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Abstract

Model explanations are crucial for the transpar-001
ent, safe, and trustworthy deployment of ma-002
chine learning models. The SHapley Additive003
exPlanations (SHAP) framework is considered004
by many to be a gold standard for local explana-005
tions thanks to its solid theoretical background006
and general applicability. In the years following007
its publication, several variants appeared in the008
literature—presenting adaptations in the core009
assumptions and target applications. In this010
work, we review all relevant SHAP-based inter-011
pretability approaches available to date and pro-012
vide instructive examples as well as recommen-013
dations regarding their applicability to NLP use014
cases.015

1 Introduction016

Several methods have been proposed to address017

the issue of opacity in modern machine learning018

models. Most notoriously, explanations are funda-019

mental for Deep Neural Networks (DNNs) (Devlin020

et al., 2019; Madsen et al., 2021; Mosca et al.,021

2021) as these automatically learn millions of pa-022

rameters and behave like black-boxes. Lundberg023

and Lee (2017) proposes SHapley Additive exPla-024

nations (SHAP), a unified local-interpretability025

framework with a rigorous theoretical foundation026

on the game-theoretic concept of Shapley values027

(Shapley, 1953).028

SHAP is nowadays considered a core contri-029

bution to the field of eXplainable Artificial Intel-030

ligence (XAI). Following its publication, a vari-031

ety of explainability approaches based on SHAP’s032

methodology has populated the literature and this033

trend continues to grow. Some present a new ver-034

sion of SHAP tailored to a certain type of input035

data—e.g. graphs (Yuan et al., 2021) and text036

(Chen et al., 2020)—or to specific models such037

as random forests (Lundberg et al., 2018). Others,038

instead, modify SHAP’s underlying assumptions—039

e.g. features independence—to increase the origi-040
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Figure 1: Research directions pursued by Shapley- and
SHAP-based approaches in XAI.

nal framework’s flexibility for cases in which they 041

are too strict or overly simplistic (Frye et al., 2019). 042

In this work, we (1) identify five broad research 043

directions inspired by SHAP, (2) review available 044

SHAP-based (or Shapley-value-based) approaches 045

as members of such categories, and (3) investigate 046

their applicability in the domain of Natural Lan- 047

guage Processing (NLP). 048

Our work reviews 41 methods with a particu- 049

lar focus on their core assumptions, input require- 050

ments, explanation form, and available implemen- 051

tations. Furthermore, we provide NLP researchers 052

with use-case-based recommendations and instruc- 053

tive examples. 054

2 Background 055

2.1 Shapley Values 056

Shapley Values are a concept from game theory, 057

originally developed as a measure to fairly dis- 058

tribute a reward among a set of players contribut- 059

ing to a certain outcome (Shapley, 1953). In the 060

context of machine learning models, the players in- 061

volved are the input features and the outcome is the 062

model’s decision, Shapley values attribute an im- 063

portance score to each part of the input (Lundberg 064
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and Lee, 2017).065

Given the set of input features F =066

{1, 2, . . . , p}, all features in a certain coalition067

S ⊆ F cooperate towards the outcome val(S)—068

with the default val(∅) = 0. Shapley values re-069

distribute the total outcome value val(F) among070

all features based on their average marginal con-071

tribution across all possible coalitions S. More072

specifically, feature i’s marginal contribution w.r.t.073

to a coalition S:074

∆val(i, S) = val(S ∪ {i})− val(S)075

is averaged across all S ⊆ F \ {i}. Hence, the076

corresponding Shapley values ϕval(i) measures its077

contribution based on the formula:078

ϕval(i) =
∑

S⊆F\{i}

|S|!(p− |S| − 1|)!
p!

∆val(i, S)079

.080

Here, the coefficient |S|!(p−|S|−1|)!
p! is used as nor-081

malization term based on the number of choices082

for the subset S. This redistribution of the total083

outcome val(F) respects the four properties of:084

Efficiency: All features contributions add up to085

the total outcome, i.e.
∑

i∈F ϕval(i) = val(F) .086

Symmetry: If val(S ∪ {i}) = val(S ∪ {j}) for087

all S ⊆ F \ {i, j}, then ϕval(i) = ϕval(j)088

Dummy: If val(S ∪ {i}) = val(S) for all S ⊆089

F, then ϕval(i) = 0090

Additivity: In the presence of a single game with091

two outcomes val1 and val2, then Shapley val-092

ues are additive w.r.t. the combined outcome, i.e.093

ϕval1+val2(i) = ϕval1(i) + ϕval2(i)094

2.2 Shapley Values Approximation and SHAP095

The idea of utilizing Shapley values to compute fea-096

ture attribution scores precedes the SHAP frame-097

work (Lipovetsky and Conklin, 2001; Song et al.,098

2016). In this case, the outcome val of the game099

is the prediction of a machine learning model f100

and Shapley values ϕf (i) measure the influence101

that each feature i has based on its current value.102

The early literature also worked on approximation103

strategies, as the exponential number of coalitions104

renders the exact estimation of Shapley values un-105

feasible (Štrumbelj and Kononenko, 2014; Datta106

et al., 2016). The main idea from these works is to107

compute ϕf (i) only for a smaller selection of sub-108

sets S ⊆ F and to estimate the effect of removing109

a feature by integrating over training samples. This 110

eliminates the need to retrain the model for each 111

choice of S. 112

The work from Lundberg and Lee (2017) in- 113

troduces a new perspective that unifies Shapley 114

value estimation with popular explainability meth- 115

ods such as LIME (Ribeiro et al., 2016), LRP 116

(Binder et al., 2016), and DeepLIFT (Shrikumar 117

et al., 2017). Furthermore, they propose SHAP val- 118

ues as a unified measure of feature importance and 119

prove them to be the unique solution respecting the 120

criteria of local accuracy, missingness, and consis- 121

tency. The authors contribute a library of methods 122

to efficiently approximate SHAP values in a variety 123

of settings: 124

KernelSHAP: Adaptation of LIME—hence 125

model-agnostic—to approximate SHAP values. As 126

it works for any model f , it cannot make any as- 127

sumption on its structure and is thus the slowest 128

within the framework. 129

LinearSHAP: Specific to linear models, uses 130

the model’s weight coefficients and optionally ac- 131

counts for inter-feature correlations. 132

DeepSHAP: Adaptation of DeepLIFT—hence 133

specific to neural networks–to approximate SHAP 134

values. Considerably faster than its model-agnostic 135

counterpart as it makes assumptions about the 136

model’s compositional nature. 137

While not initially presented in Lundberg and 138

Lee (2017), the following algorithms were later 139

added as part of the framework: 140

PartitionSHAP: Faster version of KernelSHAP 141

that hierarchically clusters features. This hierarchy 142

defines feature coalitions based on their interac- 143

tions. 144

GradientSHAP: An extension of the Integrated 145

Gradients (IG) method (Sundararajan et al., 2017)— 146

again specific to neural networks—that aggregates 147

gradients over the difference between the expected 148

model output and the current output. 149

TreeSHAP: A fast method for computing exact 150

SHAP values for both trees and ensembles (Lund- 151

berg et al., 2020a). In comparison to KernelSHAP, 152

it also accounts for interactions among features. 153

Other minor approaches—PermutationSHAP, 154

SamplingSHAP, ExactSHAP, and MimicSHAP— 155
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Figure 2: Example of explanation for sentiment analysis that can be generated with the SHAP library, e.g. with
KernelSHAP. The base value indicates the model’s average prediction. Each feature—i.e. word—contributes to the
outcome, thus justifying the difference between the average and the current outcome.

are also available in the official library1. To avoid156

confusion, we point out that the implementations157

have slightly different names: they use "Explainer"158

instead of "SHAP". For instance, KernelSHAP and159

DeepSHAP are implemented with the names of160

KernelExplainer and DeepExplainer respectively.161

Figure 2 sketches an explanation generated with162

SHAP.163

3 Selection Criteria164

As the popularity of SHAP increases, also the num-165

ber of approaches based on it or directly on Shapley166

values has been on the rise. In fact, ∼ 2, 800 of the167

∼ 5, 200 papers citing Lundberg and Lee (2017)168

are from 2021, an exponential increase when com-169

pared to the 1570, 561, and 118 citations from170

2020, 2019, and 2018 respectively2.171

Besides the papers already known to us, we man-172

ually screened all works citing SHAP with at least173

15 citations. This systematical search, based on the174

assumption that SHAP-based approaches should at175

least reference Lundberg and Lee (2017), helped176

us uncover several relevant contributions and mit-177

igate the selection bias induced by our previous178

knowledge. The threshold of 15 citations was in-179

troduced to speed up our manual search and to180

filter out works that have not received the research181

community’s attention. To account for temporal182

bias—i.e. that publications accumulate citations183

over time— we lowered the threshold to 10 for pa-184

pers published in the most recent year (2021). We185

only consider and review papers that contributed186

new approaches and exclude those—like (Wang,187

2019) and (Antwarg et al., 2019)—utilizing SHAP188

(almost) off-the-shelf. Similarly, we exclude works189

such as Wang et al. (2020) utilizing Shapley values190

for purposes not connected with explainability.191

1https://github.com/slundberg/shap
2Citations retrieved from Google Scholar, accessed on

15.12.2021

4 Existing Reviews 192

Previous reviews like Linardatos et al. (2021), 193

Vilone and Longo (2020), and Madsen et al. (2021) 194

present extensive overviews of explainability meth- 195

ods, but only briefly mention SHAP and a few of 196

its derivates. Others—such as Covert et al. (2021), 197

Sundararajan and Najmi (2020), and Kumar et al. 198

(2020)—review some Shapley-based methods in 199

detail (between 5 and 9) but do not construct a 200

comprehensive review. Our work, in contrast, sig- 201

nificantly extends this range and covers more than 202

40 approaches. 203

5 Review: SHAP-Based Approaches 204

Several works proposed methods based on SHAP, 205

or more generally on Shapley values, following the 206

contribution from Lundberg and Lee (2017). While 207

the changes and variations introduced have been at 208

times criticized for not being as rigorous as SHAP 209

in following its core assumptions (Sundararajan 210

and Najmi, 2020), SHAP-based methods continue 211

to increase in both quantity and popularity. 212

Our review categorizes SHAP-based approaches 213

available to date based on how they differ from and 214

how they improve on the original SHAP framework. 215

We identify five broad categories in the existing 216

literature, each one of them describing a different 217

research direction pursued by its members: 218

(C1) Tailored to Different Input Data: This cate- 219

gory contains approaches specialized on spe- 220

cific input data structures such as graphs 221

(Wang et al., 2021), structured text (Chen 222

et al., 2020), and images (Teneggi et al., 2021). 223

In some cases, approaches are used comple- 224

mentary for applications dealing with multi- 225

modal inputs (Wich et al., 2021). 226

(C2) Explaining Different Models: Methods in 227

this class are specifically designed to explain 228

predictions from particular types of machine 229
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learning models such as random forests (Lund-230

berg et al., 2018; Labreuche and Fossier,231

2018) and neural networks (Ghorbani and232

Zou, 2021). Hence, these are model-specific.233

(C3) Modifying Core Assumptions: SHAP treats234

features as independent. Newer methods235

account for dependencies between features236

(Frye et al., 2019) and for causal structures237

behind their interactions (Heskes et al., 2020).238

(C4) Producing Different Explanations Types:239

SHAP is a framework for local feature-240

attribution explanations, i.e. it attributes241

scores to input components based on their242

instance-level contributions. Methods in this243

category have a different scope and generate244

explanations that convey a different type of245

information. This can vary from global expla-246

nations (Covert et al., 2020) to counterfactual247

explanations (Singal et al., 2019) and concept248

explanations (Yeh et al., 2020).249

(C5) Estimating Shapley Values More Effi-250

ciently: These approaches comprise alterna-251

tive strategies for the approximation of Shap-252

ley values. Their focus is on leveraging prior253

knowledge about the data and model to im-254

prove the approximation efficiency and accu-255

racy (Messalas et al., 2019; Chen et al., 2018).256

Clearly, these categories are not designed to be257

exclusive. Therefore, an approach can fall in more258

than one if it differs from SHAP in multiple aspects.259

Table 1 provides an overview of all approaches with260

their main characteristics. As one can observe, the261

majority of approaches are identified as part of262

more categories, i.e. research directions.263

5.1 Approaches Tailored to Different Inputs264

SHAP does not make strong assumptions on the265

target model’s input. While this suggests that it is266

suitable for all input types, its lack of specificity267

results in limitations when applied directly to dif-268

ferent inputs than tabular data.269

For text data, only measuring each individual270

feature’s effect is an oversimplification, as words271

present strong interactions and their meaning and272

contribution heavily rely on the context. Thus,273

when it comes to text data, only considering single274

words as features is quite restrictive and relevance275

scores should be applied to multi-level tokens or276

even to entire sentences. Hierarchical Explanation277

via Divisive GEneration (HEDGE) (Chen et al., 278

2020) is an example of a SHAP-based method ad- 279

dressing this issue for (long) texts. Based on the 280

weakest token interactions, it iteratively divides 281

the text into shorter phrases and words in a top- 282

down fashion. At each level, a relevance score is 283

attributed to each token, resulting in a hierarchical 284

explanation (Chen et al., 2020). PartitionSHAP, 285

recently added to the official SHAP repository3, 286

follows a similar strategy by creating hierarchi- 287

cal features coalitions and measuring their interac- 288

tions and contribution via Owen values. Figure 3 289

sketches an example of a hierarchical explanation 290

for text data. 291

Sorry! I wish that went better 

I wish that went better

I wish that went

Sorry!

Sorry! better

I wish thatSorry! betterwent

Hi
er

ar
ch

ic
al

 L
ev

el

Figure 3: Example of hierarchical explanation that can
be generated with HEDGE (Chen et al., 2020) for a
sentiment analysis model. Each token is colored by
contribution: negative (red), neutral (yellow), and posi-
tive (green). Going one level lower represents a token-
breakdown step and thus more fine-grained Shapley
values.

For models trained on graph data, especially 292

graph DNNs, Yuan et al. (2021) proposed to ex- 293

plain predictions by using Shapley values as a 294

measure of subgraph importance. The resulting 295

method—named SubgraphX—also captures the in- 296

teractions between different subgraphs. 297

On images, SHAP can face computational lim- 298

itations as the number of features, i.e. pixels, can 299

become extremely large. h-SHAP (Teneggi et al., 300

2021) efficiently retrieves exact Shapley values 301

by hierarchically excluding irrelevant image areas 302

from the computation. This is done following the 303

observation that, if a certain area in the image is un- 304

informative, so are its constituent sub-areas, which 305

are therefore not worth exploring. 306

5.2 Approaches Explaining Different Models 307

Explanation methods making fewer assumptions 308

on the target classifier benefit from better applica- 309

bility as they can explain a wider range of models. 310

3https://github.com/slundberg/shap
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Method Categories Description Implementation
SHAP The original SHAP framework including the methods:

(Lundberg and Lee, 2017) KernelSHAP, LinearSHAP, DeepSHAP, etc. Python
AVA (C5) Combines the explanations of nearest

(Bhatt et al., 2020) neighbors to explain a given instance n.a.
ASV (C1) (C3) Relaxes the symmetry axiom of Shapley values

(Frye et al., 2019) to incorporate causal structure into explanations R
BShap (C4) (C5) Baseline approach to facilitate comparison

(Sundararajan and Najmi, 2020) between different Shapley value based methods n.a.
C- and L-Shapley (C3) (C5) Efficient feature attribution method that models data
(Chen et al., 2018) as a graph by considering only neighboring features TensorFlow

CASV (C1) (C2) Shapley value adaptation to account for counterfactuals
(Singal et al., 2019) (C3) (C4) by adhering to the Rubin Causal Model n.a.

Causal Shapley (C1) (C3) Computing feature importance on data with (partial)
(Heskes et al., 2020) causal ordering using Pearl’s do-calculus R

ConceptSHAP (C4) Unsupervised discover of concepts inherent to the data
(Yeh et al., 2020) and model based on Shapley values PyTorch

DASP (C3) (C5) Polynomial-time approximation of
(Ancona et al., 2019) Shapley values in DNNs TensorFlow

Data Shapley (C4) Shapley-based importance attribution method
(Ghorbani and Zou, 2019) for individual data instances in the training set TensorFlow

DeepSHAP v2 (C2) (C5) Computes efficiently SHAP values for DNNs with
(Chen et al., 2021) an extension to explain stacks of mixed model types n.a.

gSHAP (C4) Generates intuitive Shapley-based global
(Tan et al., 2018) by aggregating local explanations n.a.

h-SHAP (C1) (C5) Hierarchical implementation of Shapley values for
(Teneggi et al., 2021) thei their efficient computation in images PyTorch

HEDGE (C1) (C3) Hierarchical explanations based on feature
(Chen et al., 2020) interaction detection specifically for text data PyTorch
Integrated Hessians (C5) Extension of Integrated Gradients to explain

(Janizek et al., 2021) pairwise feature interactions in NNs PyTorch
lossSHAP (C2) (C4) Obtain global explanations by aggregating

(Lundberg et al., 2020b) local explanations with TreeSHAP Python
MCDA Explainer (C1) (C2) Proposes the influence index, which is an

(Labreuche and Fossier, 2018) (C3) extension of Shapley values for MCDA tree models n.a.
Neuron Shapley (C2) (C4) Quantifies the contributions of single neurons to

(Ghorbani and Zou, 2021) single predictions and overall model performance TensorFlow
R2 decomposition (C5) Feature importance attribution based on

(Redell, 2019) Shapley value variance decomposition R
Shapley Flow (C1) (C3) Enables the addition of a causal graph

(Wang et al., 2021) encoding relationships among input features Python
SAGE (C4) (C5) Efficiently quantifies each feature’s contribution to

(Covert et al., 2020) the model’s performance for global explainability Python
SealSHAP (C4) Shapley-based usefulness measure of individual

(Parvez and Chang, 2021) data sources for transfer learning TensorFlow
Shap-C (C4) (C5) Combination of computing counterfactuals and

(Ramon et al., 2019) Shapley Values Python
Shapley Residuals (C4) Captures information lost by KernelSHAP in Shapley

(Kumar et al., 2021) Residuals, which characterize feature dependence n.a.
Shapley Taylor index (C3) (C5) Generalization of the Shapley value that attributes

(Dhamdhere et al., 2020) the model’s prediction to interactions of subsets of features n.a.
Shapr (C3) Extends KernelSHAP to handle data with dependent

(Aas et al., 2019) features and produce more realistic explanations R
SPVIM (C4) (C5) Global variable importance measure using an efficient

(Williamson and Feng, 2020) regression-based Shapley value estimator Python and R
SubgraphX (C1) (C2) Explain GNNs by identifying important subgraphs

(Yuan et al., 2021) (C5) using Shapley values as importance measures PyTorch
SurrogateSHAP (C5) An XGBoost tree model is trained as a surrogate model

(Messalas et al., 2019) on the target model and TreeSHAP is applied to explain it n.a.
TreeSHAP (C2) (C5) Fast and exact method to estimate SHAP values

(Lundberg et al., 2018) for tree models and ensembles of trees Python
TimeSHAP (C1) (C2) Adapts KernelSHAP to sequential data and

(Bento et al., 2021) (C4 ) produces feature, event and cell-wise explanations n.a.

Table 1: Overview of available Shapley- and SHAP-based methods. For each method we also indicate the categories
it belongs to, its main idea and intuition, and the available implementations.
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However, this can hinder explanations in terms of311

accuracy, information granularity, and computa-312

tional efficiency. As we have already seen in 2.2:313

KernelSHAP has the key advantage of being model-314

agnostic, but it is drastically more inefficient than315

its DNN-specific counterpart DeepSHAP (Lund-316

berg and Lee, 2017).317

An example of a highly-specialized explainabil-318

ity method is TreeSHAP, presented by Lundberg319

et al. (2018) as an extension of the SHAP frame-320

work. This approach, only applicable to decision321

trees or ensembles thereof, is a highly efficient322

algorithm for exact SHAP values retrieval. Not323

only the approach needs considerably less compu-324

tational effort than the more general variants such325

as KernelSHAP, but it leverages the decision tree326

structure to compute SHAP interaction values and327

thus captures pairwise interactions between fea-328

tures.329

Ghorbani and Zou (2021) proposes Neuron Shap-330

ley, a framework targeting DNN models which331

is able to quantify each individual neuron’s con-332

tribution to single predictions and overall model333

performance. An example of the kind of explana-334

tion enabled by Neuron Shapley is visualized in335

figure 4. By analyzing interactions between neu-336

rons and picking those which exhibit the largest337

Shapley value, this method is particularly suitable338

for identifying neurons responsible for biases and339

vulnerabilities (Ghorbani and Zou, 2021).340
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Figure 4: Sketch of a Neuron Shapley explanation for
the 768 neurons of BERT output layer (Devlin et al.,
2019). A Shapley value is assigned to each neuron
depending depending on how they contribute towards
the prediction (green) or against it (red).

5.3 Approaches Modifying Core Assumptions 341

Assumptions made by SHAP can be at times too 342

restrictive or simplistic, which can prevent explana- 343

tions from accessing and leveraging crucial infor- 344

mation such as dependency relationships between 345

input features. For instance, already the symmetry 346

property of Shapley values treats features as inde- 347

pendent. While this can be true in some cases, for 348

instance when dealing with tabular data with uncor- 349

related variables, it is an oversimplification when it 350

comes to texts, images, and more structured data. 351

Frye et al. (2019) introduces Asymmetric Shapley 352

Values (ASV), which drops the symmetry assump- 353

tion and enables the generation of model-agnostic 354

explanations incorporating any causal dependency 355

known to be present in the data. Similar approaches 356

are: 357

• Causal Shapley (Heskes et al., 2020), addi- 358

tionally requiring a partial causal ordering of 359

the features as input. 360

• Shapley Flow (Wang et al., 2021), which lever- 361

ages a causal graph, encoding relationships 362

among input features. 363

• Shapr (Aas et al., 2019), an extension of Ker- 364

nelSHAP relaxing the feature independence 365

assumption. 366

5.4 Approaches Producing Different 367

Explanation Types 368

The SHAP framework and many of its deriva- 369

tives mainly focus on generating local explanations 370

based on feature importance. However, the general 371

applicability of Shapley values combined with its 372

strong foundations also offers potential for differ- 373

ent explainability settings. More recent works have 374

explored the usage of Shapley values to build other 375

types of explanations conveying different kinds of 376

information about the model and the available data. 377

For instance, Data Shapley (Ghorbani and Zou, 378

2019) estimates the importance of each training 379

sample for a given machine learning model. Sim- 380

ilarly, SealSHAP (Parvez and Chang, 2021) at- 381

tributes usefulness scores to data sources for trans- 382

fer learning. 383

Covert et al. (2020) introduces Shapley Addi- 384

tive Global importancE (SAGE), an explainability 385

method analogous to SHAP but with a core focus 386

on global explainability. More in detail, SAGE is a 387

model-agnostic method that quantifies the predic- 388

tive power of each input feature for a given model 389

6



"terrible"  "disaster" "catastrophy", ...

"the", "above", "up", ...

"not", "even"

...

...

"funny", "interesting", ...

"cinema", "theater", ...

"great", "success", "good!", ...

Sage Value (Predictive Power)

G
ro

up
ed

 W
or

ds

Figure 5: Example of SAGE explanation for a sentiment
analysis model. Since the number of global features is
as large as the vocabulary, words need to be grouped
together (e.g. by similarity) to reduce the number of
features to be explained.

while also accounting for their interactions. An390

instructive example for NLP is shown in figure 5.391

Alongside local and global explainability, works392

like Yeh et al. (2020) adapt the notion of Shapley393

values for concept analysis (Sajjad et al., 2021).394

Given a set of concepts extracted from a model,395

the authors define the notion of completeness as a396

measure to indicate how sufficient such concepts397

are in explaining the model’s predictive behavior.398

Furthermore, they propose ConceptSHAP, an un-399

supervised approach for concept analysis able to400

automatically retrieve a set of interpretable con-401

cepts without needing to know them in advance.402

5.5 Approaches Proposed for Estimation403

Efficiency404

While Shapley values convey useful information405

about the importance or contribution of a certain in-406

put component, their computation quickly becomes407

infeasible as coalitions grow exponentially w.r.t. in-408

put size. The SHAP framework already addresses409

this issue by providing more efficient estimation410

techniques. Nevertheless, later works continued to411

explore improvements to further decrease the com-412

putational effort necessary to produce meaningful413

explanations.414

Chen et al. (2018) leverage features dependen-415

cies in image and text data to build two efficient416

algorithms, L-Shapley and C-Shapley, for Shapley417

values estimation. Their methods only consider418

a subset of the possible coalitions based on the419

data’s underlying graph structure, which connects420

for instance adjacent words and pixels in texts and421

images respectively. 422

SurrogateSHAP (Messalas et al., 2019), instead, 423

trains an XGBoost tree as a surrogate for the origi- 424

nal model. The surrogate is then used to generate 425

SHAP explanations, which considerably reduces 426

the computational cost compared to directly apply- 427

ing SHAP to the original (more complex) model. 428

6 Recommendations for NLP Use Cases 429

Large and complex neural NLP models—such as 430

BERT (Devlin et al., 2019) and GPT-3 (Brown 431

et al., 2020)—are both used extensively in research 432

and industry. The trend is justified by the proven 433

high correlation between models’ size and their 434

performance (Madsen et al., 2021; Brown et al., 435

2020). Naturally, the increasing model complexity 436

causes a higher demand for NLP explainability. 437

In this section, we briefly match this demand to 438

the available SHAP-based methods and provide 439

researchers with recommendations dependent on 440

the use case. 441

To build feature attribution explanations, 442

HEDGE (Chen et al., 2020) is arguably the 443

most suitable choice as hierarchical explanations 444

can contain more information than their non- 445

hierarchical counterpart, e.g. generated with SHAP 446

or its more efficient versions. The strength of 447

HEDGE becomes even more apparent when deal- 448

ing with long texts, where sentence structure is 449

of major relevance for the model to be explained. 450

L-Shapley, C-Shapley (Chen et al., 2018) and Parti- 451

tionSHAP can also be considered where hierarchi- 452

cal explanations are not necessary and instead very 453

computationally efficient methods are required. 454

For model debugging, Neuron Shapley is suit- 455

able to identify neurons that are responsible for 456

unintended biases or that are particularly vulnera- 457

ble to adversarial attacks (Ghorbani and Zou, 2021). 458

Pruning these neurons can be an effective method 459

of alleviating such model defects (Ghorbani and 460

Zou, 2021). To gain a global understanding of what 461

the model has learned in practice, SAGE (Covert 462

et al., 2020) combined with word grouping pro- 463

vides a summary of the features—e.g. words—that 464

are most relevant for the model’s performance. In 465

this case, pruning irrelevant features can be also 466

tested to improve model accuracy. A similar sum- 467

mary can be provided by ConceptSHAP (Yeh et al., 468

2020), which can compile a comprehensive list of 469

the concepts identified by the model in an unsuper- 470

vised fashion. Furthermore, ConceptSHAP can be 471
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used to determine the amount of model variance472

covered by the whole set of identified concepts473

(Yeh et al., 2020).474

If causal structures or dependencies present in475

the text are known and explicitly modeled, then476

methods such as ASV (Frye et al., 2019), Shap-477

ley Flow (Wang et al., 2021), and Causal Shap-478

ley (Heskes et al., 2020) offer to leverage such479

information. For use cases involving graphs as480

part of multi-modal inputs—e.g. modeling a social481

network (Wich et al., 2021)—any of the previous482

methods can be combined with SubGraphX (Yuan483

et al., 2021) to also produce explanations for the484

graph component of the input.485

When it comes to more sequence-to-sequence486

tasks such as question answering or machine trans-487

lation, SHAP-based methods seem in general not488

suitable as they are particularly tailored to classifi-489

cation settings. We believe this is a strong limita-490

tion of currently available SHAP-based approaches491

and we strongly suggest the reader to look for al-492

ternatives.493

7 Criticisms494

The usage of Shapley values for generating model495

explanations has also been criticized. For instance,496

Kumar et al. (2020) shows that using Shapley val-497

ues for feature importance leads to mathematical498

inconsistencies which can only be mitigated by499

introducing further complexity like causality as-500

sumptions. Moreover, the authors argue that Shap-501

ley values do not represent an intuitive solution to502

the human-centric goals of model explanations and503

thus are only suitable in a limited range of settings.504

Sundararajan and Najmi (2020), instead, criti-505

cize some Shapley-value-based methods. In fact,506

while a strong case for utilizing Shapley values can507

be made thanks to their uniqueness result in satis-508

fying certain properties (see 2.1), often methods509

employing them operate under different assump-510

tions and hence the uniqueness results loses validity511

in their context.512

Merrick and Taly (2020) argues that existing513

SHAP-based literature focuses on the axiomatic514

foundation of Shapley values and their efficient515

estimation but neglects the uncertainty of the expla-516

nations produced. The authors illustrate how small517

differences in the underlying game formulation can518

lead to sudden leaps in Shapley values and can at-519

tribute a positive contribution to features that do520

not play any role in the machine learning model.521

8 Conclusion 522

SHAP is a core contribution to explainable artifi- 523

cial intelligence and one of the most popular frame- 524

works for local interpretability. A considerable 525

amount of recent works has proposed SHAP-based 526

approaches, which we identify as part of five dif- 527

ferent yet overlapping research directions. In par- 528

ticular, the recent literature has worked towards 529

(C1) tailoring explanations to different input data, 530

(C2) explaining specific models, (C3) improving 531

the framework’s flexibility via modifying core as- 532

sumptions, (C4) producing different explanation 533

types, and (C5) estimating Shapley values more 534

efficiently. 535

This work has reviewed a total of 41 approaches 536

and has organized them based on the introduced cat- 537

egories. As expected, given the overlapping nature 538

of the classification, the majority of existing meth- 539

ods fall into multiple categories and have therefore 540

each made distinct contributions to the field. While 541

most of them are not directly applicable to NLP 542

settings, we identified a few that that can be ben- 543

eficial for current practitioners. Furthermore, we 544

have compiled a list of recommendations for each 545

NLP use case. We also observe a severe limitation 546

of SHAP-based methods in terms of applicability 547

to sequence-to-sequence NLP tasks. 548

We hope our work provides practitioners and 549

newcomers to the NLP and XAI fields with a com- 550

prehensive overview of SHAP-based approaches, 551

with references to stimulate further investigation 552

and future advances in academic and industrial re- 553

search. 554
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