result of Theorem A.13 reduces to K = O
(
S222Z log(S2Z/δ)/ϵ2

)
.

Proof. We aim to obtain the number of samples K for which Algorithm 3 is guaranteed to return a Bayesian network
estimate P̂G such that Pr(∥P̂G − PG∥1 ≥ ϵ) ≤ δ in a tabular MDP setting. We start by considering the KL divergence
dKL(P̂G ||PG). Especially, we note

dKL

(
P̂G ||PG

)
=
∑

X,Y

P̂G(X,Y ) log
P̂G(X,Y )

PG(X,Y )

=
∑

X,Y

P̂G(X,Y ) log

∏S
j=1 P̂j(Y [j]|X[Zj ])

∏S
j=1 Pj(Y [j]|X[Zj ])

=
∑

X,Y

P̂G(X,Y )

S∑

j=1

log
P̂j(Y [j]|X[Zj ])

Pj(Y [j]|X[Zj ])
=

S∑

j=1

dKL

(
P̂j ||Pj

)
.

6Also reported in (Mardia et al., 2020, Example 1).
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Then, for any ϵ′ > 0 we can write

Pr
(
dKL

(
P̂G ||PG

)
≥ ϵ′

)
≤ Pr

( S⋃

j=1

dKL

(
P̂j ||Pj

)
≥ ϵ′

S

)
(35)

≤
S∑

j=1

Pr

(
dKL

(
P̂j ||Pj

)
≥ ϵ′

S

)
(36)

≤
S∑

j=1

Pr

( ⋃

x∈[2]|Zj |

dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ϵ′

S2|Zj |

)
(37)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ϵ′

S2|Zj |

)
(38)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ϵ′

S2Z

)
, (39)

in which we applied a first union bound to get (36) from (35), a second union bound to get (38) from (37), and Assumption 1
to bound |Zj | with Z in (39). We can now invoke Lemma A.14 to obtain the sample complexity K ′′ that guarantees
Pr(dKL(P̂j(·|x)||Pj(·|x)) ≥ ϵ′′) ≤ δ′′, i.e.,

K ′′ =
log(2/δ′′)

ϵ′′
=

S2Z log(2S2Z/δ′)
ϵ′

,

where we let ϵ′′ = ϵ′

S2Z
, and δ′′ = δ′

S2Z
for any choice of δ′ ∈ (0, 1). By summing K ′′ for any x ∈ [2]|Zj | and and j ∈ [S],

we obtain the sample complexity K ′ that guarantees Pr(dKL(P̂G ||PG) ≥ ϵ′) ≤ δ′, i.e.,

K ′ =
S∑

j=1

∑

x∈[2]|Zj |

K ′′ ≤ S222Z log(2S2Z/δ′)
ϵ′

. (40)

Finally, we employ the Pinsker’s inequality ∥P̂G − PG∥1 ≤
√

2dKL(P̂G ||PG) (Csiszár, 1967) to write

Pr
(
dKL(P̂G ||PG) ≥ ϵ′

)
= Pr

(√
2dKL(P̂G ||PG) ≥

√
2ϵ′
)
≥ Pr

(
∥P̂G − PG∥1 ≥

√
2ϵ′
)
,

which gives the sample complexity K that guarantees Pr(∥P̂G − PG∥1 ≥ ϵ) ≤ δ by letting ϵ′ = ϵ2

2 and δ′ = δ in (40), i.e.,

K =
2S222Z log(2S2Z/δ)

ϵ2
.
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