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Abstract
In order to streamline the fine-tuning of founda-
tion models, Low-Rank Adapters (LoRAs) have
been substantially adopted across various fields,
including instruction tuning and domain adapta-
tion. The underlying concept of LoRA involves
decomposing a full-rank matrix into the prod-
uct of two lower-rank matrices, which reduces
storage consumption and accelerates the training
process. Furthermore, to address the limited ex-
pressive capacity of LoRA, the Mixture-of-Expert
(MoE) has been introduced for incorporating mul-
tiple LoRA adapters. The integration of LoRA
experts leads to a visible improvement across sev-
eral downstream scenes. However, the mixture of
LoRAs (MoE-LoRA) still exhibits its low robust-
ness during tuning and inferring. Inspired by the
Riemannian Preconditioners which train LoRA as
a sub-space projector, we propose a new training
strategy for MoE-LoRA, to stabilize and boost
its feature learning by gate-rescaled multi-space
projections. We provide both a theoretical solu-
tion as well as an alternative engineering strategy.
Examinations on SGD and AdamW optimizers
demonstrate the effectiveness of our methodology.
Source code is available at https://github.
com/THUDM/MoELoRA_Riemannian.

1. Introduction
Parameter-Efficient Fine-Tuning (PEFT) techniques offer
a cost-effective solution for fine-tuning foundation models
(FMs) (Zhang et al., 2025a; Fu et al., 2024). Among these,
Low-Rank Adaptation (LoRA) is a prevalent technology due
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to its versatility and simplicity. In detail, LoRA introduces
trainable low-rank matrices A and B to update the internal
modules of FMs, which is given by X = W +BA, where
X represents the overall weight matrix after integrating
pretrained weights W and LoRA modules A and B. In a
sense, the product of A and B serves as an approximation of
the full-rank update (in other words, Fully Fine-Tuning, or
FFT) for the pre-trained weights. While LoRA significantly
reduces the number of trainable parameters, it also imposes
two limitations: One is limited representation, and the other
one is gradient sub-optimality.

Limitation 1: Limited representation. A natural problem of
low-rank matrices lies in less powerful representation, espe-
cially in complex tasks. To tackle this, one straightforward
solution is the integration of multiple LoRA modules into
the mixture-of-expert framework, known as MoE-LoRA.
Figure 1 (left) illustrates a plain MoE-LoRA framework.
These efforts tangibly improved the performance of LoRA
in many scenarios, like vision-language tasks, multi-task
learning, continual learning, etc. In a nutshell, the route
of MoE-LoRA can be roughly categorized into two lines:
(i) Designing dedicated MoE-LoRA frameworks for spe-
cific domains, such as MOELoRA (Liu et al., 2023) and
MoCLE (Gou et al., 2023). (ii) Technically improving MoE-
LoRA via architectural, updating, and loss constraints, such
as MoLA (Gao et al., 2024) and HydraLoRA (Tian et al.,
2024). Nevertheless, most of these efforts fail to consider
the instability and inefficiency of training MoE-LoRA.

Limitation 2: Gradient Sub-optimality. Another concern
that plagues LoRA is gradient sub-optimality. This occurs
since the low-rank matrices A and B together form a quo-
tient manifold space with a certain curvature, leading to
an inconsistency between the inner-manifold optimal and
the full-rank optimal gradient. This further leads to a sub-
optimal training process for LoRA. To alleviate, Zhang et
al. (Zhang & Pilanci, 2024) enhances LoRA gradients by
a Riemannian gradient preconditioner, given by ∇AL =
(BTB)−1∇AL and ∇BL = ∇BL(AAT )−1. These pre-
conditioners contribute to constructing two gradient projec-
tors after a mathematical derivation, ensuring the update is
done in accord with the full-rank gradient projection onto
the row space of A and the column space of B, that is
Xnew = X−η[Projcol(B)(∇XL)T+Projrow(A)(∇XL)].
Here the notation ProjV (M) represents a projection func-
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Figure 1. The whole MoE-LoRA architecture and an insight into its gradient updating process. The left part of this figure shows a pipeline
of mixture of LoRAs, which fixes the pretrained weights of Feed-Forward Network (FFN), and trains a series of LoRA adapters together
with a routering gate. The right part exhibits how MoE-LoRA is updated. Specifically, we plot an example of a 2-Expert MoE-LoRA
in a condition that g1 < g2, which results in a further distorted manifold g1B1A1. Here we simply omit the fixed pretrained weights
and suppose X = g1E1 + g2E2 for convenient display. Since that, for a random step t we plot a state point 1
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and so that serves as the center point of the two manifold states at t. This figure illustrates that g1B1A1

has a higher curvature so that its local optimal descent and its global optimal descent projection are more distinct. That indicates a
requirement for gate-related preconditioners.

tion which projects a given matrix M onto a subspace con-
structed by all vectors in set V .

Through a comprehensive analysis of Limitation 1 and Lim-
itation 2, a natural question arises:

How can LoRA-based structure further approximate the full

fine-tuning with the guaranteed Limitations 1 and 2?

Inspired by MoE-LoRA and the gradient preconditioning
methods, a straightforward answer to this question is to
integrate both approaches to simultaneously overcome the
representative and sub-optimal limitations. Specifically, the
gradients of each LoRA expert can be refined by a respec-
tive Riemannian preconditioner. However, we claim that the
process of weighed summing experts in MoE-LoRA intro-
duces a gate-based scaling for each LoRA expert’s manifold,
thereby altering their curvatures with regard to their respec-
tive gate value gis. We illustrate this phenomenon in the
right part of Figure 1, which plots an example of a 2-Expert
MoE-LoRA in a condition that g1 < g2. Specially, in their
respective spaces of Expert 1 and 2, Manifolds constructed
by B1A1 and B2A2 initially share the same curvature since
their low-rank matrices are in the same rank. However, after
being multiplied by gate values, Manifold g1B1A1 is more
rescaled so that it provides a larger curvature than g2B2A2

in the MoE full space. As a result, Expert 1 exhibits a higher
distinction between global optimal and inner-manifold opti-
mal descents. This phenomenon indicates that the precondi-
tioners for each expert shall be further refined, to take the
impact of gate values into consideration. In this paper, we
propose a simple but effective solution to further rescale the
gradients of each expert in a lightweight way by respective

gate value gi.Our improved gradient updating process for
MoE-LoRA is given by:

Xnew = X − η

NExpert∑
i=1

giProjcol(Bi)(∇XL)T

−η

NExpert∑
i=1

giProjrow(Ai)(∇XL).

We summarize our contributions as follows:

• We integrate the mixture of LoRAs structure with the
Riemannian preconditioners to alleviate both limited
representation and sub-optimality issues of LoRA.

• We emphasize a distortion issue behind per-expert pre-
conditioning, and respectively propose a theoretical
and an engineering solution for gate-value-rescaled
gradient preconditioning of MoE-LoRA.

• We implement and examine our rescaling approach
for MoE-LoRA under a series of foundation models,
illustrating our effectiveness across various tasks.

2. Related Works
2.1. LoRA and LoRA Variants

LoRA (Hu et al., 2022) decomposes a full-rank matrix into
a product of two low-rank matrices, which has been widely
considered an effective solution for parameter-efficient fine-
tuning. Studies have proposed several variants to reform
LoRA: For initialization, PISSA (Meng et al., 2024) lever-
ages singular value decomposition (SVD) to obtain the prin-
cipal singular components of W , while MiLoRA (Wang
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et al., 2025a) utilizes secondary singular values and vectors.
LoRA-Pro (Wang et al., 2025b) and LoRA-GA (Wang et al.,
2024b) approximate the direction of initial gradients to align
them with that of the fully fine-tuning. LoRA+ (Hayou
et al., 2024) introduces a learning rate separating strat-
egy with ηB > ηA. ResLoRA (Shi et al., 2024b) and
SIBO (Wen et al., 2024) accelerate convergence and mitigate
over-smoothing by introducing residual paths. DoRA (Liu
et al., 2024b) decomposes the weight vector into direc-
tion and magnitude and only uses its direction component.
rsLoRA (Kalajdzievski, 2023) proposes a rank-stabilized
scaling factor λt = r

1/2
t to ensure stable gradient updates.

To prevent overfitting, BiLoRA (Qiang et al., 2024) adopts a
bi-level optimizing strategy, while others implement dropout
mechanisms (Wang et al., 2024a; Lin et al., 2024).

2.2. Mixture of LoRAs

MoE has emerged as a critical framework for addressing
complex tasks. By incorporating multiple expert modules,
it dynamically selects appropriate experts based on specific
inputs (Jacobs et al., 1991). Early studies, such as Lo-
RAMoE (Dou et al., 2024) and MixLoRA (Li et al., 2024),
have pioneered the introduction of the MoE-LoRA architec-
ture by integrating LoRA experts for both global and down-
stream tasks. Afterward, MoE-LoRA has demonstrated its
effectiveness across a range of fields such as continual learn-
ing (Dou et al., 2024; Yang et al., 2024), vision-language
multi-model tasks (Gou et al., 2023; Chen et al., 2024), and
multi-task applications (Liu et al., 2023).

Recent studies have focused on enhancing MoE-LoRA
through architectural advancements and improved train-
ing strategies. For instance, MoLA (Gao et al., 2024)
allocates a varying number of experts at different lay-
ers, and MixDA (Diao et al., 2023) introduces multiple
domain-adaptive modules to support multi-domain knowl-
edge. Other methods such as (Wu et al., 2024a; Liu et al.,
2023; Wu et al., 2024b; Gou et al., 2023; Wang & Agar-
wal, 2022) have also been proposed for strengthening MoE-
LoRA. To boost the training of MoE-LoRA, Luo et al. (Luo
et al., 2024) address the random routing issue by introduc-
ing a contrastive loss (Shi et al., 2024a). At the same time,
MoV (Zadouri et al., 2024) chooses to combine lightweight
vectors with a sparse selection mechanism for efficient ex-
pert allocation. Other approaches, including (Dou et al.,
2024; Li et al., 2024; Zhu et al., 2023), focus on load balanc-
ing among experts. However, to the best of our knowledge,
there is still a lack of work on gradient optimizing (Bian
et al., 2024) specifically for MoE-LoRA models.

2.3. Gradient Preconditioners

In most deep learning cases (Zhang et al., 2024a; Luo et al.,
2025a), gradient descent algorithms update model parame-

ters by calculating gradient-based updates. To accelerate the
optimizing process, the concept of gradient preconditioning
has been introduced. Advanced techniques such as Ada-
grad (Duchi et al., 2011) dynamically adjust the learning
rate by an accumulated squared gradients Gt =

∑t
i=1 g

2
i

and update model by ∆θt = −ηG
−1/2
t · gt. Adam (Kingma

& Ba, 2015) extends this approach by incorporating mo-
mentum and bias correction, scaling gradients through a
diagonal preconditioner, and resulting in updates in the
form of ∆θt = −η mt√

vt+ϵ , where vt = β2vt−1+(1−β2)g
2
t .

AdamW (Loshchilov & Hutter, 2019) further introduces a
weight decay to Adam.

Recent studies have provided theoretical support for scaled
gradient descent methods under different preconditioning
strategies. The core idea is to adjust both the direction and
magnitude of updates by introducing a scaling matrix to
gradients. Tong et al. (Tong et al., 2021) demonstrate the
local convergence of scaled gradient descent methods. Jia
et al. (Jia et al., 2024) extend this work by proving global
convergence of scaled gradient descent for the least-squares
matrix decomposition problem ∥ABT − Y ∥2F /2, showing
that this approach achieves global convergence under dif-
ferent condition numbers. Other variants of scaled gradient
descent have also emerged, such as Zhang et al. who pro-
posed two regularization strategies (Zhang et al., 2023;
2024c). In higher-dimensional settings, scaled gradient
descent has been further extended to tensor optimization
(Tong et al., 2022; Ma et al., 2024). Mishra et al. (Mishra
et al., 2013; Mishra & Sepulchre, 2016) also applied the
principles of Riemannian to the optimization involving low-
rank matrices. Considering the data’s manifold geometry, a
Riemannian metric gp(v, w) is introduced to guide gradient
updates along the manifold. Recently, Zhang et al. (Zhang
& Pilanci, 2024) introduced the idea of Riemannian precon-
ditioners to LoRA by attaching an r × r preconditioner to
the gradients of low-rank matrices. As a result, they provide
improved fine-tuning performance of LoRA, compared with
conventional gradient optimizers such as SGD and AdamW.

3. Method
We elaborate on our motivations and detail the modification
we have made to the Riemannian preconditioning method
specifically for MoE-LoRA. Our theoretical foundations
and engineering solutions are also presented.

3.1. Riemannian Preconditioner in LoRA Expert

As a preliminary, we first briefly introduce the Rieman-
nian preconditioner (Zhang & Pilanci, 2024). Suppose the
pretrained model weight is W and its additive low-rank com-
ponents as B and A, let X = W + BA denote the whole
weight matrix and let L and η denote the loss function and
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the learning rate, respectively. For the plain gradient de-
scent method, the gradient updating process is described
through Equation (1) to (4), in which the derivation from
(2) to (3) relies on ignoring the second-order term of learn-
ing rate. Obviously, B∇AL + ∇BLA in (4) serves as an
approximation of the ideal FFT gradient of X .

Xnew = W +BnewAnew (1)
= W + (B − η∇BL)(A− η∇AL) (2)
≈ W +BA− ηB∇AL − η∇BLA (3)
= X − η(B∇AL+∇BLA) (4)

Subsequently, according to the derivation chain rule and
the simple fact that X = W + BA, we directly obtain
that ∇AL = (∇AX)(∇XL) = BT (∇XL), and likewise
∇BL = (∇XL)AT . Thus, (4) can be transformed to:

Xnew = X − η[BBT (∇XL) + (∇XL)ATA], (5)

which actually updates the model in a different direction
compared to the FFT update formula Xnew = X − η∇XL.
This phenomenon occurs since the distorted sub-space of
X constructed by BA brings inconsistency between the
optimal gradient descent within its manifold and that of
the full matrix X . To address this inconsistency, Zhang et
al. (Zhang & Pilanci, 2024) scale the gradients of A and B
by:

∇AL = (BTB)−1∇AL
∇BL = ∇BL(AAT )−1,

(6)

so that (5) is expressed as:

Xnew = X − η[B(BTB)−1BT (∇XL)
+ (∇XL)AT (AAT )−1A]

= X − η[Projcol(B)(∇XL)T

+ Projrow(A)(∇XL)],

(7)

where the update inside the manifold is performed according
to the full matrix gradient projection onto the row space of
A and the column space of B. Therefore, it better approxi-
mates fully fine-tuning than the unscaled descent step.

Inspired by this work, a straightforward way to expand
their solution to MoE-LoRA is to individually scale the
gradient of each LoRA expert by (6). However, equation
X = W +BA lays out in a different form in MoE-LoRA:

X = W +

NExpert∑
i=1

giBiAi, (8)

where NExpert denotes the number of activated experts and
gi denotes the gate value of specific expert i. As a result,

it not only brings a gate value gi for each expert i into
Equation (1)-(4), but also introduces an extra gate value gi
for each expert i into (5), since the derivation chain rule
∇Bi

L = gi(∇XL)Ai
T and ∇Ai

L = giBi
T (∇XL). To

further clarify, we formally derive the whole result. Note
that gate values are computed through a softmax with com-
plex non-linear operations, thus we just treat them as con-
stants for an easier deriving approximation. Following the
conventional Riemannian preconditioners in (6), we have:

Xnew = W+

NExpert∑
i=1

gi(Bi − η∇BiL)(Ai − η∇AiL)

≈ X−η

NExpert∑
i=1

gi(Bi∇Ai
L+∇Bi

LAi)

= X−η

NExpert∑
i=1

gi[Bi(Bi
TBi)

−1∇Ai
L

+∇Bi
L(AiAi

T )−1Ai] (9)

= X−η

NExpert∑
i=1

gi[giBi(Bi
TBi)

−1Bi
T (∇XL)

+gi(∇XL)Ai
T (AiAi

T )−1Ai]

= X−η

NExpert∑
i=1

gi
2Projcol(Bi)(∇XL)T

−η

NExpert∑
i=1

gi
2Projrow(Ai)(∇XL), (10)

in which the derivation step (9) denotes the conventional
Riemannian preconditioner scaling. It should be interpreted
that (10) consists of an ensemble of projections of the full
matrix gradient onto the row spaces of A experts and the
column spaces of B experts.

3.2. Rescaling Preconditioners

Equation (10) presents a squared-value weighted sum of
an ensemble of gradient projections. Generally, more acti-
vated experts lead to smaller per-expert gate values and
so lead to a more reduced assembled gradient; On the
other hand, more balanced experts also lead to a more re-
duced assembled gradient since the basic inequality theorem∑

i xi
2 >=

(
∑

i xi)
2

n = 1
n satisfies its equality condition

when xis are equal. As a result, the gradient of the full
matrix X will be underestimated due to those squared gate
values. From the perspective of manifolds and curvature,
we explain that by considering gi in (8) as a manifold scaler,
which reduces the size of BiAi so that would probably in-
crease its curvature. However, the conventional Riemannian
preconditioner failed to take the manifold scaler gi into con-
sideration, since it is designed for a single LoRA adapter.
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To alleviate this squared issue, we assume a further rescaling
step for the Riemannian preconditioners:

∇Ai
L =

(Bi
TBi)

−1∇AiL
gi

∇BiL =
∇BiL(AiAi

T )−1

gi
,

(11)

which is introduced to replace (6) in the derivation of Equa-
tion (9), to eliminate the variable gi and keeps only a first
power of gi in the final equation (10). Throughout this trans-
formation, the final ensemble of multi-expert projections
shares an equivalent scale with the projection of a single
LoRA adapter, shown in Equation (12). Therefore, training
of an MoE-LoRA will be alleviated from under-estimation.

Xnew = X − η

NExpert∑
i=1

giProjcol(Bi)(∇XL)T

−η

NExpert∑
i=1

giProjrow(Ai)(∇XL). (12)

We claim that (12) further approaches global fully finetun-
ing because of two basic reasons: Firstly, it is derived by
implementing Riemannian preconditioners to calibrate each
LoRA expert’s gradient (given by (6)), thus ensuring each
LoRA expert can get close to their respective local full-rank
training behavior (i.e., per-expert fully-finetuning equiva-
lency), according to Zhang et al. (Zhang & Pilanci, 2024);
Secondly, since there exists a further distortion of each ex-
pert space introduced by their respective gate value, leading
to an inconsistency between per-expert local optimals and
the global optimal. Therefore, (11) further introduces a re-
spective gate value gi as a re-scaler to each expert’s Rieman-
nian preconditioner to relieve the expert distortion resulting
from the multiplication of gate value during forwarding. De-
rived by (11) and (9), (12) is achieved. As a result, (12) can
further approach global fully-finetuning equivalency. For
example, larger gate values introduce less distortion. Thus,
through (12) experts with larger gate values are re-scaled
less than those with smaller ones.

3.3. Engineering Approximation

Although Equation (11) provides an approach to eliminate
under-estimation for MoE-LoRA, it is unrealizable since
each LoRA module exists a respective gi for every single
token of every batch sample. Actually, during the training,
backpropagation always runs after averaging all the losses
of each single token of each sample in a batch. Thus, it is
impossible to reconstruct and rescale the respective gradient
contributed by each single token when we optimize a LoRA
module. Alternatively, we design an engineering approxima-
tion to (11) and (12), by replacing each gate value gi with

its square root
√
gi during model forwarding. Consequently,

Equation (12) can be achieved only under the precondition-
ers of (6), because the quadratic terms of gate values gi2 in
Equation (10) are now naturally become linear terms gi.

Replacing gi by
√
gi simultaneously introduces destruction

to forwarding, as the sum of square roots does not equal 1.
One possible solution is to re-normalize those square roots
to be summed up as 1. However, it brings inconsistency
between the assigned weights of experts during forwarding
and backwarding. Therefore, we propose another strategy
to accommodate both aspects, which is manually assigning
optimizable and unoptimizable components of Equation (8),
to satisfy the requirements of both forwarding in (8) and
backwarding in (12). During the forwarding process, the
proposed strategy is simply expressed by:

X = Ŵ +

NExpert∑
i=1

√̂
giBiAi + (gi −

√̂
gi)B̂iÂi, (13)

where we define the hat symbol ˆ as an operation of gra-
dient detaching. Specifically, a p̂ denotes that the variable
p does not require gradient, which also means p should
be detached from gradient tracking along the whole neural
network. By decomposing optimizable and unoptimizable
components like this, low-rank matrices A and B are able
to be optimized following (12) (see Appendix E for detailed
derivations), while the equivalent behavior and the same
result of conventional module forwarding are still preserved.
Moreover, by maintaining the optimizable gi terms in for-
warding and treating all the

√
gi as constants that are not

subject to optimization, (13) also keeps the conventional
training behaviors of gates. Additionally, this modification
introduces only a minimal overhead to the original forward
computation process.

4. Experiments
We present a series of comparative experiments to evalu-
ate the performances of MoE-LoRA across various down-
stream tasks (Zhang et al., 2024b; Luo et al., 2025b) in-
cluding Question Answering, the GLUE Benchmark, and
the Vision-Language task. Specifically, two types of experi-
mental candidates are mainly involved in our experiments:
(1) MoE-LoRA with experts updated independently using
Riemannian scaled optimizer; and (2) MoE-LoRA updated
using Riemannian scaled optimizer, plus incorporating our
proposed rescaling technique (the engineering approxima-
tion). We implement both of them on SGD and AdamW
optimizers respectively. As a further reference, we also ex-
hibit our comparisons and possibility of integrations with
previous MoE-LoRA baselines, such as MoLA (Gao et al.,
2024). Finally, to lend support to our theoretical foundation,
we conduct an ablation study by assessing our forwarding
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Table 1. Question answering evaluations across four QA datasets with Llama-3.2-3B as the foundation model. Our gate-based rescaling
methodology outperforms conventional Riemannian preconditioned optimizers, in terms of both SGD and AdamW. Each pair of comparing
candidates is trained through the same steps until they both achieve good stable performances.

ScienceQA CommonsenseQA OpenBookQA SIQA avg.

RSGD20,10,4 62.8 52.4 53.2 65.7 58.5
gRSGD20,10,4 70.1 55.4 59.8 68.5 63.5

RAdamW20,10,4 82.6 67.7 70.4 81.5 75.6
gRAdamW20,10,4 83.8 68.2 72.4 82.3 76.7

Figure 2. Converging Performances of RSGD20,10,4 and gRSGD20,10,4 MoE-LoRA with Llama-3.2-3B as the foundation model. The
x-axis represents training steps, the left y-axis in each figure represents the training or validation losses, while the right y-axis in each
figure represents the accuracy metrics of test sets. Before implementing our gate-based rescaling method, the training and validation
losses of RSGD optimizer across four tasks are significantly reduced around 100-200 steps, while after implementing our method, they
are significantly reduced earlier around 0-100 steps.

revisions only under a classic optimizer without Riemannian
preconditioners support.

4.1. Experimental Setup

For most experiments, unless otherwise specified, we con-
struct a mixture of LoRAs modules with a total of 20 experts,
a rank of 4 for each expert, and a selection of top-10 experts
activated each time. Furthermore, a range of other architec-
tural MoE settings are also discussed in the ablation section.
We perform experiments based on Llama-3.2-3B (Touvron
et al., 2023), GLM-4-9B (Zeng et al., 2024), and LLaVA-
v1.5-7B (Liu et al., 2024a) as the foundation models. During
training, we follow a linear decay learning-rate scheduler.
We assign a relatively smaller learning rate to gate module
compared to other trainable components, to achieve a stable
training behavior. The reduced learning rate for gate helps to
prevent model from experiencing abrupt and erratic routing
changes. For further stabilization, we also cap its maximum
gradient norm at 1.0. We carefully assign different initial
learning rates for various tasks, trying to ensure all models
achieve their best performances in a capable running time.

We denote the number of experts, top-k, and the per-expert
rank as n, k, r respectively; For experimental candidates
using conventional Riemannian preconditioned optimiz-
ers, we denote them as RSGDn,k,r and RAdamWn,k,r, in
which the front R represents the word Riemannian; While

those candidates integrated with our gate-based rescaling ap-
proach are denoted as gRSGDn,k,r and gRAdamWn,k,r

respectively, in which the front g represents that we rescale
the gradient by gate values.

4.2. Question Answering Evaluations

We evaluate our proposed method on several question-
answering benchmarks, including ScienceQA (Lu et al.,
2022), CommonsenseQA (Talmor et al., 2019), Open-
BookQA (Mihaylov et al., 2018) and SIQA (Sap et al.,
2019). These question-answering datasets encompass a di-
verse range of domains and types, such as science, social
interactions, common sense, and open-book exams, etc. We
implement all the experimental candidates based on Llama-
3.2-3B as their foundation model. For the SGD optimizer,
we set an initial learning rate to 3×10−5 for every LoRA ex-
pert; For the AdamW optimizer, we utilize an initial learning
rate of 1× 10−5. We run through all the experiments until
they are stabilized at a stable performance, and especially
ensure that each pair of comparing candidates (i.e., inde-
pendently Riemannian preconditioned MoE-LoRA, and that
with our proposed rescaling approach) are trained through
the same steps to make sure they are fairly comparable.
Specifically, depending on the complexity of datasets, we
choose from two settings, 800 or 1,400 steps, for all the
QA evaluations, except that of RAdamW and gRAdamW

6



A Stronger Mixture of Low-Rank Experts for Fine-Tuning Foundation Models

Table 2. GLUE Benchmark evaluations across nine tasks with Llama-3.2-3B and GLM-4-9B as the foundation models. Our gate-based
rescaling method contributes an overall improvement over GLUE Benchmark, in terms of Riemannian preconditioned SGD and AdamW.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI avg.

Llama 3.2
(3B)

RSGD20,10,4 48.25 93.58 73.57 48.15 80.22 62.42 78.39 62.45 39.44 65.16
gRSGD20,10,4 55.86 94.95 76.29 56.70 83.48 80.37 83.42 72.92 52.11 72.90
RAdamW20,10,4 65.94 96.56 70.03 60.12 85.36 81.36 91.55 53.95 45.07 72.22
gRAdamW20,10,4 67.38 96.67 81.57 61.08 86.35 81.59 91.32 55.75 47.89 74.40

GLM 4
(9B)

RSGD20,10,4 62.33 91.74 82.32 63.06 85.36 81.67 90.27 62.59 76.05 77.27
gRSGD20,10,4 62.97 95.18 81.68 63.68 86.84 86.27 91.17 80.21 77.46 80.61
RAdamW20,10,4 62.54 45.53 79.30 64.15 88.72 88.03 91.58 89.56 84.51 77.10
gRAdamW20,10,4 62.25 46.22 79.59 64.36 88.82 88.19 91.66 91.37 85.92 77.60

on CommonsenseQA, which we train up to 2,000 steps to
achieve a more clear distinction between two comparable
candidates. We present our evaluated performances in Ta-
ble 1. It is observed that: (1) Riemannian preconditioned
Optimizers incorporating our approach achieve better per-
formances for every QA benchmark, albeit with varying
degrees of improvement; (2) Overall, we exhibit more con-
tribution to Riemannian preconditioned SGD than to that of
AdamW: We improve the performance of RSGD by around
8.5%, while we improve RAdamW by around 1.5%.

Besides our improvements in final performances, we also
witness a boost in terms of converging speed under our op-
timization. To clearly display this, we plot loss-decreasing
curves and metric variations of the four question-answering
datasets under SGD optimizer in Figure 2. It is clearly
shown that gRSGD converges faster than RSGD, in terms
of training and evaluating losses as well as accuracy metrics.

4.3. Performance on GLUE Benchmark

To comprehensively examine our effectiveness, we perform
a series of downstream evaluations on the benchmark of
GLUE (Wang et al., 2019), which is a collection of resources
for evaluating model performances on natural language un-
derstanding. We first run through all the evaluations in
GLUE with Llama-3.2-3B as the foundation model and
present the benchmark results in Table 2. For most SGD ex-
periments we set an initial learning rate for LoRA experts as
3× 10−5, except WNLI for which we set its initial learning
rate to 3 × 10−6; For AdamW experiments we choose an
initial learning rate from {3× 10−5, 1× 10−5}. For most
datasets, we train for 2,000 steps, excluding some AdamW
experiments in which we perform an early stop at around
1,000 since they appear to be converged or even overfit-
ting. Table 2 illustrates our effectiveness across various
downstream applications as well as the overall assessment
under Llama-3.2-3B. In terms of overall performances, our
approach improves RSGD and RAdamW by 11.9% and
3.0% respectively.

Table 3. Visual7W and VMCBench performances after trained for
1,000 steps, with LLaVA-v1.5-7B as the foundation model. (For
VMCBench, we use 100 samples to evaluate, thus the accuracy
will be at most a two-digit decimal. That’s why we list all numbers
in percentage here for a more comfortable present.)

Visual7W VMCBench

RSGD20,10,4 68% 59%
gRSGD20,10,4 72% 70%
RAdamW20,10,4 77% 75%
gRAdamW20,10,4 78% 75%

Subsequently, we extend experiments to a larger foundation
model, GLM-4-9B. Since the 9B model is more powerful in
few-shot learning, for some datasets such as SST-2 etc., we
set lower learning rates such as 3× 10−6 and 1× 10−6 re-
spectively for SGDs and AdamWs, to make sure a clear loss
decreasing period can be witnessed. We train for the same
number of steps for each pair of competitive candidates.
Table 2 also illustrates the performances of training MoE-
LoRA through different optimizing strategies with GLM-
4-9B. Results still witness our overall outperformance. In
particular, we improve the average performance of RSGD
by around 4.3%, and that of RAdamW by around 0.7%.

4.4. Performance on LLaVA

Beyond pure textual tasks (Bi et al., 2025), vision-language
cross-modal tasks have garnered increasing attention in re-
cent years, witnessing the emergence of notable achieve-
ments such as LLaVA, CogVLM, etc. (Chen et al., 2024;
Wang et al., 2024c; Ge et al., 2021; Jin et al., 2024) Thus,
we further evaluate our gate-based rescaling approach in
computer vision (Feng et al., 2022; 2025). Specifically,
we implement an MoE-LoRA architecture for the well-
known vision-language foundation model, LLaVA-v1.5-
7B (Chen et al., 2024). We introduce trainable MoE-LoRA
adapters into both visual and textual modules of LLaVA-
v1.5-7B. For evaluation, Visual7W (Zhu et al., 2016) and
VMCBench (Zhang et al., 2025b) datasets are employed,
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which both consist of multimodal samples each containing
a multiple-choice question paired with a related image. The
question can be answered through understanding the pro-
vided image. Visual7W is a subset of Visual Genome (Kr-
ishna et al., 2017) dataset, while VMCBench is a benchmark
created from 20 existing VQA datasets. For VMCBench,
we only use their dev set since their test set is not labeled.
We take 900 of all the 1,000 labeled samples as training sam-
ples, while the rest 100 are for evaluation. Table 3 exhibits
the results of all experimental candidates. Our approach
consistently demonstrates visible improvements, especially
for SGD.

4.5. Compare and Integrate with MoE-LoRA Baselines

We then compare and integrate our method with existing
MoE-LoRA baselines. We provide our comparisons with
two baselines: (1) The pure mixture of LoRAs (Liu et al.,
2023), which we denote as MoELoRA and use token-level
routing; (2) MoLA (Gao et al., 2024), which is a MoE-LoRA
variant specifically focusing on assigning different numbers
of experts to different layers, and proving that higher lay-
ers need more LoRA experts. It should be noted that our
proposed gate-based rescaling approach can be integrated
with most MoE-LoRA variants since they are not in conflict.
Take MoLA as an example, we can integrate our method
with MoLA by implementing a model with more experts in
its higher layers and trained through Riemannian precondi-
tioners and gate-based rescaling approach. We reproduce
MoELoRA and MoLA, implement the integrations, and il-
lustrate their performances in Table 4. We use Llama-3.2-3B
as the foundation model and follow MoLA’s configurations
here, which means we set the per-expert rank to 4, top-k to
2, and the total number of experts of all layers to 140. In this
way, MoELoRA and our method assign 5 experts to each
layer, while MoLA assigns 2, 4, 6, and 8 experts respectively
to the bottom, lower middle, higher middle, and top layers.
In Table 4 we denote this special assignment strategy as
(2,4,6,8), while the average assignment is (5,5,5,5), where
each digit covers seven layers under Llama-3.2-3B. We still
provide enhancement in the context of MoLA architecture.

4.6. Ablation Study

Theoretical Dependence. Although our proposed approach
is grounded in the context of Riemannian preconditioners,
it is important to note that our engineering implementation
does not inherently require coexistence with Riemannian
preconditioners. The reason is that our modifications are
solely focused on altering the forward propagation con-
ventions of MoE-LoRA. This consequently raises a vital
question about the standalone efficacy of our modifications
in enhancing MoE-LoRA’s performance, without depending
on the Riemannian preconditioning context. Ideally, since
the conventional un-preconditioned optimizer does not guar-

Figure 3. Curves of ScienceQA training losses under the optimiza-
tion of conventional and Riemannian preconditioned SGDs, and
also both integrated with the gate-based rescaling approach. Llama-
3.2-3B serves as the foundation model.

antee a projection of full matrix gradient in low-rank space,
it should be trivial for them to normalize the sum of expert
gradients by replacing gi with

√
gi. To confirm this, we

conduct an ablation study by integrating our gate-based revi-
sion with a conventional un-preconditioned SGD optimizer.
The loss-decreasing curves shown in Figure 3 illustrate that
applying our approach directly on a pure SGD optimizer
does not provide help, which oppositely demonstrates our
refinement is highly coupled with the Riemannian precondi-
tioning algorithm.

Various MoE architectures. To demonstrate that our pro-
posed approach can be generalized to various settings of
LoRA mixtures, we construct different MoE-LoRA archi-
tectures for further exploration, including the variations in
the numbers of experts, per-expert ranks, and the number
of top-k. Specifically, we test seven structural conditions
on the ScienceQA dataset, and all candidates are trained for
800 steps using the same initial learning rate. Table 5 ex-
hibits the results, showing we are able to outperform across
most circumstances in terms of MoE structure. Moreover,
it is also observed from SGD performances that, variations
in expert numbers or per-expert ranks introduce limited im-
pacts on our effectiveness, while larger top-k roughly exhibit
higher boosts. This observation aligns with our theoretical
analysis, which suggests a larger number of activated ex-
perts results in more reduced per-expert gate values, thereby
leaving a larger margin for our revision to take effect.

5. Conclusion
We introduce the Riemannian gradient preconditioners to
train a mixture of Low-rank Experts (MoE-LoRA). Instead
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Table 4. Baselines Comparison and Integration. The first three lines provide comparisons between pure MoE-LoRA (MoELoRA-SGD),
MoLA (MoLA-SGD), and our gate-rescaled Riemannian preconditioning method (MoELoRA-gRSGD). The last two lines provide
MoLA integrated with conventional (MoLA-RSGD) and gate-rescaled preconditioning methods (MoLA-gRSGD), respectively. All
candidates are trained using SGD optimizers for up to 2,000 steps.

Experts ScienceQA CommonsenseQA OpenBookQA SIQA avg.
MoELoRA-SGD (5,5,5,5) 54.68 48.90 48.40 57.92 52.47
MoELoRA-gRSGD (Ours) (5,5,5,5) 70.01 54.80 63.60 64.45 63.22
MoLA-SGD (2,4,6,8) 54.99 49.20 52.80 58.94 53.98
MoLA-RSGD (2,4,6,8) 68.03 53.90 59.80 64.08 61.45
MoLA-gRSGD (Ours) (2,4,6,8) 70.46 56.30 64.00 64.90 63.92

Table 5. Accuracies and boosts of ScienceQA for conventional and gate-rescaled Riemannian optimizers under various MoE architectures.
Llama-3.2-3B serves as the foundation model.

n/k/r RSGD gRSGD Boost RAdamW gRAdamW Boost

5/5/4 65.78 71.31 8.41%↑ 76.67 78.19 1.98%↑
8/5/4 65.11 69.96 7.45%↑ 78.69 79.45 0.97%↑
10/5/4 64.34 69.33 7.76%↑ 79.05 80.31 1.59%↑
10/5/2 72.03 78.06 8.37%↑ 79.63 80.13 0.63%↑
10/5/1 79.95 87.28 9.17%↑ 80.71 81.11 0.50%↑
10/10/2 68.62 77.16 12.45%↑ 77.47 77.65 0.23%↑
10/2/2 79.68 81.16 1.86%↑ 83.63 83.45 -0.22%↓

of directly attaching Riemannian preconditioners to each
expert’s gradient for pursuing local optimality, we claim that
multiplying expert BiAi by its respective gate value gi dur-
ing forwarding leads to a further rescaling of the manifold
constructed by expert i. To alleviate this, Riemannian pre-
conditioners designed for MoE-LoRA shall be revised to in-
corporate gate values. To approximate this concept, we pro-
pose an engineering solution that decomposes forwarding
variables into optimizable and un-optimizable components.
Experiments across various downstream tasks demonstrate
our performance improvement over conventional Rieman-
nian preconditioners. Ablation studies further demonstrate
our theoretical foundation and universality. We claim that,
our work can be applied to the fields like efficient and low-
resource model training, continual or multi-task learning,
stablized training and modular task adaptation, etc.
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A. Various Model Sizes and MoE Architectures
To evaluate our method, we already conducted experiments on Llama-3.2-3B, GLM-4-9B, and LLaVA-v1.5-7B. We also
presented our n/k/r analysis in Table 5 in Section 4.6, which consists of seven different candidates tested under SGD and
AdamW optimizers with Llama-3.2-3B serving as their foundation model. To make our investigation further sufficient, here
we add Llama-3.2-1B as a new foundation model, and add two new experiments under LLaVA-v1.5-7B with two different
n/k/r configurations (16/8/4 and 10/5/4).

Specifically, we conduct further experiments on Llama-3.2-1B for four QA benchmarks, each trained for 2,000 steps. To
speed up the training, we set a relatively smaller MoE configuration which is 10/5/1. Results are illustrated in Table 6. For
those two new n/k/r configurations of LLaVA-v1.5-7B, we conduct their experiments on both Visual7W and VMCBench
benchmarks under SGD and AdamW optimizers. An overall enhancement of our method can still be witnessed under
different configurations (especially for SGD), illustrated by Table 7.

Table 6. Question answering evaluations across four QA datasets with Llama-3.2-1B as the foundation model.

ScienceQA CommonsenseQA OpenBookQA SIQA avg.
RSGD10,5,1 47.71 49.47 48.80 50.41 49.10
gRSGD10,5,1 49.87 59.30 54.00 57.06 55.06
RAdamW10,5,1 46.18 42.92 41.60 44.11 43.70
gRAdamW10,5,1 46.58 43.82 43.40 45.50 44.83

Table 7. Visual7W and VMCBench Performances of LLaVA-v1.5-7B across various MoE architectures.

n/k/r Task RSGD gRSGD RAdamW gRAdamW

10/5/4
Visual7W 71% 74% 76% 76%
VMCBench 63% 73% 76% 77%

16/8/4
Visual7W 72% 74% 76% 77%
VMCBench 59% 69% 71% 71%

B. Covergence Efficiency
In the main body of our paper, we illustrate the converging speed enhancements of our proposed approach, gRSGD, over
the conventional RSGD through a series of loss-decreasing plots. To further exhibit the comprehensive comparisons of
convergence efficiency, we provide more results on GLUE benchmarks. In particular, for experiments conducted under
Llama-3.2-3B as well as GLM-4-9B, we record metrics after the initial 100 training steps for each of the GLUE evaluations,
as detailed in Table 8 and Table 9 respectively.

Table 8 and 9 clearly demonstrate the superior convergence speed of our solutions over the conventional Riemannian
preconditioned SGD optimizers. Nevertheless, they simultaneously illustrate an overall equivalent performance with trivial
differences between our gate-based approach and the conventional Riemannian preconditioning method under AdamW
optimizers. This indicates that our proposed approach is more valuable for SGD optimization. AdamW optimizers already
present robust converging performances due to their adaptive gradient and learning rate mechanisms. As a result, our
global optimal approximation under AdamW optimizing mainly contributes to the final optimality rather than significantly
accelerating the initial gradient descending.

Table 8. GLUE Benchmark evaluations after the initial 100 training steps conducted under Llama-3.2-3B. Our proposed gate-based
rescaling method contributes an overall converging speed enhancement over conventional Riemannian preconditioned SGD optimizers,
while for AdamW optimizers, we provide a similar converging speed compared with the conventional Riemannian ones.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI avg.

RSGD20,10,4 22.52 91.63 49.97 0.00 62.22 36.27 58.90 56.68 1.41 42.18
gRSGD20,10,4 39.30 92.66 66.55 24.49 66.17 43.40 65.33 63.18 26.76 54.20

RAdamW20,10,4 52.05 92.66 68.99 54.04 72.11 60.81 84.14 53.95 32.39 63.46
gRAdamW20,10,4 50.63 93.23 67.01 54.72 71.41 61.96 83.80 55.75 40.85 64.37
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Table 9. GLUE Benchmark evaluations after the initial 100 training steps conducted under GLM-4-9B. Our proposed gate-based rescaling
method still contributes an overall converging speed enhancement over conventional Riemannian preconditioned SGD optimizers, while
for AdamW optimizers, we still provide a similar converging speed compared with the conventional Riemannian ones. (Note that for
CoLA, SST-2, and MRPC, we utilize a lower initial learning rate such as 3× 10−6 and 1× 10−6, while the others are 3× 10−5 and
1× 10−5. Therefore CoLA, SST-2, and MRPC converge much slower than the others.)

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI avg.

RSGD20,10,4 0.00 0.00 0.41 61.15 84.57 62.35 87.49 41.73 63.38 44.56
gRSGD20,10,4 7.22 48.97 62.26 63.06 85.95 85.66 89.28 75.18 74.65 65.80

RAdamW20,10,4 17.37 0.00 0.00 63.34 86.15 0.00 89.05 89.21 80.28 47.27
gRAdamW20,10,4 16.75 0.00 0.00 63.54 86.05 0.61 89.34 91.37 78.87 47.39

C. AdamW Weight Decay Analysis
AdamW implements a strategy called weight decay, which decays the trainable weights after each gradient update by
θt = θt − αλθt. Instead of the original Adam algorithm, AdamW separates the weight decay from the gradient update,
which leads to better performance in some cases. To comprehensively prove the effectiveness of our gate-based rescaling
method over Riemannian preconditioned AdamW, we evaluate our boosts across various weight decay factors λ. Results are
exhibited in Table 10.

Table 10. ScienceQA boosting performances under Llama-3.2-3B, across different AdamW weight decay.

0 1e-5 1e-4 1e-3

RAdamW20,10,4 82.60 83.50 83.23 83.99
gRAdamW20,10,4 83.80 84.58 84.98 84.67
Boost 1.45%↑ 1.30%↑ 2.10%↑ 0.81%↑

D. Multi-Task Performance
One of the most valuable features of MoE architectures is their capability of modeling multiple tasks. Through gating
mechanism, the MoE system adeptly delegates specific tasks to individual experts, thereby facilitating a more focused and
efficient learning process within each expert module. As a result, one question arises regarding our proposed gate-based
rescaling approach: Can it still effectively augment the performance of MoE architectures in multi-task scenarios?

To illustrate this, we manually construct two mixed datasets, each consisting of three irrelevant natural language tasks
from the GLUE Benchmark. The first mixture consists of CoLA, SST-2 and MRPC tasks, which serves as a multi-task
scenario involving both grammar checking, sentiment classification, and equivalent sentences judging; The second mixture
consists of STS-B, QQP and QNLI tasks, which serves as another multi-task scenario involving both sentence similarity
scoring, equivalent questions judging, and question-answering NLI. For evaluation, we test candidates on each of the tasks
individually and then average per-task performances within the mixture as the overall evaluation for that mixture.

For sufficiently assessing the multi-task performance of our proposed gate-based rescaling method, we conduct experiments
under two different MoE configurations, i.e., 20/10/4 and 10/5/4. We train each candidate for 2,000 steps under RAdamW
and gRAdamW (RAdamW with our proposed gate-based rescaling method) optimizers. Results are exhibited in Table 11.
Our proposed method is still effective to boost feature learning under multi-task scenarios

Table 11. Conventional and gate-rescaled optimizers performed on two mixed datasets consisting of tasks from the GLUE Benchmark.
All candidates are trained for 2,000 steps. Our gate-based rescaling method still contributes enhancements.

Mixture n/k/r RAdamW gRAdamW

CoLA + SST-2 + MRPC 20/10/4 70.15 71.39
10/5/4 71.64 72.13

STS-B + QQP + QNLI 20/10/4 74.61 75.74
10/5/4 74.81 75.36

14



A Stronger Mixture of Low-Rank Experts for Fine-Tuning Foundation Models

E. Backward Derivation of the Engineering Strategy
We further elaborate why we implement (13), which is our engineering approximation for achieving (11) and (12). Since by
forwarding as (13), the gradient updating process of X can be derived as the following (Similar as previous, we treat gate
value gis as constants when focusing on the gradients of Ais and Bis):

Xnew =Ŵ +

NExpert∑
i=1

[
√̂
gi(Bi − η∇Bi

L)(Ai − η∇Ai
L) + (gi −

√̂
gi)B̂iÂi]

=(Ŵ +

NExpert∑
i=1

√̂
giBiAi + (gi −

√̂
gi)B̂iÂi)− η

NExpert∑
i=1

√̂
gi[Bi(∇Ai

L) + (∇Bi
L)Ai]

=X − η

NExpert∑
i=1

√̂
gi(Bi∇Ai

L+∇Bi
LAi)

=X − η

NExpert∑
i=1

(
√̂
gi)

2Projcol(Bi)(∇XL)T − η

NExpert∑
i=1

(
√̂
gi)

2Projrow(Ai)(∇XL) (same as the derivation of (10))

=X − η

NExpert∑
i=1

giProjcol(Bi)(∇XL)T − η

NExpert∑
i=1

giProjrow(Ai)(∇XL),

so that (12) can be achieved.

The advantages of implementing (13) can be elaborated from two aspects: Firstly, it achieves (12) when conducting
gradient updating of X while still keeps the original behavior of training gates, because it holds the same gate gradient,
∇giX = Ai

TBi
T , as normal forwarding; Secondly, it provides equivalent behavior and the same result of normal module

forwarding X = Ŵ +
∑NExpert

i=1 giBiAi, and only requires a relatively low overhead.

F. Method Implementation
The engineering alternative solution of the gate-based rescaling approach is to manually separate the forwarding into
optimizable and unoptimizable components. Here we provide our implementation in Python-like pseudocode. We only
update two lines of the original MoE-LoRA code.

Algorithm 1 Engineering Alternative Solution of Gate-based Rescaling Method
def forward(self, x, ...):

...
# compute gate values
gvs = ...
...
# execute each activated expert
for exp_id in activated_experts:

A = self.As[exp_id]
B = self.Bs[exp_id]
gv = gvs[:,:,exp_id]
exp_out = B(A(x))
sqrt_gv = (gv**0.5).detach() # update 1
w_exp_out = sqrt_gv*exp_out+(gv-sqrt_gv)*exp_out.detach() # update 2
result = result + w_exp_out
...

G. Experimental Details
We present our experimental details in Table 12. All experiments in this paper follow this configuration unless they specify
their particular settings. For training steps, some of the experiments may converge earlier, therefore we perform an early
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stop for those experiments. We constrain the maximum of training steps by 2,000, considering it a relatively fair setup for
various downstream tasks, especially those with different scales of training corpora but in the same level of complexity.

Table 12. Default experimental details implemented throughout this paper. All experiments follow this configuration unless they specify
their particular settings, like the MoE structural experiments, baselines comparing experiments, and the experiments of AdamW weight
decay.

SGD AdamW

Train batch size (logical) 80 for textual tasks, 40 for vision-language tasks
Max training steps <= 2, 000

Initial lr for 3B (expert)

QA, GLUE: 3e-5 QA: 1e-5
WNLI: 3e-6 MRPC, CoLA, QNLI, STS-B: 3e-5

Multi-Task: 3e-4 SST-2, QQP, MNLI, WNLI: 1e-5
RTE: 1e-6

Multi-Task: 1e-4

Initial lr for 9B (expert)
CoLA, SST-2, MRPC: 3e-6 CoLA, SST-2, MRPC: 1e-6

STS-B, QQP, MNLI, QNLI, RTE, STS-B, QQP, QNLI, RTE, WNLI: 1e-5
WNLI: 3e-5 MNLI: 3e-6

Initial lr for 7B (expert) 3e-5 1e-5
Initial lr (gate) 3e-8
Lr scheduler (expert) Linear
Warmup steps 0
Max gradient norm (gate) 1.0
Default LoRA expert rank 4
Default number of experts 20
Default activated Top-K 10
LoRA α 16
LoRA dropout 0.05
Default weight decay / 0
β1, β2, ϵ / 0.9, 0.999, 1e-6
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