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Abstract

Continual learning (CL) has gained increasing in-
terest in recent years due to the need for models
that can continuously learn new tasks while re-
taining knowledge from previous ones. However,
existing CL methods often require either computa-
tionally expensive layer-wise gradient projections
or large-scale storage of past task data, making
them impractical for resource-constrained scenar-
ios. To address these challenges, we propose a local
model space projection (LMSP)-based continual
learning framework that significantly reduces com-
putational complexity fromO(n3) toO(n2) while
preserving both forward and backward knowledge
transfer with minimal performance trade-offs. We
establish a theoretical analysis of the error and con-
vergence properties of LMSP compared to conven-
tional global approaches. Extensive experiments
on multiple public datasets demonstrate that our
method achieves competitive performance while
offering substantial efficiency gains, making it a
promising solution for scalable continual learning.

1 INTRODUCTION

Humans have the unique ability to continuously learn new
tasks throughout their lives without forgetting their previ-
ously learned knowledge. This remarkable capability has
recently inspired the efforts in the machine learning commu-
nity to develop similar capabilities for deep neural network
(DNN)-based machine learning models, which is termed
continual learning (CL). However, one of the most signif-
icant challenges in CL is that DNN models are known to
suffer from the problem of “catastrophic forgetting”, i.e., the
performances of the learned old tasks decay after the model
learns new tasks. In the literature, numerous strategies have
been proposed to address the challenge of catastrophic for-

getting in CL. Existing forgetting mitigation approaches
can be classified into three major categories: i) experience
replay, ii) regularization, and iii) orthogonal projection (see
Section 2 for more in-depth discussions). Generally speak-
ing, experience-replay-based methods constrain the gradient
directions by replaying the data of old tasks during learning
new tasks, in the format of either real data or synthetic data
from generative models, while regularization-based meth-
ods penalize the modification on the most important weights
of old tasks through model regularizations. Due to the mixed
information of old and new tasks (model or data), some per-
formance decay of the old tasks are inevitable under the
experience replay and regularization-based approaches. In
contrast, orthogonal-projection-based methods update the
model in the direction orthogonal to the subspace of old
tasks, which has demonstrated superior performance com-
pared to other approaches [Saha et al., 2021] – a highly
desirable feature for CL in practice.

We note, however, that due to a number of technical chal-
lenges, developing practical orthogonal-projection-based
CL approaches remains highly non-trivial. The first major
challenge of orthogonal-projection-based CL approaches
stems from the projection operation, which typically relies
on singular-value decomposition (SVD) [Lin et al., 2022a,b].
These methods perform layer-wise SVD after the training
of each task. It is well-known that the SVD operation costs
O(n3) complexity for a n-dimensional model, which grows
rapidly as n increases. With the ever-increasing widths and
depths of large and deep learning models, computing such
layer-wise SVDs upon the completion of each new task’s
training also becomes more and more difficult.

Another key challenge of the standard orthogonal-
projection-based CL approaches lies in the inherent diffi-
culty in facilitating forward and backward knowledge trans-
fer (i.e., the learning of new tasks benefiting from the ac-
quired knowledge from old tasks, and the knowledge learnt
from new tasks further improves the performance of old
tasks), when new task has strong similarity with some old
tasks. However, integrating the computational efficiency
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into an orthogonal-projection-based continual learning (CL)
framework—while preserving performance and enabling
both forward and backward knowledge transfer—remains
a significant challenge. This motivates us to pursue a new
efficient orthogonal-projection-based CL design.

In this paper, we propose an efficient local low-rank
orthogonal-projection-based CL method based on local
model space projection (LMSP), which not only signifi-
cantly reduces the complexity of SVD basis computation,
but also enables forward and backward knowledge transfers
without sacrificing too much performance. The main results
and contributions of this paper are as follows:

• Our proposed LMSP-based orthogonal projection ap-
proach is based on the basic idea of “divide and orthogo-
nalize” principle, where we approximate the per-layer pa-
rameter matrix by a set of local low-rank matrices defined
by a set of anchor points, which significantly reduces
the computational complexity from O(n3) to O(n2) in
performing projections with a minor projection error.

• We theoretically show that our proposed LMSP-based
orthogonal projection approach achieves anO(1/K) con-
vergence rate performance under both convex and non-
convex settings, where K is the number of iterations.
Moreover, we further prove the forward and backward
knowledge transfers of the proposed LMSP-based orthog-
onal projection approach. In addition, by characterizing
the upper bound and lower bounds for the approximation
error, we provide the approximation accuracy analysis
for using LMSP-based orthogonal projection approach
compared to the original full-rank based approach.

• Through extensive experiments, we demonstrate that our
proposed LMSP-based orthogonal projection approach
achieves performance comparable to state-of-the-art base-
lines on four public datasets in terms of training accuracy
and forward/backward knowledge transfer. Moreover, our
approach significantly enhances efficiency while main-
taining competitive performance, even compared to the
original full-rank approach. We further conduct ablation
studies to validate the effectiveness and efficiency of each
key component in our LMSP-based design.

2 RELATED WORK

In this section, we provide an overview on the continual
learning and local low-rank model approximation litera-
ture to further motivate this research and put our work in
comparative perspectives.

1) Continual Learning: A Primer. Continual learning (CL),
also known as lifelong learning or incremental learning, is
an emerging area in machine learning research that has
attracted a significant amount of interests recently. CL ad-
dresses the challenge of enabling a machine learning model

to accumulate knowledge and adapt to new tasks that arrive
sequentially over time [Chen and Liu, 2018]. A key goal
of CL is to avoid “catastrophic forgetting” [McCloskey and
Cohen, 1989, Abraham and Robins, 2005], i.e., a model’s
performance on previously learned tasks decays upon learn-
ing new tasks. To mitigate catastrophic forgetting in CL,
various methodologies and strategies have been proposed:

• Regularization-Based Approaches: Regularization ap-
proaches use regularization to prevent a learning model
from over-fitting to training data. For example, elastic
weight consolidation (EWC) [Kirkpatrick et al., 2017]
regularizes the updates on weights based on their sig-
nificance for previous tasks using the Fisher information
matrix. Aljundi et al. [2018] used an unsupervised and on-
line approach to evaluate the model output’s sensitivity to
the inputs and penalize changes to important parameters.

• Replay-Based Approaches: Replay-based approaches
store and replay old tasks’ data to help models retain
knowledge. For example, generative replay [Shin et al.,
2017] generates data samples from previous tasks. In ex-
perience replay [Chaudhry et al., 2019b], a model replays
previous experiences in a controlled manner. Techniques
such as experience replay with replay buffer (ER-RB)
[Lillicrap et al., 2019] and generative adversarial net-
works (GANs) [Goodfellow et al., 2020] have also been
developed to enhance the efficiency of these mechanisms.

• Orthogonal-Projection-Based Approaches: To eliminate
the need of storing data of old tasks or tuning the regular-
ization parameter, researchers have proposed to learn the
the new tasks and update the model in the orthogonal sub-
space of the old tasks [Chaudhry et al., 2020], which has
demonstrated superior performance compared to other ap-
proaches [Saha et al., 2021]. State-of-the-art orthogonal-
projection-based approaches include, e.g., [Lin et al.,
2022a], first characterizes the task correlation to iden-
tify the positively correlated old tasks in a layer-wise
manner, and then selectively modifies the learned model
of the old tasks when learning the new task. More re-
cently, several new techniques such as those proposed in
[Yang et al., 2024] and [Xu et al., 2024], have been ap-
plied to orthogonal-projection-based approaches, yielding
significant improvements in both forward and backward
knowledge transfer.

• Prompt-Based Continual Learning Approaches: As large
language models (LLMs) continue to be explored in
greater depth, prompt-based continual learning methods,
such as L2P [Wang et al., 2022b], DualPrompt [Wang
et al., 2022a], and HiDE [Wang et al., 2023], are gain-
ing popularity. These approaches typically prepend task-
specific prompts (e.g., learnable tokens or embeddings)
to the input or internal activations. In such methods, the
base model remains largely frozen or undergoes minimal



updates, with learning primarily occurring in the prompt
space. Each task is associated with a distinct prompt, en-
abling the model to adapt dynamically based on the given
prompt. In contrast, Orthogonal-Projection-Based (e.g.,
GPM [Saha et al., 2021], OWM [Zeng et al., 2019], and A-
GEM variants [Chaudhry et al., 2018]) update the model
weights directly. These techniques project gradients or-
thogonally to the subspaces corresponding to previously
learned tasks, ensuring that the model parameters are
not frozen and continue to evolve while preserving past
knowledge.

2) Local Low-Rank Approximation: Due to the superior
performance compared to other approaches, we focus on
the orthogonal-projection-based approach for CL in this pa-
per. However, a key challenge of the orthogonal-projection-
based CL approach stems from the need for computing or-
thogonal subspace, which is highly expensive as the model
size gets large. This motivates us to propose a local model
space projection (LSMP) approach based on local low-rank
approximation to lower the the orthogonal subspace compu-
tation complexity. Recent works, such as [Li et al., 2024],
have focused on improving continual learning (CL) effi-
ciency by optimizing gradient directions and mitigating
gradient conflicts during training. In contrast, our work pri-
marily aims to reduce the computational cost of orthogonal-
projection-based CL while maintaining competitive perfor-
mance. The key idea of our posed LMSP approach is based
on the local low-rank approximation (LRA) of matrics. LRA
techniques have been widely applied in the areas of matrix
factorization [Billsus and Pazzani, 1998, Mnih and Salakhut-
dinov, 2007, Salakhutdinov and Mnih, 2008, Candes and
Plan, 2010]. The basic idea of these existing works is to rep-
resent a given matrix by a product of lower-rank matrices
that capture the essential structure of the original matrix.

Local low-rank approximation (LLRA) extends LRA to pre-
serve low-rank structures in localized regions of matrices.
LLRA has been applied in various applications, such as
recommendation [Beutel et al., 2017, Sarwar et al., 2002,
Christakopoulou and Karypis, 2018], collaborative filtering
[George and Merugu, 2005, Lee et al., 2014, Koren, 2008].
For example, Lee et al. [2013] proposed a local low-rank ma-
trix approximation (LLORMA) method, which finds anchor
points of the matrix and estimates local low-rank matrices
in the neighborhood surrounding each anchor point. Then, a
weighted sum of the local matrices is used to approximate
the original matrix, where the weight is the similarity be-
tween the pair of anchor points. Lee et al. [2014] later used
this method in collaborative filtering to estimate the user-
item rating matrix with a weighted combination of local
matrices. To our knowledge, our work is the first to leverage
the local low-rank approximation approach for CL.

3 A LOCAL MODEL SPACE
PROJECTION APPROACH

In this section, we first introduce the basic idea of local rep-
resentation and task subspace construction in Section 3.1,
based on which we define task similarity with local projec-
tion in Section 3.2. These key notions allow us to further
propose update rules based on local representations and task
subspaces in Section 3.3. Lastly, we conduct theoretical per-
formance analysis for our proposed LMSP-based orthogonal
projection approach in Section 3.4.

3.1 LOCAL REPRESENTATION AND TASK SPACE
CONSTRUCTION

1) The Basic Idea: As mentioned in Section 1, to lower the
SVD computational costs in full-rank orthogonal-projection-
based CL approaches, the basic idea of our local model
space projection (LMSP) approach is based on a “divide
and orthogonalize” principle. Our LMSP approach is built
upon the following key notion of local model representation.

Given N j samples in an old task j ∈ [0, t−1], we construct
a representation matrix Rl

j = [rlj,1, ...r
l
j,Nj ] ∈ RM×Nj

for
layer l, where M is the representation dimension and each
rlj,i ∈ RM , i = 1, 2, ..., N j is the representation of layer l
by forwarding the sample data point xj,i through the model.
Instead of directly applying SVD to the representation ma-
trix Rl

j , we approximate the matrix by a set of low-rank
matrices defined by a set of anchor points.

Following a similar token as in [Lee et al., 2013], we define
a smoothing kernel Kh(s1, s2) with bandwidth h, where
(s1, s2) ∈ [M ]×[N j ] is an entry in the representation matrix
Rl

j . For convenience, we also denote this kernel matrix

by K
(a,b)
h . Also, the (i, j)-th entry in K

(a,b)
h is denoted as

Kh((a, b), (i, j)). Simply speaking, the smoothing kernel is
a non-negative symmetric unimodal function parameterized
by the bandwidth parameter h > 0. Generally, the larger the
value of h, the wider the spread of the kernel [Wand and
Jones, 1994].

To obtain a set of local representation matrices, we first
sample m “anchor points” from the global representation
matrix Rl

j , which are denoted as {sq ≜ (iq, jq)}mq=1, where
(iq, jq) ∈ [M ] × [N j ] is the entry location of the q-th an-
chor point. In [Wand and Jones, 1994, Lee et al., 2013], it
has been shown that the global representation matrix Rl

j

has a locally low-rank structure and thus could be approx-
imated by the local representation matrices {R̂l

j(sq)}mq=1

corresponding to these anchor points (i.e., Nadaraye-Waston
regression, note that R̂l

j(sq) is depended on the specific an-
chor point sq) as follows:

Rl
j ≈

ˆ̂
Rl

j ≜
m∑
q=1

Kh(sq, s)∑m
p=1 Kh(sp, s)

R̂l
j(sq). (1)



To obtain the local representation matrices {R̂l
j(sq)}mq=1

in Eq. (1), we adopt a product form for the gen-
eral kernel function Kh(s1, s2) = Kh((a, b), (c, d)) =
Kh1

(a, c)K ′
h2
(b, d), where s1, s2 ∈ [M ]× [N j ] and K,K ′

are kernels on the spaces [M ] and [N j ], respectively. We
summarize several popular smoothing kernels in Appendix
D. In this paper, we use the Gaussian kernel for both K,K ′

(we will conduct ablation studies on the choice of smoothing
kernels later in Section 4).

In the literature, there are two widely used ways to choose
the anchor points {sq ≜ (iq, jq)}mq=1: 1) sample uniformly
at random from the representation matrix in [M ]×[N j ]; and
2) use K-means or other clustering methods to pre-cluster
the representation matrix and then use their centers as the
anchor points. Even though using pre-clustering to find cen-
troids as anchor points may provide a more distinct and
diverse representation and it is also proved by some works
such as [Zhang et al., 2017], our numerical studies later
show that the improvements are marginal. More specifically,
we found that as long as the choices of random anchor points
are relatively uniform, the empirical difference between two
selection methods is not significant. Since the basis of the
task are extracted at each layer, considering the huge ad-
ditional computational costs introduced by this layer-wise
clustering methods (e.g., k-means), we elect to use the ran-
dom sample strategy in our experiments for simplicity in
this paper.

Next, with local representations, we will show how the local
model spaces are constructed for task j at layer l. For an old
task j ∈ [0, t − 1], to obtain the basis Sl

j at layer l, tradi-
tional methods [Saha et al., 2021, Lin et al., 2022b] adopted
the standard singular value decomposition (SVD) for the
representation matrix of each layer, which incurs a high
computation cost of O(MN j min(M,N j)) = O(n3). In
contrast, by using a low-rank structure for each local model,
the computation can be significantly reduced. Specifically,
we first obtain the local decomposed matrices A and B for
each anchor point sq by minimizing the following global
least square loss in Eq. (2):

{(A(q),B(q))}mq=1 :=

argmin
A(q),B(q)

∑
x,y∈Ω

[
m∑
q=1

(
K

(q)
h ⊙ [A(q)B(q)⊤ ]∑m

p=1 K
(p)
h

−Rl
j)

2

]
x,y

+

m∑
q=1

[λ
(q)
A ∥A

(q)∥2F + λ
(q)
B ∥B

(q)∥2F ], (2)

where Ω is the observed set of indices of the matrices,
K

(q)
h = K

sq
h = K

(iq,jq)
h is the kernel matrix whose (a, b)-th

entry is

Kh((iq, jq), (a, b)) = Kh1(iq, a)K
′
h2
(jq, b)

and ⊙ is the Hadamard product. We also add ℓ2 regular-
ization as is standard in conventional SVD. Similar to [Lee

et al., 2013], we can obtain (A(q),B(q)) in a parallel fashion
as follows:

(A(q),B(q)) : = argmin
A,B

∑
x,y∈Ω

[K
(q)
h ⊙ ([AB⊤]−Rl

j)
2]x,y

+ λA∥A∥2F + λB∥B∥2F . (3)

Being a variant of low-rank matrix completion, this prob-
lem can be solved efficiently via various methods, including
AltMin [Jain et al., 2013, Hastie et al., 2015], singular value
projection [Netrapalli et al., 2014, Jain et al., 2010], Rieman-
nian GD [Wei et al., 2016], ScaledGD [Tong et al., 2021,
Xu et al., 2023], etc; see [Chen and Chi, 2018, Chi et al.,
2019] for recent overviews. In this paper, we use the AltMin
method to find the optimizer and obtain the basis for each
local model.

2) Computation Complexity Analysis: Denote the rank
for each local model as r ≪ min(M,N j), and A ∈
RM×r,B ∈ RNj×r. Later, we adopt QR decomposition
for A = ÛΨA,B = V̂ΨB , where ΨA,ΨB ∈ Rr×r, and
then perform SVD on the r×r matrix to achieve: ΨAΨ

⊤
B =

UΨΣV⊤
Ψ . The final basis for local model space q can be

constructed as {Sl,(q)
j ≜ Û

l,(q)
Ψ,j U

l,(q)
Ψ,j }mq=1 ∈ RM×r.

Then, for a new task t, we treat all m local model spaces
as m old tasks. As a result, we have a total of tm old tasks
as candidates for new task t to find the top-k correlated
ones. Since the AltMin algorithm has the complexity of
O(MN jr) = O(n2), the total complexity can be reduced
to O(n2m) = O(n2), as the total number of anchor points
m≪ min(M,N j). Thus the computation cost in LMSP is
significantly reduced.

3.2 TASK SIMILARITY WITH LOCAL
PROJECTION

With the local representations in Section 3.1, we are now
in a position to introduce the following definitions on task
gradients to formally characterize the task similarity. To-
ward this end, we introduce the following definitions, which
generalize Definition 1 and Definition 2 from [Lin et al.,
2022a] to local settings.

Definition 3.1 (Local Sufficient Projection). For any new
task t ∈ [1, T ], we say that it has local sufficient gra-
dient projection on the local subspace q ∈ [1,m] of
old task j ∈ [0, t − 1] if for some λ1 ∈ (0, 1):
∥Proj

K
(q)
h Dj

(∇Lt(Wt−1))∥2 ≥ λ1∥∇Lt(Wt−1)∥2.

Definition 3.2 (Local Positive Correlation). For any new
task t ∈ [1, T ], we say that it has local positive correlation
with the local subspace q ∈ [1,m] of old task j ∈ [0, t− 1]

if for some λ2 ∈ (0, 1): ⟨∇L(q)
j (W

(q)
j ),∇Lt(Wt−1)⟩ ≥

λ2∥∇L(q)
j (W

(q)
j )∥2∥∇Lt(Wt−1)∥2.



Here, for any matrix A, Proj
K

(q)
h Dj

(A) ≜ S
(q)
j S

(q)
j

⊤
A

defines the projection on the input local model space for
anchor point q of old task j, and S

(q)
j is the basis for this

local model space.

Compared to global sufficient definition, which is the Defi-
nition 1 in [Lin et al., 2022a], the projection space in Defini-
tion 3.1 is changed to the q-th local model basis rather than
the global basis for task j.

Definition 3.1 implies that task t and the q-th local model
of task j have sufficiently common basis and are strongly
correlated since the gradient lies in the span of the input
[Zhang et al., 2021]. Also, similar to positive correlation
definiation, which is Definition 2 in [Lin et al., 2022a],
Definition 3.2 goes one step further to characterize the task
similarity.

In addition to the local sufficiency projection and positive
correlation conditions, we introduce a new concept, termed

“local relative orthogonality”, specifically tailored for our
LMSP-based method, defined as follows:

Definition 3.3 (Local Relative Orthogonality). For any new
task t ∈ [1, T ], we say that it is more locally relatively
orthogonal to local subspace q ∈ [1,m] of old task j ∈
[0, t− 1] than the global subspace old task j ∈ [0, t− 1] for
some λ3 ∈ (0, 1) if the following condition holds:

∥Proj
K

(q)
h Dj

(∇Lt(Wt−1))∥2 =

λ3∥ProjDj
(∇Lt(Wt−1))∥2 ≤ ∥ProjDj

(∇Lt(Wt−1))∥2.

The local relative orthogonality means that the input of the
q-th local model space for old task j is more orthogonal
to the new task t than the global one, which indicates that
updating the model along the ∇Lt(W) direction would
introduce less inference to old task j, thus mitigating the for-
getting problem. Note that Definitions 3.2–3.3 characterize
the similarity based on the old model weights Wt−1, hence
they allow the task similarity detection before learning the
new task t.

3.3 LOW-COMPLEXITY CONTINUAL LEARNING
WITH LOCAL MODEL SPACE PROJECTION

With the local representations and the associated task sim-
ilarity, we propose the following LMSP-based orthogonal
projection approach, which aims to avoid forgetting while
enabling backward knowledge transfer. Toward this end,
based on Definitions 3.1 and 3.2, we establish the following
regimes and update rules, which correspond to the global
settings described in [Lin et al., 2022a].

Regime 1 (Forget Mitigation): For a new task t’s layer l, if
∥Proj

K
(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 < λ1∥∇Lt(W

l
t−1)∥2, we

say that the q-th local model of old task j falls in Regime 1.

Note that in this case, since task t and task j(q) are rela-
tively orthogonal, we update the model in the direction of
orthogonal projection to avoid forgetting:

∇Lt(W
l)← ∇Lt(W

l)− Proj
K

(q)
h Dl

j
(∇Lt(W

l)). (4)

Regime 2 (Forward Knowledge Transfer): For a new task
t’s layer l, if it holds that

∥Proj
K

(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 ≥ λ1∥∇Lt(W

l
t−1)∥2,

⟨∇L(q)
j (W

l,(q)
j ),∇Lt(W

l
t−1)⟩ <

λ2∥∇L(q)
j (W

l,(q)
j )∥2∥∇Lt(W

l
t−1)∥2,

we say the q-th local model of old task j falls into Regime 2.

In this case, since task t and task j(q) are strongly correlated
on gradient norm projection but negatively correlated on
gradient direction, we still update the model on the orthogo-
nal projection and use a scalar matrix Q to facilitate forward
knowledge similar to the idea in [Lin et al., 2022b]:

∇Lt(W
l)← ∇Lt(W

l)− Proj
K

(q)
h Dl

j
(∇Lt(W

l)), (5)

Q
l,(q)
j,t ← Q

l,(q)
j,t − β∇QLt(W

l − Proj
K

(q)
h Dl

j
(Wl)

−WlS
l,(q)
j Q

l,(q)
j,t S

l,(q)
j

⊤
).

Regime 3 (Backward Knowledge Transfer): For a new task
t’s layer l, if it holds that

∥Proj
K

(q)
h Dl

j
(∇Lt(W

l
t−1))∥2 ≥ λ1∥∇Lt(W

l
t−1)∥2,

⟨∇L(q)
j (W

l,(q)
j ),∇Lt(W

l
t−1)⟩ ≥

λ2∥∇L(q)
j (W

l,(q)
j )∥2∥∇Lt(W

l
t−1)∥2,

we say the q-th local model of old task j falls into Regime 3.

In this case, since task t and task j(q) are positively cor-
related in both norm and direction, updating the model
directly along with ∇Lt(W

l) not only leads to a better
model for continual learning, but also improves the perfor-
mance of old task j. Since the weight projection is frozen,
i.e., Proj

K
(q)
h Dl

j
(Wl

t−1) = Proj
K

(q)
h Dl

j
(Wl

j), we update
the model as follows:

Wl←Wl−α∇[Lt(W
l)+θ∥Proj

K
(q)
h Dl

j
(Wl−Wl

t−1)∥].

In summary, the optimization problem for learning a new
task t can be written as follows:

min
W,{Ql,(q)

j,t }
l,j(q)∈Reglt,2

⋃
Reglt,3

Lt({W̃
l
}l)+

θ
∑
l

∑
j(q)∈Regl

t,3

∥Proj
K

(q)
h Dl

j
(Wl−Wl

t−1)∥, (6)

s.t. W̃
l
=Wl +

∑
j(q)∈Regl

t,2

⋃
j(q)∈Regl

t,3

[WlS
l,(q)
j Q

l,(q)
j,t S

l,(q)
j

⊤
− (7)



Algorithm 1 Efficient Continual Learning with Local Model
Space Projection (LMSP).

1: Input: task sequence T = {t}Tt=0;
2: Learn first j ∈ [0, t − 1] task using vanilla stochastic

gradient descent;
3: for each old task j do
4: Sample m anchor point
5: Extract basis Sl,(q)

j for each local model space q using
the learnt model Wj

6: end for
7: for each new task t do
8: Calculate gradient∇Lt(Wt−1);
9: Evaluate the local sufficient projection and local pos-

itive correlation conditions for layer-wise correlation
computation to determine its membership in Reglt,1,
Reglt,2 or Reglt,3;

10: for k = 1, 2,... do
11: Update the model and scaling matrices by solving

Eq. (6);
12: end for
13: end for
14: Output: The learnt model Wt, scaling matrices
{Ql,(q)

j,t }l,j(q)∈Regl
t,3

⋃
Regl

t,3
;

Proj
K

(q)
h Dl

j
(Wl)],

∇Lt(W
l) =∇Lt(W

l)−
∑

j(q)∈Regl
t,1

⋃
j(q)∈Regl

t,2

Proj
K

(q)
h Dl

j
(∇Lt(W

l)).

In simple language, the optimization problem in Eqs. (6–7)
can be interpreted as follows: First, note that task similarity
has been calculated before learning the new task t, we can
first determine the regimes of different local model spaces
of old task j and then construct the task j(q), which is the
old task j projected onto local model space corresponding to
anchor point sq. Next, we conservatively update the model
for task j(q) in Regime 3 while using orthogonal projection
to preserve the knowledge for the rest (cf. the objective
function in (6). The scaled weight projection is used for old
tasks in both Regime 2 and Regime 3 to facilitate forward
knowledge transfer (cf. the constraint in (7)). Note that
one can always strike a good balance between adapting the
model to new task while not forgetting the knowledge of the
learnt tasks by adjusting the regularization parameter θ. The
overview of our LMSP-based efficient continual learning
framework is described in Algorithm 1 (see next page).

3.4 THEORETICAL PERFORMANCE ANALYSIS

In this subsection, we will establish the convergence rate and
backward knowledge transfer of our proposed LMSP-based
orthogonal projection approach. Without loss of generality,
consider the scenario of learning two consecutive tasks 1

and 2. Note that since [Lin et al., 2022a] has already con-
ducted theoretical analysis for the vanilla GD-type update
(cf. Rule #2 in [Lin et al., 2022a]), which is also applicable
in our work, we will only focus on the major difference in
our work, which lies in the analysis for the local low-rank
and full-rank orthogonal-projection-based updates.

For simplicity, consider the scenario with a sequence of
two tasks 1 and 2. Let F(W) = L(W,D1) + L(W,D2),
g1(W) = ∇WL(W,D1) and g2(W) = ∇WL(W,D2).
Note that ḡ(W(k)) = g(W(k))−Proj

K
(q)
h Dj

(g(W(k))) as
the gradients for the local low-rank orthogonal-projection-
based updates in Eq. (4) as well as Eq. (5), and g̈(W(k)) =
g(W(k))− ProjDj

(g(W(k))) as the gradients for the full-
rank orthogonal-projection-based updates under Regime
1 and Regime 2 in [Lin et al., 2022a]. Thus, we let k ∈
[0,K − 1] denote the step index and use W1 to denote the
model parameters for task 1, with W1 = W(0) for the
initialization of the new task model weights. We first state
our major convergence rate result for the local low-rank
orthogonal-projection-based update as follows:

Theorem 3.4. Suppose the loss function L is B-Lipschitz
and H

2 -smooth. Let α ≤ min{ 1
H , γ∥ḡ1(W

(0)∥
HBK } and λ1 ≥√

1− 2 2∥ḡ2(W(0))∥−∥ḡ1(W(0))∥
γ2∥ḡ1(W(0)∥ for some γ ∈ (0, 1). Then,

the following results hold:

(1) if L is convex, the local low-rank orthogonal-projection-
based update in Regimes 1 and 2 for task 2 converges to the
optimal model W⋆ = argminF(W);

(2) if L is non-convex, the local low-rank orthogonal-
projection-based update in Regimes 1 and 2 for task 2 con-
verges to a first-order stationary point:

min
k
∥∇F(W(k))∥2 ≤ 2

αK

K−1∑
k=0

[F(W(k))−F(W⋆)]+

[2+γ2(5−λ2
1)]

2
∥ḡ1(W(0))∥2+4

2∑
i=1

∥gi(W(0))∥2.

Theorem 3.4 characterizes the convergence of the joint ob-
jective function F(W) when updating the model with local
low-rank orthogonal-projection-based updates in the convex
setting, as well as the convergence to a first-order stationary
point in the non-convex setting when the q-th local model of
task 1 and task 2 satisfy the local sufficient projection defi-
nition with certain λ1. Hence, it benefits the joint learning
of tasks 1 and 2. The proof of Theorem 3.4 is relegated to
Appendix A due to space limitations. The next result estab-
lishes the backward knowledge transfer of our CL approach:

Theorem 3.5. Suppose lossL is B-Lipschitz and H
2 -smooth.

Then, the following results hold:

(1) Let Ws and Wc be the model parameters after
one update to an initial model W by using local



low-rank and full-rank orthogonal-projection-based
updates, respectively. Suppose the new task satisfy
local relative orthogonality for a λ3 ∈ (0, 1), i.e.,
∥Proj

K
(q)
h D1

(g2(W
(i)))∥2 = λ3∥ProjD1

(g2(W
(i)))∥2

for i∈ [0, k−1], α≤min{ 1
H , γ∥ḡ1(W

(0))∥
HBK } and λ1≥max{√

1−2 2∥ḡ2(W(0))∥−∥ḡ1(W(0))∥
γ2∥ḡ1(W(0))∥ ,

√
1− (1−λ2

3)(2+αH)λ′2
1

1+2αH

}
,

then we have F(Ws) ≤ F(Wc);

(2) Let W(k) be the k-th iterate for task 2 with the θ-
regularized update in Regime 3. If α ≤ 4∥ḡ1(W

(0))∥
HBk1.5 , then

L1(W
(k)) ≤ L1(W1) = L1(W

(0)).

The first claim in Theorem 3.5 indicates that updating
the model using the local low-rank orthogonal-projection-
based updates achieves lower loss value than the full-rank
orthogonal-projection-based updates when the q-th local
model of task 1 and task 2 satisfy the sufficient projection
with some λ1 and the local relative orthogonality in Defini-
tion 3.3 with some λ3, hence implying backward knowledge
transfer. The second claim in Theorem 3.5 suggests that the
local low-rank orthogonal-projection-based update results
in a better model for task 1 with respect to L1. The proofs
of Theorem 3.5 is also relegated to Appendix B due to space
limitation.

Next, we provide the approximation accuracy analysis and
comparison of the loss functions between applying local
low-rank and full-rank orthogonal-projection-based updates.

Without loss of generality, for any anchor point sq, we let
Bh(sq) denote the neighborhood of indices near that anchor
point, which is defined as Bh(sq)

def
= {∀s′ ∈ [M ] × [N ] :

d(sq, s
′) < h} and we use M(h, sq) and N(h, sq) to denote

the number of unique row and column indices in Bh(sq).
Also, we denote nq = min(M(h, sq), N(h, sq)). Then we
have the following theorem for approximation accuracy:

Theorem 3.6. Suppose lossL is B-Lipschitz and H
2 -smooth.

Let Ws and Wc be the model parameters after one up-
date to an initial model W by using local low-rank and
full-rank orthogonal-projection-based updates, respectively.
Given the mapping function T (s) = T 2 = Rl

jR
l
j
⊤

which represents the gram matrix of the original matrix,
is Hölder continuous with parameter Z, β > 0. Let α ≤
min{ 1

H , γ∥g1(W
(0))∥

HBK } for some γ ∈ (0, 1). Then, the value
of loss discrepancy between full-rank and local low-rank
orthogonal-projection-based updates corresponding with
anchor point sq , i.e.,

E(F)(sq, h) = F(Wc)−F(Ws), (8)

is upper bounded as:

E(F)(sq, h) ≤HZ2h2β(24nq + 9)B2

+ Zhβ(4
√

3nq+2)

[
2 + γ2

4
∥g1(W(0))∥2

+ ∥g1(W(0))∥∥g2(W(0))∥+ 3

2
B2

]
, (9)

and lower bounded as:

E(F)(sq, h) ≥ −HZ2h2β(24nq + 9)B2

+ Zhβ(4
√
3nq + 2)

[
− 2 + γ2

4
∥g1(W(0))∥2

+ ∥g1(W(0))∥∥g2(W(0))∥+ 1

2
B2

]
. (10)

Theorem 3.6 provides the approximation accuracy bounds
between using original full-rank and local low-rank updates,
which indicates that error introduced by the local model
space projection can be bounded and the bound is mostly
influenced by the first squared term in both Eqs. (9) and (10).
Noting that this term is the squared bound for matrix com-
pletion based on [Lee et al., 2013], the LMSP loss error
bound is roughly on the order of the square of the matrix
completion bound due to the inner product calculation of
basis in projection computation. The proof of Theorem 3.6
is also relegated to Appendix C due to space limitation.

4 NUMERICAL RESULTS

In this section, we conduct experiments to verify the efficacy
of our proposed research. We will first discuss our experi-
ment settings, including datasets, baselines, and evaluation
metrics, which are followed by experimental results.

1) Datasets: We evaluate the performance of our LMSP
on four public datasets for CL: (1) Permuted MNIST [Le-
Cun et al., 2010]; (2) CIFAR-100 Split [Krizhevsky et al.,
2009]; (3) 5-Datasets [Lin et al., 2022a,b]; and (4) MiniIma-
geNet [Vinyals et al., 2016]. Due to space limitations, the
detailed dataset information is relegated to Appendix E.

2) Baseline Methods: We compare our LMSP method with
the following baseline methods:

(1) EWC [Kirkpatrick et al., 2017]: EWP adopts the Fisher
information matrix for weights importance evaluation.

(2) HAT [Serra et al., 2018]: HAT preserves the knowledge
of an old task by learning a hard attention mask;

(3) Orthogonal Weight Modulation (OWM) [Zeng et al.,
2019]: OWM projects the gradient of a new task to the
orthogonal direction of the input subspace of an old
task by learning a projector matrix;

(4) Gradient Projection Memory (GPM) [Saha et al., 2021]:
GPM first stores old tasks’ basis of the input subspace,
and then uses the gradient projection orthogonal to the
subspace spanned by stored basis to update the model;

(5) TRGP [Lin et al., 2022b]: TRGP uses a scaled weight
projection to facilitate the forward knowledge transfer
from related old tasks to the new task;
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Figure 1: Ablation studies on rank and number of anchor points.

Table 1: The ACC and BWT performance comparisons between LMSP (ours) and baselines.

Method
PMNIST CIFAR-100 Split 5-Dataset MiniImageNet

ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

Multitask 96.70 - 79.58 - 91.54 - 69.46 -

OWM 90.71 -1 50.94 -30 - - - -
EWC 89.97 -4 68.80 -2 88.64 -4 52.01 -12
HAT - - 72.06 0 91.32 -1 59.78 -3
A-GEM 83.56 -14 63.98 -15 84.04 -12 57.24 -12
ER-Res 87.24 -11 71.73 -6 88.31 -4 58.94 -7
GPM 93.91 -3 72.48 -0.9 91.22 -1 60.41 -0.7
TRPG 96.26 -1.01 74.98 -0.15 92.41 -0.08 64.46 -0.89
CUBER 97.04 -0.11 75.29 0.14 92.85 -0.13 63.67 0.11
LMSP(r = 25) 97.48 0.16 74.21 0.94 93.78 0.07 64.2 1.55

(6) CUBER [Lin et al., 2022a]: CUBER categorizes the
tasks as strong projection and positive correlation.

(7) Averaged GEM (A-GEM) [Chaudhry et al., 2018]: A-
GEM stores and incorporates old tasks’ data in comput-
ing gradients for the new task’s learning;

(8) Experience Replay with Reservoir sample (ER-
Res) [Chaudhry et al., 2019a]: ER-Res uses a small
episodic memory to store old task samples to address
the forgetting problem;

(9) Multitask [Saha et al., 2021]: Multitask jointly learns
all tasks once with a single network using all datasets.

3) Evaluation Metrics: We use the following two metrics
to evaluate the learning performance of the baseline models
and our model: (1) Accuracy (ACC), which is the final
averaged accuracy over all tasks; (2) Backward transfer
(BWT), which is the average accuracy change of each task
after learning the new task.

ACC =
1

T

T∑
i=1

AT,i,

BWT =
1

T − 1

T−1∑
i=1

(AT,i −Ai,i),

where Ai,j denotes the testing accuracy of task j upon the
completion of learning task i.

4) Experimental Results: We can see from Table 1 that
our LMSP method outperforms other baseline methods in

both ACC and BWT. It is worth noting that the BWT per-
formance in our method is generally better than CUBER.
This improvement stems from our approach of dividing old
tasks into multiple local tasks, making it easier to identify
highly correlated local tasks for the new task. To understand
the efficacy of the proposed techniques, we further conduct
ablation studies. We show the effects with different rank
values and number of anchor points for our approach in
Fig. 1. Due to space limitation, we relegate the ablation
study results with different kernel types to the Appendix F.

4-1) Effect of Low Rank: Fig. 1(a) and (c) show the results
of our method using a different low-rank value r. We can
see that, as expected, the model’s performance becomes
better when the rank becomes higher. In general, a higher
rank value implies less information loss during the base
construction. Further, as the rank value becomes sufficiently
high, the performance improvement becomes insignificant
since most of the information has already been included.

4-2) Effect of Anchor Point Number: Fig. 1(b) and (d) illus-
trate the performance of our LMSP method with a different
number of anchor points. We can see that more anchor points
lead to better performance since more candidate old tasks
are generated, thus it would be easier to find more corre-
lated old tasks with the new task. However, as the number
of anchor points increases, the computation cost also in-
creases correspondingly, which implies a trade-off between
performance and cost.



Table 2: Training time comparison on CIFAR-100 Split, 5-Datasets and MiniImageNet. Here the training time is normalized
with respect to the value of GPM. Please refer [Saha et al., 2021] for more specific time.

Training time OWM EWC HAT A-GEM ER-Res GPM TRPG CUBER
LMSP
(r=5)

LMSP
(r=20)

LMSP
(r=25)

PMNIST - 1.49 1.23 2.57 1.34 1 1.37 1.52 0.37 0.48 0.52
Cifar-100 Split 2.41 1.76 1.62 3.48 1.49 1 1.65 1.86 0.24 0.41 0.46
5-Dataset - 1.52 1.47 2.41 1.40 1 1.21 1.55 0.42 0.63 0.67
MiniImageNet - 1.22 0.91 1.79 0.82 1 1.34 1.61 0.18 0.30 0.33

4-3) Results of training time: We show the results of for-
ward knowledge transfer(FWT) in Table 2. As shown in
the table, we summarize the normalized wall-clock training
times of our LMSP algorithm and several baselines with
respect to the wall-clock training time of GPM (additional
wall-clock training time results can also be found in [Saha
et al., 2021]). Here, we set the rank r to 5, 20, 25 for each
local model. We can see that the wall-clock time of our
LMSP(r = 5) method with only one anchor point can al-
ready reduce the total wall-clock training time of CUBER
by 86% on average. Moreover, thanks to the fact that our
LMSP approach endows distributed implementation that
can run different local models in a parallel fashion, the total
walk-clock training time with m anchor points is similar to
the single-anchor-point case above.

It is worth mentioning that LMSP achieves comparable train-
ing time even with r = 25. Furthermore, the results in Fig. 1
and Table 1 indicate that LMSP with r = 5 performs on
par with TRPG and outperforms GPM in terms of average
ACC and BWT, suggesting that a lower rank does not sig-
nificantly compromise the performance of our method. Our
local low-rank-based methods also demonstrate improved
efficiency, particularly when compared to CUBER, which
relies on a full-rank setting without leveraging local low-
rank strategies. In conclusion, results in Table 2 demonstrate
the effectiveness of our LMSP approach in terms of compu-
tation cost reductions comparing to the original layer-wise
full-rank orthogonal-projection-based approach.

Due to space limitation, we relegate the results of forward
knowledge transfer for our LMSP approach in Appendix G.

5 CONCLUSION

In this paper, we proposed a new efficient local low-
rank orthogonal-projection-based continual learning strat-
egy based on local model space projection (LMSP), which
not only reduces the complexity of basis computation but
also enables forward and backward knowledge transfers. We
conducted a theoretical analysis to show that the new task’s
performance could benefit from the local old tasks more than
just using the global old task under certain circumstances.
We also provided a training loss error analysis and showed
that the approximation accuracy of LMSP compared to the

original full-rank orthogonal-projection-based approach can
be both upper and lower bounded. Our extensive experi-
ments on public datasets demonstrated the efficacy of our
approach. Future work includes deploying our efficient CL
method to some popular deep learning structures such as
transformers and large language models (LLMs) and extend-
ing our approach to more general CL settings.
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A PROOF OF THEOREM 3.4

Proof. For a H
2 -smooth loss function L, it can be easily shown that F is H-smooth. (1) For any k ∈ [0,K], we can have:

F(W(k+1)) ≤ F(W(k)) +∇F(W(k))⊤(W(k+1) −W(k)) +
H

2
∥W(k+1) −W(k)∥2

= F(W(k)) + (g1(W
(k)) + g2(W

(k)))⊤(−αḡ2(W(k))) +
α2H

2
∥ḡ2(W(k))∥2

= F(W(k))− [α− α2H

2
]∥ḡ2(W(k))∥2 − α⟨ḡ1(W(k)), ḡ2(W

(k))⟩, (11)

since:

⟨g1(W(k)), ḡ2(W
(k))⟩ = ⟨Proj

K
(q)
h D1

(g1(W
(k))), ḡ2(W

(k))⟩+ ⟨ḡ1(W(k)), ḡ2(W
(k))⟩, (12)

⟨g2(W(k)), ḡ2(W
(k))⟩ = ⟨Proj

K
(q)
h D1

(g2(W
(k))), ḡ2(W

(k))⟩+ ⟨ḡ2(W(k)), ḡ2(W
(k))⟩, (13)

and:

⟨Proj
K

(q)
h D1

(g1(W
(k))), ḡ2(W

(k))⟩ = 0, (14)

⟨Proj
K

(q)
h D1

(g2(W
(k))), ḡ2(W

(k))⟩ = 0. (15)

For the term ⟨ḡ2(W(k)), ḡ2(W
(k))⟩, it follows that:

⟨ḡ1(W(k)), ḡ2(W
(k))⟩

=⟨ḡ1(W(k))− ḡ1(W
(0)) + ḡ1(W

(0)), ḡ2(W
(k))⟩

=⟨ḡ1(W(k))− ḡ1(W
(0)), ḡ2(W

(k))⟩+ ⟨ḡ1(W(0)), ḡ2(W
(k))⟩

=⟨ḡ1(W(k))− ḡ1(W
(0)), ḡ2(W

(k))⟩+ ⟨ḡ1(W(0)), ḡ2(W
(k))− ḡ2(W

(0))⟩+ ⟨ḡ1(W(0)), ḡ2(W
(0))⟩. (16)

Considering

2⟨ḡ1(W(k))− ḡ1(W
(0)), ḡ2(W

(k))⟩+ ∥ḡ1(W(k))− ḡ1(W
(0))∥2 + ∥ḡ2(W(k))∥2

=∥ḡ1(W(k))− ḡ1(W
(0)) + ḡ2(W

(k))∥2 ≥ 0, (17)

we have:

⟨ḡ1(W(k))− ḡ1(W
(0)), ḡ2(W

(k))⟩ ≥ −1

2
∥ḡ1(W(k))− ḡ1(W

(0))∥2 − 1

2
∥ḡ2(W(k))∥2, (18)
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and similarly:

⟨ḡ1(W(0)), ḡ2(W
(k))− ḡ2(W

(0))⟩ ≥ −1

2
∥ḡ2(W(k))− ḡ2(W

(0))∥2 − 1

2
∥ḡ1(W(0))∥2. (19)

Combining Eq. (16), Eq. (18) and Eq. (19) gives a lower bound on ⟨ḡ1(W(k)), ḡ2(W
(k))⟩, i.e.,

⟨ḡ1(W(k)), ḡ2(W
(k))⟩

≥ − 1

2
∥ḡ1(W(k))− ḡ1(W

(0))∥2 − 1

2
∥ḡ2(W(k))∥2

− 1

2
∥ḡ2(W(k))− ḡ2(W

(0))∥2 − 1

2
∥ḡ1(W(0))∥2 + ⟨ḡ1(W(0)), ḡ2(W

(0))⟩

≥ − H2(1− λ2
1)

8
∥W(k) −W(0)∥2 − 1

2
∥ḡ2(W(k))∥2

− H2(1− λ2
1)

8
∥W(k) −W(0)∥2 − 1

2
∥ḡ1(W(0))∥2 + ⟨ḡ1(W(0)), ḡ2(W

(0))⟩

≥ − H2(1− λ2
1)

4
∥W(k) −W(0)∥2 − 1

2
∥ḡ2(W(k))∥2 − 1

2
∥ḡ1(W(0))∥2 + ⟨ḡ1(W(0)), ḡ2(W

(0))⟩, (20)

where the second inequality is true due to the smoothness of the loss function and:

∥ḡ1(W(k))− ḡ1(W
(0))∥2 = ∥g1(W(k))− g1(W

(0))∥2 − ∥Proj
K

(q)
h D1

(g1(W
(k))− g1(W

(0)))∥2

≤ (1− λ2
1)∥g1(W(k))− g1(W

(0))∥2, (21)

as well as

∥ḡ2(W(k))− ḡ2(W
(0))∥2 ≤ (1− λ2

1)∥g2(W(k))− g2(W
(0))∥2. (22)

Based on the local low-rank orthogonal-projection-based update, it can be seen that:

W(k) = W(0) − α

k−1∑
i=0

ḡ2(W
(i)). (23)

Therefore, continuing with Eq. (11), we have:

F(W(k+1))

≤F(W(k))− [α− α2H

2
]∥ḡ2(W(k))∥2 − α⟨ḡ1(W(k)), ḡ2(W

(k))⟩

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α3H2(1− λ2

1)

4
∥
k−1∑
i=0

ḡ2(W
(i))∥2 + α

2
∥ḡ1(W(0))∥2

− α∥ḡ1(W(0))∥∥ḡ2(W(0))∥, (24)

where the last term is based on the definition of projection. Since

α ≤ γ∥ḡ1(W(0))∥
HBK

≤ γ∥ḡ1(W(0))∥
H∥

∑k−1
i=0 ḡ2(W(i))∥

, (25)

thus

1

2
∥ḡ1(W(0))∥2 + α2H2(1− λ2

1)

4
∥
k−1∑
i=0

ḡ2(W
(i))∥2

≤1

2
∥ḡ1(W(0))∥2 + γ2(1− λ2

1)∥ḡ1(W(0))∥2

4H2∥
∑k−1

i=0 ḡ2(W(i))∥2
H2∥

k−1∑
i=0

ḡ2(W
(i))∥2

=
2 + γ2(1− λ2

1)

4
∥ḡ1(W(0))∥2. (26)



Therefore, we can obtain that:

F(W(k+1))

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α[2 + γ2(1− λ2

1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2

≤F(W(k)), (27)

where the second inequality is true because:

λ1 ≥

√
1− 2

2∥ḡ2(W(0))∥ − ∥ḡ1(W(0))∥
γ2∥ḡ1(W(0))∥

=⇒ α[2 + γ2(1− λ2
1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥ ≤ 0. (28)

This sufficient decrease of the objective function value indicates that the optimal F(W⋆) can be obtained for convex loss
functions.

(2) For a non-convex loss function L, as ∇F(W(k)) = g1(W
(k)) + g2(W

(k)) we have Eq. (27):

F(W(k+1))

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α[2 + γ2(1− λ2

1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥

− α

2
[∥∇F(W(k))∥2 − ∥g1(W(k))∥2 − ∥g2(W(k))∥2 − 2⟨g1(W(k)), g2(W

(k))⟩]

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α[2 + γ2(1− λ2

1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥

− α

2
[∥∇F(W(k))∥2 − 2∥g1(W(k))∥2 − 2∥g2(W(k))∥2]. (29)

From Eq. (23) we have

∥g1(W(k))∥2 = ∥g1(W(k))− g1(W
(0)) + g1(W

(0))∥2 ≤ 2∥g1(W(k))− g1(W
(0))∥2 + 2∥g1(W(0))∥2

≤ α2H2

2
∥
k−1∑
i=0

g2(W
(i))∥2 + 2∥g1(W(0))∥2

≤ γ2

2
∥ḡ1(W(0))∥2 + 2∥g1(W(0))∥2, (30)

and

∥g2(W(k))∥2 = ∥g2(W(k))− g2(W
(0)) + g2(W

(0))∥2 ≤ 2∥g2(W(k))− g2(W
(0))∥2 + 2∥g2(W(0))∥2

≤ α2H2

2
∥
k−1∑
i=0

g2(W
(i))∥2 + 2∥g2(W(0))∥2

≤ γ2

2
∥ḡ1(W(0))∥2 + 2∥g2(W(0))∥2, (31)

where the last inequality holds as

α ≤ γ∥ḡ1(W(0))∥
HBK

≤ γ∥ḡ1(W(0))∥
H∥

∑k−1
i=0 g2(W(i))∥

(32)

Therefore

F(W(k+1))



≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α[2 + γ2(1− λ2

1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥

− α

2
∥∇F(W(k))∥2 + 2α∥g1(W(0))∥2 + 2α∥g2(W(0))∥2 + αγ2∥ḡ1(W(0)∥2

≤F(W(k))− [
α

2
− α2H

2
]∥ḡ2(W(k))∥2 + α[2 + γ2(5− λ2

1)]

4
∥ḡ1(W(0))∥2 − α∥ḡ1(W(0))∥∥ḡ2(W(0))∥

− α

2
∥∇F(W(k))∥2 + 2α∥g1(W(0))∥2 + 2α∥g2(W(0))∥2. (33)

Thus,

min
k
∥∇F(W(k))∥2

≤ 1

K

K−1∑
k=0

∥∇F(W(k))∥2

≤ 2

αK

K−1∑
k=0

[F(W(k))−F(W(k+1))] +
[2 + γ2(5− λ2

1)]

2(K − 1)

K−1∑
k=1

∥ḡ1(W(0))∥2 − 2∥ḡ1(W(0))∥∥ḡ2(W(0))∥

− 1− αH

K

K−1∑
k=0

∥ḡ2(W(k))∥2 + 4∥g1(W(0))∥2 + 4∥g2(W(0))∥2

≤ 2

αK
[F(W(0))−F(W⋆)] +

[2 + γ2(5− λ2
1)]

2
∥ḡ1(W(0))∥2 + 4∥g1(W(0))∥2 + 4∥g2(W(0))∥2, (34)

where the last inequality holds due to F(W⋆) ≤ F(W(K)).

B PROOF OF THEOREM 3.5

Proof. (1) For local low-rank orthogonal-projection-based update, we have

Ws = W − α[g2(W)− Proj
K

(q)
h D1

(g2(W))] = W − αḡ2(W). (35)

For full-rank orthogonal-projection-based update, we have

Wc = W − α[g2(W)− ProjD1
(g2(W))] = W − αg̈2(W). (36)

Based on Eq. (11) and the smoothness of the objective function, we have an upper bound on F(Ws):

F(Ws) ≤ F(W)− [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩, (37)

and a lower bound on F(Wc):

F(Wc) ≥ F(W) +∇F(W)⊤(Wc −W)− H

2
∥Wc −W∥2. (38)

Combining Eq. (37) and Eq. (38), we have

F(Ws)

≤F(Wc)−∇F(W)⊤(Wc −W) +
H

2
∥Wc −W∥2 − [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩

=F(Wc)− ⟨g1(W) + g2(W),−αg̈2(W)⟩+ α2H

2
∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2

− α⟨ḡ1(W), ḡ2(W)⟩

=F(Wc) + α⟨g1(W), αg̈2(W)⟩+ α⟨g2(W), g̈2(W)⟩+ α2H

2
∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2

− α⟨ḡ1(W), ḡ2(W)⟩



=F(Wc) + [α+
α2H

2
]∥g̈2(W)∥2 − [α− α2H

2
]∥ḡ2(W)∥2 − α⟨ḡ1(W), ḡ2(W)⟩, (39)

where the last equality is true because

⟨g2(W), g̈2(W)⟩ = ⟨ProjD1
(g2(W)), g̈2(W)⟩+ ⟨g̈2(W), g̈2(W)⟩, (40)

and both g1(W) and ProjD1
(g2(W)) are orthogonal to g̈2(W). Based on Eq. (20), the last term has:

⟨ḡ1(W), ḡ2(W)⟩

≥ − H2(1− λ2
1)

4
∥W −W(0)∥2 − 1

2
∥ḡ2(W)∥2 − 1

2
∥ḡ1(W(0))∥2 + ⟨ḡ1(W(0)), ḡ2(W

(0))⟩. (41)

Suppose that W is the model update at n-th iteration where n ≤ K. For the local low-rank orthogonal-projection-based
update,

∥W(k) −W(0)∥2 = α2∥
n∑

i=0

ḡ2(W
(i))∥2

≤ γ2∥ḡ1(W(0))∥2

H2B2K2
n

n∑
i=0

∥ḡ2(W(i))∥2

≤ γ2n2∥ḡ1(W(0))∥2

H2K2

≤ γ2∥ḡ1(W(0))∥2

H2
, (42)

and similarly for full-rank orthogonal-projection-based update, we also have

∥W(k) −W(0)∥2 ≤ γ2∥ḡ1(W(0))∥2

H2
. (43)

Therefore, continuing with Eq. (41), we obtain:

⟨ḡ1(W(k)), ḡ2(W
(k))⟩

≥ − 2 + γ2(1− λ2
1)

4
∥ḡ1(W(0))∥2 + ∥ḡ1(W(0))∥∥ḡ2(W(0))∥ − 1

2
∥ḡ2(W)∥2

≥− 1

2
∥ḡ2(W)∥2, (44)

where the last inequality holds due to Eq. (28). Continuing with Eq. (39), we get:

F(Ws) ≤ F(Wc) + [α+
α2H

2
]∥g̈2(W)∥2 − [

α

2
− α2H

2
]∥ḡ2(W)∥2. (45)

Based on assumption, we have

∥Proj
K

(q)
h D1

(g2(W))∥2 = λ3∥ProjD1
(g2(W))∥2 ≤ ∥ProjD1

(g2(W))∥2, (46)

thus

∥ḡ2(W)∥2 = ∥g̈2(W)∥2 + ∥ProjD1
(g2(W))∥2 − ∥Proj

K
(q)
h D1

(g2(W))∥2

= ∥g̈2(W)∥2 + (1− λ2
3)∥ProjD1

(g2(W))∥2. (47)

Combining Eq. (45) and Eq. (47) on ∥g̈2(W)∥2, we have

F(Ws) ≤ F(Wc) + [(α+
α2H

2
)− (

α

2
− α2H

2
)]∥ḡ2(W)∥2 − (1− λ2

3)[α+
α2H

2
]∥ProjD1

(g2(W))∥2

≤ F(Wc) + [(
α

2
+ α2H)(1− λ2

1)]∥g2(W)∥2 − (1− λ2
3)[α+

α2H

2
]λ′

1
2∥g2(W)∥2, (48)



where the last inequality holds with global sufficient project definition (Definition 1 in [Lin et al., 2022a]) that
∥ProjD1

(g2(W))∥ ≥ λ′
1∥g2(W)∥ and

∥g2(W)∥2 = ∥Proj
K

(q)
h D1

(g2(W)) + ḡ2(W)∥2

= ∥Proj
K

(q)
h D1

(g2(W))∥2 + ∥ḡ2(W)∥2

≥ λ2
1∥g2(W)∥2 + ∥ḡ2(W)∥2. (49)

Considering

λ1 ≥

√
1− (1− λ2

3)(2 + αH)λ′2
1

1 + 2αH

=⇒ α(1− λ2
1)(1 + 2αH) ≤ α(1− λ2

3)(2 + αH)λ′
1
2
, (50)

we get F(Ws) ≤ F(Wc).

(2) Base on the smoothness of the loss function, we have

L1(W
(k)) ≤ L1(W

(0)) + ⟨g1(W(0)),W(k) −W(0)⟩+ H

4
∥W(k) −W(0)∥2

= L1(W
(0)) + ⟨g1(W(0)),−α

k−1∑
i=0

ḡ2(W
(i))⟩+ α2H

4
∥
k−1∑
i=0

ḡ2(W
(i)∥2

= L1(W
(0))− α

k−1∑
i=0

⟨ḡ1(W(0)), ḡ2(W
(i))⟩+ α2H

4
∥
k−1∑
i=0

ḡ2(W
(i)∥2

≤ L1(W
(0))− α∥ḡ1(W(0))∥[

k−1∑
i=0

∥ḡ2(W(i))∥] + α2Hk

4

k−1∑
i=0

∥ḡ2(W(i)∥2. (51)

Since α ≤ 4∥ḡ1(W
(0))∥

HBk1.5 , we have

αHk

4

k−1∑
i=0

∥ḡ2(W(i)∥2 ≤ ∥ḡ1(W
(0))∥

B
√
k

k−1∑
i=0

∥ḡ2(W(i)∥2

≤
∥ḡ1(W(0))∥(

∑k−1
i=0 ∥ḡ2(W(i)∥2)√∑k−1

i=0 ∥ḡ2(W(i)∥2

≤ ∥ḡ1(W(0))∥

√√√√k−1∑
i=0

∥ḡ2(W(i)∥2

≤ ḡ1(W
(0))∥[

k−1∑
i=0

∥ḡ2(W(i)∥]. (52)

Therefore, L1(W
(k)) ≤ L1(W

(0))

C PROOF OF THEOREM 3.6

Proof. Suppose we define the updates as Eq. (35) and Eq. (36) for local low-rank and full-rank updates, for a H
2 -smooth

loss function L, given F is H-smooth, we can have an upper bound on F(Wc):

F(Wc) ≤ F(Ws) +∇F(W)⊤(Wc −Ws) +
H

2
∥Wc −Ws∥2. (53)

As the projection consist of the basis and scaling matrices, we have:

Wc −Ws = ProjD1
(g2(W))− Proj

K
(q)
h D1

(g2(W)) = (SjQjSj
⊤ − S

(q)
j Q

(q)
j S

(q)
j

⊤
)g2(W), (54)



where ProjD1
(g2(W)) defines the projection on the input local model space for anchor point q of old task j, and Sj is the

basis for global model space and Proj
K

(q)
h D1

(g2(W)) defines the projection on the input local model space for anchor point

q of old task j, and S
(q)
j is the basis for this local model space. Qj and Q

(q)
j are the squared scaling matrices corresponding

to the basis Sj and S
(q)
j .

Without loss of generality, for any anchor point sq , we denote by Bh(sq) the neighborhood of indices near that anchor point,
Bh(sq)

def
= {∀s′ ∈ [M ]× [N ] : d(sq, s

′) < h} and we use M(h, sq) and N(h, sq) to denote the number of unique row and
column indices in Bh(sq). Also, we denote nq = min(M(h, sq), N(h, sq)).

Based on the loss function Eq. (3), we denote the mapping function T (s) = Rl
j as the original matrix where s = (a, b) ∈

[M ] × [Nj ]. Then we can describe it locally with T̂ (s) = T̂ (sq) = A(q)B(q)⊤ as the estimate for each anchor point sq.
Then following Proposition 1 of [Lee et al., 2013], given that if |Ω ∩ Bh(sq)| ≤ Cµ2r′nq log

6 nq , with probability greater
than 1− n−3

q , we have the total squared-error within a neighborhood of sq bounded by the following:

E(T )(q, h) = ∥K(q)
h ⊙ (T (s)− T̂ (s))∥F ≤ Z ′hβ(4

√
nq(2 + p)

p
+ 2) = Z ′hβ(4

√
3nq + 2), (55)

here, T is Hölder continuous ∥T (x)− T (x′)∥F ≤ Z ′dβ(x, x′) with parameter Z ′, β > 0. T (s) is a rank r′ matrix satisfies
the strong incoherence property with parameter µ described by [Candes and Plan, 2010]. C is a constant. The kernel function
Kh is a uniform kernel based on a product distance function. p =

|Ω∩Bh(sq)|
|Bh(sq)| is the density of observed samples. Given that

the observed set of indices of the matrix is full in our case, thus |Ω ∩ Bh(sq)| = |Bh(sq)| and p = 1.

Let T = T 2 = Rl
jR

l
j
⊤, which is the gram matrix of the original matrix, it is easy to prove that the functions is still Hölder

continuous ∥T (x)− T (x′)∥F ≤ Zdβ(x, x′) with new parameter Z > 0 and the same parameter β > 0. Thus, the above
inequality still hold given |Ω ∩ Bh(sq)| ≤ Cµ2rnq log

6 nq with probability greater than 1− n−3
q

E(T )(q, h) = ∥K(q)
h ⊙ (T (s)− T̂ (s))∥F ≤ Zhβ(4

√
3nq + 2), (56)

since the number of indices nq remains the same under squared matrix and the rank of the r = rank(T (s)) =
rank(T (s)T (s)⊤) ≤ min(rank(T (s)), rank(T (s)⊤) = r′.

Note that for SVD, the left and right singular matrices are unitary matrices, i.e., UU⊤ = V V ⊤ = I , and are actually the
eigenvector of matrices RR⊤. Qj and Q

(q)
j are diagonal matrices. Hence, the local space projection corresponding with

anchor point sq for K(q)
h T (s) and K

(q)
h T̂ (s), we have:

∥SjQjSj
⊤ − S

(q)
j Q

(q)
j S

(q)
j

⊤
∥F ≤ ∥Sj

√
QjVjV

⊤
j

√
Qj

⊤
Sj

⊤ − S
(q)
j

√
Q

(q)
j V

(q)
j V

(q)
j

⊤√
Q

(q)
j

⊤
S
(q)
j

⊤
∥F

= ∥K(q)
h ⊙ (T (s)− T̂ (s))∥F . (57)

continuing with Eq. (53) and Eq. (54), we obtain:

F(Wc)−F(Ws) ≤ ⟨g1(W) + g2(W), g2(W)⟩Zhβ(4
√

3nq + 2) +H∥g2(W)∥2Z2h2β(24nq + 9)

= ⟨g1(W), g2(W)⟩Zhβ(4
√
3nq + 2) + ∥g2(W)∥2[Zhβ(4

√
3nq + 2) +HZ2h2β(24nq + 9)].

(58)

We follow the similar derivation of Eq. (16) for the term ⟨g1(W), g2(W)⟩ and have:

⟨g1(W), g2(W)⟩
=⟨g1(W)− g1(W

(0)) + g1(W
(0)), g2(W)⟩

=⟨g1(W)− g1(W
(0)), g2(W)⟩+ ⟨g1(W(0)), g2(W)⟩

=⟨g1(W)− g1(W
(0)), g2(W)⟩+ ⟨g1(W(0)), g2(W)− g2(W

(0))⟩+ ⟨g1(W(0)), g2(W
(0))⟩. (59)

Considering:

− 2⟨g1(W)− g1(W
(0)), g2(W)⟩+ ∥g1(W)− g1(W

(0))∥2 + ∥g2(W)∥2



= ∥g1(W)− g1(W
(0)) + g2(W)∥2 ≥ 0, (60)

we have:

⟨g1(W)− g1(W
(0)), g2(W)⟩ ≤ 1

2
∥g1(W)− g1(W

(0))∥2 + 1

2
∥g2(W)∥2, (61)

and similarly:

⟨g1(W(0)), g2(W)− g2(W
(0))⟩ ≤ 1

2
∥g2(W)− g2(W

(0))∥2 + 1

2
∥g1(W(0))∥2. (62)

Combining Eq. (60), Eq. (61) and Eq. (62) gives an upper bound on ⟨g1(W), g2(W)⟩, i.e.,

⟨g1(W), g2(W)⟩

≤1

2
∥g1(W)− g1(W

(0))∥2 + 1

2
∥g2(W)∥2

+
1

2
∥g2(W)− g2(W

(0))∥2 + 1

2
∥g1(W(0))∥2 + ⟨g1(W(0)), g2(W

(0))⟩

≤H2

8
∥W −W(0)∥2 + 1

2
∥g2(W)∥2

+
H2

8
∥W −W(0)∥2 + 1

2
∥g1(W(0))∥2 + ⟨g1(W(0)), g2(W

(0))⟩

≤H2

4
∥W −W(0)∥2 + 1

2
∥g2(W)∥2 + 1

2
∥g1(W(0))∥2 + ⟨g1(W(0)), g2(W

(0))⟩, (63)

Suppose that W is the model direct update without any projection at n-th iteration where n ≤ K. Similar to Eq. (42) and
Eq. (43), we always have:

∥W(k) −W(0)∥2 ≤ γ2∥g1(W(0))∥2

H2
. (64)

Therefore, continuing with Eq. (63), we obtain:

⟨g1(W), g2(W)⟩ ≤ 2 + γ2

4
∥g1(W(0))∥2 + ∥g1(W(0))∥∥g2(W(0))∥+ 1

2
∥g2(W)∥2.

Combine Eq. (65) and Eq. (58), noted that the function is B-Lipschitz thus ∥g2(W)∥ ≤ B:

F(Wc)−F(Ws) = ⟨g1(W), g2(W)⟩Zhβ(4
√

3nq + 2) + ∥g2(W)∥2[Zhβ(4
√

3nq + 2) +HZ2h2β(24nq + 9)]

≤ Zhβ(4
√
3nq + 2)[

2 + γ2

4
∥g1(W(0))∥2 + ∥g1(W(0))∥∥g2(W(0))∥+ 3

2
B2] +HZ2h2β(24nq + 9)B2.

(65)

The error of F(Wc)−F(Ws) has the above upper bound.

For the lower bound of F(Wc)−F(Ws), similar to Eq. (53), we first have the lower bound for error F(Wc) as:

F(Wc) ≥ F(Ws) +∇F(W)⊤(Wc −Ws)− H

2
∥Wc −Ws∥2, (66)

then following the similar proof above, we have:

F(Wc)−F(Ws) ≥ Zhβ(4
√
3nq + 2)[−2 + γ2

4
∥g1(W(0))∥2 + ∥g1(W(0))∥∥g2(W(0))∥+ 1

2
B2]−HZ2h2β(24nq + 9)B2.

(67)

which is the lower bound of error F(Wc)−F(Ws). Since the proof is similar, we omit this in the paper.



Table 3: Popular kernel functions and their efficiencies relative to Epanechnikov kernel.

Kernel Type Kernel Function Efficiency(%)

Uniform Kh(s1, s2) ∝ 1[d(s1, s2) < h] 92.9
Logistic Kh(s1, s2) ∝ 1

exp(d(s1,s2)/h)+2+exp(−d(s1,s2)/h) 88.7
Gaussian Kh(s1, s2) ∝ 1√

2π
exp(− 1

2h
−2d(s1, s2)

2) 95.1
Triangular Kh(s1, s2) ∝ (1− d(s1,s2)/h)1[d(s1, s2) < h] 98.6
Cosine Kh(s1, s2) ∝ π

4 cos πd(s1,s2)
2h 1[d(s1, s2) < h] 99.9

Epanechnikov Kh(s1, s2) ∝ 3
4 [1− (d(s1,s2)/h)2]1[d(s1, s2) < h] 100

Silverman Kh(s1, s2) ∝ 1
2 exp(−

|d(s1,s2)/h|√
2

) · sin( |d(s1,s2)/h|√
2

+ π
4 ) N/A

D POPULAR KERNEL FUNCTIONS

We list the popular kernel functions in Table 3. The distance d can be computed by some standard distance measures such as
ℓ2 or cosine similarity. For example, for a global representation matrix Rl

j = [rlj,1, ...r
l
j,Nj ] ∈ RM×Nj

for layer l task j,

the distance between a and b on space [N j ] is d(a, b) = arccos(
⟨rlj,a,r

l
j,b⟩

∥rlj,a∥·∥rlj,b∥
), where rlj,a, r

l
j,b are the a-th and b-th rows of

the matrix Rl
j .

E DATASETS INFORMATION

We evaluate the performance of our LMSP on four public datasets for CL: (1) Permuted MNIST [LeCun et al., 2010]:
(PMNIST) is a variant of the MNIST dataset [LeCun et al., 2010], where the input pixels are randomly permuted. Following
[Lopez-Paz and Ranzato, 2017, Saha et al., 2021], the dataset is divided into 10 tasks by different permutations and each
task contains 10 classes; (2) CIFAR-100 Split [Krizhevsky et al., 2009]: the CIFAR-100 dataset [Krizhevsky et al., 2009]
is divided into 10 different tasks, and each task is a 10-way multi-class classification problem; (3) 5-Datasets [Lin et al.,
2022a,b]: we follow the setting of [Lin et al., 2022a,b] to use a sequence of 5 datasets, which are CIFAR-10, MNIST,
SVHN [Netzer et al., 2011], not-MNIST [Bulatov, 2011], Fashion MNIST [Xiao et al., 2017], and the classification problem
on each dataset is an individual task; and (4) MiniImageNet [Vinyals et al., 2016]: the MiniImageNet dataset [Vinyals et al.,
2016] is divided into 20 tasks, and each task includes 5 classes.

F ABLATION STUDIES ON KERNEL TYPE

Figure 2 shows the influence of different kernels. We adopted five different kernels in our model and the result shows that
the Gaussian kernel reach the best performance. Beside, the kernel effect is not that obvious and the overall performance are
similar thus we could choose the simplest one in practise to reduce the computation.
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Figure 2: Ablation studies on kernel type.



G RESULTS OF FORWARD KNOWLEDGE TRANSFER.

We show the results of forward knowledge transfer(FWT) in the Table 4. We compared the FWT performance of our LMSP
approach to those of the GPM, TRGP, and CUBER methods, which are the most related work to our paper. The value for
GPM is zero because we treat GPM as the baseline and consider the relative FWT improvement over GPM. We compare
them using four public datasets. We can see from the table that the FWT performance of our LMSP approach beats those
of the TRGP and CUBER (two most related and state-of-the-art methods) on the PMNIST, Cifar-100 Split, and 5-Dataset
datasets, and is comparable to those of the TRGP and CUBER on the MiniImageNet dataset. Clearly, this shows that the
good BWT performance of our LMSP method is not achieved at the cost of sacrificing the FWT performance.

Table 4: Comparison of FWT among GPM, TRGP, CUBER and LMSP. The value for GPM is zero because we treat GPM
as the baseline and consider the relative FWT improvement over GPM.

FWT (%) PMNIST Cifar-100 Split 5-Dataset MiniImageNet

GPM 0 0 0 0
TRPG 0.18 2.01 1.98 2.36
CUBER 0.80 2.79 1.96 3.13
LMSP(r = 25) 0.92 2.89 2.43 2.79
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