AGENT-GWO: COLLABORATIVE AGENTS FOR DYNAMIC PROMPT OPTIMIZATION IN LARGE LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation, yet their performance in complex reasoning tasks remains limited. A central challenge lies in their heavy reliance on manually designed static prompts, which are costly to engineer, lack flexibility, and often fail to generalize across diverse tasks. In this work, we propose Agent-GWO, a dynamic prompt optimization framework that leverages collaboration among multiple LLM-based agents and the Grey Wolf Optimizer (GWO). Instead of finetuning model parameters, Agent-GWO enhances reasoning by iteratively refining task-specific prompts through cooperative optimization. Each agent is modeled as a "wolf," guided by its hyperparameters and reasoning template. Through GWO's hierarchical leader-follower mechanism, top-performing leader agents $(\alpha, \beta, \text{ and } \delta)$ guide the evolution of other agents, enabling the population to converge toward robust and effective reasoning strategies. Extensive experiments across mathematical reasoning, hybrid reasoning, and domain-specific applications (e.g., social sciences, medical diagnostics, and decision support) demonstrate the effectiveness of our approach. For example, on GPT-4.1-mini, Agent-GWO improves GSM8K accuracy by 8.7% (from 88.2% to 96.9%) and MMLU accuracy by 12.9% (from 66.9% to 79.8%).

1 Introduction

In recent years, LLMs (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020; Hadi et al., 2023; Achiam et al., 2023) have achieved remarkable advancements in natural language understanding and generation. These models demonstrate broad application potential across diverse domains, including social sciences, humanities, healthcare, and business decision-making (Bommasani et al., 2021; Singhal et al., 2023; Kasneci et al., 2023; Chui et al., 2023). While mainstream LLMs excel in complex tasks such as task decomposition, behavior planning, and code generation, they encounter significant challenges in reasoning-based tasks. These challenges include the lack of effective analytical methods for domain-specific knowledge and poor logical consistency in complex reasoning scenarios (Raffel et al., 2020; Bubeck et al., 2023; Lu et al., 2023; Hadi et al., 2023).

To enhance the reasoning capabilities of LLMs in complex tasks, researchers have pursued multidimensional explorations in model architecture, data scale, and reasoning strategies. At the architectural level, scaling model size and incorporating sophisticated attention mechanisms, such as variants of the Transformer (Vaswani et al., 2017), have bolstered semantic representation capabilities. On the data front, pre-training on large-scale multimodal datasets and fine-tuning with domain-specific corpora have significantly improved model performance in specialized tasks (Bommasani et al., 2021). During inference, Chain-of-Thought (CoT) reasoning and self-correction mechanisms improve reasoning accuracy in complex scenarios (Wei et al., 2022). However, it is essential to acknowledge that LLMs still encounter substantial challenges in complex reasoning tasks, which often necessitate multi-step logical analysis and the integration of diverse information, such as solving intricate mathematical problems or handling ambiguous scenarios. Furthermore, approaches such as CoT and self-refinement strategies rely heavily on manually crafted prompts, lacking robustness and frequently leading to logical errors or hallucinations (Wei et al., 2022; Zhang et al., 2025). In addition, scaling up model

056

057

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

087

090

092

093

096

098

099 100

101 102

103

104

105

106

107

size to improve performance results in increased computational costs, limiting the applicability of LLMs in resource-constrained environments (Dodge et al., 2020; Zheng et al., 2025).

Inspired by swarm intelligence optimization, we propose a novel LLM-driven multi-agent collaborative optimization framework based on the Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) to optimize a population of LLM agents iteratively, thereby enhancing their reasoning capabilities in complex tasks. GWO demonstrates strong performance through its simplicity, rapid convergence, and minimal hyperparameter requirements, enabling its seamless integration into various optimization processes, such as reasoning chain design, behavior strategy planning, and hyperparameter selection.

As illustrated in Figure 1, our framework abstracts each LLM agent as a "wolf" within a population, leveraging GWO's hierarchical hunting mechanism to introduce a layered collaborative optimization strategy. Candidate solutions are defined by the agent's hyperparameter configuration and reasoning prompt template. The algorithm begins with a diverse initialization of the agent population. In each optimization iteration, generative agents execute CoT reasoning tasks based on their configurations, while evaluative agents quantitatively score their outputs across three dimensions: logical consistency, creativity, and rea-

Figure 1: GWO abstracts each LLM agent as a "wolf" which is characterized by hyperparameters & reasoning prompt. These two guide the behavior of the LLMs during the optimization process.

soning completeness. Based on fitness rankings, the top three leader agents—denoted as α , β , and δ —are dynamically selected. The remaining agents, guided by GWO's hierarchical update mechanism, adaptively optimize by incorporating features from the leaders.

This collaborative process iterates over multiple rounds, effectively enabling a global search of reasoning strategies and parameter spaces, ultimately converging to the optimal agent configuration. This approach significantly enhances LLM reasoning performance in complex task scenarios. To validate the effectiveness of our framework, we conduct extensive experiments on various tasks, including social science question answering, medical diagnostics, and business decision support.

Our main contributions are threefold:

- We find that dynamically optimizing prompts during training enables LLMs to develop more
 effective, task-specific strategies. Based on this, we propose a parameter-agnostic adaptation
 paradigm that avoids fine-tuning or adding components, thereby reducing both training and
 inference costs.
- By combining multi-agent collaboration with the hierarchical optimization of the Grey Wolf
 Optimizer, we introduce an iterative leader—agent optimization mechanism to enhance the
 robustness and predictability of multi-agent collaboration.
- Extensive experiments show that our method consistently surpasses strong baselines, delivering superior performance with low computational overhead.

2 Related Work

2.1 PROMPT ENGINEERING AND STATIC CHAIN-OF-THOUGHT METHODS

Static prompting remains a foundational technique for adapting LLMs in zero- and few-shot scenarios, though it relies heavily on manually crafted exemplars (Brown et al., 2020). Chain-of-Thought (CoT) prompting (Wei et al., 2022) introduced stepwise reasoning demonstrations, inspiring variants such as self-consistency (Wang et al., 2022a) and least-to-most decomposition (Zhou et al., 2022). Other extensions include Self-Ask with Search (Press et al., 2022), Program-of-Thoughts (PoT), which generates executable code traces (Chen et al., 2022), and Graph-of-Thoughts (GoT), which models reasoning as dependency graphs (Liu et al., 2023).

Despite these advances, static methods face critical limitations: they require human-designed exemplars for each task (Zhang et al., 2022), remain highly sensitive to prompt order and phrasing (Lu et al., 2022), and incur high inference costs due to lengthy reasoning chains (Zhou et al., 2022). More importantly, once exemplars and templates are fixed, the reasoning process becomes static, making it difficult to adapt dynamically to new contexts or evolving tasks.

2.2 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Beyond single-agent prompting, researchers have explored collaborative reasoning via Multi-Agent Systems (MAS), which originate from Distributed Artificial Intelligence and emphasize autonomy, cooperation, and coordination (Wooldridge & Jennings, 1995; Ferber & Weiss, 1999). The integration of LLMs (Naveed et al., 2023; Kumar, 2024) into MAS has significantly expanded their capacity in natural language-based planning, programming, and reasoning (Xi et al., 2025). Representative frameworks such as AutoGen (Wu et al., 2023) and Chain of Agents (Zhang et al., 2024b) exemplify this trend by enabling dynamic task decomposition and agent collaboration.

Recent advances include modular LLM-agent architectures (Liu et al., 2025), multi-round debates for collective reasoning (Du et al., 2023), and communication protocols based on DCOP (Fioretto et al., 2018), FIPA-ACL (Fipa, 2002), or attention mechanisms (Jiang & Lu, 2018). Applications span social simulation in Smallville (Park et al., 2023), recommender systems (Zhang et al., 2024a), intelligent manufacturing (Lim et al., 2024), and macroeconomic modeling (Li et al., 2023).

However, existing multi-agent reasoning approaches typically follow a one-off collaboration paradigm, where agents jointly generate solutions but lack iterative refinement mechanisms. In contrast, our work is the first to combine multi-agent collaboration with an iterative leader–agent refinement mechanism, where leaders guide and update agents across multiple rounds. This iterative paradigm enables dynamic optimization of reasoning paths and collaboration strategies, distinguishing our framework from both static prompting methods (CoT, ToT, GoT) and conventional MAS-based reasoning.

2.3 SWARM INTELLIGENCE OPTIMIZATION

Swarm Intelligence Algorithms (SIA) address complex optimization by simulating collective behaviors Chakraborty & Kar (2017). Foundational methods include Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) and Ant Colony Optimization (ACO) Dorigo (1992), with recent extensions integrating SIA into DL and LLMs Wang et al. (2018); Shriyan et al.. Among them, Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) is notable for efficiency and simplicity, with enhanced variants addressing complex search spaces Meidani et al. (2022); Zhang et al. (2021). GWO has been applied in engineering, NLP, and vision tasks, and in our work, we extend its hierarchical optimization to multi-agent collaboration, enabling iterative refinement in LLM-based reasoning.

For a comprehensive review, please refer to Appendix A.1.

3 Method

3.1 THEORETICAL BACKGROUND AND PROBLEM FORMULATION

Grey Wolf Optimizer. GWO is a population-based metaheuristic inspired by the social hierarchy and hunting behavior of grey wolves. Designed for solving continuous optimization problems, GWO is characterized by its simplicity and minimal reliance on hyperparameters. In this algorithm, a population of N wolves is maintained, where each wolf represents a candidate solution $\mathbf{X}_i = (x_i^1, x_i^2, \dots, x_i^D)$ in a D-dimensional search space. The objective is to optimize a target function $f(\mathbf{X})$. GWO mimics the hierarchical structure of grey wolves, dividing the population into four roles: α (leader), β (second-in-command), δ (subordinate), and ω (follower). During the optimization process, the α , β , and δ wolves correspond to the top three solutions and are responsible for guiding the remaining ω wolves toward promising regions in the search space.

The core mechanism of the GWO is inspired by the encircling behavior exhibited during hunting. In each iteration, wolves estimate their distance from the prey (i.e., the current best solution) as $\mathbf{D}(t)$ =

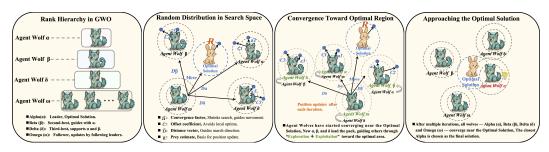


Figure 2: Illustration of original GWO algorithm.

 $|\mathbf{C}(t) \odot \mathbf{X}_p(t) - \mathbf{X}_i(t)|$, where $\mathbf{X}_p(t)$ denotes the position of the prey at iteration t, $\mathbf{C}(t) = 2\mathbf{r}_1(t)$, and $\mathbf{r}_1(t) \in [0,1]^D$ is a uniformly distributed random vector.

Based on $\mathbf{D}(t)$, the position of each wolf is updated by $\mathbf{X}_i(t+1) = \mathbf{X}_p(t) - \mathbf{A}(t) \odot \mathbf{D}(t)$, where $\mathbf{A}(t) = 2 \mathbf{a}(t) \odot \mathbf{r}_2(t) - \mathbf{a}(t)$ and $\mathbf{r}_2(t) \in [0,1]^D$ is another random vector. The parameter decreases linearly with iterations as $\mathbf{a}(t) = 2 - 2 \cdot \frac{t}{T_{\max}}$, where T_{\max} is the maximum number of iterations. This design allows the algorithm to balance exploration in early stages and exploitation in later stages.

Each ω wolf also updates its position by referring to the three leading wolves α , β , and δ . The distances are computed as $\mathbf{D}_j(t) = |\mathbf{C}_j(t) \odot \mathbf{X}_j(t) - \mathbf{X}_i(t)|, j \in \{\alpha, \beta, \delta\}$, and the corresponding candidate updates are $\mathbf{X}_i^{(j)}(t+1) = \mathbf{X}_j(t) - \mathbf{A}_j(t) \odot \mathbf{D}_j(t)$. Finally, the new position of wolf i is obtained by averaging the three guided positions:

$$\mathbf{X}_{i}(t+1) = \frac{\mathbf{X}_{i}^{(\alpha)}(t+1) + \mathbf{X}_{i}^{(\beta)}(t+1) + \mathbf{X}_{i}^{(\delta)}(t+1)}{3}$$
(1)

By integrating leader-based guidance with stochastic exploration, the GWO effectively achieves a balance between global search and local exploitation. As iterations progress, the decreasing parameter $\mathbf{a}(t)$ ensures a smooth transition from exploration to exploitation, enhancing convergence toward the global optimum.

Agent Structure and Definition. Suppose there are n agents. The j-th agent, denoted as $Agent_j$, consists of a large language model LLM_j and a prompt template $prompt_j$, i.e., $Agent_j = \{LLM_j, prompt_j\}$. The language model LLM_j contains a shared model parameter set θ and an agent-specific hyperparameter set $\eta_j = \{T_j, p_j, F_j, E_j, M_j\}$, which represent temperature, top-p threshold, frequency penalty, presence penalty, and maximum token length, respectively. Therefore, $LLM_j = \{\eta_j, \theta\}$, and $Agent_j = \{\{\eta_j, \theta\}, prompt_j\}$.

Hyperparameter Sampling. To ensure diversity and stability in agent behavior, we design a hyperparameter sampling strategy for the set $\eta_j = \{t_j, p_j, f_j, e_j, m_j\}$, where a clipping function $\operatorname{clip}(x, [a, b]) = \max(a, \min(x, b))$ constrains sampled values within valid ranges, thereby maintaining controlled and consistent generation. Specifically, the temperature t_j and the top-p threshold p_j are independently drawn from normal distributions $\mathcal{N}(\mu_t, \sigma_t^2)$ and $\mathcal{N}(\mu_p, \sigma_p^2)$, then clipped to intervals $[a_t, b_t]$ and $[a_p, b_p]$, respectively. These parameters regulate the generation distribution: higher values enhance creativity and diversity, while lower values promote predictability and stability. The frequency penalty f_j , sampled from $\mathcal{N}(\mu_f, \sigma_f^2)$ and clipped to $[a_f, b_f]$, mitigates repetitiveness by penalizing tokens proportionally to their prior frequency. The presence penalty e_j , sampled from $\mathcal{N}(\mu_e, \sigma_e^2)$ and clipped to $[a_e, b_e]$, encourages novelty by uniformly penalizing any previously generated token, thus fostering the introduction of new words or concepts. Finally, the maximum token length m_j is set to a fixed constant c_m for tasks requiring predetermined length, while for adaptive-length tasks it is uniformly drawn from a discrete set \mathcal{M} , i.e., $m_j \sim \text{Uniform}(\mathcal{M})$.

This sampling approach uses normal or uniform distributions to introduce controlled variability, while clipping ensures hyperparameters remain within reasonable bounds, optimizing creativity, stability, and content quality.

Problem Formulation. We denote the reasoning task dataset as $\mathcal{D} = \{q_1, q_2, \dots, q_N\}$, where each element q_i represents a specific question. The dataset consists of N question samples in total. During

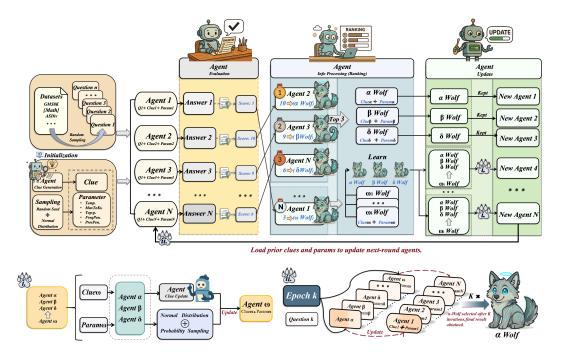


Figure 3: The overall GWO framework operates by having each agent process a dataset, clue, and parameters to produce outputs, which are then scored. Only the top-3 agents $(\alpha, \beta, \text{ and } \delta)$ are differentiated, while the rest (i.e., ω) are updated using the clue and parameters from the previous round. This iterative ranking and update process continues until termination, after which the final agent is set as the top-ranked α from the last iteration. **Note:** The left-bottom subfigure illustrates the learning process of each agent at each iteration and the right-bottom subfigure illustrates the optimization process.

the reasoning process, given any question $q \in \mathcal{D}$, a specific agent, denoted as Agent_j , processes the question and outputs two components: first, a detailed chain of thought (denoted as CoT_j), which illustrates the step-by-step reasoning process taken by the agent; and second, a final answer (denoted as Answer_j) that the agent derives based on the chain of thought. This reasoning process can be formally expressed as a function:

$$f(Agent_j, q) = (CoT_j, Answer_j), \quad q \in \mathcal{D}$$
 (2)

3.2 Multi-Agent Grey Wolf Optimizer Framework

The **GWO algorithm**, outlined in Algorithm 2 and illustrated in Figure 3, adapts GWO to optimize LLM configurations by modeling agents as wolves in a population. Each agent (Agent_j = $(\eta_j, \text{prompt}_j)$ represents a candidate solution with a unique set of hyperparameters and a prompt template. Figure 2 elucidates the methodology for addressing continuous optimization challenges through the emulation of grey wolves' social hierarchy and hunting behaviors.

Initialization. The algorithm initializes a population $\mathcal A$ of n agents. For each agent Agent_j , hyperparameters η_j are randomly sampled from predefined ranges (e.g., temperature $\in [0,1]$, top-p $\in [0,1]$) using a normal distribution. Similarly, the prompt prompt $_j$ is sampled from a set of predefined CoT prompt templates or generated via a template generation function. This diverse initialization ensures broad exploration of the search space.

Optimization Loop. The optimization phase iterates K times, with each iteration evaluating and updating the agent population. For each agent $Agent_j$, a question q is sampled from \mathcal{D} , and the LLM generates a CoT trace and answer using the agent's configuration. The fitness of the answer is computed using a carefully designed evaluation function, which assesses the response based on three

crucial dimensions: the logical consistency of the reasoning process, the ingenuity of the reasoning approach, and the comprehensiveness of the reasoning content. This multi-dimensional evaluation ensures a thorough and accurate assessment of the answer's quality. The top three agents, denoted α , β , and δ , are selected based on their fitness scores, representing the best, second-best, and third-best solutions, respectively.

Non-elite agents $(A \setminus \{\alpha, \beta, \delta\})$ are updated to converge toward the top performers. For each hyperparameter $\eta_j^{(k)}$ in agent $Agent_j$, new values are sampled from normal distributions centered at the top agents: $X_r \sim \mathcal{N}(\eta_r^{(k)}, \sigma^2)$, for $r \in \{\alpha, \beta, \delta\}$, and combined as a weighted average: $\eta_j^{(k)} = w_\alpha X_\alpha + w_\beta X_\beta + w_\delta X_\delta$, with weights satisfying $w_\alpha > w_\beta > w_\delta$ and $w_\alpha + w_\beta + w_\delta = 1$. This prioritizes the influence of the best- performing agent (α) while maintaining diversity. The prompt is adapted by a function PROMPTADAPTATION (\cdot) , which blends features of the top prompts (e.g., via template mixing or keyword imitation). All hyperparameters are clipped to remain within valid bounds. After K iterations, the configuration of the α agent, $(\eta_\alpha, prompt_\alpha)$, is returned as the optimal solution $(\eta^*, prompt^*)$.

Overall framework. The integration of the GWO with LLMs in our framework is achieved through the coordinated interaction of four specialized agents. The process begins with GENERATION(·), which queries the LLM using specific configurations composed of hyperparameters (η_j) and prompt templates (prompt $_j$). These agents are responsible for producing step-by-step CoT reasoning traces and final answers to the given questions. Once the responses are generated, they are passed to EVALUATION(·), which assesses the quality of the CoT and answers across three dimensions: logical consistency, creativity, and completeness. The resulting fitness scores are then collected and processed by RANKING(·), which sorts all candidate solutions and identifies the top three performing agents— α , β , and δ —to serve as leaders in the GWO hierarchy. These rankings guide the subsequent optimization phase. Finally, UPDATE(·) utilizes the evaluation feedback and ranking outcomes to adjust the prompt templates and potentially refine the hyperparameters for the next generation. This iterative process continues over multiple rounds, enabling the system to converge toward more effective prompt generation strategies and reasoning behaviors, while maintaining the core dynamics of the GWO algorithm within the LLM setting.

4 EXPERIMENTS

In this section, we conduct a systematic evaluation of the proposed GWO-based multi-agent collaboration framework to verify its effectiveness on complex reasoning tasks. Our evaluation covers the reasoning performance (Sec 4.2), adaptability performance to CoT (Sec 4.3), and ablation study (Sec 4.4).

4.1 EXPERIMENTAL SETUP

To evaluate the proposed GWO framework on complex reasoning tasks, we use datasets spanning two categories: mathematical reasoning (GSM8K, MATH, SVAMP, MULTIARITH, ASDIV, MATH_MIX) and hybrid reasoning (AQUA, MMLU, BBH, DATE, CLUTRR). These benchmarks cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, testing both numerical computation and qualitative inference. We assess performance across diverse models: Qwen2.5-Coder-7B-Instruct, optimized for code and math; GPT-40-mini, a lightweight multimodal model; GPT-4.1-mini and GPT-4.1-nano, efficiency-oriented GPT-4.1 variants; and Gemma-3-12b-it, a 12B instruction-tuned model strong in math and logic. This diversity enables robust evaluation under heterogeneous settings. Unless noted otherwise, experiments use the default GWO setup with n=5 agents and K=10 iterations.

4.2 Performance Evaluation

To evaluate the effectiveness of the proposed GWO framework, we conducted extensive experiments on several mainstream LLMs across diverse benchmarks, including mathematical and hybrid reasoning tasks. The results, as shown in Tables 1 and 2, demonstrate that the GWO framework significantly improves reasoning accuracy across different models.

reasoning task.

325

326 327 328

341 342

343

345

347

348

349

350

351

352

353 354

355

356

357

359

360

361

362

364

366

367

368

369 370

371

372

373 374

375

376

377

Model			Math Reas	oning Tasks		
Model	GSM8K	MATH	SVAMP	MultiArith	ASDiv	AQUA
	•	GPT	-4o-mini			•
CoT	85.3%	78.1%	83.9%	98.7%	91.1%	65.3%
CoT-SC/n=5	90.2%	78.6%	85.8%	99.1%	92.8%	70.1%
GWO	94.9%	79.2%	92.3%	99.3%	94.5%	75.9%
		GPT-	4.1-mini			
CoT	88.2%	79.8%	86.1%	99.0%	91.7%	67.5%
CoT-SC/n=5	91.8%	83.2%	87.9%	99.4%	93.2%	71.9%
GWO	96.9%	83.4%	92.7%	99.6%	94.8%	78.5%
		GPT-	4.1-nano			
CoT	83.8%	74.3%	81.1%	98.8%	89.6%	64.7%
CoT-SC/n=5	87.7%	77.4%	83.1%	99.2%	91.2%	68.5%
GWO	92.5%	79.4%	91.8%	99.3%	93.1%	76.4%
	Q	wen2.5-Co	der-7B-Ins	truct		
CoT	77.3%	69.7%	82.1%	92.1%	86.4%	60.4%
CoT-SC/n=5	80.1%	71.2%	84.2%	94.9%	88.7%	62.1%
GWO	89.1%	72.1%	90.1%	97.1%	91.2%	62.3%
		Gemm	a-3-12b-it			
CoT	83.5%	76.5%	79.3%	90.2%	88.1%	69.1%
CoT-SC/n=5	85.8%	78.7%	81.1%	93.3%	90.3%	71.4%
GWO	92.8%	80.1%	90.9%	95.9%	93.7%	78.5%

Table 1: Performance evaluation of GWO on math Table 2: Performance evaluation of GWO on hybrid reasoning datasets.

Model	General	Multitask	Temporal	Logical	Math Mix
Model	MMLU	BBH	Date	CLUTRR	MATH_MIX
		GPT-4c	-mini		•
CoT	62.8%	66.3%	51.7%	66.1%	82.5%
CoT-SC/n=5	67.6%	68.9%	54.7%	72.6%	85.0%
GWO	73.3%	70.9%	76.3%	74.4%	87.5%
		GPT-4.	1-mini		
CoT	66.9%	69.5%	54.9%	71.2%	82.5%
CoT-SC/n=5	71.2%	72.6%	57.9%	76.5%	85.0%
GWO	78.3%	76.7%	78.7%	78.6%	92.0%
		GPT-4.1	l-nano		
CoT	61.3%	65.7%	52.1%	64.2%	80.0%
CoT-SC/n=5	65.8%	68.2%	55.6%	69.3%	83.0%
GWO	73.5%	69.1%	77.1%	71.6%	88.0%
	Q	wen2.5-Code	r-7B-Instruc	t	
CoT	55.1%	47.2%	31.1%	20.2%	73.5%
CoT-SC/n=5	56.1%	49.5%	32.9%	21.1%	75.5%
GWO	58.3%	53.9%	37.1%	27.8%	83.5%
		Gemma-	3-12b-it		
CoT	68.3%	64.1%	77.9%	49.3%	78.0%
CoT-SC/n=5	70.4%	66.7%	80.5%	52.1%	81.5%
GWO	72.7%	67.4%	84.5%	52.9%	88.0%

Table 3: Accuracy on GSM8K comparing GPT-4 and GPT-4o-mini.

Method	Model	GSM8K
CoMAT (Leang et al., 2024)	GPT-4	93.7
CoT (Ranaldi et al., 2025)	GPT-4	94.5
FCoT (Lyu et al., 2023)	GPT-4	95.0
MathPrompter (Imani et al., 2023)	GPT-4	95.6
QuaSAR (Radford et al., 2018)	GPT-4	96.5
MathDivide (Srivastava & Gandhi, 2024)	GPT-4	96.8
GWO/n=6+CoT	GPT-40-mini	96.5

In mathematical reasoning tasks, GWO outperforms baseline methods CoT and CoT-SC (n = 5) on multiple models. For instance, on GPT-4.1-mini, GWO achieves 96.9% on GSM8K (compared to CoT's 88.2% and CoT-SC's 91.8%) and 92.7% on SVAMP (compared to CoT's 86.1% and CoT-SC's 87.9%); on Qwen2.5-Coder-7B-Instruct, GWO reaches 89.1%, 72.1%, and 62.3% on GSM8K, MATH, and AQUA,

respectively, outperforming CoT (77.3%, 69.7%, 60.4%) and CoT-SC (80.1%, 71.2%, 62.1%); on Gemma-3-12b-it, GWO reaches 92.8% on GSM8K and 80.1% on MATH, also outperforming the baseline methods.

Table 4: Accuracy (%) on GSM8K and MATH using Qwen2.5-Coder-7B.

Method	Base	GSM8K	MATH
OMI2 (Li et al., 2025)	Qwen2.5	84.1	72.3
CODEI/O++ (Li et al., 2025)	Qwen2.5	85.7	72.1
PyEdu (Li et al., 2025)	Qwen2.5	85.8	71.4
CODEI/O (Li et al., 2025)	Qwen2.5	86.4	71.9
OC-SFT-1 (Li et al., 2025)	Qwen2.5	86.7	70.9
WI (Li et al., 2025)	Qwen2.5	87.0	71.4
WI (Full) (Li et al., 2025)	Qwen2.5	87.0	71.1
OMI2 (Full) (Li et al., 2025)	Owen2.5	88.5	73.2
CoT	Qwen2.5	77.3	69.7
CoT-SC/n=5	Owen2.5	80.1	71.2
GWO	Qwen2.5	89.1	72.1
GWO+CoT	Owen2.5	89.7	72.8
GWO/n=6+CoT	Qwen2.5	90.6	73.8

In knowledge and hybrid reasoning tasks, GWO demonstrates strong generalization ability. For instance, on GPT-4.1-mini, GWO achieves accuracies of 78.3%, 76.7%, and 78.7% on MMLU, BBH, and DATE, respectively—outperforming CoT (66.9%, 69.5%, 54.9%) and CoT-SC (71.2%, 72.6%, 57.9%). On Qwen2.5-Coder-7B-Instruct, GWO also surpasses baselines across MMLU (58.3%), BBH (53.9%), and CLUTRR (27.8%). Similarly, on Gemma-3-12b-it, it reaches 84.5% on DATE and 67.4% on BBH. To further assess GWO, we benchmark it on GSM8K and MATH using Qwen2.5-Coder-7B-Instruct. As shown in Table 4, GWO achieves 90.6% and 73.8%, outperforming main-

stream optimization methods. Finally, integrating GWO (n = 6) with CoT yields strong results even when compared to GPT-4. As shown in Table 3, the combined model achieves 96.5% on GSM8K and 81.5% on MATH, matching or exceeding GPT-4's performance under various optimized settings.

GWO consistently improves over CoT and CoT-SC across models and tasks, showing both stronger reasoning accuracy and better generalization. Its complementarity with CoT further underscores its effectiveness as a lightweight yet powerful optimization strategy.

4.3 Adaptability Evaluation

To further validate the generalization capability of the proposed GWO framework, we integrate it with mainstream Chain-of-Thought (CoT) reasoning and evaluate its performance across a wide range of reasoning tasks. CoT is first set as the baseline, and we then measure the improvements when GWO is incorporated into CoT. Inference is conducted independently, and accuracy is computed using the official validation sets of each benchmark.

Table 5: Evaluation of adaptability of GWO to CoT on math reasoning task.

Table 6: Evaluation of adaptability of GWO to
CoT on hybrid reasoning tasks.

Model			Math Reas	oning Tasks		
Model	GSM8K	MATH	SVAMP	MultiArith	ASDiv	AQUA
		GPT	-4o-mini			
CoT	85.3%	78.1%	83.9%	98.7%	91.1%	65.3%
GWO/n=5+CoT	95.1%	79.9%	92.4%	99.5%	93.8%	76.1%
GWO/n=6	95.7%	80.6%	92.6%	99.7%	94.1%	76.4%
GWO/n=6+CoT	96.5%	81.5%	92.9%	99.8%	94.5%	76.8%
		GPT-	-4.1-mini			
CoT	88.2%	79.8%	86.1%	99.0%	91.7%	67.5%
GWO/n=5+CoT	97.2%	83.6%	93.6%	99.8%	94.2%	79.3%
GWO/n=6	97.9%	83.9%	94.2%	99.9%	94.5%	79.7%
GWO/n=6+CoT	98.3%	84.3%	94.8%	99.9%	94.8%	80.4%
		GPT-	4.1-nano			
CoT	83.8%	74.3%	81.1%	98.8%	89.6%	64.7%
GWO/n=5+CoT	93.1%	80.1%	92.3%	99.4%	93.1%	77.1%
GWO/n=6	93.8%	80.6%	92.9%	99.4%	93.4%	77.6%
GWO/n=6+CoT	94.2%	81.2%	93.8%	99.7%	94.0%	78.2%
	Q	wen2.5-Co	der-7B-Ins	truct		
CoT	77.3%	69.7%	82.1%	92.1%	86.4%	60.4%
GWO/n=5+CoT	89.7%	72.8%	90.6%	97.7%	90.5%	62.5%
GWO/n=6	90.1%	73.3%	91.1%	97.9%	91.2%	62.9%
GWO/n=6+CoT	90.6%	73.8%	91.5%	98.1%	92.0%	63.1%
		Gemm	a-3-12b-it			
CoT	83.5%	76.5%	79.3%	90.2%	90.3%	69.1%
GWO/n=5+CoT	93.4%	80.7%	91.3%	96.2%	92.1%	79.3%
GWO/n=6	93.7%	81.2%	91.8%	96.5%	92.6%	79.9%
GWO/n=6+CoT	94.3%	81.3%	92.4%	96.8%	93.1%	80.5%

	General	Multitask	Temporal	Logical	Math Mix
Model	MMLU	BBH	Date	CLUTRR	MATH MIX
		GPT-40	-mini		_
CoT	62.8%	66.3%	51.7%	66.1%	82.5%
GWO/n=5+CoT	73.7%	71.3%	77.1%	74.9%	85.0%
GWO/n=6	74.1%	71.5%	77.8%	75.4%	87.5%
GWO/n=6+CoT	74.9%	72.2%	78.3%	75.8%	95.1%
		GPT-4.1	1-mini		
CoT	66.9%	69.5%	54.9%	71.2%	82.5%
GWO/n=5+CoT	78.9%	77.2%	79.3%	78.8%	85.0%
GWO/n=6	79.5%	77.8%	79.9%	79.1%	92.0%
GWO/n=6+CoT	79.8%	78.3%	80.5%	79.5%	97.4%
		GPT-4.1	l-nano		
CoT	61.3%	65.7%	52.1%	64.2%	80.0%
GWO/n=5+CoT	74.1%	70.3%	77.8%	72.3%	83.0%
GWO/n=6	74.3%	70.8%	78.2%	72.9%	88.0%
GWO/n=6+CoT	75.1%	71.2%	79.3%	73.5%	93.5%
	Q	wen2.5-Code	r-7B-Instruc	t	
CoT	55.1%	47.2%	31.1%	20.2%	73.5%
GWO/n=5+CoT	58.5%	54.8%	37.7%	28.1%	75.5%
GWO/n=6	58.9%	55.3%	38.3%	28.8%	83.5%
GWO/n=6+CoT	59.1%	55.6%	39.2%	26.1%	90.2%
		Gemma-3	3-12b-it		
CoT	68.3%	64.1%	77.9%	49.3%	78.0%
GWO/n=5+CoT	73.1%	68.1%	85.3%	53.5%	81.5%
GWO/n=6	73.6%	68.3%	85.8%	54.1%	88.0%
GWO/n=6+CoT	74.2%	68.8%	86.7%	54.4%	94.3%

Mathematical reasoning tasks. As shown in Table 5, GWO consistently boosts the accuracy of CoT across diverse mathematical reasoning datasets, including GSM8K, MATH, SVAMP, MultiArith, ASDiv, and AQUA. For example, on GPT-40-mini, baseline CoT achieves accuracies of 85.3%, 78.1%, and 65.3% on GSM8K, MATH, and AQUA, respectively. With GWO(n = 5)+CoT, the scores increase to 95.1%, 79.9%, and 76.1%, and further improve to 96.5%, 81.5%, and 76.8% when n = 6. Similar trends are observed on GPT-4.1-mini and GPT-4.1-nano, where the improvements are even more pronounced. For instance, on GPT-4.1-mini, GSM8K accuracy rises from 88.2% (CoT) to 98.3% (GWO(n = 6)+CoT). Smaller models such as Qwen2.5-Coder-7B-Instruct and Gemma-3-12b-it also benefit considerably: on AQUA, Gemma's accuracy increases from 69.1% to 80.5%, while Qwen2.5's accuracy improves from 60.4% to 63.1% under the same setting. These results highlight the scalability of GWO, demonstrating effectiveness across both large and small-scale models.

Hybrid reasoning tasks. Table 6 summarizes the results on general-purpose and hybrid reasoning benchmarks, including MMLU, BBH, Temporal Reasoning (Date), CLUTRR, and MATH_MIX. Again, GWO provides consistent and significant gains over CoT. On GPT-40-mini, baseline CoT achieves accuracies of 62.8%, 66.3%, and 51.7% on MMLU, BBH, and Temporal Reasoning, respectively. After integrating GWO(n=6), these scores increase to 74.9%, 71.5%, and 78.3%. Logical reasoning (CLUTRR) also benefits: GPT-4.1-mini improves from 71.2% (CoT) to 79.5% (GWO(n=6+CoT)). For composite mathematical reasoning (MATH_MIX), substantial improvements are observed, with GPT-40-mini's accuracy increasing from 82.5% to 95.1% and GPT-4.1-mini's from 82.5% to 97.4%. Even on relatively weaker models such as Qwen2.5-Coder-7B-Instruct and Gemma-3-12b-it, GWO brings notable improvements, e.g., boosting Temporal Reasoning on Gemma from 77.9% (CoT) to 86.7% (GWO(n=6)).

Overall, the results clearly demonstrate that integrating GWO into CoT substantially enhances reasoning performance across diverse datasets and model architectures. The improvements span both mathematical and hybrid reasoning tasks, covering arithmetic, algebra, geometry, logic, temporal reasoning, and interdisciplinary benchmarks. Furthermore, the consistent gains across models of different sizes (from lightweight variants like GPT-4.1-nano to large-scale models like Gemma-3-12b-it) underscore the scalability, transferability, and robustness of the GWO framework in boosting reasoning accuracy and stability.

4.4 ABLATION STUDY

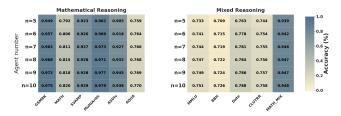


Figure 4: Accuracy over varying number of agents on mathematical (right) and hybrid (left) reasoning tasks. Increasing the number of agents generally improves accuracy.

To analyze the contribution of the number of agents and iterations in the GWO framework, we conduct an ablation study based on GPT-4o-mini across multiple datasets. We evaluate the impact of varying the number of agents, with $n \in \{5, 6, 7, 8, 9, 10\}$, on model performance. As shown in Figure 4, the accuracy across different mathematical reasoning datasets (GSM8K, MATH, SVAMP, Multi-Arith, ASDiv, and AQUA) generally improves with the increase of the num-

ber of agents. For instance, when n=5, the accuracy on the GSM8K dataset is 94.9%, whereas it improves to 97.5% when n=10. Similarly, in the mixed reasoning datasets such as MMLU, BBH, Date, CLUTRR, and MATH_MIX, the accuracy increases with the number of agents. For example, on the MMLU dataset, the accuracy increases from 73.3% at n=5 to 75.1% at n=10. Moderate increases yield limited, non-linear accuracy gains, requiring consideration of computational costs.

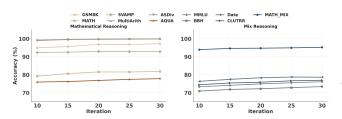


Figure 5: Accuracy over iteration for math (left) and hybrid (right) reasoning tasks when the number of agents is fixed to five. The accuracy increases with the number of iterations.

As shown in Figure 5, when the number of agents is fixed at n=5, increasing the number of iterations from 10 to 30 consistently improves the accuracy of GWO across both mathematical and hybrid reasoning tasks. This indicates that additional iterations allow agents to explore the solution space more thoroughly and progressively refine their reasoning strategies. Figure 5 further confirms this trend at the dataset level, where nearly all benchmarks exhibit monotonic or near-monotonic improvements as the

iteration count increases, highlighting the critical role of iterative optimization in enhancing overall performance.

Overall, both the number of agents and the number of iterations are key determinants of the effectiveness of GWO. A larger number of agents facilitates diverse exploration by introducing heterogeneous reasoning trajectories, while more iterations promote convergence stability and reduce variance across runs. Nevertheless, practical deployment requires balancing these benefits against computational cost and inference latency, in order to select an optimal configuration that achieves strong accuracy without excessive resource consumption. This trade-off is especially relevant when scaling GWO to larger models or real-world applications, where efficiency and responsiveness are as important as accuracy.

5 CONCLUSION

This paper introduces a novel multi-agent collaboration framework inspired by the Grey Wolf Optimizer (GWO), integrating Large Language Models (LLMs) with Multi-Agent Systems (MAS) to tackle complex coordination and optimization challenges. Leveraging GWO's hierarchical structure and dynamic "wolf pack" mechanism, the framework iteratively assigns roles and optimizes parameters to train agents, achieving superior task performance. Experimental results demonstrate the framework's strong adaptability across tasks of varying complexity. When combined with the Chain of Thought (CoT) method, it exhibits exceptional compositional capabilities. Furthermore, accuracy significantly improves with increased agent numbers and iterations. By enabling more efficient and interpretable multi-agent collaboration, the framework holds promise for advancing AI-driven solutions in society. This framework offers a promising solution for complex reasoning problems. Future work will focus on enhancing computational efficiency and exploring applications in dynamic knowledge management and decision-making.

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this work. The proposed Grey Wolf Optimizer (GWO)-based multi-agent collaboration framework, along with its core algorithms and iterative optimization procedure, is fully described with pseudocode in the Appendix to ensure that researchers can directly reproduce and extend our study. Our experimental setup is detailed in Section 4. We evaluate the framework on both mathematical reasoning and hybrid reasoning benchmarks. These publicly available datasets cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, thereby ensuring diverse experimental validation. For model selection, we employ several mainstream large language models to verify the robustness of our method across different scales and architectures. To guarantee transparency, the algorithm pseudocode (including the standard GWO and the agent-based iterative optimization process) is provided in Appendix A, while experimental results, ablation studies, and additional performance comparisons are presented in Appendix A.4 and A.5. All experiments are implemented in a Python environment and executed on a multi-GPU system to ensure efficiency in both inference and training. We will release the complete source code and configuration files upon publication, enabling other researchers to directly verify and extend our results.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Bilal Zahran Aufa, Suyanto Suyanto, and Anditya Arifianto. Hyperparameter setting of lstm-based language model using grey wolf optimizer. In 2020 international conference on data science and its applications (ICoDSA), pp. 1–5. IEEE, 2020.
- Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Sébastien Bubeck, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023.
- Amrita Chakraborty and Arpan Kumar Kar. Swarm intelligence: A review of algorithms. *Nature-inspired computing and optimization: Theory and applications*, pp. 475–494, 2017.
- Xinyun Chen, Jacob Tworek, Heewoo Jun, Qiming Yuan, Maarten Bosma, Yi Luan, Denny Zhou, Quoc V Le, and Luke Zettlemoyer. Program-of-thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. In *Advances in Neural Information Processing Systems*, volume 35, pp. 24842–24857, 2022.
- Yezeng Chen, Zui Chen, and Yi Zhou. Brain-inspired two-stage approach: Enhancing mathematical reasoning by imitating human thought processes. *arXiv preprint arXiv:2403.00800*, 2024a.
- Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak language models to strong language models. *arXiv preprint arXiv:2401.01335*, 2024b.
- Michael Chui, Eric Hazan, Roger Roberts, Alex Singla, and Kate Smaje. The economic potential of generative ai. 2023.
- Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize cot step by step. *arXiv preprint arXiv:2405.14838*, 2024.

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 - Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith. Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping. *arXiv* preprint arXiv:2002.06305, 2020.
 - Marco Dorigo. Optimization, learning and natural algorithms. *Ph. D. Thesis, Politecnico di Milano*, 1992.
 - Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Forty-first International Conference on Machine Learning*, 2023.
 - Jacques Ferber and Gerhard Weiss. *Multi-agent systems: an introduction to distributed artificial intelligence*, volume 1. Addison-wesley Reading, 1999.
 - Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization problems and applications: A survey. *Journal of Artificial Intelligence Research*, 61:623–698, 2018.
 - ACL Fipa. Fipa acl message structure specification. Foundation for Intelligent Physical Agents, http://www.fipa.org/specs/fipa00061/SC00061G. html (30.6. 2004), 2002.
 - Brian P Gerkey and Maja J Mataric. Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In 2003 IEEE international conference on robotics and automation (Cat. No. 03CH37422), volume 3, pp. 3862–3868. IEEE, 2003.
 - Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. *arXiv* preprint arXiv:2309.17452, 2023.
 - Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and challenges. *arXiv preprint arXiv:2402.01680*, 2024.
 - Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language models: Applications, challenges, limitations, and practical usage. *Authorea Preprints*, 3, 2023.
 - Pei Hu, Yibo Han, and Zheng Zhang. Multi-level thresholding color image segmentation using modified gray wolf optimizer. *Biomimetics*, 9(11):700, 2024.
 - Ahmed Abdulmunem Hussein, Esam Taha Yassen, and Ahmed N Rashid. Grey wolf optimizer for green vehicle routing problem. *International Journal of Intelligent Engineering & Systems*, 16(5), 2023.
 - Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large language models. *arXiv preprint arXiv:2303.05398*, 2023.
 - M Janga Reddy and D Nagesh Kumar. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. *Engineering Optimization*, 39(1):49–68, 2007.
 - Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation. *Advances in neural information processing systems*, 31, 2018.
 - Seyed Reza Kamel, Reyhaneh YaghoubZadeh, and Maryam Kheirabadi. Improving the performance of support-vector machine by selecting the best features by gray wolf algorithm to increase the accuracy of diagnosis of breast cancer. *Journal of Big Data*, 6:1–15, 2019.
 - Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good? on opportunities and challenges of large language models for education. *Learning and individual differences*, 103:102274, 2023.

- James Kennedy and Russell Eberhart. Particle swarm optimization. In *Proceedings of ICNN'95-international conference on neural networks*, volume 4, pp. 1942–1948. ieee, 1995.
 - Pranjal Kumar. Large language models (llms): survey, technical frameworks, and future challenges. *Artificial Intelligence Review*, 57(10):260, 2024.
 - Joshua Ong Jun Leang, Aryo Pradipta Gema, and Shay B Cohen. Comat: Chain of mathematically annotated thought improves mathematical reasoning. *arXiv preprint arXiv:2410.10336*, 2024.
 - Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, and Junxian He. Codei/o: Condensing reasoning patterns via code input-output prediction. *arXiv preprint arXiv:2502.07316*, 2025.
 - Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. Econagent: large language modelempowered agents for simulating macroeconomic activities. *arXiv preprint arXiv:2310.10436*, 2023.
 - Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems: workflow, infrastructure, and challenges. *Vicinagearth*, 1(1):9, 2024.
 - Yongbo Li, Hamed Soleimani, and Mostafa Zohal. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. *Journal of cleaner production*, 227:1161–1172, 2019.
 - Jonghan Lim, Birgit Vogel-Heuser, and Ilya Kovalenko. Large language model-enabled multi-agent manufacturing systems. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), pp. 3940–3946. IEEE, 2024.
 - Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv* preprint *arXiv*:2504.01990, 2025.
 - Yujun Liu, Xinyun Chen, Jacob Tworek, Qiming Yuan, Maarten Bosma, Yi Luan, Denny Zhou, Quoc V Le, and Luke Zettlemoyer. Graph-of-thought prompting: Structuring reasoning as dependency graphs. In Advances in Neural Information Processing Systems, volume 36, pp. 10243–10257, 2023.
 - Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych. Are emergent abilities in large language models just in-context learning? *arXiv preprint arXiv:2309.01809*, 2023.
 - Xinyun Lu, Xiujun Li, Di He, Jianfeng Gao, and Li Deng. Fantastically ordered prompts and where to find them. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*, volume 1, pp. 8000–8011, 2022.
 - Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris Callison-Burch. Faithful chain-of-thought reasoning. In *The 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023)*, 2023.
 - Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. A survey of swarm intelligence for dynamic optimization: Algorithms and applications. *Swarm and Evolutionary Computation*, 33: 1–17, 2017.
 - Kazem Meidani, AmirPouya Hemmasian, Seyedali Mirjalili, and Amir Barati Farimani. Adaptive grey wolf optimizer. *Neural Computing and Applications*, 34(10):7711–7731, 2022.
 - Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer. *Advances in engineering software*, 69:46–61, 2014.
 - Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language models. *arXiv preprint arXiv:2307.06435*, 2023.

- Navin Kumar Paliwal, Asheesh Kumar Singh, and Navneet Kumar Singh. Energy scheduling optimisation of an islanded microgrid via artificial bee colony guided by global best, personal best and asynchronous scaling factors. *International Journal of Sustainable Energy*, 39(6):539–555, 2020.
 - Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.
 - Moumita Pradhan, Provas Kumar Roy, and Tandra Pal. Grey wolf optimization applied to economic load dispatch problems. *International Journal of Electrical Power Energy Systems*, 83:325–334, 2016. ISSN 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2016.04.034. URL https://www.sciencedirect.com/science/article/pii/S0142061516307050.
 - Ofir Press, Mike Lewis Lee, and Luke Zettlemoyer. Self-ask with search: Bootstrapping reasoning with chain-of-thought. In *Advances in Neural Information Processing Systems*, volume 35, pp. 24804–24817, 2022.
 - Rahul Priyadarshi and Ravi Ranjan Kumar. Evolution of swarm intelligence: A systematic review of particle swarm and ant colony optimization approaches in modern research. *Archives of Computational Methods in Engineering*, pp. 1–42, 2025.
 - Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration. *arXiv* preprint arXiv:2406.07155, 2024.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
 - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
 - Leonardo Ranaldi, Marco Valentino, Alexander Polonsky, and Andrè Freitas. Improving chain-of-thought reasoning via quasi-symbolic abstractions. *arXiv preprint arXiv:2502.12616*, 2025.
 - M Sheikhalishahi, Vahid Ebrahimipour, H Shiri, H Zaman, and M Jeihoonian. A hybrid ga–pso approach for reliability optimization in redundancy allocation problem. *The International Journal of Advanced Manufacturing Technology*, 68:317–338, 2013.
 - Thilak Shekhar Shriyan, Suhail Ahmed Janavi Srinivasan, Richa Sharma, and Arti Arya. Swarm-prompt: Swarm intelligence-driven prompt optimization using large language models.
 - Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode clinical knowledge. *Nature*, 620(7972):172–180, 2023.
 - Adam Slowik and Halina Kwasnicka. Nature inspired methods and their industry applications—swarm intelligence algorithms. *IEEE Transactions on Industrial Informatics*, 14(3):1004–1015, 2017.
 - Saksham Sahai Srivastava and Ashutosh Gandhi. Mathdivide: Improved mathematical reasoning by large language models. *arXiv preprint arXiv:2405.13004*, 2024.
 - Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspective. *Autonomous Robots*, 8:345–383, 2000.
- Jun Tang, Gang Liu, and Qingtao Pan. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. *IEEE/CAA Journal of Automatica Sinica*, 8(10):1627–1643, 2021.
 - Chung-Jui Tu, Li-Yeh Chuang, Jun-Yang Chang, and Cheng-Hong Yang. Feature selection using pso-sym. *IAENG International journal of computer science*, 33(1), 2007.

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification. In 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, 2018.
 - Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in Ilms for enhanced mathematical reasoning. *arXiv preprint arXiv:2310.03731*, 2023a.
 - Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro Sordoni. Guiding language model reasoning with planning tokens. *arXiv preprint arXiv:2310.05707*, 2023b.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, and Denny Zhou. Self-consistency improves chain-of-thought reasoning in language models. In *International Conference on Machine Learning*, pp. 20211–20223. PMLR, 2022a.
 - Yang Wang, Chengyu Jin, Qiang Li, Tianyu Hu, Yunlang Xu, Chao Chen, Yuqian Zhang, and Zhile Yang. A dynamic opposite learning-assisted grey wolf optimizer. *Symmetry*, 14(9), 2022b. ISSN 2073-8994. doi: 10.3390/sym14091871. URL https://www.mdpi.com/2073-8994/14/9/1871.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. *The knowledge engineering review*, 10(2):115–152, 1995.
 - Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.
 - Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents: A survey. *Science China Information Sciences*, 68(2):121101, 2025.
 - Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evolution: A neural-symbolic self-training framework for large language models. *arXiv preprint arXiv:2406.11736*, 2024.
 - Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theoretical perspective. *arXiv preprint arXiv:2011.00583*, 2020.
 - Dian Yu, Baolin Peng, Ye Tian, Linfeng Song, Haitao Mi, and Dong Yu. Siam: Self-improving code-assisted mathematical reasoning of large language models. *arXiv preprint arXiv:2408.15565*, 2024.
 - Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in mathematical reasoning. *arXiv preprint arXiv:2311.09724*, 2023a.
 - Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. *arXiv preprint arXiv:2309.12284*, 2023b.
- Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
 Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint arXiv:2309.05653, 2023.
 - Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.

- An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. On generative agents in recommendation. In *Proceedings of the 47th international ACM SIGIR conference on research and development in Information Retrieval*, pp. 1807–1817, 2024a.
- Meng Jian Zhang, Dao Yin Long, Dan Dan Li, Xiao Wang, Tao Qin, and Jing Yang. A novel chaotic grey wolf optimisation for high-dimensional and numerical optimisation. *International Journal of Computer Applications in Technology*, 67(2-3):194–203, 2021.
- Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents: Large language models collaborating on long-context tasks. *Advances in Neural Information Processing Systems*, 37:132208–132237, 2024b.
- Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain-of-thought prompting in large language models. *arXiv* preprint arXiv:2210.03493, 2022.
- Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang, Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker's guide from chain-of-thought reasoning to language agents. *ACM Computing Surveys*, 57(8):1–39, 2025.
- Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large language models: A survey. *ACM Computing Surveys*, 57(8):1–35, 2025.
- Denny Zhou, Dale Schuurmans, Quoc V Le, Ed H Chi, and Jason Wei. Least-to-most prompting enables complex reasoning in large language models. In *Advances in Neural Information Processing Systems*, volume 35, pp. 24770–24782, 2022.

A APPENDIX

A.1 DETAILED RELATED WORK

A.1.1 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Multi-Agent Systems (MAS) originated from Distributed Artificial Intelligence (DAI), introducing core concepts such as autonomy, cooperation, and coordination. The Contract Net Protocol played a pivotal role in task allocation, establishing a theoretical foundation for MAS (Wooldridge & Jennings, 1995). Ferber et al. (Ferber & Weiss, 1999) further explored organizational paradigms, including holistic and emergent systems, demonstrating the scalability and robustness of MAS in domains such as robotics, logistics, and simulation. These systems have been increasingly applied to fields including game theory, distributed control, and collective collaboration (Wooldridge & Jennings, 1995; Ferber & Weiss, 1999; Yang & Wang, 2020; Stone & Veloso, 2000; Gerkey & Mataric, 2003; Guo et al., 2024; Li et al., 2024).

With the rapid advancement of Large Language Models (LLMs) (Naveed et al., 2023; Kumar, 2024), their powerful capabilities in language understanding and reasoning have injected new vitality into MAS. LLMs enable agents to execute complex tasks such as planning, programming, and verification through dynamic, natural language-driven interactions (Xi et al., 2025). For instance, the AutoGen framework (Wu et al., 2023) facilitates task decomposition among agents via prompt engineering and message passing, significantly improving collaboration efficiency. Furthermore, the Chain of Agents framework further addressed long-context tasks by organizing LLM agents into chains, thereby enhancing their ability to process complex information collaboratively (Zhang et al., 2024b).

Liu et al. (Liu et al., 2025) proposed an LLM-based agent framework incorporating brain, perception, and action modules, highlighting the effectiveness of specialized agents and interactive mechanisms in solving complex problems. Du et al. (Du et al., 2023) demonstrated the potential of LLMs in collaborative reasoning by improving MMLU task performance through multi-round debates.

Regarding coordination and communication, Distributed Constraint Optimization Problems (DCOP) address multi-agent constraint solving through negotiation and are widely used in task allocation (Fioretto et al., 2018). The FIPA-ACL protocol provides a standardized framework for agent communication (Fipa, 2002), while attention-based communication models have shown significant advantages in improving collaborative efficiency (Jiang & Lu, 2018). Recent research on MacNet (Qian

et al., 2024), a network built upon a directed acyclic graph topology, reveals that irregular structures outperform regular ones and proposes a logistic growth law for collaboration performance as the number of agents increases.

Furthermore, LLM-MAS has demonstrated broad application prospects in various domains. In the sandbox environment of Smallville, agents exhibit human-like collaborative behavior by planning schedules, sharing information, and coordinating activities through social interactions (Park et al., 2023). In the field of recommender systems, the Agent4Rec platform simulates user interactions and reveals phenomena such as the "filter bubble" (Zhang et al., 2024a). In intelligent manufacturing, an LLM-enhanced system framework leverages natural language communication to autonomously assign G-code tasks, significantly improving flexibility in production processes (Lim et al., 2024). In macroeconomic simulations, LLM agents exhibit heterogeneity in work and consumption behaviors and successfully replicate classical economic patterns such as the Phillips curve (Li et al., 2023).

A.1.2 SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS

Swarm Intelligence Algorithms (SIA) Chakraborty & Kar (2017); Slowik & Kwasnicka (2017); Tang et al. (2021); Priyadarshi & Kumar (2025) solve complex optimization problems by simulating the collaborative behavior of biological swarms in nature, such as ant colonies and bird flocks. These algorithms emphasize how simple agents can achieve complex global behavior through local interactions. The Particle Swarm Optimization (PSO) proposed by Kennedy et al. simulates the foraging behavior of bird flocks through velocity-position updates, making it suitable for continuous optimization Kennedy & Eberhart (1995), while Dorigo's Ant Colony Optimization (ACO), inspired by pheromone communication, excels in discrete optimization problems such as the Traveling Salesman Problem Dorigo (1992). These foundational works laid the theoretical groundwork for SIA.

In recent years, the integration of SIA with Deep Learning (DL) and Large Language Models (LLMs) has emerged as a research hotspot. Wang et al. proposed Deep PSO (DPSO), which embeds deep neural networks into the PSO framework to optimize neural network parameters, thereby improving high-dimensional feature selection performance Wang et al. (2018). Shriyan et al. combined PSO with LLMs to optimize prompt engineering, significantly enhancing the performance of LLMs on complex tasks Shriyan et al.. Furthermore, the hybrid GA-PSO algorithm by Sheikhalishahi et al. enhances population diversity through genetic operations, alleviating the issue of premature convergence in high-dimensional optimization problems Sheikhalishahi et al. (2013).

SIA has also been widely applied in engineering optimization, energy management, and data mining. For instance, Li et al. improved ACO to address multi-objective vehicle routing problems Li et al. (2019); Paliwal et al. employed the Artificial Bee Colony (ABC) algorithm to optimize microgrid scheduling Paliwal et al. (2020); Tu et al. combined PSO with Support Vector Machines (SVM) to enhance feature selection accuracy Tu et al. (2007). Despite their strong performance in various fields, SIA still faces challenges such as local optima in high-dimensional spaces, dependence on empirically tuned hyperparameters, and insufficient real-time adaptability in dynamic optimization problems Mavrovouniotis et al. (2017); Tang et al. (2021). Moreover, support for multi-objective optimization remains limited Janga Reddy & Nagesh Kumar (2007).

The Grey Wolf Optimizer (GWO) Mirjalili et al. (2014), proposed by Mirjalili et al., simulates the hierarchical structure (alpha, beta, delta, and omega wolves) and hunting behavior of grey wolves. It achieves global optimization by combining leadership guidance with random exploration. Compared to PSO and ACO, GWO features fewer hyperparameters and faster convergence, making it well-suited for continuous optimization. However, it is prone to local optima in high-dimensional problems.

To overcome these limitations, various improvements have been proposed. For example, Meidani et al. introduced adaptive GWO by incorporating dynamic parameter adjustment to enhance convergence performance Meidani et al. (2022); Wang et al. designed a hybrid GWO (HGWO) that integrates Differential Evolution (DE) with GWO to improve population diversity and global search capability Wang et al. (2022b); Zhang et al. proposed chaotic GWO (CGWO), which uses chaotic mapping to optimize initialization and step size, improving performance on high-dimensional optimization problems Zhang et al. (2021).

GWO has been widely applied in multiple domains. In engineering optimization, GWO has been used to solve economic dispatch problems in power systems by optimizing generation cost and

emissions to achieve multi-objective optimization Pradhan et al. (2016). In machine learning, GWO has been combined with SVM for feature selection to enhance classification accuracy in breast cancer diagnosis Kamel et al. (2019). In natural language processing, GWO has been employed to optimize the hyperparameters of LSTM language models, significantly improving their modeling performance Aufa et al. (2020). Moreover, GWO has been applied to image processing, where it is used to optimize image segmentation thresholds, thereby improving the segmentation quality of medical images Hu et al. (2024). Additionally, GWO has been applied to vehicle routing problems (VRP), optimizing route planning to reduce logistics costs Hussein et al. (2023).

918 A.2 NOTATION 919 920 **Symbol Definition** 921 Grey Wolf Optimizer (GWO) Symbols 922 NPopulation size (number of wolves/solutions) 923 DSearch space dimensionality 924 \mathbf{X}_i Position of the *i*-th wolf: $\mathbf{X}_i = (x_i^1, x_i^2, \dots, x_i^D)$ 925 $f(\mathbf{X})$ Objective function to be optimized 926 $T_{\rm max}$ Maximum number of iterations 927 Current iteration number 928 $\mathbf{X}_p(t)$ Prey position at iteration t (current best solution) 929 Coefficient vector, $\mathbf{C} = 2\mathbf{r}_1$, $\mathbf{r}_1 \sim \mathcal{U}(0,1)^D$ \mathbf{C} 930 \mathbf{D} Distance vector, $\mathbf{D} = |\mathbf{C} \cdot \mathbf{X}_p(t) - \mathbf{X}_i(t)|$ 931 \mathbf{A} Adaptive coefficient, $\mathbf{A} = 2\mathbf{a} \cdot \mathbf{r}_2 - \mathbf{a}, \mathbf{r}_2 \sim \mathcal{U}(0,1)^D$ Linearly decreasing parameter, $\mathbf{a} = 2 - 2 \cdot \frac{t}{T_{\text{max}}}$ 932 a 933 α, β, δ The top three wolves (leaders) in GWO 934 The remaining wolves (followers) ω 935 Distance from wolf i to leader j: $\mathbf{D}_j = |\mathbf{C}_j \cdot \mathbf{X}_j - \mathbf{X}_i|, j \in \{\alpha, \beta, \delta\}$ \mathbf{D}_i 936 $\mathbf{A}_j, \mathbf{C}_j$ Adaptive/random coefficients for leader j 937 Updated position guided by leader j Fitness function 938 939 Agent Symbols 940 Number of agents 941 Agent, The j-th agent, Agent_i = {LLM_i, clue_i} 942 LLM_i Large language model of agent j, $LLM_j = \{\eta_j, \theta\}$ 943 θ Shared model parameter set of LLMs 944 η_j Agent-specific hyperparameter set: $\{T_j, p_j, F_j, E_j, M_j\}$ 945 T_j Temperature hyperparameter for agent j946 F_j E_j Top-p threshold for agent j947 Frequency penalty for agent j 948 Presence penalty for agent j 949 M_i Maximum token length for agent j clip(x, [a, b])Clipping function: $\max(a, \min(x, b))$ 950 $\mathcal{N}(\mu, \sigma^2)$ Normal distribution with mean μ and variance σ^2 951 $\mathcal{U}(a,b)$ Uniform distribution over [a, b]952 \mathcal{M} Discrete set of possible maximum token lengths 953 Constant value for maximum token length (fixed-length tasks) c_M 954 **Data and Task Symbols** 955 956 \mathcal{D} Reasoning problem dataset, $\mathcal{D} = \{q_1, q_2, \dots, q_N\}$ 957 A single question from dataset \mathcal{D} 958 CoT_i Chain of Thought generated by agent j 959 Answer, Final answer generated by agent j Output of agent j on q: $(CoT_i, Answer_i)$ 960 $f(Agent_i, q)$ 961 **Optimization Process Symbols** 962 KNumber of optimization iterations in multi-agent GWO 963 \mathcal{A} Population set of agents 964 w Weight vector for leaders: $\mathbf{w} = \{w_{\alpha}, w_{\beta}, w_{\delta}\}, w_{\alpha} > w_{\beta} > w_{\delta}, \sum w = 1$ 965

Clue template adaptation function

Optimal hyperparameters and clue template found

ClueAdaptation

 $(\boldsymbol{\eta}^*, clue^*)$

966

A.3 PSEUDOCODE

```
973
974
            Algorithm 1 Grey Wolf Optimizer (GWO) — concise
975
976
            Init: Initialize population \{\mathbf{X}_i\}_{i=1}^N \subset \mathbb{R}^D within bounds
                                                                                                        // Candidate solutions
977
         1 Set a \leftarrow 2
                                                                                                           // Exploration weight
978
         2 (Optional) \mathbf{X}^* \leftarrow \arg\min_{\mathbf{X}_i} \mathcal{F}(\mathbf{X}_i)
                                                                                                                         // Best-so-far
979
         3 Loop for t=1,\ldots,T_{\max}: for t=1 to T_{\max} do
980
                 Evaluate \mathcal{F}(\mathbf{X}_i) for all i
                                                                                                               // Objective values
981
                 Identify \alpha, \beta, \delta (top-3 by fitness)
                                                                                                                                 // Leaders
982
                 (Optional) update \mathbf{X}^{\star} a \leftarrow 2 - 2t/T_{\text{max}}
                                                                                                                 // Linear decrease
983
                 for each X_i do
984
                      foreach \ell \in \{\alpha, \beta, \delta\} do
985
                            Sample \mathbf{r}_1, \mathbf{r}_2 \sim \mathcal{U}(0,1)^D
                                                                                                                 // i.i.d. per dim
986
                                                                                                                         // Coefficient
                            \mathbf{A}_{\ell} \leftarrow 2a\,\mathbf{r}_1 - a
        10
987
                            \mathbf{C}_{\ell} \leftarrow 2\,\mathbf{r}_2
                                                                                                                         // Coefficient
        11
                            \mathbf{D}_{\ell} \leftarrow |\mathbf{C}_{\ell} \odot \mathbf{X}_{\ell} - \mathbf{X}_{i}|
                                                                                                                                // Distance
        12
                            \mathbf{X}'_{\ell} \leftarrow \mathbf{X}_{\ell} - \mathbf{A}_{\ell} \odot \mathbf{D}_{\ell}
989
                                                                                                                          // Guided move
990
                      \mathbf{X}_i \leftarrow \frac{1}{3} \left( \mathbf{X}_{lpha}' + \mathbf{X}_{eta}' + \mathbf{X}_{\delta}' 
ight)
        14
                                                                                                                             // Averaging
991
                       Project/clip X_i to bounds
                                                                                                                                // Feasible
992
993
        16 Evaluate all \mathcal{F}(\mathbf{X}_i)
                                                                                                                         // Final check
994
        17 return best \mathbf{X}_i (or \mathbf{X}^*)
                                                                                                                                // Solution
995
996
997
998
            Algorithm 2: Agent Iterative Optimization Algorithm Based on GWO
999
1000
            Initialization:
```

```
Set \mathcal{A} \leftarrow \emptyset
                                                                // Initialize empty agent population
1001
      18 for j = 1 to n do
1002
              \eta_i \leftarrow \text{SampleNormal}(\mu, \sigma^2)
                                                              // Sample hyperparameters from normal
1003
               distribution
              \eta_i \leftarrow \text{Clip}(\eta_i)
                                                              // Ensure valid hyperparameter values
1005
              clue_j \leftarrow SampleClueTemplate()
                                                                                   // Generate clue template
1006
                                                                                                     // Create agent
              Agent_{j} \leftarrow (\boldsymbol{\eta}_{j}, clue_{j})
1007
              \mathcal{A} \leftarrow \mathcal{A} \cup \{Agent_i\}
                                                                                            // Add to population
1008
1009
      24 Optimization Loop:
1010
      25 for = 1 to K do
1011 26
              foreach Agent_i \in A do
1012 27
                   q \leftarrow \text{SampleQuestion}(\mathcal{D})
                   (CoT_i, Ans_i) \leftarrow LLM(Agent_i, q)
1013 28
1014 29
                  Fitness_i \leftarrow Evaluate(Ans_i, q)
                                                                                         // Stores agent scores
1015
              (\alpha, \beta, \delta) \leftarrow \text{SelectTopAgents}(A, Fitness)
                                                                                   // Select top-3 agents as
1016
                leaders
1017
                                                                                         // w_{\alpha} > w_{\beta} > w_{\delta}, \sum w = 1
              \mathbf{w} \leftarrow \{w_{\alpha}, w_{\beta}, w_{\delta}\}\
      31
              foreach Agent_i \in A \setminus \{\alpha, \beta, \delta\} do
1018 32
                   r \sim \{\alpha, \beta, \delta\} with w
1019 33
                                                                                                      // Sample by {\bf w}
                   oldsymbol{\eta}_j \leftarrow 	exttt{Clip}(	exttt{SampleNormal}(oldsymbol{\eta}_r, \sigma^2)) // Mutate hyperparameters from
1020 34
1021
                   clue_i \leftarrow \text{ClueAdaptation}(clue_i, \{clue_\alpha, clue_\beta, clue_\delta\}) // Adapt clue using
1022 35
                    leader templates
1023
      36 \eta^* \leftarrow \eta_{\alpha}, clue^* \leftarrow clue_{\alpha}
                                                                            // Extract best configuration
1025
      37 return (\eta^*, clue^*)
```

A.4 MORE EXPERIMENTAL RESULTS

The table 7compares diverse methods across multiple base models on the GSM8K and MATH benchmarks. Many advanced techniques, especially those leveraging large-scale models like Llama and Qwen, demonstrate competitive results. In particular, our proposed GWO / n=6+CoT method, when combined with GPT-4o-mini, achieves state-of-the-art performance, outperforming most existing approaches. This indicates the potential of our method to improve mathematical problem-solving capabilities while also acknowledging the strong foundation established by prior works.

Table 7: This table presents the accuracy of various methods on the GSM8K and MATH datasets. It compares different techniques applied to a range of base models, including Mistral, Code-Llama, Llama, Qwen, and GPT-4.

Method	Base Model	GSM8k	MATH
No-CoT (Deng et al., 2024)	Mistral-7B	38.0%	_
ICoT-SI (Deng et al., 2024)	Mistral-7B	51.0%	_
-	RecurrentBlock-3.5B	42.1%	_
MathCoder-CL (Wang et al., 2023a)	Code-Llama-7B	67.8%	30.2%
MAmmoTH (Yue et al., 2023)	Code-Llama-7B	59.4%	_
Brain (Chen et al., 2024a)	Code-Llama-7B	74.0%	_
SQ-VAE (Wang et al., 2023b)	Llama-2-7B	40.0%	7.0%
Self-Rewarding (Chen et al., 2024b)	Llama-2-7B	40.0%	10.7%
STaR (Zelikman et al., 2022)	Llama-2-7B	58.2%	16.0%
ENVISIONS (Xu et al., 2024)	Llama-2-7B	59.0%	19.0%
MetaMath (Yu et al., 2023b)	Llama-2-7B	66.5%	_
ToRA-Code (Gou et al., 2023)	Llama-2-7B	72.6%	_
OVM (Yu et al., 2023a)	Llama-2-7B	73.7%	_
-	Llama-3.1-8B	56.7%	20.3%
-	Llama-3.1-70B	85.5%	41.4%
-	Llama-3.1-405B	89.0%	53.8%
-	NuminaMath-7B-CoT	75.4%	55.2%
-	DeepSeek-Coder-7B	77.4%	44.4%
-	Qwen2-7B	79.9%	44.2%
-	Qwen2-Math-7B	80.4%	50.4%
SIaM (Yu et al., 2024)	Qwen-2-Math-Base	81.5%	50.0%
-	Internlm2-math-plus-7B	84.0%	54.4%
OMI2 (Li et al., 2025)	Qwen2.5-Coder-7B	84.1%	72.3%
CODEI/O++ (Li et al., 2025)	Qwen2.5-Coder-7B	85.7%	72.1%
PyEdu (Li et al., 2025)	Qwen2.5-Coder-7B	85.8%	71.4%
CODEI/O (Li et al., 2025)	Qwen2.5-Coder-7B	86.4%	71.9%
OC-SFT-1 (Li et al., 2025)	Qwen2.5-Coder-7B	86.7%	70.9%
WI (Li et al., 2025)	Qwen2.5-Coder-7B	87.0%	71.4%
WI (Full) (Li et al., 2025)	Qwen2.5-Coder-7B	87.0%	71.1%
OMI2 (Full) (Li et al., 2025)	Qwen2.5-Coder-7B	88.5%	73.2%
CoT	Qwen2.5-Coder-7B	77.3%	69.7%
CoT	Qwen2.5-Coder-7B	77.3%	69.7%
CoT-SC/n=5	Qwen2.5-Coder-7B	80.1%	71.2%
GWO	Qwen2.5-Coder-7B	89.1%	72.1%
GWO+CoT	Qwen2.5-Coder-7B	89.7%	72.8%
CoMAT (Leang et al., 2024)	GPT-4	93.7%	-
CoT (Ranaldi et al., 2025)	GPT-4	94.5%	_
FCoT (Lyu et al., 2023)	GPT-4	95.0%	_
MathPrompter (Imani et al., 2023)	GPT-4	95.6%	_
QuaSAR (Radford et al., 2018)	GPT-4	96.5%	_
MathDivide (Srivastava & Gandhi, 2024)	GPT-4	96.8%	_
GWO/n=6+CoT	GPT-40-mini	96.5%	81.5%

Table 8: Math Reasoning Performance

		Math R	easoning		
GSM8K	MATH	SVAMP	MultiArith	ASDiv	AQUA
	GPT-	4o-mini			
85.3%	78.1%	83.9%	98.7%	91.1%	65.3%
90.2%	81.7%	85.8%	99.1%	92.8%	70.1%
94.9%	79.2%	92.3%	99.3%	94.4%	75.9%
95.1%	79.9%	92.4%	99.5%	94.6%	76.1%
95.7%	80.6%	92.6%	99.7%	94.8%	76.6%
96.5%	81.5%	92.9%	99.8%	94.9%	76.8%
	GPT-	4.1-mini			
88.2%	79.8%	86.1%	99.0%	91.7%	67.5%
91.8%	83.2%	87.9%	99.4%	93.2%	71.9%
96.9%	83.1%	92.7%	99.6%	94.6%	78.5%
97.2%	83.6%	93.6%	99.8%	94.8%	79.3%
97.9%	83.9%	94.2%	99.9%	94.9%	79.7%
98.3%	84.3%	94.8%	99.9%	94.9%	80.4%
	GPT-	4.1-nano			
83.8%	74.3%	81.1%	98.8%	89.6%	64.7%
87.7%	77.4%	83.1%	99.2%	91.2%	68.5%
92.5%	79.4%		99.3%	93.1%	76.4%
93.1%	80.1%	92.3%	99.4%	93.4%	77.1%
93.8%	80.6%	92.9%	99.4%	93.7%	77.6%
94.2%	81.2%	93.8%	99.7%	94.0%	78.2%
Qı	wen2.5-Co	der-7B-Ins	truct		
77.3%	69.7%	82.1%	92.2%	86.4%	60.4%
80.1%	71.2%	84.2%	95.1%	88.7%	62.1%
89.1%	72.1%	90.1%	97.1%	91.2%	62.3%
89.7%	72.8%	90.6%	97.7%	92.0%	62.5%
90.1%	73.3%	91.1%	97.9%	92.6%	62.9%
90.6%	73.8%	91.5%	98.1%	93.1%	63.1%
	Gemm	a-3-12b-it			
83.5%	76.5%	79.3%	90.2%	90.3%	69.1%
85.8%	78.7%	81.1%	93.3%	92.1%	71.4%
92.8%	80.1%	90.9%	95.9%	93.7%	78.5%
93.4%	80.7%	91.3%	96.2%	94.0%	79.3%
93.7%	81.2%	91.8%	96.5%	94.3%	79.9%
94.3%	81.3%	92.4%	96.8%	94.6%	80.5%
	85.3% 85.3% 90.2% 94.9% 95.1% 95.7% 96.5% 88.2% 91.8% 96.9% 97.2% 97.2% 97.9% 98.3% 87.7% 93.1% 93.1% 93.1% 89.19% 89.19% 89.19% 89.19% 89.19% 89.19% 89.19% 89.19% 89.6%	85.3% 78.1% 90.2% 81.7% 94.9% 79.2% 80.6% 95.7% 80.6% 95.7% 80.6% 95.7% 80.6% 96.9% 83.1% 97.2% 83.6% 84.3%	GSM8K MATH SVAMP GPT-40-min	GSM8K MATH SVAMP Multi-rith	GSM8K MATH SVAMP MultiFaith ASDiv GPT-40-mini

Table 9: Other Datasets Performance

Method	Gene.	Multitask	Temporal	Log.	Math Mix
Method	MMLU	BBH	Date	CLUTRR	MATH_MIX
		GPT-4c	-mini		
CoT	62.8%	66.3%	51.7%	66.1%	-
CoT-SC/n=5	67.6%	68.9%	54.7%	72.6%	-
GWO	73.3%	70.9%	76.3%	74.4%	-
GWO+CoT	73.7%	71.3%	77.1%	74.9%	-
GWO/n=6	74.1%	71.8%	77.8%	75.4%	-
GWO/n=6+CoT	74.9%	72.2%	78.3%	75.8%	95.1%
		GPT-4.	1-mini		
CoT	66.9%	69.5%	54.9%	71.2%	l -
CoT-SC/n=5	71.2%	72.6%	57.9%	76.5%	-
GWO	78.3%	76.7%	78.7%	78.6%	-
GWO+CoT	78.9%	77.2%	79.3%	78.8%	-
GWO/n=6	79.5%	77.8%	79.9%	79.1%	-
GWO/n=6+CoT	79.8%	78.3%	80.5%	79.5%	97.4%
		GPT-4.1	l-nano		
CoT	61.3%	65.7%	52.1%	64.2%	-
CoT-SC/n=5	65.8%	68.2%	55.6%	69.3%	-
GWO	73.5%	69.1%	77.1%	71.6%	-
GWO+CoT	74.1%	70.3%	77.8%	72.3%	-
GWO/n=6	74.3%	70.8%	78.2%	72.9%	-
GWO/n=6+CoT	75.1%	71.2%	79.3%	73.5%	93.5%
	Q	wen2.5-Code	r-7B-Instruc	t .	
CoT	55.1%	47.2%	31.1%	20.2%	l -
CoT-SC/n=5	56.1%	49.5%	32.9%	21.1%	-
GWO	58.3%	53.9%	37.1%	27.8%	-
GWO+CoT	58.5%	54.8%	37.7%	28.1%	-
GWO/n=6	58.9%	55.3%	38.3%	28.8%	-
GWO/n=6+CoT	59.1%	55.6%	39.2%	26.1%	90.2%
		Gemma-	3-12b-it		
CoT	68.3%	64.1%	77.9%	49.3%	l -
CoT-SC/n=5	70.4%	66.7%	80.5%	52.1%	-
GWO	72.7%	67.4%	84.5%	52.9%	-
GWO+CoT	73.1%	68.1%	85.3%	53.5%	-
GWO/n=6	73.6%	68.3%	85.8%	54.1%	-
GWO/n=6+CoT	74.2%	68.8%	86.7%	54.4%	94.3%

These tables 9 and tables 8 demonstrate that our proposed methods (GWO, GWO+CoT, GWO/n=6, GWO/n=6+CoT) achieve remarkable improvements across multiple math reasoning benchmarks and datasets. In GSM8K, GWO/n=6+CoT attains 96.5% (vs. 85.3% of CoT in GPT-4o-mini) and 98.3% (vs. 88.2% of CoT in GPT-4.1-mini), highlighting significant gains from structured reasoning. Similar trends are seen in SVAMP, AQUA, and Temporal Date. For instance, on GPT-4o-mini, GWO boosts Temporal Date performance from 51.7% (CoT) to 76.3%, with GWO/n=6+CoT increasing it further to 78.3%. The table shows these methods outperform baseline CoT and CoT-SC, enhancing math reasoning efficiently without high computational cost.

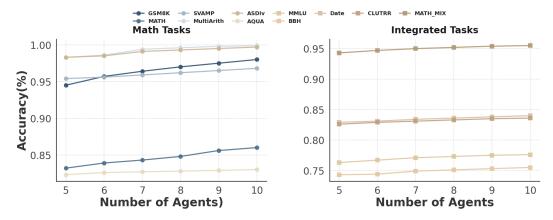


Figure 6: The figure displays two graphs comparing the accuracy of different tasks as the number of agents varies, with one graph focused on math-related tasks and the other on integrated tasks.

The image presents two sets of line graphs. In the "Math Tasks" graph, most lines show an upward trend as the number of agents increases. Notably, lines like GSM8K and MATH exhibit consistent growth, indicating improved accuracy with more agents. In the "Integrated Tasks" graph, lines such as those for CLUTRR and some others also show a positive correlation with the number of agents, suggesting that increasing the number of agents generally enhances the accuracy in both math-specific and integrated tasks.

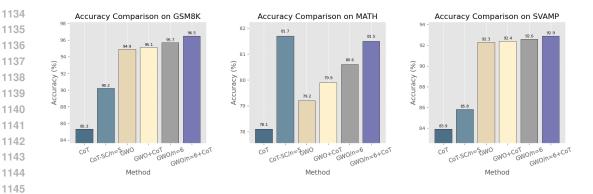


Figure 7: The figures present bar-charts comparing the accuracy of different methods across three datasets: GSM8K, MATH, and SVAMP. Each chart shows how various techniques perform in terms of accuracy, highlighting differences and trends among the methods for each respective dataset.

These bar charts compare the accuracy of different methods on GSM8K, MATH, and SVAMP datasets. Across all datasets, the "CoT" method shows relatively lower accuracy initially. Methods like "GWO" and its variants with added components such as "CoT" demonstrate a clear upward trend in accuracy. For example, on GSM8K, the highest-performing method reaches 96.5%. These results suggest that the enhanced methods are more effective, though further research may refine these findings.

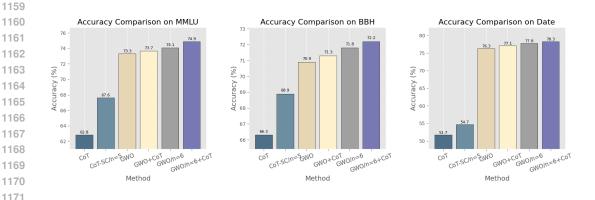


Figure 8: These figures are bar charts showing the accuracy comparison of different methods on datasets MMLU, BBH, and Date. Each chart visually represents how various techniques perform in terms of accuracy.

These bar charts illustrate the accuracy comparison of different methods across three datasets: MMLU, BBH, and Date. Across all datasets, the basic CoT method shows the lowest accuracy. The methods that combine GWO with CoT (such as GWO+CoT and GWO/n=6+CoT) consistently outperform CoT and CoT-SC/n=5. Notably, the GWO/n=6+CoT method achieves the highest accuracy in each dataset, indicating its superior performance compared to the other methods tested.

The bar chart illustrates the accuracy comparison on CLUTRR for different methods. Generally, there is an upward trend in accuracy. The "CoT" method shows the lowest accuracy at 66.1%. In contrast, methods like "CoT-SC/n = 5", "GWO", "GWO+CoT/n = 6", and "GWO/n = 6+CoT" demonstrate higher accuracies, with "GWO/n = 6+CoT" achieving the highest accuracy of 75.8%, indicating that incorporating certain techniques significantly improves performance.

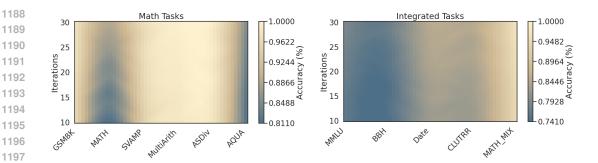


Figure 9: These two figures respectively show the accuracy of Math Tasks and Integrated Tasks at different iterations, with task names on the x-axis, iterations on the y-axis, and accuracy indicated by color gradients.

In the "Math Tasks" plot, accuracy generally varies with iterations across different tasks. Notably, for tasks like MATH, accuracy seems to show more significant fluctuations in the lower iteration range. In contrast, in the "Integrated Tasks" plot, accuracy trends show a smoother transition as iterations increase. Tasks such as MMLU start with lower accuracy and gradually improve, indicating that different tasks respond distinctively to the number of iterations in terms of accuracy enhancement.

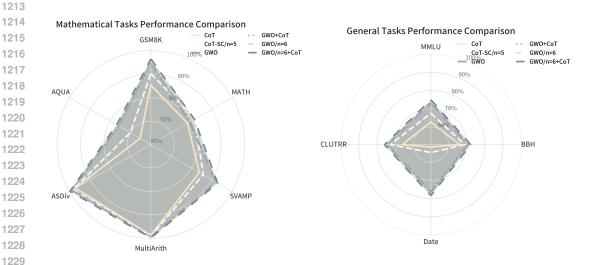


Figure 10: The first figure compares the performance of different methods on mathematical tasks, while the second figure contrasts their performance on general tasks, both using radar-chart visualizations.

In the "Mathematical Tasks Performance Comparison" radar chart, the methods with combinations like GWO/n=6+CoT generally outperform the others across datasets such as GSM8K, MATH, SVAMP, MultiArith, and ASDiv, indicating their superiority in mathematical tasks. In the "General Tasks Performance Comparison" chart, similar combined approaches also show better performance on datasets like MMLU, BBH, Date, and CLUTRR, suggesting that integrating GWO with CoT-based techniques enhances performance in both mathematical and general tasks.

1242 1243 A.5

A.5 TRAINING EXAMPLES

1244 1245

1246

1247

1248

A.5.1 FORWARD INFERENCE EXAMPLES

1249 1250 This example presents a math word problem about recycling cans. The problem describes that Tiffany was collecting cans for recycling. On Monday, she had 3 bags of cans, and the next day she found 7 more bags of cans and 44 bags of bottles. The question asks how many bags of cans she had altogether. The answer given in the image is 10 bags. By adding the number of bags of cans found on both days, we can conclude that Tiffany had a total of 10 bags of cans. This problem tests the ability to understand information from the question and perform simple addition.

1251 1252

Dataloading for Interation 1

1253 1254

YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO

1255 1256 1257 Tiffany was collecting cans for recycling. On Monday, she had 3 bags of cans. The next day, she found 7 more bags of cans and 44 bags of bottles. How many bags of cans did she have altogether?

1258 1259 1260

1261

1262

1263

Answer:

Problem:

YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO

10

This example demonstrates the parameter settings, systematic problem-solving approach, and the beginning of the answer provided by the first agent when tackling a mathematical word problem. The focus is on the standardized process of problem-solving, emphasizing a complete workflow from understanding the question to checking the final answer.

1264 1265 1266

Training for Agent 1 in Interaction 1

1267 1268

Prameter Log for Agent 1:

YYYY-MM-DD 22:35:34,691 - log.logger utils - INFO

temperature: 0.9193923355128871, top_p: 0.9027935433165666,

frequency_penalty: 1.8091973063219, presence_penalty: -1.7443228132190376,

max_tokens: 1919

1274

1276

1277

1278

1279

1280

1281

1282

1283

1284

1271

Clue Log for Agent 1:

YYYY-MM-DD 22:35:48,332 - log.logger_utils - INFO

To solve the questions found in the syamp dataset, follow these steps:

- 1. Carefully read the entire question to understand what is being asked.
- 2. Identify and extract all relevant numerical data and quantities mentioned within the question.
- 3. Determine which mathematical operations (addition, subtraction, multiplication, division) are necessary based on keywords or phrases that indicate relationships between numbers (e.g., "altogether," "more than," etc.).
- 4. Perform calculations step-by-step while keeping track of intermediate results if needed to avoid errors.
- 5. Double-check your final answer against the context of the problem to ensure it makes sense

Use this approach systematically for each question from the SVAMP dataset you encounter!

128512861287

Answer by Agent 1:

YYYY-MM-DD 22:35:52,418 - log.logger_utils - INFO

Let's follow the steps to solve the problem:

- 1. Read the entire question: Tiffany collected cans for recycling, and we need to find out how many bags of cans she had altogether after her collection over two days.
- 2. Extract relevant numerical data:

On Monday, Tiffany had 3 bags of cans.

On Tuesday, she found 7 more bags of cans.

1293 1294 1295

1290

1291

3. Determine necessary mathematical operations: We need to find the total number of bags of cans, which involves addition since we are combining quantities.

4. Perform calculations step-by-step: Start with the number of bags she had on Monday: 3 Add the number of additional bags found on Tuesday:

Total Bags = 3 + 7 = 10

5. Double-check final answer against context: The question asks for how many bags of "cans" she has altogether, and we calculated that Tiffany has a total of 10 bags (only counting "cans").

Therefore, Tiffany has a total of 10 bags of cans altogether.

This example provides a detailed demonstration of how the first agent systematically solves a mathematical word problem using a five-step approach (understanding the problem, extracting data, determining the operation, step-by-step calculation, and checking the answer), ultimately arriving at a clear and accurate solution.

Training for Agent 2 in Interaction 1

Prameter Log for Agent 2: YYYY-MM-DD 22:35:52,532 - log.logger_utils - INFO

temperature: 0.39241099147650554,

top_p: 0.6602020470317261,

frequency_penalty: 0.0007142275093004872, presence_penalty: -0.19136457572912707,

max_tokens: 1413

Clue Log for Agent 2: YYYY-MM-DD 22:36:05,253 - log.logger_utils - INFO

Create a word problem that involves basic arithmetic operations based on the given scenario. The problem should include specific quantities and require calculations to determine totals, differences, or other values relevant to everyday activities, ensuring that it can engage learners in applying their math skills within relatable contexts like shopping, collecting items, or planning events.

Answer by Agent 2: YYYY-MM-DD 22:36:09,262 - log.logger_utils - INFO

To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags of cans.

- 1. On Monday, Tiffany had 3 bags of cans.
- 2. The next day, she found 7 more bags of cans.

Now, we can calculate the total number of bags of cans:

Total bags of cans = Bags on Monday + Bags found on Tuesday

Total bags of cans = 3 + 7

Now, let's do the calculation:

Total bags of cans = 3 + 7 = 10

So, Tiffany had 10 bags of cans altogether.

(Note: The bags of bottles are not included in the total for bags of cans, as the problem specifically asks for the total number of bags of cans.)

This example demonstrates how the second agent generates and solves a simple math word problem following a standardized process. It covers all key steps, including problem design, information extraction, mathematical operations, step-by-step calculation, and explanation of the result. The example also specifically clarifies the scope of the problem (counting only bags of cans, not bottles), which helps the agent understand the problem requirements and the solution approach.

Training for Agent 3 in Interation 1

Prameter Log for Agent 3: YYYY-MM-DD 22:36:09,369 - log.logger_utils - INFO temperature: 0.5822851007143794,

1350 top_p: 0.9719972687061527, 1351 1352 presence_penalty: 0.02409206816099846, 1353 max tokens: 1397 1354 1355 Clue Log for Agent 3: 1356 1357 1358 1359 1360 Answer by Agent 3: 1363 of cans. 1364 1365 1367 Total bags of cans = 3 + 7 = 101369 1370 1371 1372 1373

frequency_penalty: 0.04468780736250461,

YYYY-MM-DD 22:36:21,755 - log.logger_utils - INFO

You are given various scenarios involving numerical problems related to quantities, collections, and arithmetic operations. Your task is to answer questions based on the provided information for each scenario. Pay attention to details such as initial amounts, changes over time or circumstances (e.g., additions or subtractions), and specific requests regarding total counts. Use basic mathematical reasoning and calculations when determining your answers.

YYYY-MM-DD 22:36:24,662 - log.logger_utils - INFO

To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags

On Monday, Tiffany had 3 bags of cans. The next day, she found 7 more bags of cans.

Now, we can calculate the total number of bags of cans:

Total bags of cans = Bags on Monday + Bags found on Tuesday

Therefore, Tiffany had a total of 10 bags of cans altogether.

Agent 3 focuses on generating simple and straightforward arithmetic word problems, usually centered on addition or subtraction, with scenarios drawn from everyday life for easy understanding. The problems and solutions are very concise, typically containing only key information without extra explanations or reasoning steps. This approach is suitable for foundational arithmetic instruction or quick practice, emphasizing the calculation itself rather than the problem-solving process.

Prameter Log for Agent 4: YYYY-MM-DD 22:36:24,768 - log.logger_utils - INFO

temperature: 0.5298405602481979, top p: 0.7372076916536928,

frequency_penalty: 0.02248299928407254, presence penalty: 0.049040988666425915,

max tokens: 1746

1374

1375 1376

1378

1380

1381

1382

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1399

1400

1401 1402

1403

Clue Log for Agent 4: YYYY-MM-DD 22:36:37,855 - log.logger_utils - INFO

Create a word problem involving everyday scenarios that require basic arithmetic operations to solve. The scenario should include quantities related to common activities such as shopping, collecting items, or completing tasks over a period of time. Ensure the question asks for a total count based on additions and potential subtractions, utilizing numbers that are simple and relatable while encouraging mathematical reasoning in interpreting the context provided.

YYYY-MM-DD 22:36:41,333 - log.logger_utils - INFO Answer by Agent 4:

To find out how many bags of cans she had altogether, we only need to focus on the bags of cans.

- 1. Start with the number of bags of cans Tiffany had on Monday: 3 bags.
- 2. Add the number of bags of cans she found on Tuesday: 7 bags.

Now, calculate the total number of bags of cans:

3 bags (Monday) + 7 bags (Tuesday) = 10 bags of cans

Therefore, Tiffany had 10 bags of cans altogether.

(Note: The bags of bottles are not included in the total for cans.)

Agent 4's clues emphasize problem generation that incorporates real-life scenarios, encouraging mathematical reasoning and the filtering of relevant information. Its answers are usually broken down 1404 into steps, highlighting the problem-solving approach and information extraction, but do not directly 1405 provide the final answer, focusing more on guiding the Agent to think independently. The overall 1406 style leans towards instructional guidance, helping the Agent understand the problem and develop 1407 independent problem-solving skills. 1408 Training for Agent 5 in Interation 1 1409 1410 **Prameter Log for Agent 5:** YYYY-MM-DD 22:36:41,435 - log.logger_utils - INFO 1411 temperature: 0.3603354498081722, 1412 top_p: 0.8427861799350946, 1413 frequency_penalty: 0.0572741656361528, 1414 presence_penalty: -0.124744427417488, 1415 max_tokens: 1736 1416 YYYY-MM-DD 22:36:53,728 - log.logger_utils - INFO 1417 **Clue Log for Agent 5:** 1418 Create a problem-solving question that involves basic arithmetic operations such as addition, 1419 subtraction, multiplication, or division within various contexts. The scenarios should include 1420 everyday situations involving quantities of objects or items to be calculated. Make sure the 1421 questions require an understanding of how to combine different amounts and solve for totals or differences based on the information provided in each scenario. 1422 1423 YYYY-MM-DD 22:37:00,748 - log.logger_utils - INFO Answer by Agent 5: 1424 To solve the problem, we need to focus only on the bags of cans, as the question specifically 1425 asks for the total number of bags of cans Tiffany had. 1426 1. On Monday, Tiffany had 3 bags of cans. 1427 2. On Tuesday, she found 7 more bags of cans. 1428 Now, we can add the number of bags of cans she had on Monday to the number she found on 1429 Tuesday: 1430 1431 Total bags of cans = Bags on Monday + Bags found on Tuesday 1432 Substituting the values: 1433 1434 Total bags of cans = 3 + 71435 Now, we perform the addition: 1436 1437 Total bags of cans = 101438 Thus, Tiffany had a total of 10 bags of cans altogether. 1439 1440 Agent 5's clues cover a variety of operations, including addition, subtraction, multiplication, and 1441 division, with a strong emphasis on information integration and analytical skills. Its solutions are 1442 very detailed, systematically presenting the problem-solving process step by step, including formulas, 1443 substitution, calculation, and conclusion, with formal and well-organized language. 1444 1445 A.5.2 EVALUATING EXAMPLES 1446 This section systematically evaluates the performance of the agent during a specific task iteration. The 1447 evaluation process adopts a structured scoring system, conducting detailed analysis and scoring across 1448 three core dimensions: logic, ingenuity, and completeness, ultimately resulting in a comprehensive 1449 total score. 1450 1451 1452 1453 **Evalauation result:** YYYY-MM-DD 22:37:10,792 - log.logger_utils - INFO 1454 Logic (0 - 100): 1455 "The solution follows a clear logical structure. It begins with understanding the question and 1456 identifying key data points, followed by performing the correct mathematical operations to 1457

arrive at the answer. The steps are clearly articulated, ensuring that the reasoning is easy to follow."

(Score: 90)

Ingenuity (0 - 100):

"While the solution is logical and methodical, it lacks any innovative or creative approaches to solving the problem. It simply adheres to standard arithmetic operations without introducing any unique methods or insights."

(Score: 70)

Completeness (0 - 100):

"The answer comprehensively addresses all parts of the question, including reading the question, identifying numerical data, performing calculations, and verifying the final result. However, it could benefit from a brief summary reiterating the significance of reaching this total within the context."

(Score: 85)

Total Score (0 - 100): (Score: 82)

Specifically, the evaluator first reviews the agent's solution process to determine whether it follows clear logical steps, including understanding the problem, extracting key data points, and performing correct mathematical calculations; based on this, a score is given for the logic dimension. Next, the evaluator examines whether the agent demonstrates unique or innovative approaches in problem-solving, or simply relies on conventional methods, and assigns a score for ingenuity accordingly. Finally, the evaluator checks whether the answer fully addresses all aspects of the problem, including data identification, calculation, and result verification, as well as whether the significance of the result is summarized, thus determining the completeness score. Each dimension is accompanied by a brief written assessment highlighting strengths and weaknesses, and a comprehensive total score is calculated based on an overall consideration. This evaluation method provides a holistic reflection of the agent's problem-solving performance and offers concrete references for subsequent optimization and improvement.

Evaluating for Agent 2 in Interaction 1

Evalauation result: YYYY-MM-DD 22:37:19,822 - log.logger_utils - INFO

Logic (0 - 100):

"The answer correctly identifies the number of bags of cans Tiffany had by logically breaking down the information provided. It accurately sums the bags from Monday and Tuesday without including irrelevant details about bottles."

(Score: 95)

Ingenuity (0 - 100):

"The approach is straightforward and effective, but it does not demonstrate any creative or innovative problem-solving techniques. The solution follows a standard arithmetic process without additional insights."

(Score: 70)

Completeness (0 - 100):

"The answer addresses the question fully by providing a clear calculation and stating that bags of bottles are not included in the total for bags of cans. However, it could have briefly summarized why only cans were considered to enhance clarity."

(Score: 85)

Total Score (0 - 100): (Score: 83)

Evaluating for Agent 3 in Ir	
Evaluating for Agent 2 III II	iteration I
E14:14.	VVVVV MM DD 22 27 27 250 11
Evalauation result:	YYYY-MM-DD 22:37:27,859 - log.logger_utils - INFO
Logic (0 - 100):	
	fies the relevant information and follows a clear logical flow t
	ulations are straightforward and accurate."
(Score: 90)	
(0. 100)	
Ingenuity (0 - 100):	withmatic to calve a simple muchlam. While it is affective that
is little creativity or innovatio	arithmetic to solve a simple problem. While it is effective, the
(Score: 60)	in the approach.
Score. 33)	
Completeness (0 - 100):	
	resses the problem, providing all necessary calculations ar
	ever, it could be enhanced by including a brief summary of the
given information."	
(Score: 85)	
Total Score (0 - 100): (Score	: 78)
Evaluating for Agent 4 in Ir	nteration 1
Evalauation result:	YYYY-MM-DD 22:37:37,127 - log.logger_utils - INF
e varauativii i CSuft.	1 1 1 1-141141- DD 22.31.31,121 - 10g.10gget_utils - IIVF
Logic (0 - 100):	
	the answer is clear and follows a logical sequence. It identifies
	e number of bags of cans) and correctly excludes irreleva
information (the bags of bottl	
information (the bags of bottl	e number of bags of cans) and correctly excludes irrelevan
information (the bags of bottl (Score: 90)	e number of bags of cans) and correctly excludes irreleva-
information (the bags of bottle (Score: 90) Ingenuity (0 - 100):	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However, approaches to the problem, as it simply applies basic additional correctly excludes irrelevation.
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However, approaches to the problem, as it simply applies basic additional correctly excludes irrelevation.
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However, approaches to the problem, as it simply applies basic additional correctly excludes irrelevation.
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50)	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additional accurate.
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100):	e number of bags of cans) and correctly excludes irrelevales. The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bage it lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a completeness in the bags of bottle bags of bags o	e number of bags of cans) and correctly excludes irrelevales. The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bage it lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a completeness at the final count of bage in the second content of	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However, approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary steps ags of cans. It states clearly what is included in the count are
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count are
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90)	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count ar follow."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a basic lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of basic what is not, making it easy to (Score: 90)	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary steps ges of cans. It states clearly what is included in the count ar follow."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a completeness are provided in the second completeness (10 - 100):	e number of bags of cans) and correctly excludes irrelevances). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary steps of cans. It states clearly what is included in the count are follow."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90)	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count ar follow."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a basic lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of basic what is not, making it easy to (Score: 90) Total Score (0 - 100): (Score	e number of bags of cans) and correctly excludes irrelevances). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary steps ages of cans. It states clearly what is included in the count are follow."
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a basic lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of basic what is not, making it easy to (Score: 90) Total Score (0 - 100): (Score	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count are follow." 1: 76)
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90) Total Score (0 - 100): (Score	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count are follow." 1: 76)
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90) Total Score (0 - 100): (Score Evaluating for Agent 5 in Infection (Score)	e number of bags of cans) and correctly excludes irrelevances). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary steps of cans. It states clearly what is included in the count are follow." 1: 76)
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90) Total Score (0 - 100): (Score Evaluating for Agent 5 in Intervaluation result: Logic (0 - 100):	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions or unique methods." lete solution to the problem by addressing all necessary stepsings of cans. It states clearly what is included in the count are follow." 1: 76) 1: 76)
information (the bags of bottl (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a basit lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of basis what is not, making it easy to (Score: 90) Total Score (0 - 100): (Score Evaluating for Agent 5 in Intervaluation result: Logic (0 - 100): "The solution follows a clear as	e number of bags of cans) and correctly excludes irrelevales). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions to unique methods." lette solution to the problem by addressing all necessary steps ags of cans. It states clearly what is included in the count are follow." 1: 76) Attention 1 YYYY-MM-DD 22:37:37,229 - log.logger_utils - INF and logical sequence of steps to arrive at the answer. It correct
information (the bags of bottle (Score: 90) Ingenuity (0 - 100): "The answer demonstrates a bait lacks creative or innovative without any additional insight (Score: 50) Completeness (0 - 100): "The answer provides a complarrive at the final count of bawhat is not, making it easy to (Score: 90) Total Score (0 - 100): (Score Evaluating for Agent 5 in Intervaluation result: Logic (0 - 100): "The solution follows a clear a	e number of bags of cans) and correctly excludes irrelevances). The calculation is straightforward and accurate." asic understanding of arithmetic and problem-solving. However approaches to the problem, as it simply applies basic additions to unique methods." lete solution to the problem by addressing all necessary steps of cans. It states clearly what is included in the count and follow."

1566 1567 Ingenuity (0 - 100):

"The approach is straightforward and relies on basic arithmetic, which does not showcase high levels of creativity or innovative problem-solving. However, it effectively solves the problem without unnecessary complexity."

(Score: 70)

Completeness (0 - 100):

"The answer provides a complete solution by including all necessary calculations and explanations. It explicitly states the initial quantities, performs the addition, and presents the final answer clearly."

(Score: 90)

Total Score (0 - 100): (Score: 85)

1579 1580

1581

1584

1586

1587

1568

1569

1570

1571 1572

1573

1574

1575

1576

A.5.3 OPTIMIZING EXAMPLES

This section illustrates the process of parameter updating during a particular iteration. Specifically, the system first ranks the agents participating in the current round of tasks and selects the top three performers. Next, the system updates the parameters of a certain agent (usually one that performed well or needs improvement). The parameter update involves adjusting key hyperparameters such as temperature, top_p, frequency_penalty, and presence_penalty, all of which directly affect the diversity, creativity, and accuracy of the agent's generated responses. The system records the specific values of these parameters before and after the update, and provides a task clue to clarify the type of problem the agent needs to solve and any important considerations.

1588 1589 1590

Ranking for Iteration

1591 1592

1594

1596

Ranking:

YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO

Top three results from message processing LLM:

"First Place": "2",
"Second Place": "5",
"Third Place": "1"

1598

Updating for Agent in Iteration 1

Before Updating:

YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO

Parameter:

temperature=0.9193923355128871, top p=0.9027935433165666,

frequency_penalty=1.8091973063219,

presence penalty=-1.7443228132190376

Clue:

1607 1608 1609

1604

You are given various scenarios involving numerical problems related to quantities, collections, and arithmetic operations. Your task is to answer questions based on the provided information for each scenario. Pay attention to details such as initial amounts, changes over time or circumstances (e.g., additions or subtractions), and specific requests regarding total counts. Use basic mathematical reasoning and calculations when determining your answers.

1614

1615

1617

1619

After Updating:

YYYY-MM-DD 22:38:02,220 - log.logger_utils - INFO

Parameter:

temperature=0.41004817918398145,

top_p=0.9247874518938444,

frequency_penalty=-0.0035787094690344773,

presence_penalty=0.025675460113628396

1618 Clue:

You are presented with various scenarios that involve numerical problems related to quantities

and arithmetic operations. Your task is to answer questions based on the provided information for each scenario. Start by carefully reading each question to understand what is being asked. Identify all relevant numerical data and quantities mentioned. Determine which mathematical operations (addition, subtraction, multiplication, division) are needed based on keywords or phrases that indicate relationships between numbers. Perform calculations step-by-step, keeping track of intermediate results if necessary, and double-check your final answer against the context of the problem to ensure it makes sense. Pay attention to details such as initial amounts, changes over time, and specific requests regarding total counts, using basic mathematical reasoning and calculations to determine your answers.

This entire process embodies an automated "evaluation-selection-fine-tuning-re-evaluation" optimization loop, aiming to continuously improve the agent's performance on specific types of problems through iterative trial and adjustment.

A.6 ACKNOWLEDGE

This article used large language models (such as ChatGPT) as an auxiliary tool in the language polishing process, but did not use them in research conception and academic content generation.