Under review as a conference paper at ICLR 2026

AGENT-GWOQO: COLLABORATIVE AGENTS FOR DY-
NAMIC PROMPT OPTIMIZATION IN LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
natural language understanding and generation, yet their performance in complex
reasoning tasks remains limited. A central challenge lies in their heavy reliance on
manually designed static prompts, which are costly to engineer, lack flexibility, and
often fail to generalize across diverse tasks. In this work, we propose Agent-GWO,
a dynamic prompt optimization framework that leverages collaboration among
multiple LLM-based agents and the Grey Wolf Optimizer (GWO). Instead of fine-
tuning model parameters, Agent-GWO enhances reasoning by iteratively refining
task-specific prompts through cooperative optimization. Each agent is modeled
as a “wolf,” guided by its hyperparameters and reasoning template. Through
GWO’s hierarchical leader—follower mechanism, top-performing leader agents
(o, B, and 0) guide the evolution of other agents, enabling the population to
converge toward robust and effective reasoning strategies. Extensive experiments
across mathematical reasoning, hybrid reasoning, and domain-specific applications
(e.g., social sciences, medical diagnostics, and decision support) demonstrate
the effectiveness of our approach. For example, on GPT-4.1-mini, Agent-GWO
improves GSM8K accuracy by 8.7% (from 88.2% to 96.9%) and MMLU accuracy
by 12.9% (from 66.9% to 79.8%).

1 INTRODUCTION

In recent years, LLMs (Vaswani et al., 2017 |Devlin et al.| 2019; Brown et al.,2020; |[Hadi et al., 2023}
Achiam et al.,|2023)) have achieved remarkable advancements in natural language understanding and
generation. These models demonstrate broad application potential across diverse domains, including
social sciences, humanities, healthcare, and business decision-making (Bommasani et al., 2021}
Singhal et al., 2023} [Kasneci et al.| 2023 |Chui et al.| 2023). While mainstream LLMs excel in
complex tasks such as task decomposition, behavior planning, and code generation, they encounter
significant challenges in reasoning-based tasks. These challenges include the lack of effective
analytical methods for domain-specific knowledge and poor logical consistency in complex reasoning
scenarios (Raffel et al.| [2020; [Bubeck et al.,[2023; [Lu et al., [2023; [Hadi et al., 2023)).

To enhance the reasoning capabilities of LLMs in complex tasks, researchers have pursued multidi-
mensional explorations in model architecture, data scale, and reasoning strategies. At the architectural
level, scaling model size and incorporating sophisticated attention mechanisms, such as variants of the
Transformer (Vaswani et al.,|2017), have bolstered semantic representation capabilities. On the data
front, pre-training on large-scale multimodal datasets and fine-tuning with domain-specific corpora
have significantly improved model performance in specialized tasks (Bommasani et al.,[2021). During
inference, Chain-of-Thought (CoT) reasoning and self-correction mechanisms improve reasoning
accuracy in complex scenarios (Wei et al.| [2022). However, it is essential to acknowledge that LLMs
still encounter substantial challenges in complex reasoning tasks, which often necessitate multi-step
logical analysis and the integration of diverse information, such as solving intricate mathematical
problems or handling ambiguous scenarios. Furthermore, approaches such as CoT and self-refinement
strategies rely heavily on manually crafted prompts, lacking robustness and frequently leading to
logical errors or hallucinations (Wei et al., [2022; [Zhang et al., |2025). In addition, scaling up model

Under review as a conference paper at ICLR 2026

size to improve performance results in increased computational costs, limiting the applicability of
LLMs in resource-constrained environments (Dodge et al., [2020; [Zheng et al., [2025]).

Inspired by swarm intelligence optimization, we propose a novel LLM-driven multi-agent collabo-
rative optimization framework based on the Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014) to
optimize a population of LLM agents iteratively, thereby enhancing their reasoning capabilities in
complex tasks. GWO demonstrates strong performance through its simplicity, rapid convergence, and
minimal hyperparameter requirements, enabling its seamless integration into various optimization
processes, such as reasoning chain design, behavior strategy planning, and hyperparameter selection.

As illustrated in Figure[I] our frame-

work abstracts each LLM agent as a WOLF > A
" " sl . . () Total eggs laid per day
wolf" within a population, leveraging Q: “Janet’s duck lays 16 eggs a day. H Step 1 “lnetsdcklays 16 eggs each day’
s | N s She cats 3, uses 4 for baking, and Eags caten and used for bakin
GWO'’s hierarchical hunting mecha- o 3o ot R i

each day?” Q l‘ Step 2 “She uses 4 eggs to bake for her friends"
& ™ “Total eggs used (eaten + baking) = 3 + 4 = 7 eggs”

nism to introduce a layered collab-
orative optimization strategy. Can- >T (Temperature): Contros andomness. B2 S%% EE e oo
didate solutions are defined by the @.{:’;ﬂ”:’ e oy, Reces epetion

agent’s hyperparameter confl guration \ >E (Presence Penalty): Encourages new content

and reasoning prompt template. The @

algorithm begins with a diverse ini- ‘&
tialization of the agent population. In

each optimization iteration, generative Figure 1: GWO abstracts each LLM agent as a "wolf" which
agents execute CoT reasoning tasks is characterized by hyperparameters & reasoning prompt.
based on their configurations, while These two guide the behavior of the LLMs during the opti-
evaluative agents quantitatively score mization process.

their outputs across three dimensions:

logical consistency, creativity, and rea-

soning completeness. Based on fitness rankings, the top three leader agents—denoted as «, 3, and
d0—are dynamically selected. The remaining agents, guided by GWO’s hierarchical update mecha-
nism, adaptively optimize by incorporating features from the leaders.

Earnings from selling eggs
Step 4 "EAch eggissold for $250:9 eggs X §2= $18°

_ " »M (Max Tokens): Limits output length [& e
Final Answer

>
L “Janet makes $18 each day at the market ™ 7

This collaborative process iterates over multiple rounds, effectively enabling a global search of
reasoning strategies and parameter spaces, ultimately converging to the optimal agent configuration.
This approach significantly enhances LLM reasoning performance in complex task scenarios. To
validate the effectiveness of our framework, we conduct extensive experiments on various tasks,
including social science question answering, medical diagnostics, and business decision support.

Our main contributions are threefold:

* We find that dynamically optimizing prompts during training enables LLMs to develop more
effective, task-specific strategies. Based on this, we propose a parameter-agnostic adaptation
paradigm that avoids fine-tuning or adding components, thereby reducing both training and
inference costs.

* By combining multi-agent collaboration with the hierarchical optimization of the Grey Wolf
Optimizer, we introduce an iterative leader—agent optimization mechanism to enhance the
robustness and predictability of multi-agent collaboration.

» Extensive experiments show that our method consistently surpasses strong baselines, deliv-
ering superior performance with low computational overhead.

2 RELATED WORK

2.1 PROMPT ENGINEERING AND STATIC CHAIN-OF-THOUGHT METHODS

Static prompting remains a foundational technique for adapting LLMs in zero- and few-shot scenarios,
though it relies heavily on manually crafted exemplars (Brown et al., 2020). Chain-of-Thought (CoT)
prompting (Wei et al.,|2022) introduced stepwise reasoning demonstrations, inspiring variants such
as self-consistency (Wang et al.,|2022a) and least-to-most decomposition (Zhou et al., 2022). Other
extensions include Self-Ask with Search (Press et al., 2022), Program-of-Thoughts (PoT), which
generates executable code traces (Chen et al.,[2022), and Graph-of-Thoughts (GoT), which models
reasoning as dependency graphs (Liu et al., [2023).

Under review as a conference paper at ICLR 2026

Despite these advances, static methods face critical limitations: they require human-designed exem-
plars for each task (Zhang et al.,2022), remain highly sensitive to prompt order and phrasing (Lu
et al.||2022)), and incur high inference costs due to lengthy reasoning chains (Zhou et al., [2022). More
importantly, once exemplars and templates are fixed, the reasoning process becomes static, making it
difficult to adapt dynamically to new contexts or evolving tasks.

2.2 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Beyond single-agent prompting, researchers have explored collaborative reasoning via Multi-Agent
Systems (MAS), which originate from Distributed Artificial Intelligence and emphasize autonomy,
cooperation, and coordination (Wooldridge & Jennings}[1995} |Ferber & Weiss||1999)). The integration
of LLMs (Naveed et al., 2023} [Kumar, 2024)) into MAS has significantly expanded their capacity
in natural language-based planning, programming, and reasoning (Xi et al.| 2025). Representative
frameworks such as AutoGen (Wu et al.l 2023) and Chain of Agents (Zhang et al., 2024b) exemplify
this trend by enabling dynamic task decomposition and agent collaboration.

Recent advances include modular LLM-agent architectures (Liu et al., [2025), multi-round debates
for collective reasoning (Du et al.,[2023)), and communication protocols based on DCOP (Fioretto
et al., 2018)), FIPA-ACL (Fipa, [2002), or attention mechanisms (Jiang & Lul 2018)). Applications
span social simulation in Smallville (Park et al.| 2023)), recommender systems (Zhang et al., 2024a)),
intelligent manufacturing (Lim et al.}|2024), and macroeconomic modeling (Li et al.| [2023]).

However, existing multi-agent reasoning approaches typically follow a one-off collaboration paradigm,
where agents jointly generate solutions but lack iterative refinement mechanisms. In contrast, our
work is the first to combine multi-agent collaboration with an iterative leader—agent refinement
mechanism, where leaders guide and update agents across multiple rounds. This iterative paradigm
enables dynamic optimization of reasoning paths and collaboration strategies, distinguishing our
framework from both static prompting methods (CoT, ToT, GoT) and conventional MAS-based
reasoning.

2.3 SWARM INTELLIGENCE OPTIMIZATION

Swarm Intelligence Algorithms (SIA) address complex optimization by simulating collective be-
haviors |Chakraborty & Kar| (2017). Foundational methods include Particle Swarm Optimization
(PSO) |Kennedy & Eberhart| (1995) and Ant Colony Optimization (ACO) |Dorigo|(1992), with recent
extensions integrating SIA into DL and LLMs|Wang et al.|(2018)); |Shriyan et al.. Among them, Grey
Wolf Optimizer (GWO) (Mirjalili et al.l 2014) is notable for efficiency and simplicity, with enhanced
variants addressing complex search spaces Meidani et al.| (2022); |[Zhang et al.| (2021). GWO has
been applied in engineering, NLP, and vision tasks, and in our work, we extend its hierarchical
optimization to multi-agent collaboration, enabling iterative refinement in LLM-based reasoning.

For a comprehensive review, please refer to Appendix [A.T]

3 METHOD

3.1 THEORETICAL BACKGROUND AND PROBLEM FORMULATION

Grey Wolf Optimizer. GWO is a population-based metaheuristic inspired by the social hierarchy
and hunting behavior of grey wolves. Designed for solving continuous optimization problems,
GWO is characterized by its simplicity and minimal reliance on hyperparameters. In this algorithm,
a population of N wolves is maintained, where each wolf represents a candidate solution X; =
(z},22,...,2P) in a D-dimensional search space. The objective is to optimize a target function
f(X). GWO mimics the hierarchical structure of grey wolves, dividing the population into four
roles: « (leader), 5 (second-in-command), é (subordinate), and w (follower). During the optimization
process, the a, 3, and § wolves correspond to the top three solutions and are responsible for guiding

the remaining w wolves toward promising regions in the search space.

The core mechanism of the GWO is inspired by the encircling behavior exhibited during hunting. In
each iteration, wolves estimate their distance from the prey (i.e., the current best solution) as D(¢) =

Under review as a conference paper at ICLR 2026

/ Rank Hierarchy in GWO \

ﬁa
P-4
—— Y
DO

ndom Distribution in Search SpaN ﬁnvergence Toward Opnmal Region /Appmaching the Optimal Sulutinn\
B w ci ¢ IR

u.‘, N
§
U, :
5

Sgent Wolf o

tes
P AgertWolfe;
- olf s
rging near the Optimal — Alpha (), Beta (¢, Dela)
I Solution, The closest
toward the optimal area. inal solution.

Figure 2: Illustration of original GWO algorithm.

|C(t) ® X, (t) — X;(t)|, where X,,(¢) denotes the position of the prey at iteration ¢, C(t) = 2ry(t),
and r1(t) € [0,1]? is a uniformly distributed random vector.

Based on D(t), the position of each wolf is updated by X; (¢t + 1) = X,,(¢) — A(t) © D(t), where
A(t) =2a(t) ©ra(t) —a(t) and ra(¢) € [0, 1]7 is another random vector. The parameter decreases
linearly with iterations as a(t) =2 — 2 - Tt where T,,,.« 1S the maximum number of iterations.
This design allows the algorithm to balance exploratlon in early stages and exploitation in later stages.

Each w wolf also updates its position by referring to the three leading wolves «, (3, and . The
distances are computed as D (t) = |C;(t) © X;(t) — X;(t)], j € {a, 3,6}, and the corresponding

candidate updates are XZ(-j) (t+1) =X;(t) — A;(t) ©D,(t). Finally, the new position of wolf ¢ is
obtained by averaging the three guided positions:

(@) (8) (6)
X;(t+1) = X (t4+1)+X; ?Et—&-l)-&-Xi (t+1) o

By integrating leader-based guidance with stochastic exploration, the GWO effectively achieves a
balance between global search and local exploitation. As iterations progress, the decreasing parameter
a(t) ensures a smooth transition from exploration to exploitation, enhancing convergence toward the
global optimum.

Agent Structure and Definition. Suppose there are n agents. The j-th agent, denoted as
Agent;, consists of a large language model LLM; and a prompt template prompt,, i.e., Agent; =
{LLM;, prompt, }. The language model LLM; contains a shared model parameter set @ and an
agent-specific hyperparameter set n; = {1},p;, Fj, E;, M;}, which represent temperature, top-p
threshold, frequency penalty, presence penalty, and maximum token length, respectively. Therefore,
LLM; = {n;,6}, and Agent; = {{n;, 0} , prompt; }.

Hyperparameter Sampling. To ensure diversity and stability in agent behavior, we design a hy-
perparameter sampling strategy for the set 17; = {t;,p;, fj,e;, m;}, where a clipping function
clip(z, [a, b]) = max(a, min(z, b)) constrains sampled values within valid ranges, thereby maintain-
ing controlled and consistent generation. Specifically, the temperature ¢; and the top-p threshold
p; are independently drawn from normal distributions N (¢, o7) and N (p,, 012)), then clipped to
intervals [a;, b;] and [ay, by], respectively. These parameters regulate the generation distribution:
higher values enhance creativity and diversity, while lower values promote predictability and stability.
The frequency penalty f;, sampled from Ny, O’J%) and clipped to [ay, by, mitigates repetitiveness
by penalizing tokens proportionally to their prior frequency. The presence penalty e;, sampled
from N (f1e, 02) and clipped to [a., b.], encourages novelty by uniformly penalizing any previously
generated token, thus fostering the introduction of new words or concepts. Finally, the maximum
token length m; is set to a fixed constant c,, for tasks requiring predetermined length, while for
adaptive-length tasks it is uniformly drawn from a discrete set M, i.e., m; ~ Uniform(M).

This sampling approach uses normal or uniform distributions to introduce controlled variability, while
clipping ensures hyperparameters remain within reasonable bounds, optimizing creativity, stability,
and content quality.

Problem Formulation. We denote the reasoning task dataset as D = {q1, 2, . . . , g }, Where each
element q; represents a specific question. The dataset consists of /N question samples in total. During

Under review as a conference paper at ICLR 2026

RANKING

Agen Agent
Info Processing (Ranking) Update
) ‘% :) (_tar
Agent 2 58 [a Wolf Kept
a; . a Wolf New Agent 1
{ é’ Seeresd 10=N@ Wolp) Clueg + Parama | L J 1k
Wolj
é " 7@ z'm,g + ‘:’mfmp ',[B wolf J‘—K'LW[NEW Agent 2]
Agent 3 &8
:) & wolf | e L
B sa oo DD i 5 Wolf { vew Agent 3]
3 X Learn ; % Z{;
Agent 3 Sl Answer 3 @, oo % % % L] ”é”f —>d®b- New Agent 4
1+ Clues + Param3

a Wolf _ Wolf & Wolf o Wolj
w1 Wolf - ~
eos

0 R 4 Q = "73
Agent N =2) ' i Wolf g New Agent
1+ ClueN'+ Param¥ Ak Cluew + Paramor % |

Agent a
Agent p
Agent &

'
genp Yo
amp [.-
Agent a /

Normal Distribution
Agent

i | Probabitity Sampling

Figure 3: The overall GWO framework operates by having each agent process a dataset, clue, and
parameters to produce outputs, which are then scored. Only the top-3 agents («, (3, and J) are
differentiated, while the rest (i.e., w) are updated using the clue and parameters from the previous
round. This iterative ranking and update process continues until termination, after which the final
agent is set as the top-ranked « from the last iteration. Note: The left-bottom subfigure illustrates
the learning process of each agent at each iteration and the right-bottom subfigure illustrates the
optimization process.

the reasoning process, given any question ¢ € D, a specific agent, denoted as Agent,, processes the
question and outputs two components: first, a detailed chain of thought (denoted as CoT}), which
illustrates the step-by-step reasoning process taken by the agent; and second, a final answer (denoted
as Answer;) that the agent derives based on the chain of thought. This reasoning process can be
formally expressed as a function:

f(Agent;,) = (CoT}, Answer;), q€D 2)

3.2 MULTI-AGENT GREY WOLF OPTIMIZER FRAMEWORK

The GWO algorithm, outlined in Algorithm [2] and illustrated in Figure [3] adapts GWO to opti-
mize LLM configurations by modeling agents as wolves in a population. Each agent (Agentj =
(n;, promptj) represents a candidate solution with a unique set of hyperparameters and a prompt
template. Figure[2]elucidates the methodology for addressing continuous optimization challenges
through the emulation of grey wolves’ social hierarchy and hunting behaviors.

Initialization. The algorithm initializes a population A of n agents. For each agent Agent;;, hyperpa-
rameters 7); are randomly sampled from predefined ranges (e.g., temperature € [0, 1], top-p € [0, 1])
using a normal distribution. Similarly, the prompt prompt; is sampled from a set of predefined CoT
prompt templates or generated via a template generation function. This diverse initialization ensures
broad exploration of the search space.

Optimization Loop. The optimization phase iterates K times, with each iteration evaluating and
updating the agent population. For each agent Agent., a question ¢ is sampled from D, and the
LLM generates a CoT trace and answer using the agent’s configuration. The fitness of the answer is
computed using a carefully designed evaluation function, which assesses the response based on three

Under review as a conference paper at ICLR 2026

crucial dimensions: the logical consistency of the reasoning process, the ingenuity of the reasoning
approach, and the comprehensiveness of the reasoning content. This multi-dimensional evaluation
ensures a thorough and accurate assessment of the answer’s quality. The top three agents, denoted «,
B, and 9, are selected based on their fitness scores, representing the best, second-best, and third-best
solutions, respectively.

Non-elite agents (A \ {«, 3,0}) are updated to converge toward the top performers. For each
hyperparameter njk) in agent Agent;, new values are sampled from normal distributions centered

at the top agents: X, ~ /\/'(77,(416)7 0?), forr € {a, (3,0}, and combined as a weighted average:
77(.'“) = wo X + wgXg + ws X, with weights satisfying w, > wg > ws and wy, + wg + ws = 1.
Tjhis prioritizes the influence of the best- performing agent (o) while maintaining diversity. The
prompt is adapted by a function PROMPTADAPTATION(-), which blends features of the top prompts
(e.g., via template mixing or keyword imitation). All hyperparameters are clipped to remain within
valid bounds. After K iterations, the configuration of the « agent, (14, prompt,,), is returned as the
optimal solution (n*, prompt*).

Overall framework. The integration of the GWO with LLMs in our framework is achieved through
the coordinated interaction of four specialized agents. The process begins with GENERATION(-),
which queries the LLM using specific configurations composed of hyperparameters (7;) and prompt
templates (promptj). These agents are responsible for producing step-by-step CoT reasoning traces
and final answers to the given questions. Once the responses are generated, they are passed to
EVALUATION(-), which assesses the quality of the CoT and answers across three dimensions: logical
consistency, creativity, and completeness. The resulting fitness scores are then collected and processed
by RANKING(+), which sorts all candidate solutions and identifies the top three performing agents—c,
B, and d—to serve as leaders in the GWO hierarchy. These rankings guide the subsequent optimization
phase. Finally, UPDATE(+) utilizes the evaluation feedback and ranking outcomes to adjust the prompt
templates and potentially refine the hyperparameters for the next generation. This iterative process
continues over multiple rounds, enabling the system to converge toward more effective prompt
generation strategies and reasoning behaviors, while maintaining the core dynamics of the GWO
algorithm within the LLM setting.

4 EXPERIMENTS

In this section, we conduct a systematic evaluation of the proposed GWO-based multi-agent col-
laboration framework to verify its effectiveness on complex reasoning tasks. Our evaluation covers
the reasoning performance (Sec4.2)), adaptability performance to CoT (Sec[4.3)), and ablation study

(Sec[d4).

4.1 EXPERIMENTAL SETUP

To evaluate the proposed GWO framework on complex reasoning tasks, we use datasets spanning
two categories: mathematical reasoning (GSM8K, MATH, SVAMP, MULTIARITH, ASDIV,
MATH_MIX) and hybrid reasoning (AQUA, MMLU, BBH, DATE, CLUTRR). These benchmarks
cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, testing both numerical
computation and qualitative inference. We assess performance across diverse models: Qwen2.5-
Coder-7B-Instruct, optimized for code and math; GPT-40-mini, a lightweight multimodal model;
GPT-4.1-mini and GPT-4.1-nano, efficiency-oriented GPT-4.1 variants; and Gemma-3-12b-it, a 12B
instruction-tuned model strong in math and logic. This diversity enables robust evaluation under
heterogeneous settings. Unless noted otherwise, experiments use the default GWO setup with n = 5
agents and K = 10 iterations.

4.2 PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed GWO framework, we conducted extensive
experiments on several mainstream LLMs across diverse benchmarks, including mathemat-
ical and hybrid reasoning tasks. The results, as shown in Tables [I] and [2] demonstrate
that the GWO framework significantly improves reasoning accuracy across different models.

6

Under review as a conference paper at ICLR 2026

Table 1: Performance evaluation of GWO on math Table 2: Performance evaluation of GWO on hy-

reasoning task. brid reasoning datasets.
Model Math Reasoning Tasks Model [General | Multitask | Temporal [Logical | Math Mix
GSMSK | MATH | SVAMP | MultiArith | ASDiv | AQUA | MMLU | BBH | Date | CLUTRR | MATH_MIX

GPT-40-mini GPT-4o0-mini

CoT 85.3% 78.1% 83.9% 98.7% 91.1% | 65.3% CoT 62.8% 66.3% 51.7% 66.1% 82.5%

CoT-SC/n=5 90.2% 78.6% 85.8% 99.1% 92.8% | 70.1% CoT-SC/n=5 67.6% 68.9% 54.7% 72.6% 85.0%

GWO 94.9% | 792% | 92.3% 99.3% 94.5% | 75.9% GWO 73.3% 70.9% 76.3% 74.4% 87.5%
GPT-4.1-mini GPT-4.1-mini

CoT 88.2% 79.8% 86.1% 99.0% 91.7% | 67.5% CoT 66.9% 69.5% 54.9% 71.2% 82.5%

CoT-SC/n=5 91.8% 83.2% 87.9% 99.4% 93.2% | 71.9% CoT-SC/n=5 71.2% 72.6% 57.9% 76.5% 85.0%

GWO 96.9% 834% | 92.7% 99.6% 94.8% | 78.5% GWO 78.3% 76.7% 78.7% 78.6% 92.0%
GPT-4.1-nano GPT-4.1-nano

CoT 83.8% 74.3% 81.1% 98.8% 89.6% | 64.7% CoT 61.3% 65.7% 52.1% 64.2% 80.0%

CoT-SC/n=5 87.7% 77.4% 83.1% 99.2% 91.2% | 68.5% CoT-SC/n=5 65.8% 68.2% 55.6% 69.3% 83.0%

GWO 92.5% 794% | 91.8% 99.3% 93.1% | 76.4% GWO 73.5% 69.1% 77.1% 71.6% 88.0%

Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-7B-Instruct

CoT 77.3% 69.7% 82.1% 92.1% 86.4% | 60.4% CoT 55.1% 47.2% 31.1% 20.2% 73.5%

CoT-SC/n=5 80.1% 71.2% 84.2% 94.9% 88.7% | 62.1% CoT-SC/n=5 56.1% 49.5% 32.9% 21.1% 75.5%

GWO 89.1% | 721% | 90.1% 97.1% 91.2% | 62.3% GWO 58.3% 53.9% 37.1% 27.8% 83.5%
Gemma-3-12b-it Gemma-3-12b-it

CoT 83.5% 76.5% 79.3% 90.2% 88.1% | 69.1% CoT 68.3% 64.1% 77.9% 49.3% 78.0%

CoT-SC/n=5 85.8% 78.7% 81.1% 93.3% 90.3% | 71.4% CoT-SC/n=5 70.4% 66.7% 80.5% 52.1% 81.5%

GWO 92.8% | 80.1% | 90.9% 95.9% 93.7% | 78.5% GWO 72.7% 67.4% 84.5% 52.9% 88.0%

Table 3: Accuracy on GSM8K comparing GPT-4

PT-40-mini. . .
and GPT-40-mini In mathematical reasoning tasks, GWO outperforms

[o basclne methods CoT and COTSC (1 = 5)on mul-
CoT (Ranalds et al.[3025] GPT4 945 tiple models. For instance, on GPT-4.1-mini, GWO
Mathpropte (s et a|2073] GPT4 556 achieves 96.9% on GSM8K (compared to CoT’s
342?:351:1}:‘:‘&?535;3;; T | apta %3 88.2% and CoT-SC’s 91.8%) and 92.7% on SVAMP
GO/ 6R(TT GRS oY OGS (compared to CoT’s 86.1% and CoT-SC’s 87.9%); on

Qwen2.5-Coder-7B-Instruct, GWO reaches 89.1%,

72.1%, and 62.3% on GSM8K, MATH, and AQUA,
respectively, outperforming CoT (77.3%, 69.7%, 60.4%) and CoT-SC (80.1%, 71.2%, 62.1%); on
Gemma-3-12b-it, GWO reaches 92.8% on GSMS8K and 80.1% on MATH, also outperforming the
baseline methods.

In knowledge and hybrid reasoning tasks, GWO
Table 4: Accuracy (%) on GSM8K and MATH demonstrates strong generalization ability. For in-
using Qwen2.5-Coder-7B. stance, on GPT-4.1-mini, GWO achieves accura-
cies of 78.3%, 76.7%, and 78.7% on MMLU,

Method | Base | GSMSK | MATH . A

oMi C e ailpon] Qwenzs | 841 | 723 BBH, and DATE, respectively—outperforming CoT

CODEIDEE (L1 L P07} gweng,g 87 | 721 (66.9%, 69.5%, 54.9%) and CoT-SC (71.2%, 72.6%,
u (L1 et al.| 1 wenz.. . E

CODEVOG et alB075] | Quen2s | 864 719 57.9%). On Qwen2.5-Coder-7B-Instruct, GWO also

OC-SFT-1 (L1 et al.||2025) Qwen2.5 86.7 70.9 s

Wi {Liet TP Qwen2s | 870 | 714 surpasses baselines across MMLU (58.3%), BBH

g;ﬁ;“(‘;_’ iﬁleﬁal" R gweng-g 0 | Tl (53.9%), and CLUTRR (27.8%). Similarly, on

ull) (L1etal. 5) wen?2.. . 3. . .

CoT | Qwen2s | 773 | 697 Gemma-3-12b-it, it reaches 84.5% on DATE and

ConCn=s Ryl B I 67.4% on BBH. To further assess GWO, we bench-

GWO+CoT Qwen2.5 | 897 | 728 mark it on GSM8K and MATH using Qwen2.5-

GWO/Mm=6+CoT Qwen2.5 90.6 73.8

Coder-7B-Instruct. As shown in Table 4, GWO
achieves 90.6% and 73.8%, outperforming main-
stream optimization methods. Finally, integrating GWO (n = 6) with CoT yields strong results even
when compared to GPT-4. As shown in Table[3] the combined model achieves 96.5% on GSM8K
and 81.5% on MATH, matching or exceeding GPT-4’s performance under various optimized settings.

GWO consistently improves over CoT and CoT-SC across models and tasks, showing both stronger
reasoning accuracy and better generalization. Its complementarity with CoT further underscores its
effectiveness as a lightweight yet powerful optimization strategy.

4.3 ADAPTABILITY EVALUATION

To further validate the generalization capability of the proposed GWO framework, we integrate it with
mainstream Chain-of-Thought (CoT) reasoning and evaluate its performance across a wide range of
reasoning tasks. CoT is first set as the baseline, and we then measure the improvements when GWO

Under review as a conference paper at ICLR 2026

is incorporated into CoT. Inference is conducted independently, and accuracy is computed using the
official validation sets of each benchmark.

Table 5: Evaluation of adaptability of GWO to Table 6: Evaluation of adaptability of GWO to

CoT on math reasoning task. CoT on hybrid reasoning tasks.
Model Math Reasoning Tasks Model [General | Multitask | Temporal [Logical | Math Mix
GSMSK | MATH | SVAMP | MultiArith | ASDiv | AQUA | MMLU | BBH | Date | CLUTRR | MATH_MIX
GPT-40-mini GPT-40-mini

CoT 853% | 78.1% | 83.9% 98.7% | 91.1% | 65.3% CoT 628% | 66.3% 51.7% 66.1% 82.5%

GWO/m=5+CoT | 95.1% | 799% | 924% | 99.5% | 93.8% | 76.1% GWO/m=5+CoT | 73.7% | 713% 77.1% 74.9% 85.0%

GWO/n=6 957% | 80.6% | 92.6% | 99.7% | 94.1% | 76.4% GWO/n=6 741% | 71.5% 77.8% 75.4% 87.5%

GWOm=6+CoT | 96.5% | 81.5% | 929% | 998% | 94.5% | 76.8% GWO/m=6+CoT | 749% | 722% 78.3% 75.8% 95.1%
GPT-4.1-mini GPT-4.1-mini

CoT 882% | 79.8% | 86.1% 99.0% | 91.7% | 67.5% CoT 66.9% | 69.5% 54.9% 71.2% 82.5%

GWO/m=5+CoT | 97.2% | 83.6% | 93.6% | 998% | 94.2% | 79.3% GWO/m=5+CoT | 789% | 712% 79.3% 78.8% 85.0%

GWO/n=6 97.9% | 839% | 942% | 999% | 94.5% | 719.7% GWO/n=6 79.5% | 77.8% 79.9% 79.1% 92.0%

GWO/m=6+CoT | 98.3% | 843% | 948% | 999% | 94.8% | 804% GWO/m=6+CoT | 798% | 783% 80.5% 79.5% 97.4%
GPT-4.1-nano GPT-4.1-nano

CoT 838% | 74.3% | 81.1% 98.8% | 89.6% | 64.7% CoT 61.3% | 657% 52.1% 64.2% 80.0%

GWO/n=5+CoT | 93.1% | 801% | 923% | 994% | 93.1% | 71.1% GWO/m=5+CoT | 741% | 703% 77.8% 72.3% 83.0%

GWO/n=6 938% | 80.6% | 929% | 994% | 934% | 77.6% GWO/n=6 743% | 70.8% 78.2% 72.9% 88.0%

GWOm=6+CoT | 94.2% | 81.2% | 938% | 997% | 94.0% | 782% GWO/m=6+CoT | 751% | 712% 79.3% 73.5% 93.5%

Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-7B-Instruct

CoT 77.3% | 69.7% | 82.1% 92.1% | 864% | 60.4% CoT 55.1% | 47.2% 311% 20.2% 73.5%

GWO/n=5+CoT | 89.7% | 728% | 90.6% | 97.7% | 90.5% | 62.5% GWO/m=5+CoT | 585% | 54.8% 37.7% 28.1% 75.5%

GWO/n=6 90.1% | 733% | 911% | 97.9% | 91.2% | 62.9% GWO/n=6 589% | 553% 38.3% 28.8% 83.5%

GWO/m=6+CoT | 90.6% | 738% | 91.5% | 981% | 92.0% | 63.1% GWO/m=6+CoT | 59.1% | 55.6% 39.2% 26.1% 90.2%
Gemma-3-12b-it Gemma-3-12b-it

CoT 83.5% | 76.5% | 79.3% 90.2% | 90.3% | 69.1% CoT 683% | 64.1% 77.9% 49.3% 78.0%

GWO/n=5+CoT | 934% | 80.7% | 913% | 962% | 92.1% | 79.3% GWO/m=5+CoT | 731% | 68.1% 85.3% 53.5% 81.5%

GWO/n=6 93.7% | 812% | 918% | 965% | 92.6% | 719.9% GWO/n=6 73.6% | 68.3% 85.8% 54.1% 88.0%

GWOM=6+CoT | 94.3% | 81.3% | 924% | 968% | 93.1% | 805% GWO/m=6+CoT | 742% | 68.8% 86.7% 54.4% 94.3%

Mathematical reasoning tasks. As shown in Table[5] GWO consistently boosts the accuracy of CoT
across diverse mathematical reasoning datasets, including GSM8K, MATH, SVAMP, MultiArith,
ASDiv, and AQUA. For example, on GPT-40-mini, baseline CoT achieves accuracies of 85.3%,
78.1%, and 65.3% on GSM8K, MATH, and AQUA, respectively. With GWO(n = 5)+CoT, the
scores increase to 95.1%, 79.9%, and 76.1%, and further improve to 96.5%, 81.5%, and 76.8% when
n = 6. Similar trends are observed on GPT-4.1-mini and GPT-4.1-nano, where the improvements are
even more pronounced. For instance, on GPT-4.1-mini, GSM8K accuracy rises from 88.2% (CoT) to
98.3% (GWO(n = 6)+CoT). Smaller models such as Qwen2.5-Coder-7B-Instruct and Gemma-3-
12b-it also benefit considerably: on AQUA, Gemma’s accuracy increases from 69.1% to 80.5%, while
Qwen2.5’s accuracy improves from 60.4% to 63.1% under the same setting. These results highlight
the scalability of GWO, demonstrating effectiveness across both large and small-scale models.

Hybrid reasoning tasks. Table [6| summarizes the results on general-purpose and hybrid reasoning
benchmarks, including MMLU, BBH, Temporal Reasoning (Date), CLUTRR, and MATH_MIX.
Again, GWO provides consistent and significant gains over CoT. On GPT-40-mini, baseline CoT
achieves accuracies of 62.8%, 66.3%, and 51.7% on MMLU, BBH, and Temporal Reasoning, re-
spectively. After integrating GWO(n = 6), these scores increase to 74.9%, 71.5%, and 78.3%.
Logical reasoning (CLUTRR) also benefits: GPT-4.1-mini improves from 71.2% (CoT) to 79.5%
(GWO(n = 6+CoT)). For composite mathematical reasoning (MATH_MIX), substantial improve-
ments are observed, with GPT-40-mini’s accuracy increasing from 82.5% to 95.1% and GPT-4.1-
mini’s from 82.5% to 97.4%. Even on relatively weaker models such as Qwen2.5-Coder-7B-Instruct
and Gemma-3-12b-it, GWO brings notable improvements, e.g., boosting Temporal Reasoning on
Gemma from 77.9% (CoT) to 86.7% (GWO(n = 6)).

Overall, the results clearly demonstrate that integrating GWO into CoT substantially enhances
reasoning performance across diverse datasets and model architectures. The improvements span both
mathematical and hybrid reasoning tasks, covering arithmetic, algebra, geometry, logic, temporal
reasoning, and interdisciplinary benchmarks. Furthermore, the consistent gains across models of
different sizes (from lightweight variants like GPT-4.1-nano to large-scale models like Gemma-3-
12b-it) underscore the scalability, transferability, and robustness of the GWO framework in boosting
reasoning accuracy and stability.

4.4 ABLATION STUDY

Under review as a conference paper at ICLR 2026

°

0.764 n=6 0741 0715 0778 0754

°
@

°
£

0.766 n=7 0744 0719 0781 0755

Im. n=8 o7 o7z o orse
"
o

Agent number
° <
a

Accuracy (%)

0.769 n=9 0749 0724 0786 0757

°
0

°
°

&
&

o

Mathematical Reasoning Mixed Reasoning TO analyze the Contribution Of the
-~ I e number of agents and iterations in the
= GWO framework, we conduct an ab-
s [oms| lation study based on GPT-40-mini
e across multiple datasets. We evalu-
o0 [osms. n=10 o7 o726 o o7se ate the impact of varying the number

& R of agents, with n € {5,6,7,8,9,10},
¢ on model performance. As shown in

Figure 4: Accuracy over varying number of agents on mathe- Figure Bl the accuracy across differ-

matical (right) and hybrid (left) reasoning tasks. Increasing €Nt mathematical reasoning datasets

the number of agents generally improves accuracy. (GSMBK, MATH, SVAMP, Multi-
Arith, ASDiv, and AQUA) generally
improves with the increase of the num-
ber of agents. For instance, when n = 5, the accuracy on the GSMS8K dataset is 94.9%, whereas it
improves to 97.5% when n = 10. Similarly, in the mixed reasoning datasets such as MMLU, BBH,

Date, CLUTRR, and MATH_MIX, the accuracy increases with the number of agents. For example,

on the MMLU dataset, the accuracy increases from 73.3% at n = 5 to 75.1% at n = 10. Moderate

increases yield limited, non-linear accuracy gains, requiring consideration of computational costs.

As shown in Figure[5] when the num-

ssmaK SAMP e ASDI e WML - Date o MATHMIX ber of agents is fixed at n = 5, in-

wanematin s) Mix Ressoning creasing the number of iterations from

e 100 10 to 30 consistently improves the ac-
S 9 50 curacy of GWO across both mathe-
) e matical and hybrid reasoning tasks.
e o E—=—"——— This indicates that additional itera-
- NV B w1 m s tonsallow agents to explore the solu-

tion space more thoroughly and pro-

Figure 5: Accuracy over iteration for math (left) and hybrid ~ gressively refine their reasoning strate-
(right) reasoning tasks when the number of agents is fixed to ~ gies. Figure [5] further confirms this

five. The accuracy increases with the number of iterations. trend at the dataset level, where nearly
all benchmarks exhibit monotonic or

near-monotonic improvements as the
iteration count increases, highlighting the critical role of iterative optimization in enhancing overall
performance.

Overall, both the number of agents and the number of iterations are key determinants of the effective-
ness of GWO. A larger number of agents facilitates diverse exploration by introducing heterogeneous
reasoning trajectories, while more iterations promote convergence stability and reduce variance across
runs. Nevertheless, practical deployment requires balancing these benefits against computational
cost and inference latency, in order to select an optimal configuration that achieves strong accuracy
without excessive resource consumption. This trade-off is especially relevant when scaling GWO to
larger models or real-world applications, where efficiency and responsiveness are as important as
accuracy.

5 CONCLUSION

This paper introduces a novel multi-agent collaboration framework inspired by the Grey Wolf Opti-
mizer (GWO), integrating Large Language Models (LLMs) with Multi-Agent Systems (MAS) to
tackle complex coordination and optimization challenges. Leveraging GWO’s hierarchical struc-
ture and dynamic “wolf pack” mechanism, the framework iteratively assigns roles and optimizes
parameters to train agents, achieving superior task performance. Experimental results demonstrate
the framework’s strong adaptability across tasks of varying complexity. When combined with the
Chain of Thought (CoT) method, it exhibits exceptional compositional capabilities. Furthermore,
accuracy significantly improves with increased agent numbers and iterations. By enabling more
efficient and interpretable multi-agent collaboration, the framework holds promise for advancing
Al-driven solutions in society. This framework offers a promising solution for complex reasoning
problems. Future work will focus on enhancing computational efficiency and exploring applications
in dynamic knowledge management and decision-making.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this work. The proposed Grey Wolf Optimizer (GWO)-
based multi-agent collaboration framework, along with its core algorithms and iterative optimization
procedure, is fully described with pseudocode in the Appendix to ensure that researchers can directly
reproduce and extend our study. Our experimental setup is detailed in Section 4. We evaluate
the framework on both mathematical reasoning and hybrid reasoning benchmarks. These publicly
available datasets cover arithmetic, algebra, geometry, logic, and interdisciplinary reasoning, thereby
ensuring diverse experimental validation. For model selection, we employ several mainstream large
language models to verify the robustness of our method across different scales and architectures. To
guarantee transparency, the algorithm pseudocode (including the standard GWO and the agent-based
iterative optimization process) is provided in Appendix A, while experimental results, ablation studies,
and additional performance comparisons are presented in Appendix A.4 and A.5. All experiments
are implemented in a Python environment and executed on a multi-GPU system to ensure efficiency
in both inference and training. We will release the complete source code and configuration files upon
publication, enabling other researchers to directly verify and extend our results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Bilal Zahran Aufa, Suyanto Suyanto, and Anditya Arifianto. Hyperparameter setting of Istm-based
language model using grey wolf optimizer. In 2020 international conference on data science and
its applications (ICoDSA), pp. 1-5. IEEE, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sébastien Bubeck, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee,
Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with
gpt-4, 2023.

Amrita Chakraborty and Arpan Kumar Kar. Swarm intelligence: A review of algorithms. Nature-
inspired computing and optimization: Theory and applications, pp. 475-494, 2017.

Xinyun Chen, Jacob Tworek, Heewoo Jun, Qiming Yuan, Maarten Bosma, Yi Luan, Denny Zhou,
Quoc V Le, and Luke Zettlemoyer. Program-of-thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks. In Advances in Neural Information Processing
Systems, volume 35, pp. 24842-24857, 2022.

Yezeng Chen, Zui Chen, and Yi Zhou. Brain-inspired two-stage approach: Enhancing mathematical
reasoning by imitating human thought processes. arXiv preprint arXiv:2403.00800, 2024a.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

Michael Chui, Eric Hazan, Roger Roberts, Alex Singla, and Kate Smaje. The economic potential of
generative ai. 2023.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

10

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Marco Dorigo. Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano,
1992.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Jacques Ferber and Gerhard Weiss. Multi-agent systems: an introduction to distributed artificial
intelligence, volume 1. Addison-wesley Reading, 1999.

Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research, 61:623—698, 2018.

ACL Fipa. Fipa acl message structure specification. Foundation for Intelligent Physical Agents,
http://www. fipa. org/specs/fipa00061/SCO0061G. html (30.6. 2004), 2002.

Brian P Gerkey and Maja J Mataric. Multi-robot task allocation: Analyzing the complexity and
optimality of key architectures. In 2003 IEEE international conference on robotics and automation
(Cat. No. 03CH37422), volume 3, pp. 3862-3868. IEEE, 2003.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
models: Applications, challenges, limitations, and practical usage. Authorea Preprints, 3, 2023.

Pei Hu, Yibo Han, and Zheng Zhang. Multi-level thresholding color image segmentation using
modified gray wolf optimizer. Biomimetics, 9(11):700, 2024.

Ahmed Abdulmunem Hussein, Esam Taha Yassen, and Ahmed N Rashid. Grey wolf optimizer for
green vehicle routing problem. International Journal of Intelligent Engineering & Systems, 16(5),
2023.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

M Janga Reddy and D Nagesh Kumar. An efficient multi-objective optimization algorithm based on
swarm intelligence for engineering design. Engineering Optimization, 39(1):49-68, 2007.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
Advances in neural information processing systems, 31, 2018.

Seyed Reza Kamel, Reyhaneh YaghoubZadeh, and Maryam Kheirabadi. Improving the performance
of support-vector machine by selecting the best features by gray wolf algorithm to increase the
accuracy of diagnosis of breast cancer. Journal of Big Data, 6:1-15, 2019.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

11

Under review as a conference paper at ICLR 2026

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks, volume 4, pp. 1942—-1948. ieee, 1995.

Pranjal Kumar. Large language models (1lms): survey, technical frameworks, and future challenges.
Artificial Intelligence Review, 57(10):260, 2024.

Joshua Ong Jun Leang, Aryo Pradipta Gema, and Shay B Cohen. Comat: Chain of mathematically
annotated thought improves mathematical reasoning. arXiv preprint arXiv:2410.10336, 2024.

Junlong Li, Daya Guo, Dejian Yang, Runxin Xu, Yu Wu, and Junxian He. Codei/o: Condensing
reasoning patterns via code input-output prediction. arXiv preprint arXiv:2502.07316, 2025.

Nian Li, Chen Gao, Mingyu Li, Yong Li, and Qingmin Liao. Econagent: large language model-
empowered agents for simulating macroeconomic activities. arXiv preprint arXiv:2310.10436,
2023.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

Yongbo Li, Hamed Soleimani, and Mostafa Zohal. An improved ant colony optimization algorithm
for the multi-depot green vehicle routing problem with multiple objectives. Journal of cleaner
production, 227:1161-1172, 2019.

Jonghan Lim, Birgit Vogel-Heuser, and Ilya Kovalenko. Large language model-enabled multi-agent
manufacturing systems. In 2024 IEEE 20th International Conference on Automation Science and
Engineering (CASE), pp. 3940-3946. IEEE, 2024.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint
arXiv:2504.01990, 2025.

Yujun Liu, Xinyun Chen, Jacob Tworek, Qiming Yuan, Maarten Bosma, Yi Luan, Denny Zhou,
Quoc V Le, and Luke Zettlemoyer. Graph-of-thought prompting: Structuring reasoning as
dependency graphs. In Advances in Neural Information Processing Systems, volume 36, pp.
10243-10257, 2023.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? arXiv preprint
arXiv:2309.01809, 2023.

Xinyun Lu, Xiujun Li, Di He, Jianfeng Gao, and Li Deng. Fantastically ordered prompts and where
to find them. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics, volume 1, pp. 8000-8011, 2022.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter
of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. A survey of swarm intelligence for
dynamic optimization: Algorithms and applications. Swarm and Evolutionary Computation, 33:
1-17, 2017.

Kazem Meidani, AmirPouya Hemmasian, Seyedali Mirjalili, and Amir Barati Farimani. Adaptive
grey wolf optimizer. Neural Computing and Applications, 34(10):7711-7731, 2022.

Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer. Advances
in engineering software, 69:46-61, 2014.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. arXiv preprint arXiv:2307.06435, 2023.

12

Under review as a conference paper at ICLR 2026

Navin Kumar Paliwal, Asheesh Kumar Singh, and Navneet Kumar Singh. Energy scheduling
optimisation of an islanded microgrid via artificial bee colony guided by global best, personal best
and asynchronous scaling factors. International Journal of Sustainable Energy, 39(6):539-555,
2020.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Moumita Pradhan, Provas Kumar Roy, and Tandra Pal. Grey wolf optimization applied to economic
load dispatch problems. International Journal of Electrical Power Energy Systems, 83:325—
334, 2016. ISSN 0142-0615. doi: https://doi.org/10.1016/].ijepes.2016.04.034. URL https:
//www.sciencedirect.com/science/article/pii/S0142061516307050.

Ofir Press, Mike Lewis Lee, and Luke Zettlemoyer. Self-ask with search: Bootstrapping reasoning
with chain-of-thought. In Advances in Neural Information Processing Systems, volume 35, pp.
24804-24817, 2022.

Rahul Priyadarshi and Ravi Ranjan Kumar. Evolution of swarm intelligence: A systematic review
of particle swarm and ant colony optimization approaches in modern research. Archives of
Computational Methods in Engineering, pp. 1-42, 2025.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Leonardo Ranaldi, Marco Valentino, Alexander Polonsky, and Andre Freitas. Improving chain-of-
thought reasoning via quasi-symbolic abstractions. arXiv preprint arXiv:2502.12616, 2025.

M Sheikhalishahi, Vahid Ebrahimipour, H Shiri, H Zaman, and M Jeihoonian. A hybrid ga—pso
approach for reliability optimization in redundancy allocation problem. The International Journal
of Advanced Manufacturing Technology, 68:317-338, 2013.

Thilak Shekhar Shriyan, Suhail Ahmed Janavi Srinivasan, Richa Sharma, and Arti Arya. Swarm-
prompt: Swarm intelligence-driven prompt optimization using large language models.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172—-180, 2023.

Adam Slowik and Halina Kwasnicka. Nature inspired methods and their industry applica-
tions—swarm intelligence algorithms. IEEE Transactions on Industrial Informatics, 14(3):1004—
1015, 2017.

Saksham Sahai Srivastava and Ashutosh Gandhi. Mathdivide: Improved mathematical reasoning by
large language models. arXiv preprint arXiv:2405.13004, 2024.

Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8:345-383, 2000.

Jun Tang, Gang Liu, and Qingtao Pan. A review on representative swarm intelligence algorithms for
solving optimization problems: Applications and trends. IEEE/CAA Journal of Automatica Sinica,
8(10):1627-1643, 2021.

Chung-Jui Tu, Li-Yeh Chuang, Jun-Yang Chang, and Cheng-Hong Yang. Feature selection using
pso-svm. IAENG International journal of computer science, 33(1), 2007.

13

https://www.sciencedirect.com/science/article/pii/S0142061516307050
https://www.sciencedirect.com/science/article/pii/S0142061516307050

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang. Evolving deep convolutional neural networks
by variable-length particle swarm optimization for image classification. In 2018 IEEE Congress
on Evolutionary Computation (CEC), pp. 1-8. IEEE, 2018.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in 1lms for enhanced
mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023a.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessan-
dro Sordoni. Guiding language model reasoning with planning tokens. arXiv preprint
arXiv:2310.05707, 2023b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, and Denny Zhou. Self-consistency
improves chain-of-thought reasoning in language models. In International Conference on Machine
Learning, pp. 20211-20223. PMLR, 2022a.

Yang Wang, Chengyu Jin, Qiang Li, Tianyu Hu, Yunlang Xu, Chao Chen, Yuqian Zhang, and Zhile
Yang. A dynamic opposite learning-assisted grey wolf optimizer. Symmetry, 14(9), 2022b. ISSN
2073-8994. doi: 10.3390/sym14091871. URL https://www.mdpi.com/2073-8994/14/
9/1871.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. The knowledge
engineering review, 10(2):115-152, 1995.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen 1lm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evo-
lution: A neural-symbolic self-training framework for large language models. arXiv preprint
arXiv:2406.11736, 2024.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583, 2020.

Dian Yu, Baolin Peng, Ye Tian, Linfeng Song, Haitao Mi, and Dong Yu. Siam: Self-improving
code-assisted mathematical reasoning of large language models. arXiv preprint arXiv:2408.15565,
2024.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023a.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

14

https://www.mdpi.com/2073-8994/14/9/1871
https://www.mdpi.com/2073-8994/14/9/1871

Under review as a conference paper at ICLR 2026

An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. On generative agents in
recommendation. In Proceedings of the 47th international ACM SIGIR conference on research
and development in Information Retrieval, pp. 1807-1817, 2024a.

Meng Jian Zhang, Dao Yin Long, Dan Dan Li, Xiao Wang, Tao Qin, and Jing Yang. A novel chaotic
grey wolf optimisation for high-dimensional and numerical optimisation. International Journal of
Computer Applications in Technology, 67(2-3):194-203, 2021.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208-132237, 2024b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain-of-thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

Zhuosheng Zhang, Yao Yao, Aston Zhang, Xiangru Tang, Xinbei Ma, Zhiwei He, Yiming Wang,
Mark Gerstein, Rui Wang, Gongshen Liu, et al. Igniting language intelligence: The hitchhiker’s
guide from chain-of-thought reasoning to language agents. ACM Computing Surveys, 57(8):1-39,
2025.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. ACM Computing Surveys, 57(8):1-35, 2025.

Denny Zhou, Dale Schuurmans, Quoc V Le, Ed H Chi, and Jason Wei. Least-to-most prompting en-
ables complex reasoning in large language models. In Advances in Neural Information Processing
Systems, volume 35, pp. 24770-24782, 2022.

A APPENDIX

A.1 DETAILED RELATED WORK

A.1.1 COLLABORATIVE REASONING WITH MULTI-AGENT LLMS

Multi-Agent Systems (MAS) originated from Distributed Artificial Intelligence (DAI), introducing
core concepts such as autonomy, cooperation, and coordination. The Contract Net Protocol played a
pivotal role in task allocation, establishing a theoretical foundation for MAS (Wooldridge & Jennings)
1995)). Ferber et al. (Ferber & Weiss| [1999) further explored organizational paradigms, including
holistic and emergent systems, demonstrating the scalability and robustness of MAS in domains
such as robotics, logistics, and simulation. These systems have been increasingly applied to fields
including game theory, distributed control, and collective collaboration (Wooldridge & Jennings,
1995; [Ferber & Weiss) [1999; Yang & Wang, 2020 Stone & Veloso, [2000; |Gerkey & Mataricl 2003},
Guo et al., 2024; [L1 et al.,|2024).

With the rapid advancement of Large Language Models (LLMs) (Naveed et al., 2023} Kumar, 2024)),
their powerful capabilities in language understanding and reasoning have injected new vitality into
MAS. LLMs enable agents to execute complex tasks such as planning, programming, and verification
through dynamic, natural language-driven interactions (Xi et al2025). For instance, the AutoGen
framework (Wu et al,[2023) facilitates task decomposition among agents via prompt engineering and
message passing, significantly improving collaboration efficiency. Furthermore, the Chain of Agents
framework further addressed long-context tasks by organizing LLM agents into chains, thereby
enhancing their ability to process complex information collaboratively (Zhang et al.,|2024b).

Liu et al. (Liu et al.;|2025)) proposed an LLM-based agent framework incorporating brain, perception,
and action modules, highlighting the effectiveness of specialized agents and interactive mechanisms
in solving complex problems. Du et al. (Du et al.| [2023) demonstrated the potential of LLMs in
collaborative reasoning by improving MMLU task performance through multi-round debates.

Regarding coordination and communication, Distributed Constraint Optimization Problems (DCOP)
address multi-agent constraint solving through negotiation and are widely used in task alloca-
tion (Fioretto et al.,[2018). The FIPA-ACL protocol provides a standardized framework for agent
communication (Fipal 2002), while attention-based communication models have shown significant ad-
vantages in improving collaborative efficiency (Jiang & Lul 2018). Recent research on MacNet (Qian

15

Under review as a conference paper at ICLR 2026

et al.|[2024), a network built upon a directed acyclic graph topology, reveals that irregular structures
outperform regular ones and proposes a logistic growth law for collaboration performance as the
number of agents increases.

Furthermore, LLM-MAS has demonstrated broad application prospects in various domains. In the
sandbox environment of Smallville, agents exhibit human-like collaborative behavior by planning
schedules, sharing information, and coordinating activities through social interactions (Park et al.,
2023)). In the field of recommender systems, the Agent4Rec platform simulates user interactions and
reveals phenomena such as the "filter bubble" (Zhang et al., 2024a). In intelligent manufacturing,
an LLM-enhanced system framework leverages natural language communication to autonomously
assign G-code tasks, significantly improving flexibility in production processes (Lim et al.,|2024). In
macroeconomic simulations, LLM agents exhibit heterogeneity in work and consumption behaviors
and successfully replicate classical economic patterns such as the Phillips curve (Li et al.,2023)).

A.1.2 SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS

Swarm Intelligence Algorithms (SIA)|Chakraborty & Kar|(2017);[Slowik & Kwasnickal (2017));
Tang et al.|(2021)); Priyadarshi & Kumar| (2025) solve complex optimization problems by simulating
the collaborative behavior of biological swarms in nature, such as ant colonies and bird flocks.
These algorithms emphasize how simple agents can achieve complex global behavior through local
interactions. The Particle Swarm Optimization (PSO) proposed by Kennedy et al. simulates the
foraging behavior of bird flocks through velocity-position updates, making it suitable for continuous
optimization Kennedy & Eberhart|(1995), while Dorigo’s Ant Colony Optimization (ACO), inspired
by pheromone communication, excels in discrete optimization problems such as the Traveling
Salesman Problem Dorigo| (1992). These foundational works laid the theoretical groundwork for
SIA.

In recent years, the integration of SIA with Deep Learning (DL) and Large Language Models (LLMs)
has emerged as a research hotspot. Wang et al. proposed Deep PSO (DPSO), which embeds deep
neural networks into the PSO framework to optimize neural network parameters, thereby improving
high-dimensional feature selection performance [Wang et al.|(2018)). Shriyan et al. combined PSO
with LLMs to optimize prompt engineering, significantly enhancing the performance of LLMs on
complex tasks |Shriyan et al.| Furthermore, the hybrid GA-PSO algorithm by Sheikhalishahi et
al. enhances population diversity through genetic operations, alleviating the issue of premature
convergence in high-dimensional optimization problems Sheikhalishahi et al.[(2013)).

SIA has also been widely applied in engineering optimization, energy management, and data mining.
For instance, Li et al. improved ACO to address multi-objective vehicle routing problems|L1 et al.
(2019); Paliwal et al. employed the Artificial Bee Colony (ABC) algorithm to optimize microgrid
scheduling [Paliwal et al.| (2020); Tu et al. combined PSO with Support Vector Machines (SVM)
to enhance feature selection accuracy [Tu et al.| (2007). Despite their strong performance in various
fields, SIA still faces challenges such as local optima in high-dimensional spaces, dependence on
empirically tuned hyperparameters, and insufficient real-time adaptability in dynamic optimization
problems [Mavrovouniotis et al.| (2017); [Tang et al.| (2021)). Moreover, support for multi-objective
optimization remains limited Janga Reddy & Nagesh Kumar| (2007).

The Grey Wolf Optimizer (GWO) Mirjalili et al.| (2014), proposed by Mirjalili et al., simulates the
hierarchical structure (alpha, beta, delta, and omega wolves) and hunting behavior of grey wolves. It
achieves global optimization by combining leadership guidance with random exploration. Compared
to PSO and ACO, GWO features fewer hyperparameters and faster convergence, making it well-suited
for continuous optimization. However, it is prone to local optima in high-dimensional problems.

To overcome these limitations, various improvements have been proposed. For example, Meidani et al.
introduced adaptive GWO by incorporating dynamic parameter adjustment to enhance convergence
performance Meidani et al.| (2022); Wang et al. designed a hybrid GWO (HGWO) that integrates
Differential Evolution (DE) with GWO to improve population diversity and global search capability
Wang et al.|(2022b)); Zhang et al. proposed chaotic GWO (CGWO), which uses chaotic mapping
to optimize initialization and step size, improving performance on high-dimensional optimization
problems|Zhang et al.|(2021]).

GWO has been widely applied in multiple domains. In engineering optimization, GWO has been
used to solve economic dispatch problems in power systems by optimizing generation cost and

16

Under review as a conference paper at ICLR 2026

emissions to achieve multi-objective optimization Pradhan et al.|(2016). In machine learning, GWO
has been combined with SVM for feature selection to enhance classification accuracy in breast cancer
diagnosis |[Kamel et al.[{(2019). In natural language processing, GWO has been employed to optimize
the hyperparameters of LSTM language models, significantly improving their modeling performance
Aufa et al.|(2020). Moreover, GWO has been applied to image processing, where it is used to optimize
image segmentation thresholds, thereby improving the segmentation quality of medical images |Hu
et al|(2024). Additionally, GWO has been applied to vehicle routing problems (VRP), optimizing
route planning to reduce logistics costs [Hussein et al.[(2023).

17

Under review as a conference paper at ICLR 2026

A.2 NOTATION

Symbol Definition
Grey Wolf Optimizer (GWQO) Symbols
N Population size (number of wolves/solutions)
D Search space dimensionality
X; Position of the i-th wolf: X; = (z},22,...,2P)
F(X) Objective function to be optimized
Tinax Maximum number of iterations
t Current iteration number
X, (1) Prey position at iteration ¢ (current best solution)
C Coefficient vector, C = 2ry, ry ~ U(0,1)”
D Distance vector, D = |C - X,,(t) — X;(¢)|
A Adaptive coefficient, A = 2a-ry — a, ry ~U(0,1)"
a Linearly decreasing parameter,a = 2 — 2 - Tnfax
a, 3,6 The top three wolves (leaders) in GWO
w The remaining wolves (followers)
D, Distance from wolf i to leader j: D; = |C; - X; — X[, j € {«, 8,0}
A;,C; Adaptive/random coefficients for leader j
X;. Updated position guided by leader j
F Fitness function
Agent Symbols
n Number of agents
Agent; The j-th agent, Agent; = {LLMj, clue; }
LLM; Large language model of agent j, LLM; = {n;,0}
0 Shared model parameter set of LLMs
nj Agent-specific hyperparameter set: {1}, p;, F}, E;, M;}
T} Temperature hyperparameter for agent j
Dj Top-p threshold for agent j
F; Frequency penalty for agent j
E; Presence penalty for agent j
M; Maximum token length for agent j
clip(x, [a,b]) Clipping function: max(a, min(x, b))
N (i, %) Normal distribution with mean g and variance o
U(a,b) Uniform distribution over [a, b]
Discrete set of possible maximum token lengths
cM Constant value for maximum token length (fixed-length tasks)
Data and Task Symbols
D Reasoning problem dataset, D = {q1,92,...,qn}
q A single question from dataset D
CoT; Chain of Thought generated by agent j
Answer; Final answer generated by agent j

f(Agent;,q) Output of agent j on g: (CoT;, Answer;)

Optimization Process Symbols

K Number of optimization iterations in multi-agent GWO
A Population set of agents
w Weight vector for leaders: w = {wq, wg, ws }, Wo > wg > ws, Y, w =1
ClueAdaptation Clue template adaptation function
(n*, clue™) Optimal hyperparameters and clue template found

18

Under review as a conference paper at ICLR 2026

A.3 PSEUDOCODE

Algorithm 1 Grey Wolf Optimizer (GWO) — concise

Init: Initialize population {X;}Y¥; C R within bounds
1 Seta < 2
2 (Optional) X* + arg minx, F(X;)

3 Loopfort =1,..., Thax: fort =1to Ty, do

4 Evaluate F(X;) for all ¢

5 Identify «, 3, ¢ (top-3 by fitness)
6 (Optional) update X* a < 2 — 2t/Tax
7 foreach X; do

8 foreach ¢ € {a, 3,0} do

9 Sample r1,ro ~ U(0,1)P
10 Ag —2ary —a

1 Cp <+ 2ry

12 Dg%lC[@X@—X”
13 XZ(—X@—A@@D@

4 Xie%(XZﬁ—X’[ﬂ—XZ;)
15 Project/clip X; to bounds

16 Evaluate all 7(X;)
17 return best X; (or X*)

// Candidate solutions
// Exploration weight
// Best-so-far

// Objective values
// Leaders
// Linear decrease

// i.i.d. per dim
// Coefficient

// Coefficient

// Distance

// Guided move

// Averaging

// Feasible

// Final check
// Solution

Algorithm 2 : Agent Iterative Optimization Algorithm Based on GWO

Initialization:
Set A<+ 0)
18 for j = 1ton do
19 71, + SampleNormal(u,o?)
distribution
» | m; < Clip(my)
21 cluej < SampleClueTemplate()
n | Agent; < (nj,clue;)
2 A AU {Agent,}

24 Optimization Loop:
25 for _=1to K do
26 foreach Agent; € Ado

// Initialize empty agent population
// Sample hyperparameters from normal

// Ensure valid hyperparameter values
// Generate clue template

// Create agent
// Add to population

2 q < SampleQuestion(D)

28 (CoTj,Ans;) < LLM(Agent;, q)

2 Fitness; < Evaluate(Ans;,q) // Stores agent scores
30 (a, B,0) + SelectTopAgents(A, Fimess) // Select top-3 agents as

leaders

31 W {wq, wg, ws} /] we >wg>ws, yw=1
E2) foreach Agent; € A\ {, 3,5} do

3 r~{a,B,6} withw // Sample by w
3 71 + Clip(SampleNormal(n,,o?)) // Mutate hyperparameters from

leader
35 cluej < ClueAdaptation(clue;, {cluey,clueg,clues}) // Adapt clue using

leader templates

36 N* < Ny, clue™ + clue,
a7 return (n*, clue™)

// Extract best configuration

19

Under review as a conference paper at ICLR 2026

A.4 MORE EXPERIMENTAL RESULTS

The table [Jcompares diverse methods across multiple base models on the GSM8K and MATH
benchmarks. Many advanced techniques, especially those leveraging large-scale models like Llama
and Qwen, demonstrate competitive results. In particular, our proposed GWO / n = 6 + CoT
method, when combined with GPT-4o0-mini, achieves state-of-the-art performance, outperforming
most existing approaches. This indicates the potential of our method to improve mathematical
problem-solving capabilities while also acknowledging the strong foundation established by prior
works.

Table 7: This table presents the accuracy of various methods on the GSM8K and MATH datasets.
It compares different techniques applied to a range of base models, including Mistral, Code-Llama,
Llama, Qwen, and GPT-4.

Method Base Model | GSM8k | MATH
No-CoT (Deng et al..|[2024) Mistral-7B 38.0% -
ICoT-SI (Deng et al.|[2024) Mistral-7B 51.0% -

- RecurrentBlock-3.5B 42.1% -
MathCoder-CL (Wang et al.|[2023a) Code-Llama-7B 67.8% 30.2%
MAmmoTH (Yue et al.|[2023) Code-Llama-7B 59.4% -
Brain (Chen et al.|[2024a) Code-Llama-7B 74.0% -
SQ-VAE (Wang et al.[[2023b) Llama-2-7B 40.0% 7.0%
Self-Rewarding (Chen et al.|[2024b) Llama-2-7B 40.0% 10.7%
STaR (Zelikman et al.|[2022) Llama-2-7B 58.2% 16.0%
ENVISIONS (Xu et al.|[2024) Llama-2-7B 59.0% 19.0%
MetaMath (Yu et al.|[2023b) Llama-2-7B 66.5% -
ToRA-Code (Gou et al.|[2023) Llama-2-7B 72.6% -
OVM (Yu et al.||2023a) Llama-2-7B 73.7% -

- Llama-3.1-8B 56.7% 20.3%
- Llama-3.1-70B 85.5% 41.4%
- Llama-3.1-405B 89.0% 53.8%
- NuminaMath-7B-CoT 75.4% 55.2%
- DeepSeek-Coder-7B 77.4% 44.4%
- Qwen2-7B 79.9% 44.2%
- Qwen2-Math-7B 80.4% 50.4%
SIaM (Yu et al.|[2024) Qwen-2-Math-Base 81.5% 50.0%
- Internlm2-math-plus-7B | 84.0% 54.4%
OMI2 (Li et al.[[2025) Qwen2.5-Coder-7B 84.1% 72.3%
CODEI/O++ (L1 et al.|[2025) Qwen2.5-Coder-7B 85.7% 72.1%
PyEdu (Li et al.|[2025) Qwen2.5-Coder-7B 85.8% 71.4%
CODEI/O (Li et al.[[2025) Qwen2.5-Coder-7B 86.4% 71.9%
OC-SFT-1 (Li et al., [2025) Qwen2.5-Coder-7B 86.7% 70.9%
WI (Li et al.[[2025) Qwen2.5-Coder-7B 87.0% 71.4%
WI (Full) (Li et al.| [2025) Qwen2.5-Coder-7B 87.0% 71.1%
OMI2 (Full) (Li et al.[|2025) Qwen2.5-Coder-7B 88.5% 73.2%
CoT Qwen2.5-Coder-7B 77.3% 69.7%
CoT Qwen2.5-Coder-7B 77.3% 69.7%
CoT-SC/n=5 Qwen2.5-Coder-7B 80.1% 71.2%
GWO Qwen2.5-Coder-7B 89.1% 72.1%
GWO+CoT Qwen2.5-Coder-7B 89.7% 72.8%
CoMAT (Leang et al.|[2024) GPT-4 93.7% -
CoT (Ranaldi et al.[[2025) GPT-4 94.5% -
FCoT (Lyu et al.|[2023) GPT-4 95.0% -
MathPrompter (Imani et al.!|2023) GPT-4 95.6% -
QuaSAR (Radford et al.[[2018) GPT-4 96.5% -
MathDivide (Srivastava & Gandhi, [2024) GPT-4 96.8% -
GWO/n=6+CoT GPT-40-mini 96.5% 81.5%

20

Under review as a conference paper at ICLR 2026

Table 8: Math Reasoning Performance Table 9: Other Datasets Performance
Method Math Reasoning Method ‘ Gene. ‘ Multitask ‘ Temporal ‘ Log. Math Mix
GSMSK ‘ MATH ‘ SVAMP ‘ MultiArith | ASDiv ‘ AQUA ‘ MMLU ‘ BBH ‘ Date ‘ CLUTRR ‘ MATH_MIX

GPT-4o-mini GPT-4o-mini

CoT 85.3% 78.1% 83.9% 98.7% 91.1% | 65.3% CoT 62.8% 66.3% 51.7% 66.1%

CoT-SC/n=5 90.2% 81.7% 85.8% 99.1% 92.8% | 70.1% CoT-SC/n=5 67.6% 68.9% 54.7% 72.6%

GWO 949% | 192% | 92.3% 99.3% 94.4% | 75.9% GWO 73.3% 70.9% 76.3% 74.4%

GWO+CoT 95.1% | 79.9% | 92.4% 99.5% 94.6% | 76.1% GWO+CoT 73.7% 71.3% 77.1% 74.9%

GWO/n=6 95.7% 80.6% 92.6% 99.7% 94.8% | 76.6% GWO/n=6 74.1% 71.8% 77.8% 75.4% -

GWO/n=6+CoT 96.5% 81.5% 92.9% 99.8% 94.9% | 76.8% GWO/n=6+CoT 74.9% 72.2% 78.3% 75.8% 95.1%
GPT-4.1-mini GPT-4.1-mini

CoT 882% | 79.8% | 86.1% 99.0% 91.7% | 67.5% CoT 66.9% 69.5% 54.9% 71.2%

CoT-SC/n=5 91.8% 83.2% 87.9% 99.4% 93.2% | 71.9% CoT-SC/n=5 71.2% 72.6% 57.9% 76.5%

GWO 96.9% 83.1% 92.7% 99.6% 94.6% | 78.5% GWO 78.3% 76.7% 78.7% 78.6%

GWO+CoT 97.2% 83.6% 93.6% 99.8% 94.8% | 79.3% GWO+CoT 78.9% 77.2% 79.3% 78.8%

GWO/n=6 97.9% 83.9% 94.2% 99.9% 94.9% | 79.7% GWO/n=6 79.5% 77.8% 79.9% 79.1% -

GWO/n=6+CoT 983% | 84.3% | 94.8% 99.9% 94.9% | 80.4% GWO/n=6+CoT 79.8% 78.3% 80.5% 79.5% 97.4%
GPT-4.1-nano GPT-4.1-nano

CoT 83.8% 74.3% 81.1% 98.8% 89.6% | 64.7% CoT 61.3% 65.7% 52.1% 64.2%

CoT-SC/n=5 87.7% 77.4% 83.1% 99.2% 91.2% | 68.5% CoT-SC/n=5 65.8% 68.2% 55.6% 69.3%

GWO 92.5% 79.4% 91.8% 99.3% 93.1% | 76.4% GWO 73.5% 69.1% 77.1% 71.6%

GWO+CoT 93.1% | 80.1% | 92.3% 99.4% 93.4% | 77.1% GWO+CoT 74.1% 70.3% 77.8% 72.3%

GWO/n=6 93.8% 80.6% 92.9% 99.4% 93.7% | 77.6% GWO/n=6 74.3% 70.8% 78.2% 72.9% -

GWO/n=6+CoT 94.2% 81.2% 93.8% 99.7% 94.0% | 78.2% GWO/n=6+CoT 75.1% 71.2% 79.3% 73.5% 93.5%

Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-7B-Instruct

CoT 77.3% 69.7% | 82.1% 92.2% 86.4% | 60.4% CoT 55.1% 47.2% 31.1% 20.2%

CoT-SC/n=5 80.1% 71.2% 84.2% 95.1% 88.7% | 62.1% CoT-SC/n=5 56.1% 49.5% 32.9% 21.1%

GWO 89.1% 72.1% 90.1% 97.1% 91.2% | 62.3% GWO 58.3% 53.9% 37.1% 27.8%

GWO+CoT 89.7% 72.8% 90.6% 97.7% 92.0% | 62.5% GWO+CoT 58.5% 54.8% 37.7% 28.1%

GWO/n=6 90.1% 73.3% 91.1% 97.9% 92.6% | 62.9% GWO/n=6 58.9% 55.3% 38.3% 28.8% -

GWO/n=6+CoT 90.6% | 73.8% | 91.5% 98.1% 93.1% | 63.1% GWO/n=6+CoT 59.1% 55.6% 39.2% 26.1% 90.2%
Gemma-3-12b-it Gemma-3-12b-it

CoT 83.5% 76.5% 79.3% 90.2% 90.3% | 69.1% CoT 68.3% 64.1% 77.9% 49.3%

CoT-SC/n=5 85.8% 78.7% 81.1% 93.3% 92.1% | 71.4% CoT-SC/n=5 70.4% 66.7% 80.5% 52.1%

GWO 928% | 80.1% | 90.9% 95.9% 93.7% | 78.5% GWO 72.7% 67.4% 84.5% 52.9%

GWO+CoT 93.4% 80.7% | 91.3% 96.2% 94.0% | 79.3% GWO+CoT 73.1% 68.1% 85.3% 53.5%

GWO/n=6 93.7% 81.2% 91.8% 96.5% 94.3% | 79.9% GWO/n=6 73.6% 68.3% 85.8% 54.1% -

GWO/n=6+CoT 94.3% 81.3% 92.4% 96.8% 94.6% | 80.5% GWO/n=6+CoT 74.2% 68.8% 86.7% 54.4% 94.3%

These tables |§| and tables |§| demonstrate that our proposed methods (GWO, GWO+CoT, GWO/n=6,
GWO/n=6+CoT) achieve remarkable improvements across multiple math reasoning benchmarks and
datasets. In GSM8K, GWO/n=6+CoT attains 96.5% (vs. 85.3% of CoT in GPT-40-mini) and 98.3%
(vs. 88.2% of CoT in GPT-4.1-mini), highlighting significant gains from structured reasoning.
Similar trends are seen in SVAMP, AQUA, and Temporal Date. For instance, on GPT-40-mini, GWO
boosts Temporal Date performance from 51.7% (CoT) to 76.3%, with GWO/n=6+CoT increasing it
further to 78.3%. The table shows these methods outperform baseline CoT and CoT-SC, enhancing
math reasoning efficiently without high computational cost.

—8— GSM8K SVAMP ASDiv MMLU Date CLUTRR MATH_MIX
~®— MATH MultiArith AQUA BBH
Math Tasks Integrated Tasks
&\o’ 0.95 | o&— 0.90
o
© 0.85
5 0.90
8 0.80
& .
0.85 ./‘//_‘
0.75
5 6 7 8 9 10 5 6 7 8 9 10
Number of Agents) Number of Agents

Figure 6: The figure displays two graphs comparing the accuracy of different tasks as the number of
agents varies, with one graph focused on math-related tasks and the other on integrated tasks.

The image presents two sets of line graphs. In the "Math Tasks" graph, most lines show an upward
trend as the number of agents increases. Notably, lines like GSM8K and MATH exhibit consistent
growth, indicating improved accuracy with more agents. In the "Integrated Tasks" graph, lines such
as those for CLUTRR and some others also show a positive correlation with the number of agents,
suggesting that increasing the number of agents generally enhances the accuracy in both math-specific
and integrated tasks.

21

Under review as a conference paper at ICLR 2026

Accuracy Comparison on GSM8K Accuracy Comparison on MATH Accuracy Comparison on SVAMP
98 - 8 94
9 - EECEE
92
94 - 81-
g g R o0~
> 92" > >
= L 80- =
I I O 8s-
5 90- 3 3
o o o
< < <
88- 79- 86 -
86 - 853 i
78 - 84
84 -
51 3\ 1 3\ 51 3\
@ gC\“’%\N \NO"‘C@NOI“’ ,6'\'@ @ gc\“"‘b\N \NO"‘C@NOI“’ ,6'\'@ @ gc\“"‘b\N \NO"‘C@NOI“’ J:"'Co
Method Method

Method

Figure 7: The figures present bar-charts comparing the accuracy of different methods across three
datasets: GSM8K, MATH, and SVAMP. Each chart shows how various techniques perform in terms
of accuracy, highlighting differences and trends among the methods for each respective dataset.

These bar charts compare the accuracy of different methods on GSM8K, MATH, and SVAMP datasets.
Across all datasets, the "CoT" method shows relatively lower accuracy initially. Methods like "GWQO"
and its variants with added components such as "CoT" demonstrate a clear upward trend in accuracy.
For example, on GSM8K, the highest-performing method reaches 96.5%. These results suggest that
the enhanced methods are more effective, though further research may refine these findings.

Accuracy Comparison on MMLU Accuracy Comparison on BBH Accuracy Comparison oh Date

72 - 63 2l

74 - 75 (763

B3 2 4
. -
0 < 0-
68- 6.6 691
66+ 68-)
64- 671) ==

a2 L) 517

e - “ - i -

ot sc\“’%‘“ Wo*”@oi“’ e*""‘ ot sc\“’%‘“ Wo*”@oi“’ e*""‘ ot sc\“’%‘“ Wo*”@oi“’ e*""‘

Accuracy (%)
Accuracy (%)
Accuracy (Az)

o

o
3

Method Method Method

Figure 8: These figures are bar charts showing the accuracy comparison of different methods on

datasets MMLU, BBH, and Date. Each chart visually represents how various techniques perform in
terms of accuracy.

These bar charts illustrate the accuracy comparison of different methods across three datasets: MMLU,
BBH, and Date. Across all datasets, the basic CoT method shows the lowest accuracy. The methods
that combine GWO with CoT (such as GWO+CoT and GWO/n=6+CoT) consistently outperform
CoT and CoT-SC/n=5. Notably, the GWO/n=6+CoT method achieves the highest accuracy in each
dataset, indicating its superior performance compared to the other methods tested.

The bar chart illustrates the accuracy comparison on CLUTRR for different methods. Generally, there
is an upward trend in accuracy. The "CoT" method shows the lowest accuracy at 66.1%. In contrast,
methods like "CoT-SC/n = 5", "GWO", "GWO+CoT/n = 6", and "GWO/n = 6+CoT" demonstrate
higher accuracies, with "GWO/n = 6+CoT" achieving the highest accuracy of 75.8%, indicating that
incorporating certain techniques significantly improves performance.

22

Under review as a conference paper at ICLR 2026

Math Tasks Integrated Tasks

30 1.0000 30 1.0000
25 0.9622 25 0.9482_
[0} X 0 g\’
S 0.9244 3 5 0.8964 <.
520 g s20 g
© I © g
9 088663 @ 0.8446 5
- & 15 &
15 0.8488 " 0.7928
10 0.8110 10 0.7410
Nl > R RS Q O N @ = N
Q & N & X N ¥ & 3 & N
A O S - S R P

Figure 9: These two figures respectively show the accuracy of Math Tasks and Integrated Tasks at
different iterations, with task names on the x-axis, iterations on the y-axis, and accuracy indicated by

color gradients.

In the "Math Tasks" plot, accuracy generally varies with iterations across different tasks. Notably, for
tasks like MATH, accuracy seems to show more significant fluctuations in the lower iteration range.
In contrast, in the "Integrated Tasks" plot, accuracy trends show a smoother transition as iterations
increase. Tasks such as MMLU start with lower accuracy and gradually improve, indicating that
different tasks respond distinctively to the number of iterations in terms of accuracy enhancement.

Mathematical Tasks Performance Comparison .
P General Tasks Performance Comparison

CoT GWO+CoT
GSM8K CoT-SC/n=5 GWO/n=6 MMLU CoT GWO+CoT
1007, GWO == GWO/n=6+CoT CoT-SC/n=5 GWO/n=6
1058
& —%wo — GWO/n=6+CoT
& \\\ 90% 90%
AQUA Y ‘8\\‘0/ MATH 80%
4/. § /,\ o0
3 0% e\ SN
4 A 2PN
4 K \\ CLUTRR & } BBH
4 A\ A 4
Y/ \ N 7
£ A 7
ASDiv \\ x'/ SVAMP v
. K
N 4
\/’
Date
MultiArith

Figure 10: The first figure compares the performance of different methods on mathematical tasks,
while the second figure contrasts their performance on general tasks, both using radar-chart visualiza-
tions.

In the "Mathematical Tasks Performance Comparison" radar chart, the methods with combinations
like GWO/n=6+CoT generally outperform the others across datasets such as GSM8K, MATH,
SVAMP, MultiArith, and ASDiv, indicating their superiority in mathematical tasks. In the "General
Tasks Performance Comparison" chart, similar combined approaches also show better performance
on datasets like MMLU, BBH, Date, and CLUTRR, suggesting that integrating GWO with CoT-based
techniques enhances performance in both mathematical and general tasks.

23

Under review as a conference paper at ICLR 2026

A.5 TRAINING EXAMPLES

A.5.1 FORWARD INFERENCE EXAMPLES

This example presents a math word problem about recycling cans. The problem describes that Tiffany
was collecting cans for recycling. On Monday, she had 3 bags of cans, and the next day she found
7 more bags of cans and 44 bags of bottles. The question asks how many bags of cans she had
altogether. The answer given in the image is 10 bags. By adding the number of bags of cans found on
both days, we can conclude that Tiffany had a total of 10 bags of cans. This problem tests the ability
to understand information from the question and perform simple addition.

Problem: YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO
Tiffany was collecting cans for recycling. On Monday, she had 3 bags of cans. The next day,
she found 7 more bags of cans and 44 bags of bottles. How many bags of cans did she have
altogether?

Answer: YYYY-MM-DD 22:35:34,676 - log.logger_utils - INFO
10

This example demonstrates the parameter settings, systematic problem-solving approach, and the
beginning of the answer provided by the first agent when tackling a mathematical word problem. The
focus is on the standardized process of problem-solving, emphasizing a complete workflow from
understanding the question to checking the final answer.

Prameter Log for Agent 1: YYYY-MM-DD 22:35:34,691 - log.logger_utils - INFO
temperature: 0.9193923355128871,

top_p: 0.9027935433165666,

frequency_penalty: 1.8091973063219,

presence_penalty: -1.7443228132190376,

max_tokens: 1919

Clue Log for Agent 1: YYYY-MM-DD 22:35:48,332 - log.logger_utils - INFO
To solve the questions found in the svamp dataset, follow these steps:

1. Carefully read the entire question to understand what is being asked.

2. Identify and extract all relevant numerical data and quantities mentioned within the
question.

3. Determine which mathematical operations (addition, subtraction, multiplication, division)
are necessary based on keywords or phrases that indicate relationships between numbers (e.g.,
"altogether," "more than," etc.).

4. Perform calculations step-by-step while keeping track of intermediate results if needed to
avoid errors.

5. Double-check your final answer against the context of the problem to ensure it makes
sense.

Use this approach systematically for each question from the SVAMP dataset you encounter!

Answer by Agent 1: YYYY-MM-DD 22:35:52,418 - log.logger_utils - INFO
Let’s follow the steps to solve the problem:

1. Read the entire question: Tiffany collected cans for recycling, and we need to find out how
many bags of cans she had altogether after her collection over two days.

2. Extract relevant numerical data:

On Monday, Tiffany had 3 bags of cans.

On Tuesday, she found 7 more bags of cans.

3. Determine necessary mathematical operations: We need to find the total number of bags of
cans, which involves addition since we are combining quantities.

24

Under review as a conference paper at ICLR 2026

4. Perform calculations step-by-step:
Start with the number of bags she had on Monday: 3
Add the number of additional bags found on Tuesday:

Total Bags =3+ 7 =10

5. Double-check final answer against context: The question asks for how many bags of
"cans" she has altogether, and we calculated that Tiffany has a total of 10 bags (only counting
"cans").

Therefore, Tiffany has a total of 10 bags of cans altogether.

This example provides a detailed demonstration of how the first agent systematically solves a
mathematical word problem using a five-step approach (understanding the problem, extracting data,
determining the operation, step-by-step calculation, and checking the answer), ultimately arriving at
a clear and accurate solution.

Prameter Log for Agent 2: YYYY-MM-DD 22:35:52,532 - log.logger_utils - INFO
temperature: 0.39241099147650554,

top_p: 0.6602020470317261,

frequency_penalty: 0.0007142275093004872,

presence_penalty: -0.19136457572912707,

max_tokens: 1413

Clue Log for Agent 2: YYYY-MM-DD 22:36:05,253 - log.logger_utils - INFO
Create a word problem that involves basic arithmetic operations based on the given scenario.
The problem should include specific quantities and require calculations to determine totals,
differences, or other values relevant to everyday activities, ensuring that it can engage learners
in applying their math skills within relatable contexts like shopping, collecting items, or
planning events.

Answer by Agent 2: YYYY-MM-DD 22:36:09,262 - log.logger_utils - INFO
To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags
of cans.

1. On Monday, Tiffany had 3 bags of cans.

2. The next day, she found 7 more bags of cans.

Now, we can calculate the total number of bags of cans:

Total bags of cans = Bags on Monday + Bags found on Tuesday

Total bags of cans =3 + 7

Now, let’s do the calculation:

Total bags of cans =3 +7 =10

So, Tiffany had 10 bags of cans altogether.

(Note: The bags of bottles are not included in the total for bags of cans, as the problem
specifically asks for the total number of bags of cans.)

This example demonstrates how the second agent generates and solves a simple math word problem
following a standardized process. It covers all key steps, including problem design, information
extraction, mathematical operations, step-by-step calculation, and explanation of the result. The
example also specifically clarifies the scope of the problem (counting only bags of cans, not bottles),
which helps the agent understand the problem requirements and the solution approach.

Prameter Log for Agent 3: YYYY-MM-DD 22:36:09,369 - log.logger_utils - INFO
temperature: 0.5822851007143794,

25

Under review as a conference paper at ICLR 2026

top_p: 0.9719972687061527,
frequency_penalty: 0.04468780736250461,
presence_penalty: 0.02409206816099846,
max_tokens: 1397

Clue Log for Agent 3: YYYY-MM-DD 22:36:21,755 - log.logger_utils - INFO
You are given various scenarios involving numerical problems related to quantities, collections,
and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Pay attention to details such as initial amounts, changes over time or
circumstances (e.g., additions or subtractions), and specific requests regarding total counts.
Use basic mathematical reasoning and calculations when determining your answers.

Answer by Agent 3: YYYY-MM-DD 22:36:24,662 - log.logger_utils - INFO
To find out how many bags of cans Tiffany had altogether, we need to focus only on the bags
of cans.

On Monday, Tiffany had 3 bags of cans. The next day, she found 7 more bags of cans.
Now, we can calculate the total number of bags of cans:

Total bags of cans = Bags on Monday + Bags found on Tuesday

Total bags of cans =3 + 7 =10

Therefore, Tiffany had a total of 10 bags of cans altogether.

Agent 3 focuses on generating simple and straightforward arithmetic word problems, usually centered
on addition or subtraction, with scenarios drawn from everyday life for easy understanding. The
problems and solutions are very concise, typically containing only key information without extra
explanations or reasoning steps. This approach is suitable for foundational arithmetic instruction or
quick practice, emphasizing the calculation itself rather than the problem-solving process.

Prameter Log for Agent 4: YYYY-MM-DD 22:36:24,768 - log.logger_utils - INFO
temperature: 0.5298405602481979,

top_p: 0.7372076916536928,

frequency_penalty: 0.02248299928407254,

presence_penalty: 0.049040988666425915,

max_tokens: 1746

Clue Log for Agent 4: YYYY-MM-DD 22:36:37,855 - log.logger_utils - INFO
Create a word problem involving everyday scenarios that require basic arithmetic operations
to solve. The scenario should include quantities related to common activities such as shopping,
collecting items, or completing tasks over a period of time. Ensure the question asks for a
total count based on additions and potential subtractions, utilizing numbers that are simple
and relatable while encouraging mathematical reasoning in interpreting the context provided.

Answer by Agent 4: YYYY-MM-DD 22:36:41,333 - log.logger_utils - INFO
To find out how many bags of cans she had altogether, we only need to focus on the bags of
cans.

1. Start with the number of bags of cans Tiffany had on Monday: 3 bags.
2. Add the number of bags of cans she found on Tuesday: 7 bags.
Now, calculate the total number of bags of cans:

3 bags (Monday) + 7 bags (Tuesday) = 10 bags of cans

Therefore, Tiffany had 10 bags of cans altogether.
(Note: The bags of bottles are not included in the total for cans.)

Agent 4’s clues emphasize problem generation that incorporates real-life scenarios, encouraging
mathematical reasoning and the filtering of relevant information. Its answers are usually broken down

26

Under review as a conference paper at ICLR 2026

into steps, highlighting the problem-solving approach and information extraction, but do not directly
provide the final answer, focusing more on guiding the Agent to think independently. The overall
style leans towards instructional guidance, helping the Agent understand the problem and develop
independent problem-solving skills.

Prameter Log for Agent 5: YYYY-MM-DD 22:36:41,435 - log.logger_utils - INFO
temperature: 0.3603354498081722,

top_p: 0.8427861799350946,

frequency_penalty: 0.0572741656361528,

presence_penalty: -0.124744427417488,

max_tokens: 1736

Clue Log for Agent 5: YYYY-MM-DD 22:36:53,728 - log.logger_utils - INFO
Create a problem-solving question that involves basic arithmetic operations such as addition,
subtraction, multiplication, or division within various contexts. The scenarios should include
everyday situations involving quantities of objects or items to be calculated. Make sure the
questions require an understanding of how to combine different amounts and solve for totals
or differences based on the information provided in each scenario.

Answer by Agent 5: YYYY-MM-DD 22:37:00,748 - log.logger_utils - INFO
To solve the problem, we need to focus only on the bags of cans, as the question specifically
asks for the total number of bags of cans Tiffany had.

1. On Monday, Tiffany had 3 bags of cans.

2. On Tuesday, she found 7 more bags of cans.

Now, we can add the number of bags of cans she had on Monday to the number she found on
Tuesday:

Total bags of cans = Bags on Monday + Bags found on Tuesday
Substituting the values:

Total bags of cans =3 4+ 7

Now, we perform the addition:

Total bags of cans = 10
Thus, Tiffany had a total of 10 bags of cans altogether.

Agent 5’s clues cover a variety of operations, including addition, subtraction, multiplication, and
division, with a strong emphasis on information integration and analytical skills. Its solutions are
very detailed, systematically presenting the problem-solving process step by step, including formulas,
substitution, calculation, and conclusion, with formal and well-organized language.

A.5.2 EVALUATING EXAMPLES

This section systematically evaluates the performance of the agent during a specific task iteration. The
evaluation process adopts a structured scoring system, conducting detailed analysis and scoring across
three core dimensions: logic, ingenuity, and completeness, ultimately resulting in a comprehensive
total score.

Evalauation result: YYYY-MM-DD 22:37:10,792 - log.logger_utils - INFO
Logic (0 - 100):

"The solution follows a clear logical structure. It begins with understanding the question and
identifying key data points, followed by performing the correct mathematical operations to

27

Under review as a conference paper at ICLR 2026

arrive at the answer. The steps are clearly articulated, ensuring that the reasoning is easy to
follow."
(Score: 90)

Ingenuity (0 - 100):

"While the solution is logical and methodical, it lacks any innovative or creative approaches to
solving the problem. It simply adheres to standard arithmetic operations without introducing
any unique methods or insights."

(Score: 70)

Completeness (0 - 100):

"The answer comprehensively addresses all parts of the question, including reading the
question, identifying numerical data, performing calculations, and verifying the final result.
However, it could benefit from a brief summary reiterating the significance of reaching this
total within the context."

(Score: 85)

Total Score (0 - 100): (Score: 82)

Specifically, the evaluator first reviews the agent’s solution process to determine whether it follows
clear logical steps, including understanding the problem, extracting key data points, and performing
correct mathematical calculations; based on this, a score is given for the logic dimension. Next, the
evaluator examines whether the agent demonstrates unique or innovative approaches in problem-
solving, or simply relies on conventional methods, and assigns a score for ingenuity accordingly.
Finally, the evaluator checks whether the answer fully addresses all aspects of the problem, including
data identification, calculation, and result verification, as well as whether the significance of the
result is summarized, thus determining the completeness score. Each dimension is accompanied by a
brief written assessment highlighting strengths and weaknesses, and a comprehensive total score is
calculated based on an overall consideration. This evaluation method provides a holistic reflection of
the agent’s problem-solving performance and offers concrete references for subsequent optimization
and improvement.

Evalauation result: YYYY-MM-DD 22:37:19,822 - log.logger_utils - INFO

Logic (0 - 100):

"The answer correctly identifies the number of bags of cans Tiffany had by logically breaking
down the information provided. It accurately sums the bags from Monday and Tuesday
without including irrelevant details about bottles."

(Score: 95)

Ingenuity (0 - 100):

"The approach is straightforward and effective, but it does not demonstrate any creative or
innovative problem-solving techniques. The solution follows a standard arithmetic process
without additional insights."

(Score: 70)

Completeness (0 - 100):

"The answer addresses the question fully by providing a clear calculation and stating that
bags of bottles are not included in the total for bags of cans. However, it could have briefly
summarized why only cans were considered to enhance clarity."

(Score: 85)

Total Score (0 - 100): (Score: 83)

28

Under review as a conference paper at ICLR 2026

Evalauation result: YYYY-MM-DD 22:37:27,859 - log.logger_utils - INFO

Logic (0 - 100):

"The solution correctly identifies the relevant information and follows a clear logical flow to
arrive at the answer. The calculations are straightforward and accurate."

(Score: 90)

Ingenuity (0 - 100):

"The solution employs basic arithmetic to solve a simple problem. While it is effective, there
is little creativity or innovation in the approach."

(Score: 60)

Completeness (0 - 100):

"The answer thoroughly addresses the problem, providing all necessary calculations and
arriving at a final total. However, it could be enhanced by including a brief summary of the
given information."

(Score: 85)

Total Score (0 - 100): (Score: 78)

Evalauation result: YYYY-MM-DD 22:37:37,127 - log.logger_utils - INFO

Logic (0 - 100):

"The reasoning presented in the answer is clear and follows a logical sequence. It identifies
the relevant information (the number of bags of cans) and correctly excludes irrelevant
information (the bags of bottles). The calculation is straightforward and accurate."

(Score: 90)

Ingenuity (0 - 100):

"The answer demonstrates a basic understanding of arithmetic and problem-solving. However,
it lacks creative or innovative approaches to the problem, as it simply applies basic addition
without any additional insights or unique methods."

(Score: 50)

Completeness (0 - 100):

"The answer provides a complete solution to the problem by addressing all necessary steps to
arrive at the final count of bags of cans. It states clearly what is included in the count and
what is not, making it easy to follow."

(Score: 90)

Total Score (0 - 100): (Score: 76)

Evalauation result: YYYY-MM-DD 22:37:37,229 - log.logger_utils - INFO

Logic (0 - 100):

"The solution follows a clear and logical sequence of steps to arrive at the answer. It correctly
identifies the relevant information, uses appropriate arithmetic, and clearly states the final
result.”

(Score: 95)

29

Under review as a conference paper at ICLR 2026

Ingenuity (0 - 100):

"The approach is straightforward and relies on basic arithmetic, which does not showcase
high levels of creativity or innovative problem-solving. However, it effectively solves the
problem without unnecessary complexity."

(Score: 70)

Completeness (0 - 100):

"The answer provides a complete solution by including all necessary calculations and expla-
nations. It explicitly states the initial quantities, performs the addition, and presents the final
answer clearly."

(Score: 90)

Total Score (0 - 100): (Score: 85)

A.5.3 OPTIMIZING EXAMPLES

This section illustrates the process of parameter updating during a particular iteration. Specifically,
the system first ranks the agents participating in the current round of tasks and selects the top three
performers. Next, the system updates the parameters of a certain agent (usually one that performed
well or needs improvement). The parameter update involves adjusting key hyperparameters such as
temperature, top_p, frequency_penalty, and presence_penalty, all of which directly affect the diversity,
creativity, and accuracy of the agent’s generated responses. The system records the specific values of
these parameters before and after the update, and provides a task clue to clarify the type of problem
the agent needs to solve and any important considerations.

Ranking: YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO

Top three results from message processing LLM:
"First Place": "2",

"Second Place": "5",

"Third Place": "1"

Before Updating: YYYY-MM-DD 22:37:54,082 - log.logger_utils - INFO
Parameter:

temperature=0.9193923355128871,

top_p=0.9027935433165666,

frequency_penalty=1.8091973063219,

presence_penalty=-1.7443228132190376

Clue:

You are given various scenarios involving numerical problems related to quantities, collections,
and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Pay attention to details such as initial amounts, changes over time or
circumstances (e.g., additions or subtractions), and specific requests regarding total counts.
Use basic mathematical reasoning and calculations when determining your answers.

After Updating: YYYY-MM-DD 22:38:02,220 - log.logger_utils - INFO
Parameter:

temperature=0.41004817918398145,

top_p=0.9247874518938444,

frequency_penalty=-0.0035787094690344773,

presence_penalty=0.025675460113628396

Clue:

You are presented with various scenarios that involve numerical problems related to quantities

30

Under review as a conference paper at ICLR 2026

and arithmetic operations. Your task is to answer questions based on the provided information
for each scenario. Start by carefully reading each question to understand what is being
asked. Identify all relevant numerical data and quantities mentioned. Determine which
mathematical operations (addition, subtraction, multiplication, division) are needed based
on keywords or phrases that indicate relationships between numbers. Perform calculations
step-by-step, keeping track of intermediate results if necessary, and double-check your final
answer against the context of the problem to ensure it makes sense. Pay attention to details
such as initial amounts, changes over time, and specific requests regarding total counts, using
basic mathematical reasoning and calculations to determine your answers.

This entire process embodies an automated “evaluation—selection—fine-tuning—re-evaluation” opti-
mization loop, aiming to continuously improve the agent’s performance on specific types of problems
through iterative trial and adjustment.

A.6 ACKNOWLEDGE

This article used large language models (such as ChatGPT) as an auxiliary tool in the language
polishing process, but did not use them in research conception and academic content generation.

31

	Introduction
	Related Work
	Prompt Engineering and Static Chain-of-Thought Methods
	Collaborative Reasoning with Multi-Agent LLMs
	Swarm Intelligence Optimization

	Method
	Theoretical Background and Problem Formulation
	Multi-Agent Grey Wolf Optimizer Framework

	Experiments
	Experimental Setup
	Performance Evaluation
	Adaptability Evaluation
	Ablation Study

	Conclusion
	Appendix
	Detailed Related Work
	Collaborative Reasoning with Multi-Agent LLMs
	Swarm Intelligence Optimization Algorithms

	Notation
	Pseudocode
	More Experimental Results
	Training Examples
	Forward Inference Examples
	Evaluating Examples
	Optimizing Examples

	Acknowledge

