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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
natural language understanding and generation, yet their performance in complex
reasoning tasks remains limited. A central challenge lies in their heavy reliance on
manually designed static prompts, which are costly to engineer, lack flexibility, and
often fail to generalize across diverse tasks. In this work, we propose Agent-GWO,
a dynamic prompt optimization framework that leverages collaboration among
multiple LLM-based agents and the Grey Wolf Optimizer (GWO). Instead of fine-
tuning model parameters, Agent-GWO enhances reasoning by iteratively refining
task-specific prompts through cooperative optimization. Each agent is modeled
as a “wolf,” guided by its hyperparameters and reasoning template. Through
GWO’s hierarchical leader–follower mechanism, top-performing leader agents
(α, β, and δ) guide the evolution of other agents, enabling the population to
converge toward robust and effective reasoning strategies. Extensive experiments
across mathematical reasoning, hybrid reasoning, and domain-specific applications
(e.g., social sciences, medical diagnostics, and decision support) demonstrate
the effectiveness of our approach. For example, on GPT-4.1-mini, Agent-GWO
improves GSM8K accuracy by 8.7% (from 88.2% to 96.9%) and MMLU accuracy
by 12.9% (from 66.9% to 79.8%).

1 INTRODUCTION

In recent years, LLMs (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020; Hadi et al., 2023;
Achiam et al., 2023) have achieved remarkable advancements in natural language understanding and
generation. These models demonstrate broad application potential across diverse domains, including
social sciences, humanities, healthcare, and business decision-making (Bommasani et al., 2021;
Singhal et al., 2023; Kasneci et al., 2023; Chui et al., 2023). While mainstream LLMs excel in
complex tasks such as task decomposition, behavior planning, and code generation, they encounter
significant challenges in reasoning-based tasks. These challenges include the lack of effective
analytical methods for domain-specific knowledge and poor logical consistency in complex reasoning
scenarios (Raffel et al., 2020; Bubeck et al., 2023; Lu et al., 2023; Hadi et al., 2023).

To enhance the reasoning capabilities of LLMs in complex tasks, researchers have pursued multidi-
mensional explorations in model architecture, data scale, and reasoning strategies. At the architectural
level, scaling model size and incorporating sophisticated attention mechanisms, such as variants of the
Transformer (Vaswani et al., 2017), have bolstered semantic representation capabilities. On the data
front, pre-training on large-scale multimodal datasets and fine-tuning with domain-specific corpora
have significantly improved model performance in specialized tasks (Bommasani et al., 2021). During
inference, Chain-of-Thought (CoT) reasoning and self-correction mechanisms improve reasoning
accuracy in complex scenarios (Wei et al., 2022). However, it is essential to acknowledge that LLMs
still encounter substantial challenges in complex reasoning tasks, which often necessitate multi-step
logical analysis and the integration of diverse information, such as solving intricate mathematical
problems or handling ambiguous scenarios. Furthermore, approaches such as CoT and self-refinement
strategies rely heavily on manually crafted prompts, lacking robustness and frequently leading to
logical errors or hallucinations (Wei et al., 2022; Zhang et al., 2025). In addition, scaling up model
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size to improve performance results in increased computational costs, limiting the applicability of
LLMs in resource-constrained environments (Dodge et al., 2020; Zheng et al., 2025).

Inspired by swarm intelligence optimization, we propose a novel LLM-driven multi-agent collabo-
rative optimization framework based on the Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) to
optimize a population of LLM agents iteratively, thereby enhancing their reasoning capabilities in
complex tasks. GWO demonstrates strong performance through its simplicity, rapid convergence, and
minimal hyperparameter requirements, enabling its seamless integration into various optimization
processes, such as reasoning chain design, behavior strategy planning, and hyperparameter selection.

Figure 1: GWO abstracts each LLM agent as a "wolf" which
is characterized by hyperparameters & reasoning prompt.
These two guide the behavior of the LLMs during the opti-
mization process.

As illustrated in Figure 1, our frame-
work abstracts each LLM agent as a
"wolf" within a population, leveraging
GWO’s hierarchical hunting mecha-
nism to introduce a layered collab-
orative optimization strategy. Can-
didate solutions are defined by the
agent’s hyperparameter configuration
and reasoning prompt template. The
algorithm begins with a diverse ini-
tialization of the agent population. In
each optimization iteration, generative
agents execute CoT reasoning tasks
based on their configurations, while
evaluative agents quantitatively score
their outputs across three dimensions:
logical consistency, creativity, and rea-
soning completeness. Based on fitness rankings, the top three leader agents—denoted as α, β, and
δ—are dynamically selected. The remaining agents, guided by GWO’s hierarchical update mecha-
nism, adaptively optimize by incorporating features from the leaders.

This collaborative process iterates over multiple rounds, effectively enabling a global search of
reasoning strategies and parameter spaces, ultimately converging to the optimal agent configuration.
This approach significantly enhances LLM reasoning performance in complex task scenarios. To
validate the effectiveness of our framework, we conduct extensive experiments on various tasks,
including social science question answering, medical diagnostics, and business decision support.

Our main contributions are threefold:

• We find that dynamically optimizing prompts during training enables LLMs to develop more
effective, task-specific strategies. Based on this, we propose a parameter-agnostic adaptation
paradigm that avoids fine-tuning or adding components, thereby reducing both training and
inference costs.

• By combining multi-agent collaboration with the hierarchical optimization of the Grey Wolf
Optimizer, we introduce an iterative leader–agent optimization mechanism to enhance the
robustness and predictability of multi-agent collaboration.

• Extensive experiments show that our method consistently surpasses strong baselines, deliv-
ering superior performance with low computational overhead.

2 RELATED WORK

2.1 PROMPT ENGINEERING AND STATIC CHAIN-OF-THOUGHT METHODS

Static prompting remains a foundational technique for adapting LLMs in zero- and few-shot scenarios,
though it relies heavily on manually crafted exemplars (Brown et al., 2020). Chain-of-Thought (CoT)
prompting (Wei et al., 2022) introduced stepwise reasoning demonstrations, inspiring variants such
as self-consistency (Wang et al., 2022a) and least-to-most decomposition (Zhou et al., 2022). Other
extensions include Self-Ask with Search (Press et al., 2022), Program-of-Thoughts (PoT), which
generates executable code traces (Chen et al., 2022), and Graph-of-Thoughts (GoT), which models
reasoning as dependency graphs (Liu et al., 2023).
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Despite these advances, static methods face critical limitations: they require human-designed exem-
plars for each task (Zhang et al., 2022), remain highly sensitive to prompt order and phrasing (Lu
et al., 2022), and incur high inference costs due to lengthy reasoning chains (Zhou et al., 2022). More
importantly, once exemplars and templates are fixed, the reasoning process becomes static, making it
difficult to adapt dynamically to new contexts or evolving tasks.

2.2 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Beyond single-agent prompting, researchers have explored collaborative reasoning via Multi-Agent
Systems (MAS), which originate from Distributed Artificial Intelligence and emphasize autonomy,
cooperation, and coordination (Wooldridge & Jennings, 1995; Ferber & Weiss, 1999). The integration
of LLMs (Naveed et al., 2023; Kumar, 2024) into MAS has significantly expanded their capacity
in natural language-based planning, programming, and reasoning (Xi et al., 2025). Representative
frameworks such as AutoGen (Wu et al., 2023) and Chain of Agents (Zhang et al., 2024b) exemplify
this trend by enabling dynamic task decomposition and agent collaboration.

Recent advances include modular LLM-agent architectures (Liu et al., 2025), multi-round debates
for collective reasoning (Du et al., 2023), and communication protocols based on DCOP (Fioretto
et al., 2018), FIPA-ACL (Fipa, 2002), or attention mechanisms (Jiang & Lu, 2018). Applications
span social simulation in Smallville (Park et al., 2023), recommender systems (Zhang et al., 2024a),
intelligent manufacturing (Lim et al., 2024), and macroeconomic modeling (Li et al., 2023).

However, existing multi-agent reasoning approaches typically follow a one-off collaboration paradigm,
where agents jointly generate solutions but lack iterative refinement mechanisms. In contrast, our
work is the first to combine multi-agent collaboration with an iterative leader–agent refinement
mechanism, where leaders guide and update agents across multiple rounds. This iterative paradigm
enables dynamic optimization of reasoning paths and collaboration strategies, distinguishing our
framework from both static prompting methods (CoT, ToT, GoT) and conventional MAS-based
reasoning.

2.3 SWARM INTELLIGENCE OPTIMIZATION

Swarm Intelligence Algorithms (SIA) address complex optimization by simulating collective be-
haviors Chakraborty & Kar (2017). Foundational methods include Particle Swarm Optimization
(PSO) Kennedy & Eberhart (1995) and Ant Colony Optimization (ACO) Dorigo (1992), with recent
extensions integrating SIA into DL and LLMs Wang et al. (2018); Shriyan et al.. Among them, Grey
Wolf Optimizer (GWO) (Mirjalili et al., 2014) is notable for efficiency and simplicity, with enhanced
variants addressing complex search spaces Meidani et al. (2022); Zhang et al. (2021). GWO has
been applied in engineering, NLP, and vision tasks, and in our work, we extend its hierarchical
optimization to multi-agent collaboration, enabling iterative refinement in LLM-based reasoning.

For a comprehensive review, please refer to Appendix A.1.

3 METHOD

3.1 THEORETICAL BACKGROUND AND PROBLEM FORMULATION

Grey Wolf Optimizer. GWO is a population-based metaheuristic inspired by the social hierarchy
and hunting behavior of grey wolves. Designed for solving continuous optimization problems,
GWO is characterized by its simplicity and minimal reliance on hyperparameters. In this algorithm,
a population of N wolves is maintained, where each wolf represents a candidate solution Xi =
(x1

i , x
2
i , . . . , x

D
i ) in a D-dimensional search space. The objective is to optimize a target function

f(X). GWO mimics the hierarchical structure of grey wolves, dividing the population into four
roles: α (leader), β (second-in-command), δ (subordinate), and ω (follower). During the optimization
process, the α, β, and δ wolves correspond to the top three solutions and are responsible for guiding
the remaining ω wolves toward promising regions in the search space.

The core mechanism of the GWO is inspired by the encircling behavior exhibited during hunting. In
each iteration, wolves estimate their distance from the prey (i.e., the current best solution) as D(t) =
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Figure 2: Illustration of original GWO algorithm.

|C(t)⊙Xp(t)−Xi(t)|, where Xp(t) denotes the position of the prey at iteration t, C(t) = 2r1(t),
and r1(t) ∈ [0, 1]D is a uniformly distributed random vector.

Based on D(t), the position of each wolf is updated by Xi(t+ 1) = Xp(t)−A(t)⊙D(t), where
A(t) = 2a(t)⊙ r2(t)− a(t) and r2(t) ∈ [0, 1]D is another random vector. The parameter decreases
linearly with iterations as a(t) = 2 − 2 · t

Tmax
, where Tmax is the maximum number of iterations.

This design allows the algorithm to balance exploration in early stages and exploitation in later stages.

Each ω wolf also updates its position by referring to the three leading wolves α, β, and δ. The
distances are computed as Dj(t) = |Cj(t)⊙Xj(t)−Xi(t)|, j ∈ {α, β, δ}, and the corresponding
candidate updates are X

(j)
i (t+ 1) = Xj(t)−Aj(t)⊙Dj(t). Finally, the new position of wolf i is

obtained by averaging the three guided positions:

Xi(t+ 1) =
X

(α)
i (t+1)+X

(β)
i (t+1)+X

(δ)
i (t+1)

3 (1)

By integrating leader-based guidance with stochastic exploration, the GWO effectively achieves a
balance between global search and local exploitation. As iterations progress, the decreasing parameter
a(t) ensures a smooth transition from exploration to exploitation, enhancing convergence toward the
global optimum.

Agent Structure and Definition. Suppose there are n agents. The j-th agent, denoted as
Agentj , consists of a large language model LLMj and a prompt template promptj , i.e., Agentj =

{LLMj , promptj}. The language model LLMj contains a shared model parameter set θ and an
agent-specific hyperparameter set ηj = {Tj , pj , Fj , Ej ,Mj}, which represent temperature, top-p
threshold, frequency penalty, presence penalty, and maximum token length, respectively. Therefore,
LLMj = {ηj ,θ}, and Agentj =

{
{ηj ,θ} , promptj

}
.

Hyperparameter Sampling. To ensure diversity and stability in agent behavior, we design a hy-
perparameter sampling strategy for the set ηj = {tj , pj , fj , ej ,mj}, where a clipping function
clip(x, [a, b]) = max(a,min(x, b)) constrains sampled values within valid ranges, thereby maintain-
ing controlled and consistent generation. Specifically, the temperature tj and the top-p threshold
pj are independently drawn from normal distributions N (µt, σ

2
t ) and N (µp, σ

2
p), then clipped to

intervals [at, bt] and [ap, bp], respectively. These parameters regulate the generation distribution:
higher values enhance creativity and diversity, while lower values promote predictability and stability.
The frequency penalty fj , sampled from N (µf , σ

2
f ) and clipped to [af , bf ], mitigates repetitiveness

by penalizing tokens proportionally to their prior frequency. The presence penalty ej , sampled
from N (µe, σ

2
e) and clipped to [ae, be], encourages novelty by uniformly penalizing any previously

generated token, thus fostering the introduction of new words or concepts. Finally, the maximum
token length mj is set to a fixed constant cm for tasks requiring predetermined length, while for
adaptive-length tasks it is uniformly drawn from a discrete setM, i.e., mj ∼ Uniform(M).

This sampling approach uses normal or uniform distributions to introduce controlled variability, while
clipping ensures hyperparameters remain within reasonable bounds, optimizing creativity, stability,
and content quality.

Problem Formulation. We denote the reasoning task dataset as D = {q1, q2, . . . , qN}, where each
element qi represents a specific question. The dataset consists of N question samples in total. During
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Figure 3: The overall GWO framework operates by having each agent process a dataset, clue, and
parameters to produce outputs, which are then scored. Only the top-3 agents (α, β, and δ) are
differentiated, while the rest (i.e., ω) are updated using the clue and parameters from the previous
round. This iterative ranking and update process continues until termination, after which the final
agent is set as the top-ranked α from the last iteration. Note: The left-bottom subfigure illustrates
the learning process of each agent at each iteration and the right-bottom subfigure illustrates the
optimization process.

the reasoning process, given any question q ∈ D, a specific agent, denoted as Agentj , processes the
question and outputs two components: first, a detailed chain of thought (denoted as CoTj), which
illustrates the step-by-step reasoning process taken by the agent; and second, a final answer (denoted
as Answerj) that the agent derives based on the chain of thought. This reasoning process can be
formally expressed as a function:

f(Agentj , q) = (CoTj ,Answerj), q ∈ D (2)

3.2 MULTI-AGENT GREY WOLF OPTIMIZER FRAMEWORK

The GWO algorithm, outlined in Algorithm 2 and illustrated in Figure 3, adapts GWO to opti-
mize LLM configurations by modeling agents as wolves in a population. Each agent (Agentj =

(ηj , promptj) represents a candidate solution with a unique set of hyperparameters and a prompt
template. Figure 2 elucidates the methodology for addressing continuous optimization challenges
through the emulation of grey wolves’ social hierarchy and hunting behaviors.

Initialization. The algorithm initializes a population A of n agents. For each agent Agentj , hyperpa-
rameters ηj are randomly sampled from predefined ranges (e.g., temperature ∈ [0, 1], top-p ∈ [0, 1])
using a normal distribution. Similarly, the prompt promptj is sampled from a set of predefined CoT
prompt templates or generated via a template generation function. This diverse initialization ensures
broad exploration of the search space.

Optimization Loop. The optimization phase iterates K times, with each iteration evaluating and
updating the agent population. For each agent Agentj , a question q is sampled from D, and the
LLM generates a CoT trace and answer using the agent’s configuration. The fitness of the answer is
computed using a carefully designed evaluation function, which assesses the response based on three
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crucial dimensions: the logical consistency of the reasoning process, the ingenuity of the reasoning
approach, and the comprehensiveness of the reasoning content. This multi-dimensional evaluation
ensures a thorough and accurate assessment of the answer’s quality. The top three agents, denoted α,
β, and δ, are selected based on their fitness scores, representing the best, second-best, and third-best
solutions, respectively.

Non-elite agents (A \ {α, β, δ}) are updated to converge toward the top performers. For each
hyperparameter η(k)j in agent Agentj , new values are sampled from normal distributions centered

at the top agents: Xr ∼ N (η
(k)
r , σ2), for r ∈ {α, β, δ}, and combined as a weighted average:

η
(k)
j = wαXα + wβXβ + wδXδ, with weights satisfying wα > wβ > wδ and wα + wβ + wδ = 1.

This prioritizes the influence of the best- performing agent (α) while maintaining diversity. The
prompt is adapted by a function PROMPTADAPTATION(·), which blends features of the top prompts
(e.g., via template mixing or keyword imitation). All hyperparameters are clipped to remain within
valid bounds. After K iterations, the configuration of the α agent, (ηα, promptα), is returned as the
optimal solution (η∗, prompt∗).

Overall framework. The integration of the GWO with LLMs in our framework is achieved through
the coordinated interaction of four specialized agents. The process begins with GENERATION(·),
which queries the LLM using specific configurations composed of hyperparameters (ηj) and prompt
templates (promptj). These agents are responsible for producing step-by-step CoT reasoning traces
and final answers to the given questions. Once the responses are generated, they are passed to
EVALUATION(·), which assesses the quality of the CoT and answers across three dimensions: logical
consistency, creativity, and completeness. The resulting fitness scores are then collected and processed
by RANKING(·), which sorts all candidate solutions and identifies the top three performing agents—α,
β, and δ—to serve as leaders in the GWO hierarchy. These rankings guide the subsequent optimization
phase. Finally, UPDATE(·) utilizes the evaluation feedback and ranking outcomes to adjust the prompt
templates and potentially refine the hyperparameters for the next generation. This iterative process
continues over multiple rounds, enabling the system to converge toward more effective prompt
generation strategies and reasoning behaviors, while maintaining the core dynamics of the GWO
algorithm within the LLM setting.

4 EXPERIMENTS

In this section, we conduct a systematic evaluation of the proposed GWO-based multi-agent col-
laboration framework to verify its effectiveness on complex reasoning tasks. Our evaluation covers
the reasoning performance (Sec 4.2), adaptability performance to CoT (Sec 4.3), and ablation study
(Sec 4.4).

4.1 EXPERIMENTAL SETUP

To evaluate the proposed GWO framework on complex reasoning tasks, we use datasets spanning
two categories: mathematical reasoning (GSM8K, MATH, SVAMP, MULTIARITH, ASDIV,
MATH_MIX) and hybrid reasoning (AQUA, MMLU, BBH, DATE, CLUTRR). These benchmarks
cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, testing both numerical
computation and qualitative inference. We assess performance across diverse models: Qwen2.5-
Coder-7B-Instruct, optimized for code and math; GPT-4o-mini, a lightweight multimodal model;
GPT-4.1-mini and GPT-4.1-nano, efficiency-oriented GPT-4.1 variants; and Gemma-3-12b-it, a 12B
instruction-tuned model strong in math and logic. This diversity enables robust evaluation under
heterogeneous settings. Unless noted otherwise, experiments use the default GWO setup with n = 5
agents and K = 10 iterations.

4.2 PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed GWO framework, we conducted extensive
experiments on several mainstream LLMs across diverse benchmarks, including mathemat-
ical and hybrid reasoning tasks. The results, as shown in Tables 1 and 2, demonstrate
that the GWO framework significantly improves reasoning accuracy across different models.
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Table 1: Performance evaluation of GWO on math
reasoning task.

Model
Math Reasoning Tasks

GSM8K MATH SVAMP MultiArith ASDiv AQUA
GPT-4o-mini

CoT 85.3% 78.1% 83.9% 98.7% 91.1% 65.3%
CoT-SC/n=5 90.2% 78.6% 85.8% 99.1% 92.8% 70.1%
GWO 94.9% 79.2% 92.3% 99.3% 94.5% 75.9%

GPT-4.1-mini
CoT 88.2% 79.8% 86.1% 99.0% 91.7% 67.5%
CoT-SC/n=5 91.8% 83.2% 87.9% 99.4% 93.2% 71.9%
GWO 96.9% 83.4% 92.7% 99.6% 94.8% 78.5%

GPT-4.1-nano
CoT 83.8% 74.3% 81.1% 98.8% 89.6% 64.7%
CoT-SC/n=5 87.7% 77.4% 83.1% 99.2% 91.2% 68.5%
GWO 92.5% 79.4% 91.8% 99.3% 93.1% 76.4%

Qwen2.5-Coder-7B-Instruct
CoT 77.3% 69.7% 82.1% 92.1% 86.4% 60.4%
CoT-SC/n=5 80.1% 71.2% 84.2% 94.9% 88.7% 62.1%
GWO 89.1% 72.1% 90.1% 97.1% 91.2% 62.3%

Gemma-3-12b-it
CoT 83.5% 76.5% 79.3% 90.2% 88.1% 69.1%
CoT-SC/n=5 85.8% 78.7% 81.1% 93.3% 90.3% 71.4%
GWO 92.8% 80.1% 90.9% 95.9% 93.7% 78.5%

Table 2: Performance evaluation of GWO on hy-
brid reasoning datasets.

Model
General Multitask Temporal Logical Math Mix
MMLU BBH Date CLUTRR MATH_MIX

GPT-4o-mini
CoT 62.8% 66.3% 51.7% 66.1% 82.5%
CoT-SC/n=5 67.6% 68.9% 54.7% 72.6% 85.0%
GWO 73.3% 70.9% 76.3% 74.4% 87.5%

GPT-4.1-mini
CoT 66.9% 69.5% 54.9% 71.2% 82.5%
CoT-SC/n=5 71.2% 72.6% 57.9% 76.5% 85.0%
GWO 78.3% 76.7% 78.7% 78.6% 92.0%

GPT-4.1-nano
CoT 61.3% 65.7% 52.1% 64.2% 80.0%
CoT-SC/n=5 65.8% 68.2% 55.6% 69.3% 83.0%
GWO 73.5% 69.1% 77.1% 71.6% 88.0%

Qwen2.5-Coder-7B-Instruct
CoT 55.1% 47.2% 31.1% 20.2% 73.5%
CoT-SC/n=5 56.1% 49.5% 32.9% 21.1% 75.5%
GWO 58.3% 53.9% 37.1% 27.8% 83.5%

Gemma-3-12b-it
CoT 68.3% 64.1% 77.9% 49.3% 78.0%
CoT-SC/n=5 70.4% 66.7% 80.5% 52.1% 81.5%
GWO 72.7% 67.4% 84.5% 52.9% 88.0%

Table 3: Accuracy on GSM8K comparing GPT-4
and GPT-4o-mini.

Method Model GSM8K
CoMAT (Leang et al., 2024) GPT-4 93.7
CoT (Ranaldi et al., 2025) GPT-4 94.5
FCoT (Lyu et al., 2023) GPT-4 95.0
MathPrompter (Imani et al., 2023) GPT-4 95.6
QuaSAR (Radford et al., 2018) GPT-4 96.5
MathDivide (Srivastava & Gandhi, 2024) GPT-4 96.8
GWO/n=6+CoT GPT-4o-mini 96.5

In mathematical reasoning tasks, GWO outperforms
baseline methods CoT and CoT-SC (n = 5) on mul-
tiple models. For instance, on GPT-4.1-mini, GWO
achieves 96.9% on GSM8K (compared to CoT’s
88.2% and CoT-SC’s 91.8%) and 92.7% on SVAMP
(compared to CoT’s 86.1% and CoT-SC’s 87.9%); on
Qwen2.5-Coder-7B-Instruct, GWO reaches 89.1%,
72.1%, and 62.3% on GSM8K, MATH, and AQUA,

respectively, outperforming CoT (77.3%, 69.7%, 60.4%) and CoT-SC (80.1%, 71.2%, 62.1%); on
Gemma-3-12b-it, GWO reaches 92.8% on GSM8K and 80.1% on MATH, also outperforming the
baseline methods.

Table 4: Accuracy (%) on GSM8K and MATH
using Qwen2.5-Coder-7B.

Method Base GSM8K MATH
OMI2 (Li et al., 2025) Qwen2.5 84.1 72.3
CODEI/O++ (Li et al., 2025) Qwen2.5 85.7 72.1
PyEdu (Li et al., 2025) Qwen2.5 85.8 71.4
CODEI/O (Li et al., 2025) Qwen2.5 86.4 71.9
OC-SFT-1 (Li et al., 2025) Qwen2.5 86.7 70.9
WI (Li et al., 2025) Qwen2.5 87.0 71.4
WI (Full) (Li et al., 2025) Qwen2.5 87.0 71.1
OMI2 (Full) (Li et al., 2025) Qwen2.5 88.5 73.2
CoT Qwen2.5 77.3 69.7
CoT-SC/n=5 Qwen2.5 80.1 71.2
GWO Qwen2.5 89.1 72.1
GWO+CoT Qwen2.5 89.7 72.8
GWO/n=6+CoT Qwen2.5 90.6 73.8

In knowledge and hybrid reasoning tasks, GWO
demonstrates strong generalization ability. For in-
stance, on GPT-4.1-mini, GWO achieves accura-
cies of 78.3%, 76.7%, and 78.7% on MMLU,
BBH, and DATE, respectively—outperforming CoT
(66.9%, 69.5%, 54.9%) and CoT-SC (71.2%, 72.6%,
57.9%). On Qwen2.5-Coder-7B-Instruct, GWO also
surpasses baselines across MMLU (58.3%), BBH
(53.9%), and CLUTRR (27.8%). Similarly, on
Gemma-3-12b-it, it reaches 84.5% on DATE and
67.4% on BBH. To further assess GWO, we bench-
mark it on GSM8K and MATH using Qwen2.5-
Coder-7B-Instruct. As shown in Table 4, GWO
achieves 90.6% and 73.8%, outperforming main-

stream optimization methods. Finally, integrating GWO (n = 6) with CoT yields strong results even
when compared to GPT-4. As shown in Table 3, the combined model achieves 96.5% on GSM8K
and 81.5% on MATH, matching or exceeding GPT-4’s performance under various optimized settings.

GWO consistently improves over CoT and CoT-SC across models and tasks, showing both stronger
reasoning accuracy and better generalization. Its complementarity with CoT further underscores its
effectiveness as a lightweight yet powerful optimization strategy.

4.3 ADAPTABILITY EVALUATION

To further validate the generalization capability of the proposed GWO framework, we integrate it with
mainstream Chain-of-Thought (CoT) reasoning and evaluate its performance across a wide range of
reasoning tasks. CoT is first set as the baseline, and we then measure the improvements when GWO
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is incorporated into CoT. Inference is conducted independently, and accuracy is computed using the
official validation sets of each benchmark.

Table 5: Evaluation of adaptability of GWO to
CoT on math reasoning task.

Model
Math Reasoning Tasks

GSM8K MATH SVAMP MultiArith ASDiv AQUA
GPT-4o-mini

CoT 85.3% 78.1% 83.9% 98.7% 91.1% 65.3%
GWO/n=5+CoT 95.1% 79.9% 92.4% 99.5% 93.8% 76.1%
GWO/n=6 95.7% 80.6% 92.6% 99.7% 94.1% 76.4%
GWO/n=6+CoT 96.5% 81.5% 92.9% 99.8% 94.5% 76.8%

GPT-4.1-mini
CoT 88.2% 79.8% 86.1% 99.0% 91.7% 67.5%
GWO/n=5+CoT 97.2% 83.6% 93.6% 99.8% 94.2% 79.3%
GWO/n=6 97.9% 83.9% 94.2% 99.9% 94.5% 79.7%
GWO/n=6+CoT 98.3% 84.3% 94.8% 99.9% 94.8% 80.4%

GPT-4.1-nano
CoT 83.8% 74.3% 81.1% 98.8% 89.6% 64.7%
GWO/n=5+CoT 93.1% 80.1% 92.3% 99.4% 93.1% 77.1%
GWO/n=6 93.8% 80.6% 92.9% 99.4% 93.4% 77.6%
GWO/n=6+CoT 94.2% 81.2% 93.8% 99.7% 94.0% 78.2%

Qwen2.5-Coder-7B-Instruct
CoT 77.3% 69.7% 82.1% 92.1% 86.4% 60.4%
GWO/n=5+CoT 89.7% 72.8% 90.6% 97.7% 90.5% 62.5%
GWO/n=6 90.1% 73.3% 91.1% 97.9% 91.2% 62.9%
GWO/n=6+CoT 90.6% 73.8% 91.5% 98.1% 92.0% 63.1%

Gemma-3-12b-it
CoT 83.5% 76.5% 79.3% 90.2% 90.3% 69.1%
GWO/n=5+CoT 93.4% 80.7% 91.3% 96.2% 92.1% 79.3%
GWO/n=6 93.7% 81.2% 91.8% 96.5% 92.6% 79.9%
GWO/n=6+CoT 94.3% 81.3% 92.4% 96.8% 93.1% 80.5%

Table 6: Evaluation of adaptability of GWO to
CoT on hybrid reasoning tasks.

Model
General Multitask Temporal Logical Math Mix
MMLU BBH Date CLUTRR MATH_MIX

GPT-4o-mini
CoT 62.8% 66.3% 51.7% 66.1% 82.5%
GWO/n=5+CoT 73.7% 71.3% 77.1% 74.9% 85.0%
GWO/n=6 74.1% 71.5% 77.8% 75.4% 87.5%
GWO/n=6+CoT 74.9% 72.2% 78.3% 75.8% 95.1%

GPT-4.1-mini
CoT 66.9% 69.5% 54.9% 71.2% 82.5%
GWO/n=5+CoT 78.9% 77.2% 79.3% 78.8% 85.0%
GWO/n=6 79.5% 77.8% 79.9% 79.1% 92.0%
GWO/n=6+CoT 79.8% 78.3% 80.5% 79.5% 97.4%

GPT-4.1-nano
CoT 61.3% 65.7% 52.1% 64.2% 80.0%
GWO/n=5+CoT 74.1% 70.3% 77.8% 72.3% 83.0%
GWO/n=6 74.3% 70.8% 78.2% 72.9% 88.0%
GWO/n=6+CoT 75.1% 71.2% 79.3% 73.5% 93.5%

Qwen2.5-Coder-7B-Instruct
CoT 55.1% 47.2% 31.1% 20.2% 73.5%
GWO/n=5+CoT 58.5% 54.8% 37.7% 28.1% 75.5%
GWO/n=6 58.9% 55.3% 38.3% 28.8% 83.5%
GWO/n=6+CoT 59.1% 55.6% 39.2% 26.1% 90.2%

Gemma-3-12b-it
CoT 68.3% 64.1% 77.9% 49.3% 78.0%
GWO/n=5+CoT 73.1% 68.1% 85.3% 53.5% 81.5%
GWO/n=6 73.6% 68.3% 85.8% 54.1% 88.0%
GWO/n=6+CoT 74.2% 68.8% 86.7% 54.4% 94.3%

Mathematical reasoning tasks. As shown in Table 5, GWO consistently boosts the accuracy of CoT
across diverse mathematical reasoning datasets, including GSM8K, MATH, SVAMP, MultiArith,
ASDiv, and AQUA. For example, on GPT-4o-mini, baseline CoT achieves accuracies of 85.3%,
78.1%, and 65.3% on GSM8K, MATH, and AQUA, respectively. With GWO(n = 5)+CoT, the
scores increase to 95.1%, 79.9%, and 76.1%, and further improve to 96.5%, 81.5%, and 76.8% when
n = 6. Similar trends are observed on GPT-4.1-mini and GPT-4.1-nano, where the improvements are
even more pronounced. For instance, on GPT-4.1-mini, GSM8K accuracy rises from 88.2% (CoT) to
98.3% (GWO(n = 6)+CoT). Smaller models such as Qwen2.5-Coder-7B-Instruct and Gemma-3-
12b-it also benefit considerably: on AQUA, Gemma’s accuracy increases from 69.1% to 80.5%, while
Qwen2.5’s accuracy improves from 60.4% to 63.1% under the same setting. These results highlight
the scalability of GWO, demonstrating effectiveness across both large and small-scale models.

Hybrid reasoning tasks. Table 6 summarizes the results on general-purpose and hybrid reasoning
benchmarks, including MMLU, BBH, Temporal Reasoning (Date), CLUTRR, and MATH_MIX.
Again, GWO provides consistent and significant gains over CoT. On GPT-4o-mini, baseline CoT
achieves accuracies of 62.8%, 66.3%, and 51.7% on MMLU, BBH, and Temporal Reasoning, re-
spectively. After integrating GWO(n = 6), these scores increase to 74.9%, 71.5%, and 78.3%.
Logical reasoning (CLUTRR) also benefits: GPT-4.1-mini improves from 71.2% (CoT) to 79.5%
(GWO(n = 6+CoT)). For composite mathematical reasoning (MATH_MIX), substantial improve-
ments are observed, with GPT-4o-mini’s accuracy increasing from 82.5% to 95.1% and GPT-4.1-
mini’s from 82.5% to 97.4%. Even on relatively weaker models such as Qwen2.5-Coder-7B-Instruct
and Gemma-3-12b-it, GWO brings notable improvements, e.g., boosting Temporal Reasoning on
Gemma from 77.9% (CoT) to 86.7% (GWO(n = 6)).

Overall, the results clearly demonstrate that integrating GWO into CoT substantially enhances
reasoning performance across diverse datasets and model architectures. The improvements span both
mathematical and hybrid reasoning tasks, covering arithmetic, algebra, geometry, logic, temporal
reasoning, and interdisciplinary benchmarks. Furthermore, the consistent gains across models of
different sizes (from lightweight variants like GPT-4.1-nano to large-scale models like Gemma-3-
12b-it) underscore the scalability, transferability, and robustness of the GWO framework in boosting
reasoning accuracy and stability.

4.4 ABLATION STUDY
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Figure 4: Accuracy over varying number of agents on mathe-
matical (right) and hybrid (left) reasoning tasks. Increasing
the number of agents generally improves accuracy.

To analyze the contribution of the
number of agents and iterations in the
GWO framework, we conduct an ab-
lation study based on GPT-4o-mini
across multiple datasets. We evalu-
ate the impact of varying the number
of agents, with n ∈ {5, 6, 7, 8, 9, 10},
on model performance. As shown in
Figure 4, the accuracy across differ-
ent mathematical reasoning datasets
(GSM8K, MATH, SVAMP, Multi-
Arith, ASDiv, and AQUA) generally
improves with the increase of the num-

ber of agents. For instance, when n = 5, the accuracy on the GSM8K dataset is 94.9%, whereas it
improves to 97.5% when n = 10. Similarly, in the mixed reasoning datasets such as MMLU, BBH,
Date, CLUTRR, and MATH_MIX, the accuracy increases with the number of agents. For example,
on the MMLU dataset, the accuracy increases from 73.3% at n = 5 to 75.1% at n = 10. Moderate
increases yield limited, non-linear accuracy gains, requiring consideration of computational costs.

Figure 5: Accuracy over iteration for math (left) and hybrid
(right) reasoning tasks when the number of agents is fixed to
five. The accuracy increases with the number of iterations.

As shown in Figure 5, when the num-
ber of agents is fixed at n = 5, in-
creasing the number of iterations from
10 to 30 consistently improves the ac-
curacy of GWO across both mathe-
matical and hybrid reasoning tasks.
This indicates that additional itera-
tions allow agents to explore the solu-
tion space more thoroughly and pro-
gressively refine their reasoning strate-
gies. Figure 5 further confirms this
trend at the dataset level, where nearly
all benchmarks exhibit monotonic or
near-monotonic improvements as the

iteration count increases, highlighting the critical role of iterative optimization in enhancing overall
performance.

Overall, both the number of agents and the number of iterations are key determinants of the effective-
ness of GWO. A larger number of agents facilitates diverse exploration by introducing heterogeneous
reasoning trajectories, while more iterations promote convergence stability and reduce variance across
runs. Nevertheless, practical deployment requires balancing these benefits against computational
cost and inference latency, in order to select an optimal configuration that achieves strong accuracy
without excessive resource consumption. This trade-off is especially relevant when scaling GWO to
larger models or real-world applications, where efficiency and responsiveness are as important as
accuracy.

5 CONCLUSION

This paper introduces a novel multi-agent collaboration framework inspired by the Grey Wolf Opti-
mizer (GWO), integrating Large Language Models (LLMs) with Multi-Agent Systems (MAS) to
tackle complex coordination and optimization challenges. Leveraging GWO’s hierarchical struc-
ture and dynamic “wolf pack” mechanism, the framework iteratively assigns roles and optimizes
parameters to train agents, achieving superior task performance. Experimental results demonstrate
the framework’s strong adaptability across tasks of varying complexity. When combined with the
Chain of Thought (CoT) method, it exhibits exceptional compositional capabilities. Furthermore,
accuracy significantly improves with increased agent numbers and iterations. By enabling more
efficient and interpretable multi-agent collaboration, the framework holds promise for advancing
AI-driven solutions in society. This framework offers a promising solution for complex reasoning
problems. Future work will focus on enhancing computational efficiency and exploring applications
in dynamic knowledge management and decision-making.
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REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this work. The proposed Grey Wolf Optimizer (GWO)-
based multi-agent collaboration framework, along with its core algorithms and iterative optimization
procedure, is fully described with pseudocode in the Appendix to ensure that researchers can directly
reproduce and extend our study. Our experimental setup is detailed in Section 4. We evaluate
the framework on both mathematical reasoning and hybrid reasoning benchmarks. These publicly
available datasets cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, thereby
ensuring diverse experimental validation. For model selection, we employ several mainstream large
language models to verify the robustness of our method across different scales and architectures. To
guarantee transparency, the algorithm pseudocode (including the standard GWO and the agent-based
iterative optimization process) is provided in Appendix A, while experimental results, ablation studies,
and additional performance comparisons are presented in Appendix A.4 and A.5. All experiments
are implemented in a Python environment and executed on a multi-GPU system to ensure efficiency
in both inference and training. We will release the complete source code and configuration files upon
publication, enabling other researchers to directly verify and extend our results.
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A APPENDIX

A.1 DETAILED RELATED WORK

A.1.1 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Multi-Agent Systems (MAS) originated from Distributed Artificial Intelligence (DAI), introducing
core concepts such as autonomy, cooperation, and coordination. The Contract Net Protocol played a
pivotal role in task allocation, establishing a theoretical foundation for MAS (Wooldridge & Jennings,
1995). Ferber et al. (Ferber & Weiss, 1999) further explored organizational paradigms, including
holistic and emergent systems, demonstrating the scalability and robustness of MAS in domains
such as robotics, logistics, and simulation. These systems have been increasingly applied to fields
including game theory, distributed control, and collective collaboration (Wooldridge & Jennings,
1995; Ferber & Weiss, 1999; Yang & Wang, 2020; Stone & Veloso, 2000; Gerkey & Mataric, 2003;
Guo et al., 2024; Li et al., 2024).

With the rapid advancement of Large Language Models (LLMs) (Naveed et al., 2023; Kumar, 2024),
their powerful capabilities in language understanding and reasoning have injected new vitality into
MAS. LLMs enable agents to execute complex tasks such as planning, programming, and verification
through dynamic, natural language-driven interactions (Xi et al., 2025). For instance, the AutoGen
framework (Wu et al., 2023) facilitates task decomposition among agents via prompt engineering and
message passing, significantly improving collaboration efficiency. Furthermore, the Chain of Agents
framework further addressed long-context tasks by organizing LLM agents into chains, thereby
enhancing their ability to process complex information collaboratively (Zhang et al., 2024b).

Liu et al. (Liu et al., 2025) proposed an LLM-based agent framework incorporating brain, perception,
and action modules, highlighting the effectiveness of specialized agents and interactive mechanisms
in solving complex problems. Du et al. (Du et al., 2023) demonstrated the potential of LLMs in
collaborative reasoning by improving MMLU task performance through multi-round debates.

Regarding coordination and communication, Distributed Constraint Optimization Problems (DCOP)
address multi-agent constraint solving through negotiation and are widely used in task alloca-
tion (Fioretto et al., 2018). The FIPA-ACL protocol provides a standardized framework for agent
communication (Fipa, 2002), while attention-based communication models have shown significant ad-
vantages in improving collaborative efficiency (Jiang & Lu, 2018). Recent research on MacNet (Qian
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et al., 2024), a network built upon a directed acyclic graph topology, reveals that irregular structures
outperform regular ones and proposes a logistic growth law for collaboration performance as the
number of agents increases.

Furthermore, LLM-MAS has demonstrated broad application prospects in various domains. In the
sandbox environment of Smallville, agents exhibit human-like collaborative behavior by planning
schedules, sharing information, and coordinating activities through social interactions (Park et al.,
2023). In the field of recommender systems, the Agent4Rec platform simulates user interactions and
reveals phenomena such as the "filter bubble" (Zhang et al., 2024a). In intelligent manufacturing,
an LLM-enhanced system framework leverages natural language communication to autonomously
assign G-code tasks, significantly improving flexibility in production processes (Lim et al., 2024). In
macroeconomic simulations, LLM agents exhibit heterogeneity in work and consumption behaviors
and successfully replicate classical economic patterns such as the Phillips curve (Li et al., 2023).

A.1.2 SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS

Swarm Intelligence Algorithms (SIA) Chakraborty & Kar (2017); Slowik & Kwasnicka (2017);
Tang et al. (2021); Priyadarshi & Kumar (2025) solve complex optimization problems by simulating
the collaborative behavior of biological swarms in nature, such as ant colonies and bird flocks.
These algorithms emphasize how simple agents can achieve complex global behavior through local
interactions. The Particle Swarm Optimization (PSO) proposed by Kennedy et al. simulates the
foraging behavior of bird flocks through velocity-position updates, making it suitable for continuous
optimization Kennedy & Eberhart (1995), while Dorigo’s Ant Colony Optimization (ACO), inspired
by pheromone communication, excels in discrete optimization problems such as the Traveling
Salesman Problem Dorigo (1992). These foundational works laid the theoretical groundwork for
SIA.

In recent years, the integration of SIA with Deep Learning (DL) and Large Language Models (LLMs)
has emerged as a research hotspot. Wang et al. proposed Deep PSO (DPSO), which embeds deep
neural networks into the PSO framework to optimize neural network parameters, thereby improving
high-dimensional feature selection performance Wang et al. (2018). Shriyan et al. combined PSO
with LLMs to optimize prompt engineering, significantly enhancing the performance of LLMs on
complex tasks Shriyan et al.. Furthermore, the hybrid GA-PSO algorithm by Sheikhalishahi et
al. enhances population diversity through genetic operations, alleviating the issue of premature
convergence in high-dimensional optimization problems Sheikhalishahi et al. (2013).

SIA has also been widely applied in engineering optimization, energy management, and data mining.
For instance, Li et al. improved ACO to address multi-objective vehicle routing problems Li et al.
(2019); Paliwal et al. employed the Artificial Bee Colony (ABC) algorithm to optimize microgrid
scheduling Paliwal et al. (2020); Tu et al. combined PSO with Support Vector Machines (SVM)
to enhance feature selection accuracy Tu et al. (2007). Despite their strong performance in various
fields, SIA still faces challenges such as local optima in high-dimensional spaces, dependence on
empirically tuned hyperparameters, and insufficient real-time adaptability in dynamic optimization
problems Mavrovouniotis et al. (2017); Tang et al. (2021). Moreover, support for multi-objective
optimization remains limited Janga Reddy & Nagesh Kumar (2007).

The Grey Wolf Optimizer (GWO) Mirjalili et al. (2014), proposed by Mirjalili et al., simulates the
hierarchical structure (alpha, beta, delta, and omega wolves) and hunting behavior of grey wolves. It
achieves global optimization by combining leadership guidance with random exploration. Compared
to PSO and ACO, GWO features fewer hyperparameters and faster convergence, making it well-suited
for continuous optimization. However, it is prone to local optima in high-dimensional problems.

To overcome these limitations, various improvements have been proposed. For example, Meidani et al.
introduced adaptive GWO by incorporating dynamic parameter adjustment to enhance convergence
performance Meidani et al. (2022); Wang et al. designed a hybrid GWO (HGWO) that integrates
Differential Evolution (DE) with GWO to improve population diversity and global search capability
Wang et al. (2022b); Zhang et al. proposed chaotic GWO (CGWO), which uses chaotic mapping
to optimize initialization and step size, improving performance on high-dimensional optimization
problems Zhang et al. (2021).

GWO has been widely applied in multiple domains. In engineering optimization, GWO has been
used to solve economic dispatch problems in power systems by optimizing generation cost and

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

emissions to achieve multi-objective optimization Pradhan et al. (2016). In machine learning, GWO
has been combined with SVM for feature selection to enhance classification accuracy in breast cancer
diagnosis Kamel et al. (2019). In natural language processing, GWO has been employed to optimize
the hyperparameters of LSTM language models, significantly improving their modeling performance
Aufa et al. (2020). Moreover, GWO has been applied to image processing, where it is used to optimize
image segmentation thresholds, thereby improving the segmentation quality of medical images Hu
et al. (2024). Additionally, GWO has been applied to vehicle routing problems (VRP), optimizing
route planning to reduce logistics costs Hussein et al. (2023).
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A.2 NOTATION

Symbol Definition
Grey Wolf Optimizer (GWO) Symbols

N Population size (number of wolves/solutions)
D Search space dimensionality
Xi Position of the i-th wolf: Xi = (x1

i , x
2
i , . . . , x

D
i )

f(X) Objective function to be optimized
Tmax Maximum number of iterations
t Current iteration number

Xp(t) Prey position at iteration t (current best solution)
C Coefficient vector, C = 2r1, r1 ∼ U(0, 1)D
D Distance vector, D = |C ·Xp(t)−Xi(t)|
A Adaptive coefficient, A = 2a · r2 − a, r2 ∼ U(0, 1)D
a Linearly decreasing parameter, a = 2− 2 · t

Tmax

α, β, δ The top three wolves (leaders) in GWO
ω The remaining wolves (followers)
Dj Distance from wolf i to leader j: Dj = |Cj ·Xj −Xi|, j ∈ {α, β, δ}

Aj ,Cj Adaptive/random coefficients for leader j
X′

j Updated position guided by leader j
F Fitness function

Agent Symbols
n Number of agents

Agentj The j-th agent, Agentj = {LLMj , cluej}
LLMj Large language model of agent j, LLMj = {ηj ,θ}
θ Shared model parameter set of LLMs
ηj Agent-specific hyperparameter set: {Tj , pj , Fj , Ej ,Mj}
Tj Temperature hyperparameter for agent j
pj Top-p threshold for agent j
Fj Frequency penalty for agent j
Ej Presence penalty for agent j
Mj Maximum token length for agent j

clip(x, [a, b]) Clipping function: max(a,min(x, b))
N (µ, σ2) Normal distribution with mean µ and variance σ2

U(a, b) Uniform distribution over [a, b]
M Discrete set of possible maximum token lengths
cM Constant value for maximum token length (fixed-length tasks)

Data and Task Symbols
D Reasoning problem dataset, D = {q1, q2, . . . , qN}
q A single question from dataset D

CoTj Chain of Thought generated by agent j
Answerj Final answer generated by agent j

f(Agentj , q) Output of agent j on q: (CoTj ,Answerj)

Optimization Process Symbols
K Number of optimization iterations in multi-agent GWO
A Population set of agents
w Weight vector for leaders: w = {wα, wβ , wδ}, wα > wβ > wδ ,

∑
w = 1

ClueAdaptation Clue template adaptation function
(η∗, clue∗) Optimal hyperparameters and clue template found
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A.3 PSEUDOCODE

Algorithm 1 Grey Wolf Optimizer (GWO) — concise

Init: Initialize population {Xi}Ni=1 ⊂ RD within bounds // Candidate solutions
1 Set a← 2 // Exploration weight
2 (Optional) X⋆ ← argminXi F(Xi) // Best-so-far

3 Loop for t = 1, . . . , Tmax: for t = 1 to Tmax do
4 Evaluate F(Xi) for all i // Objective values
5 Identify α, β, δ (top-3 by fitness) // Leaders
6 (Optional) update X⋆ a← 2− 2t/Tmax // Linear decrease
7 foreach Xi do
8 foreach ℓ ∈ {α, β, δ} do
9 Sample r1, r2 ∼ U(0, 1)D // i.i.d. per dim

10 Aℓ ← 2a r1 − a // Coefficient
11 Cℓ ← 2 r2 // Coefficient
12 Dℓ ← |Cℓ ⊙Xℓ −Xi | // Distance
13 X′

ℓ ← Xℓ −Aℓ ⊙Dℓ // Guided move

14 Xi ← 1
3

(
X′

α +X′
β +X′

δ

)
// Averaging

15 Project/clip Xi to bounds // Feasible

16 Evaluate all F(Xi) // Final check
17 return best Xi (or X⋆) // Solution

Algorithm 2 : Agent Iterative Optimization Algorithm Based on GWO

Initialization:
Set A ← ∅ // Initialize empty agent population

18 for j = 1 to n do
19 ηj ← SampleNormal(µ,σ2) // Sample hyperparameters from normal

distribution
20 ηj ← Clip(ηj) // Ensure valid hyperparameter values
21 cluej ← SampleClueTemplate() // Generate clue template
22 Agentj ← (ηj , cluej) // Create agent
23 A ← A∪ {Agentj} // Add to population

24 Optimization Loop:
25 for _ = 1 to K do
26 foreach Agentj ∈ A do
27 q ← SampleQuestion(D)
28 (CoTj ,Ansj)← LLM(Agentj , q)
29 Fitnessj ← Evaluate(Ansj , q) // Stores agent scores

30 (α, β, δ)← SelectTopAgents(A,Fitness) // Select top-3 agents as
leaders

31 w← {wα, wβ , wδ} // wα > wβ > wδ,
∑

w = 1
32 foreach Agentj ∈ A \ {α, β, δ} do
33 r ∼ {α, β, δ} with w // Sample by w
34 ηj ← Clip(SampleNormal(ηr, σ

2)) // Mutate hyperparameters from
leader

35 cluej ← ClueAdaptation(cluej , {clueα, clueβ , clueδ}) // Adapt clue using
leader templates

36 η∗ ← ηα, clue∗ ← clueα // Extract best configuration
37 return (η∗, clue∗)
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A.4 MORE EXPERIMENTAL RESULTS

The table 7compares diverse methods across multiple base models on the GSM8K and MATH
benchmarks. Many advanced techniques, especially those leveraging large-scale models like Llama
and Qwen, demonstrate competitive results. In particular, our proposed GWO / n = 6 + CoT
method, when combined with GPT-4o-mini, achieves state-of-the-art performance, outperforming
most existing approaches. This indicates the potential of our method to improve mathematical
problem-solving capabilities while also acknowledging the strong foundation established by prior
works.

Table 7: This table presents the accuracy of various methods on the GSM8K and MATH datasets.
It compares different techniques applied to a range of base models, including Mistral, Code-Llama,
Llama, Qwen, and GPT-4.

Method Base Model GSM8k MATH
No-CoT (Deng et al., 2024) Mistral-7B 38.0% -
ICoT-SI (Deng et al., 2024) Mistral-7B 51.0% -
- RecurrentBlock-3.5B 42.1% -
MathCoder-CL (Wang et al., 2023a) Code-Llama-7B 67.8% 30.2%
MAmmoTH (Yue et al., 2023) Code-Llama-7B 59.4% -
Brain (Chen et al., 2024a) Code-Llama-7B 74.0% -
SQ-VAE (Wang et al., 2023b) Llama-2-7B 40.0% 7.0%
Self-Rewarding (Chen et al., 2024b) Llama-2-7B 40.0% 10.7%
STaR (Zelikman et al., 2022) Llama-2-7B 58.2% 16.0%
ENVISIONS (Xu et al., 2024) Llama-2-7B 59.0% 19.0%
MetaMath (Yu et al., 2023b) Llama-2-7B 66.5% -
ToRA-Code (Gou et al., 2023) Llama-2-7B 72.6% -
OVM (Yu et al., 2023a) Llama-2-7B 73.7% -
- Llama-3.1-8B 56.7% 20.3%
- Llama-3.1-70B 85.5% 41.4%
- Llama-3.1-405B 89.0% 53.8%
- NuminaMath-7B-CoT 75.4% 55.2%
- DeepSeek-Coder-7B 77.4% 44.4%
- Qwen2-7B 79.9% 44.2%
- Qwen2-Math-7B 80.4% 50.4%
SIaM (Yu et al., 2024) Qwen-2-Math-Base 81.5% 50.0%
- Internlm2-math-plus-7B 84.0% 54.4%
OMI2 (Li et al., 2025) Qwen2.5-Coder-7B 84.1% 72.3%
CODEI/O++ (Li et al., 2025) Qwen2.5-Coder-7B 85.7% 72.1%
PyEdu (Li et al., 2025) Qwen2.5-Coder-7B 85.8% 71.4%
CODEI/O (Li et al., 2025) Qwen2.5-Coder-7B 86.4% 71.9%
OC-SFT-1 (Li et al., 2025) Qwen2.5-Coder-7B 86.7% 70.9%
WI (Li et al., 2025) Qwen2.5-Coder-7B 87.0% 71.4%
WI (Full) (Li et al., 2025) Qwen2.5-Coder-7B 87.0% 71.1%
OMI2 (Full) (Li et al., 2025) Qwen2.5-Coder-7B 88.5% 73.2%
CoT Qwen2.5-Coder-7B 77.3% 69.7%
CoT Qwen2.5-Coder-7B 77.3% 69.7%
CoT-SC/n=5 Qwen2.5-Coder-7B 80.1% 71.2%
GWO Qwen2.5-Coder-7B 89.1% 72.1%
GWO+CoT Qwen2.5-Coder-7B 89.7% 72.8%
CoMAT (Leang et al., 2024) GPT-4 93.7% -
CoT (Ranaldi et al., 2025) GPT-4 94.5% -
FCoT (Lyu et al., 2023) GPT-4 95.0% -
MathPrompter (Imani et al., 2023) GPT-4 95.6% -
QuaSAR (Radford et al., 2018) GPT-4 96.5% -
MathDivide (Srivastava & Gandhi, 2024) GPT-4 96.8% -
GWO/n=6+CoT GPT-4o-mini 96.5% 81.5%
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Table 8: Math Reasoning Performance

Method
Math Reasoning

GSM8K MATH SVAMP MultiArith ASDiv AQUA
GPT-4o-mini

CoT 85.3% 78.1% 83.9% 98.7% 91.1% 65.3%
CoT-SC/n=5 90.2% 81.7% 85.8% 99.1% 92.8% 70.1%
GWO 94.9% 79.2% 92.3% 99.3% 94.4% 75.9%
GWO+CoT 95.1% 79.9% 92.4% 99.5% 94.6% 76.1%
GWO/n=6 95.7% 80.6% 92.6% 99.7% 94.8% 76.6%
GWO/n=6+CoT 96.5% 81.5% 92.9% 99.8% 94.9% 76.8%

GPT-4.1-mini
CoT 88.2% 79.8% 86.1% 99.0% 91.7% 67.5%
CoT-SC/n=5 91.8% 83.2% 87.9% 99.4% 93.2% 71.9%
GWO 96.9% 83.1% 92.7% 99.6% 94.6% 78.5%
GWO+CoT 97.2% 83.6% 93.6% 99.8% 94.8% 79.3%
GWO/n=6 97.9% 83.9% 94.2% 99.9% 94.9% 79.7%
GWO/n=6+CoT 98.3% 84.3% 94.8% 99.9% 94.9% 80.4%

GPT-4.1-nano
CoT 83.8% 74.3% 81.1% 98.8% 89.6% 64.7%
CoT-SC/n=5 87.7% 77.4% 83.1% 99.2% 91.2% 68.5%
GWO 92.5% 79.4% 91.8% 99.3% 93.1% 76.4%
GWO+CoT 93.1% 80.1% 92.3% 99.4% 93.4% 77.1%
GWO/n=6 93.8% 80.6% 92.9% 99.4% 93.7% 77.6%
GWO/n=6+CoT 94.2% 81.2% 93.8% 99.7% 94.0% 78.2%

Qwen2.5-Coder-7B-Instruct
CoT 77.3% 69.7% 82.1% 92.2% 86.4% 60.4%
CoT-SC/n=5 80.1% 71.2% 84.2% 95.1% 88.7% 62.1%
GWO 89.1% 72.1% 90.1% 97.1% 91.2% 62.3%
GWO+CoT 89.7% 72.8% 90.6% 97.7% 92.0% 62.5%
GWO/n=6 90.1% 73.3% 91.1% 97.9% 92.6% 62.9%
GWO/n=6+CoT 90.6% 73.8% 91.5% 98.1% 93.1% 63.1%

Gemma-3-12b-it
CoT 83.5% 76.5% 79.3% 90.2% 90.3% 69.1%
CoT-SC/n=5 85.8% 78.7% 81.1% 93.3% 92.1% 71.4%
GWO 92.8% 80.1% 90.9% 95.9% 93.7% 78.5%
GWO+CoT 93.4% 80.7% 91.3% 96.2% 94.0% 79.3%
GWO/n=6 93.7% 81.2% 91.8% 96.5% 94.3% 79.9%
GWO/n=6+CoT 94.3% 81.3% 92.4% 96.8% 94.6% 80.5%

Table 9: Other Datasets Performance

Method
Gene. Multitask Temporal Log. Math Mix

MMLU BBH Date CLUTRR MATH_MIX
GPT-4o-mini

CoT 62.8% 66.3% 51.7% 66.1% -
CoT-SC/n=5 67.6% 68.9% 54.7% 72.6% -
GWO 73.3% 70.9% 76.3% 74.4% -
GWO+CoT 73.7% 71.3% 77.1% 74.9% -
GWO/n=6 74.1% 71.8% 77.8% 75.4% -
GWO/n=6+CoT 74.9% 72.2% 78.3% 75.8% 95.1%

GPT-4.1-mini
CoT 66.9% 69.5% 54.9% 71.2% -
CoT-SC/n=5 71.2% 72.6% 57.9% 76.5% -
GWO 78.3% 76.7% 78.7% 78.6% -
GWO+CoT 78.9% 77.2% 79.3% 78.8% -
GWO/n=6 79.5% 77.8% 79.9% 79.1% -
GWO/n=6+CoT 79.8% 78.3% 80.5% 79.5% 97.4%

GPT-4.1-nano
CoT 61.3% 65.7% 52.1% 64.2% -
CoT-SC/n=5 65.8% 68.2% 55.6% 69.3% -
GWO 73.5% 69.1% 77.1% 71.6% -
GWO+CoT 74.1% 70.3% 77.8% 72.3% -
GWO/n=6 74.3% 70.8% 78.2% 72.9% -
GWO/n=6+CoT 75.1% 71.2% 79.3% 73.5% 93.5%

Qwen2.5-Coder-7B-Instruct
CoT 55.1% 47.2% 31.1% 20.2% -
CoT-SC/n=5 56.1% 49.5% 32.9% 21.1% -
GWO 58.3% 53.9% 37.1% 27.8% -
GWO+CoT 58.5% 54.8% 37.7% 28.1% -
GWO/n=6 58.9% 55.3% 38.3% 28.8% -
GWO/n=6+CoT 59.1% 55.6% 39.2% 26.1% 90.2%

Gemma-3-12b-it
CoT 68.3% 64.1% 77.9% 49.3% -
CoT-SC/n=5 70.4% 66.7% 80.5% 52.1% -
GWO 72.7% 67.4% 84.5% 52.9% -
GWO+CoT 73.1% 68.1% 85.3% 53.5% -
GWO/n=6 73.6% 68.3% 85.8% 54.1% -
GWO/n=6+CoT 74.2% 68.8% 86.7% 54.4% 94.3%

These tables 9 and tables 8 demonstrate that our proposed methods (GWO, GWO+CoT, GWO/n=6,
GWO/n=6+CoT) achieve remarkable improvements across multiple math reasoning benchmarks and
datasets. In GSM8K, GWO/n=6+CoT attains 96.5% (vs. 85.3% of CoT in GPT-4o-mini) and 98.3%
(vs. 88.2% of CoT in GPT-4.1-mini), highlighting significant gains from structured reasoning.
Similar trends are seen in SVAMP, AQUA, and Temporal Date. For instance, on GPT-4o-mini, GWO
boosts Temporal Date performance from 51.7% (CoT) to 76.3%, with GWO/n=6+CoT increasing it
further to 78.3%. The table shows these methods outperform baseline CoT and CoT-SC, enhancing
math reasoning efficiently without high computational cost.

Figure 6: The figure displays two graphs comparing the accuracy of different tasks as the number of
agents varies, with one graph focused on math-related tasks and the other on integrated tasks.

The image presents two sets of line graphs. In the "Math Tasks" graph, most lines show an upward
trend as the number of agents increases. Notably, lines like GSM8K and MATH exhibit consistent
growth, indicating improved accuracy with more agents. In the "Integrated Tasks" graph, lines such
as those for CLUTRR and some others also show a positive correlation with the number of agents,
suggesting that increasing the number of agents generally enhances the accuracy in both math-specific
and integrated tasks.
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Figure 7: The figures present bar-charts comparing the accuracy of different methods across three
datasets: GSM8K, MATH, and SVAMP. Each chart shows how various techniques perform in terms
of accuracy, highlighting differences and trends among the methods for each respective dataset.

These bar charts compare the accuracy of different methods on GSM8K, MATH, and SVAMP datasets.
Across all datasets, the "CoT" method shows relatively lower accuracy initially. Methods like "GWO"
and its variants with added components such as "CoT" demonstrate a clear upward trend in accuracy.
For example, on GSM8K, the highest-performing method reaches 96.5%. These results suggest that
the enhanced methods are more effective, though further research may refine these findings.

Figure 8: These figures are bar charts showing the accuracy comparison of different methods on
datasets MMLU, BBH, and Date. Each chart visually represents how various techniques perform in
terms of accuracy.

These bar charts illustrate the accuracy comparison of different methods across three datasets: MMLU,
BBH, and Date. Across all datasets, the basic CoT method shows the lowest accuracy. The methods
that combine GWO with CoT (such as GWO+CoT and GWO/n=6+CoT) consistently outperform
CoT and CoT-SC/n=5. Notably, the GWO/n=6+CoT method achieves the highest accuracy in each
dataset, indicating its superior performance compared to the other methods tested.

The bar chart illustrates the accuracy comparison on CLUTRR for different methods. Generally, there
is an upward trend in accuracy. The "CoT" method shows the lowest accuracy at 66.1%. In contrast,
methods like "CoT-SC/n = 5", "GWO", "GWO+CoT/n = 6", and "GWO/n = 6+CoT" demonstrate
higher accuracies, with "GWO/n = 6+CoT" achieving the highest accuracy of 75.8%, indicating that
incorporating certain techniques significantly improves performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: These two figures respectively show the accuracy of Math Tasks and Integrated Tasks at
different iterations, with task names on the x-axis, iterations on the y-axis, and accuracy indicated by
color gradients.

In the "Math Tasks" plot, accuracy generally varies with iterations across different tasks. Notably, for
tasks like MATH, accuracy seems to show more significant fluctuations in the lower iteration range.
In contrast, in the "Integrated Tasks" plot, accuracy trends show a smoother transition as iterations
increase. Tasks such as MMLU start with lower accuracy and gradually improve, indicating that
different tasks respond distinctively to the number of iterations in terms of accuracy enhancement.

Figure 10: The first figure compares the performance of different methods on mathematical tasks,
while the second figure contrasts their performance on general tasks, both using radar-chart visualiza-
tions.

In the "Mathematical Tasks Performance Comparison" radar chart, the methods with combinations
like GWO/n=6+CoT generally outperform the others across datasets such as GSM8K, MATH,
SVAMP, MultiArith, and ASDiv, indicating their superiority in mathematical tasks. In the "General
Tasks Performance Comparison" chart, similar combined approaches also show better performance
on datasets like MMLU, BBH, Date, and CLUTRR, suggesting that integrating GWO with CoT-based
techniques enhances performance in both mathematical and general tasks.
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A.5 TRAINING EXAMPLES

A.5.1 FORWARD INFERENCE EXAMPLES

This example presents a math word problem about recycling cans. The problem describes that Tiffany
was collecting cans for recycling. On Monday, she had 3 bags of cans, and the next day she found
7 more bags of cans and 44 bags of bottles. The question asks how many bags of cans she had
altogether. The answer given in the image is 10 bags. By adding the number of bags of cans found on
both days, we can conclude that Tiffany had a total of 10 bags of cans. This problem tests the ability
to understand information from the question and perform simple addition.

Dataloading for Interation 1

Problem: YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO
Tiffany was collecting cans for recycling. On Monday, she had 3 bags of cans. The next day,
she found 7 more bags of cans and 44 bags of bottles. How many bags of cans did she have
altogether?

Answer: YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO
10

This example demonstrates the parameter settings, systematic problem-solving approach, and the
beginning of the answer provided by the first agent when tackling a mathematical word problem. The
focus is on the standardized process of problem-solving, emphasizing a complete workflow from
understanding the question to checking the final answer.

Training for Agent 1 in Interaction 1

Prameter Log for Agent 1: YYYY-MM-DD 22:35:34,691 - log.logger_utils - INFO
temperature: 0.9193923355128871,
top_p: 0.9027935433165666,
frequency_penalty: 1.8091973063219,
presence_penalty: -1.7443228132190376,
max_tokens: 1919

Clue Log for Agent 1: YYYY-MM-DD 22:35:48,332 - log.logger_utils - INFO
To solve the questions found in the svamp dataset, follow these steps:
1. Carefully read the entire question to understand what is being asked.
2. Identify and extract all relevant numerical data and quantities mentioned within the
question.
3. Determine which mathematical operations (addition, subtraction, multiplication, division)
are necessary based on keywords or phrases that indicate relationships between numbers (e.g.,
"altogether," "more than," etc.).
4. Perform calculations step-by-step while keeping track of intermediate results if needed to
avoid errors.
5. Double-check your final answer against the context of the problem to ensure it makes
sense.
Use this approach systematically for each question from the SVAMP dataset you encounter!

Answer by Agent 1: YYYY-MM-DD 22:35:52,418 - log.logger_utils - INFO
Let’s follow the steps to solve the problem:
1. Read the entire question: Tiffany collected cans for recycling, and we need to find out how
many bags of cans she had altogether after her collection over two days.
2. Extract relevant numerical data:
On Monday, Tiffany had 3 bags of cans.
On Tuesday, she found 7 more bags of cans.
3. Determine necessary mathematical operations: We need to find the total number of bags of
cans, which involves addition since we are combining quantities.
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4. Perform calculations step-by-step:
Start with the number of bags she had on Monday: 3
Add the number of additional bags found on Tuesday:

Total Bags = 3 + 7 = 10

5. Double-check final answer against context: The question asks for how many bags of
"cans" she has altogether, and we calculated that Tiffany has a total of 10 bags (only counting
"cans").
Therefore, Tiffany has a total of 10 bags of cans altogether.

This example provides a detailed demonstration of how the first agent systematically solves a
mathematical word problem using a five-step approach (understanding the problem, extracting data,
determining the operation, step-by-step calculation, and checking the answer), ultimately arriving at
a clear and accurate solution.

Training for Agent 2 in Interaction 1

Prameter Log for Agent 2: YYYY-MM-DD 22:35:52,532 - log.logger_utils - INFO
temperature: 0.39241099147650554,
top_p: 0.6602020470317261,
frequency_penalty: 0.0007142275093004872,
presence_penalty: -0.19136457572912707,
max_tokens: 1413

Clue Log for Agent 2: YYYY-MM-DD 22:36:05,253 - log.logger_utils - INFO
Create a word problem that involves basic arithmetic operations based on the given scenario.
The problem should include specific quantities and require calculations to determine totals,
differences, or other values relevant to everyday activities, ensuring that it can engage learners
in applying their math skills within relatable contexts like shopping, collecting items, or
planning events.

Answer by Agent 2: YYYY-MM-DD 22:36:09,262 - log.logger_utils - INFO
To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags
of cans.
1. On Monday, Tiffany had 3 bags of cans.
2. The next day, she found 7 more bags of cans.
Now, we can calculate the total number of bags of cans:
Total bags of cans = Bags on Monday + Bags found on Tuesday
Total bags of cans = 3 + 7
Now, let’s do the calculation:
Total bags of cans = 3 + 7 = 10
So, Tiffany had 10 bags of cans altogether.
(Note: The bags of bottles are not included in the total for bags of cans, as the problem
specifically asks for the total number of bags of cans.)

This example demonstrates how the second agent generates and solves a simple math word problem
following a standardized process. It covers all key steps, including problem design, information
extraction, mathematical operations, step-by-step calculation, and explanation of the result. The
example also specifically clarifies the scope of the problem (counting only bags of cans, not bottles),
which helps the agent understand the problem requirements and the solution approach.

Training for Agent 3 in Interation 1

Prameter Log for Agent 3: YYYY-MM-DD 22:36:09,369 - log.logger_utils - INFO
temperature: 0.5822851007143794,
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top_p: 0.9719972687061527,
frequency_penalty: 0.04468780736250461,
presence_penalty: 0.02409206816099846,
max_tokens: 1397

Clue Log for Agent 3: YYYY-MM-DD 22:36:21,755 - log.logger_utils - INFO
You are given various scenarios involving numerical problems related to quantities, collections,
and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Pay attention to details such as initial amounts, changes over time or
circumstances (e.g., additions or subtractions), and specific requests regarding total counts.
Use basic mathematical reasoning and calculations when determining your answers.

Answer by Agent 3: YYYY-MM-DD 22:36:24,662 - log.logger_utils - INFO
To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags
of cans.
On Monday, Tiffany had 3 bags of cans. The next day, she found 7 more bags of cans.
Now, we can calculate the total number of bags of cans:
Total bags of cans = Bags on Monday + Bags found on Tuesday
Total bags of cans = 3 + 7 = 10
Therefore, Tiffany had a total of 10 bags of cans altogether.

Agent 3 focuses on generating simple and straightforward arithmetic word problems, usually centered
on addition or subtraction, with scenarios drawn from everyday life for easy understanding. The
problems and solutions are very concise, typically containing only key information without extra
explanations or reasoning steps. This approach is suitable for foundational arithmetic instruction or
quick practice, emphasizing the calculation itself rather than the problem-solving process.

Training for Agent 4 in Interaction 1

Prameter Log for Agent 4: YYYY-MM-DD 22:36:24,768 - log.logger_utils - INFO
temperature: 0.5298405602481979,
top_p: 0.7372076916536928,
frequency_penalty: 0.02248299928407254,
presence_penalty: 0.049040988666425915,
max_tokens: 1746

Clue Log for Agent 4: YYYY-MM-DD 22:36:37,855 - log.logger_utils - INFO
Create a word problem involving everyday scenarios that require basic arithmetic operations
to solve. The scenario should include quantities related to common activities such as shopping,
collecting items, or completing tasks over a period of time. Ensure the question asks for a
total count based on additions and potential subtractions, utilizing numbers that are simple
and relatable while encouraging mathematical reasoning in interpreting the context provided.

Answer by Agent 4: YYYY-MM-DD 22:36:41,333 - log.logger_utils - INFO
To find out how many bags of cans she had altogether, we only need to focus on the bags of
cans.
1. Start with the number of bags of cans Tiffany had on Monday: 3 bags.
2. Add the number of bags of cans she found on Tuesday: 7 bags.
Now, calculate the total number of bags of cans:

3 bags (Monday) + 7 bags (Tuesday) = 10 bags of cans

Therefore, Tiffany had 10 bags of cans altogether.
(Note: The bags of bottles are not included in the total for cans.)

Agent 4’s clues emphasize problem generation that incorporates real-life scenarios, encouraging
mathematical reasoning and the filtering of relevant information. Its answers are usually broken down
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into steps, highlighting the problem-solving approach and information extraction, but do not directly
provide the final answer, focusing more on guiding the Agent to think independently. The overall
style leans towards instructional guidance, helping the Agent understand the problem and develop
independent problem-solving skills.

Training for Agent 5 in Interation 1

Prameter Log for Agent 5: YYYY-MM-DD 22:36:41,435 - log.logger_utils - INFO
temperature: 0.3603354498081722,
top_p: 0.8427861799350946,
frequency_penalty: 0.0572741656361528,
presence_penalty: -0.124744427417488,
max_tokens: 1736

Clue Log for Agent 5: YYYY-MM-DD 22:36:53,728 - log.logger_utils - INFO
Create a problem-solving question that involves basic arithmetic operations such as addition,
subtraction, multiplication, or division within various contexts. The scenarios should include
everyday situations involving quantities of objects or items to be calculated. Make sure the
questions require an understanding of how to combine different amounts and solve for totals
or differences based on the information provided in each scenario.

Answer by Agent 5: YYYY-MM-DD 22:37:00,748 - log.logger_utils - INFO
To solve the problem, we need to focus only on the bags of cans, as the question specifically
asks for the total number of bags of cans Tiffany had.
1. On Monday, Tiffany had 3 bags of cans.
2. On Tuesday, she found 7 more bags of cans.
Now, we can add the number of bags of cans she had on Monday to the number she found on
Tuesday:

Total bags of cans = Bags on Monday + Bags found on Tuesday
Substituting the values:

Total bags of cans = 3 + 7

Now, we perform the addition:

Total bags of cans = 10

Thus, Tiffany had a total of 10 bags of cans altogether.

Agent 5’s clues cover a variety of operations, including addition, subtraction, multiplication, and
division, with a strong emphasis on information integration and analytical skills. Its solutions are
very detailed, systematically presenting the problem-solving process step by step, including formulas,
substitution, calculation, and conclusion, with formal and well-organized language.

A.5.2 EVALUATING EXAMPLES

This section systematically evaluates the performance of the agent during a specific task iteration. The
evaluation process adopts a structured scoring system, conducting detailed analysis and scoring across
three core dimensions: logic, ingenuity, and completeness, ultimately resulting in a comprehensive
total score.

Evaluating for Agent 1 in Interation 1

Evalauation result: YYYY-MM-DD 22:37:10,792 - log.logger_utils - INFO

Logic (0 - 100):
"The solution follows a clear logical structure. It begins with understanding the question and
identifying key data points, followed by performing the correct mathematical operations to
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arrive at the answer. The steps are clearly articulated, ensuring that the reasoning is easy to
follow."
(Score: 90)

Ingenuity (0 - 100):
"While the solution is logical and methodical, it lacks any innovative or creative approaches to
solving the problem. It simply adheres to standard arithmetic operations without introducing
any unique methods or insights."
(Score: 70)

Completeness (0 - 100):
"The answer comprehensively addresses all parts of the question, including reading the
question, identifying numerical data, performing calculations, and verifying the final result.
However, it could benefit from a brief summary reiterating the significance of reaching this
total within the context."
(Score: 85)

Total Score (0 - 100): (Score: 82)

Specifically, the evaluator first reviews the agent’s solution process to determine whether it follows
clear logical steps, including understanding the problem, extracting key data points, and performing
correct mathematical calculations; based on this, a score is given for the logic dimension. Next, the
evaluator examines whether the agent demonstrates unique or innovative approaches in problem-
solving, or simply relies on conventional methods, and assigns a score for ingenuity accordingly.
Finally, the evaluator checks whether the answer fully addresses all aspects of the problem, including
data identification, calculation, and result verification, as well as whether the significance of the
result is summarized, thus determining the completeness score. Each dimension is accompanied by a
brief written assessment highlighting strengths and weaknesses, and a comprehensive total score is
calculated based on an overall consideration. This evaluation method provides a holistic reflection of
the agent’s problem-solving performance and offers concrete references for subsequent optimization
and improvement.

Evaluating for Agent 2 in Interaction 1

Evalauation result: YYYY-MM-DD 22:37:19,822 - log.logger_utils - INFO

Logic (0 - 100):
"The answer correctly identifies the number of bags of cans Tiffany had by logically breaking
down the information provided. It accurately sums the bags from Monday and Tuesday
without including irrelevant details about bottles."
(Score: 95)

Ingenuity (0 - 100):
"The approach is straightforward and effective, but it does not demonstrate any creative or
innovative problem-solving techniques. The solution follows a standard arithmetic process
without additional insights."
(Score: 70)

Completeness (0 - 100):
"The answer addresses the question fully by providing a clear calculation and stating that
bags of bottles are not included in the total for bags of cans. However, it could have briefly
summarized why only cans were considered to enhance clarity."
(Score: 85)

Total Score (0 - 100): (Score: 83)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Evaluating for Agent 3 in Interation 1

Evalauation result: YYYY-MM-DD 22:37:27,859 - log.logger_utils - INFO

Logic (0 - 100):
"The solution correctly identifies the relevant information and follows a clear logical flow to
arrive at the answer. The calculations are straightforward and accurate."
(Score: 90)

Ingenuity (0 - 100):
"The solution employs basic arithmetic to solve a simple problem. While it is effective, there
is little creativity or innovation in the approach."
(Score: 60)

Completeness (0 - 100):
"The answer thoroughly addresses the problem, providing all necessary calculations and
arriving at a final total. However, it could be enhanced by including a brief summary of the
given information."
(Score: 85)

Total Score (0 - 100): (Score: 78)

Evaluating for Agent 4 in Interation 1

Evalauation result: YYYY-MM-DD 22:37:37,127 - log.logger_utils - INFO

Logic (0 - 100):
"The reasoning presented in the answer is clear and follows a logical sequence. It identifies
the relevant information (the number of bags of cans) and correctly excludes irrelevant
information (the bags of bottles). The calculation is straightforward and accurate."
(Score: 90)

Ingenuity (0 - 100):
"The answer demonstrates a basic understanding of arithmetic and problem-solving. However,
it lacks creative or innovative approaches to the problem, as it simply applies basic addition
without any additional insights or unique methods."
(Score: 50)

Completeness (0 - 100):
"The answer provides a complete solution to the problem by addressing all necessary steps to
arrive at the final count of bags of cans. It states clearly what is included in the count and
what is not, making it easy to follow."
(Score: 90)

Total Score (0 - 100): (Score: 76)

Evaluating for Agent 5 in Interation 1

Evalauation result: YYYY-MM-DD 22:37:37,229 - log.logger_utils - INFO

Logic (0 - 100):
"The solution follows a clear and logical sequence of steps to arrive at the answer. It correctly
identifies the relevant information, uses appropriate arithmetic, and clearly states the final
result."
(Score: 95)
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Ingenuity (0 - 100):
"The approach is straightforward and relies on basic arithmetic, which does not showcase
high levels of creativity or innovative problem-solving. However, it effectively solves the
problem without unnecessary complexity."
(Score: 70)

Completeness (0 - 100):
"The answer provides a complete solution by including all necessary calculations and expla-
nations. It explicitly states the initial quantities, performs the addition, and presents the final
answer clearly."
(Score: 90)

Total Score (0 - 100): (Score: 85)

A.5.3 OPTIMIZING EXAMPLES

This section illustrates the process of parameter updating during a particular iteration. Specifically,
the system first ranks the agents participating in the current round of tasks and selects the top three
performers. Next, the system updates the parameters of a certain agent (usually one that performed
well or needs improvement). The parameter update involves adjusting key hyperparameters such as
temperature, top_p, frequency_penalty, and presence_penalty, all of which directly affect the diversity,
creativity, and accuracy of the agent’s generated responses. The system records the specific values of
these parameters before and after the update, and provides a task clue to clarify the type of problem
the agent needs to solve and any important considerations.

Ranking for Iteration 1

Ranking: YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO

Top three results from message processing LLM:
"First Place": "2",
"Second Place": "5",
"Third Place": "1"

Updating for Agent in Iteration 1

Before Updating: YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO
Parameter:
temperature=0.9193923355128871,
top_p=0.9027935433165666,
frequency_penalty=1.8091973063219,
presence_penalty=-1.7443228132190376
Clue:
You are given various scenarios involving numerical problems related to quantities, collections,
and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Pay attention to details such as initial amounts, changes over time or
circumstances (e.g., additions or subtractions), and specific requests regarding total counts.
Use basic mathematical reasoning and calculations when determining your answers.

After Updating: YYYY-MM-DD 22:38:02,220 - log.logger_utils - INFO
Parameter:
temperature=0.41004817918398145,
top_p=0.9247874518938444,
frequency_penalty=-0.0035787094690344773,
presence_penalty=0.025675460113628396
Clue:
You are presented with various scenarios that involve numerical problems related to quantities
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and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Start by carefully reading each question to understand what is being
asked. Identify all relevant numerical data and quantities mentioned. Determine which
mathematical operations (addition, subtraction, multiplication, division) are needed based
on keywords or phrases that indicate relationships between numbers. Perform calculations
step-by-step, keeping track of intermediate results if necessary, and double-check your final
answer against the context of the problem to ensure it makes sense. Pay attention to details
such as initial amounts, changes over time, and specific requests regarding total counts, using
basic mathematical reasoning and calculations to determine your answers.

This entire process embodies an automated “evaluation–selection–fine-tuning–re-evaluation” opti-
mization loop, aiming to continuously improve the agent’s performance on specific types of problems
through iterative trial and adjustment.
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