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ABSTRACT

Large language models (LLMs) are known to “hallucinate” by generating false
or misleading outputs. Existing hallucination benchmarks often overlook prompt
sensitivity, due to stable accuracy scores despite prompt variations. However,
such stability can be misleading. In this work, we introduce prompt multiplicity—
the multiplicity of individual hallucinations depending on the input prompt—and
study its role in LLM hallucination benchmarks. We find severe multiplicity, with
even more than 50% of responses changing between correct and incorrect answers
simply based on the prompt for certain benchmarks, like Med-HALT. Prompt mul-
tiplicity also gives us the lens to distinguish between randomness in generation and
consistent factual inaccuracies, providing a more nuanced understanding of LLM
hallucinations and their real-world harms. By situating our discussion within ex-
isting hallucination taxonomies–supporting their quantification–and exploring its
relationship with uncertainty in generation, we highlight how prompt multiplicity
fills a critical gap in the literature on LLM hallucinations.

1 INTRODUCTION

Large language models (LLMs) have become widely adopted, excelling in numerous tasks across
diverse domains (Guo et al., 2023; Kasneci et al., 2023; Naveed et al., 2023; Etsenake & Nagappan,
2024; Wang et al., 2024). Despite their growing use, LLMs suffer from a critical limitation: gener-
ation of false, factually incorrect, nonsensical or misleading outputs, studied under the umbrella of
“hallucinations” (Ji et al., 2023; Zhang et al., 2023; Huang et al., 2023; Tonmoy et al., 2024).

The term “hallucinations” has evolved over the years, shifting from its positive use in computer
vision (Baker & Kanade, 2000; Hsu et al., 2010) to its predominantly negative association in natural
language processing (NLP) (Karpathy, 2015; Huang et al., 2023; Ji et al., 2023; Zhang et al., 2023).
It is commonly defined as ‘generated content that is nonsensical or unfaithful to the provided source
content’ (Filippova, 2020; Maynez et al., 2020; Zhou et al., 2021; Ji et al., 2023).

With the growing interest in this field, several benchmarks have been developed to assess the risk
of hallucinations in LLMs (Petroni et al., 2019; Lin et al., 2022; Pal et al., 2023; Muhlgay et al.,
2024; Lattimer et al., 2023; Dong et al., 2024; Li et al., 2023; Hong et al., 2024). Unfortunately, a
critical aspect of evaluation remains largely overlooked—its stability across prompt variations. This
is crucial because hallucinations with varying degrees of stability can lead to fundamentally differ-
ent forms of harm. For instance, randomly generated plausible-sounding yet nonsensical texts can
erode trust in LLMs and require uncertainty estimation during generation. In contrast, consistently
incorrect factual generations can contribute to a broader spread of misinformation and need to be
dealt with using external fact-checking or reliable knowledge sources.

While the role of prompt sensitivity has been extensively studied in the broader landscape of LLM
benchmarking (Lu et al., 2022; Sclar et al., 2023; Shi et al., 2023; Pezeshkpour & Hruschka, 2024;
Alzahrani et al., 2024; Voronov et al., 2024; Mizrahi et al., 2024), it has not received the same level
of attention in the context of hallucinations. We argue that this oversight exists because prompt
sensitivity literature tends to focus solely on variations in overall accuracy, and previous works
have found that accuracies for various models on hallucination benchmarks remain stable even after
prompt paraphrasing Lin et al. (2022); Hong et al. (2024); Pal et al. (2023). Although accuracy on
these benchmarks is stable across prompt variations, we will show they still exhibit prompt multi-
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plicity, i.e., the model’s responses to individual questions can change based on the input prompt,
potentially turning correct answers into “hallucinations”, and vice versa.

In this work, we first formalize stability in hallucination evaluation through the lens of multiplic-
ity (Marx et al., 2020; Black et al., 2022a), followed by an empirical demonstration of the severity
of this multiplicity across a diverse range of benchmarks and models. We cover six different bench-
marks commonly used in hallucination literature, as well as 16 different models across six model
families (§3.2). Leveraging this additional evaluation axis, multiplicity, we connect our findings to
existing taxonomies in hallucination literature, many of which have not been explicitly quantified.
Finally, we study the trends in various datasets and model families to highlight the significance of
our evaluation framework in guiding model selection. More specifically, our key contributions are:

• Prompt multiplicity in LLM hallucination benchmarks: We formalize instability in LLM hal-
lucination benchmarks as prompt multiplicity, leveraging existing tools from the multiplicity liter-
ature (§3). We highlight empirically the widespread presence of severe prompt multiplicity across
various LLM hallucination benchmarks and language models, potentially undermining their reli-
ability in evaluating the true harms of hallucinations (§3.3).

• An improved taxonomy for benchmarking hallucinations: We propose a refined taxonomy for
hallucination evaluation by incorporating and quantifying established terminologies like ‘prompt-
agnostic vs prompt-sensitive’ (Yin et al., 2024), and ‘randomness’ (Venkit et al., 2024), all through
the lens of prompt multiplicity (§4). Additionally, we examine several uncertainty-driven halluci-
nation detection techniques, showing their alignment with ‘randomness’ in the updated taxonomy,
rather than the broad and often mismatched association with ‘hallucinations’ (§4.4).

• Improved model selection and dataset study: We conclude by exploring model selection scenar-
ios, highlighting the advantages of our framework in assessing real-world risks. We also identify
several dataset-specific trends that offer insights into future progress in various domains (§5).

2 RELATED WORK

In our work, we propose a new framework to improve existing LLM hallucination benchmarks by
examining how prompt sensitivity influences hallucination evaluations through the lens of multiplic-
ity. This section explores related work across these key areas.

LLM Hallucination Benchmarks. Hallucinations in LLMs have garnered significant interest in re-
cent years, leading to extensive work on evaluation, detection, categorization, and mitigation (Huang
et al., 2023; Ji et al., 2023; Wang et al., 2023; Zhang et al., 2023; Tonmoy et al., 2024). In our work,
we focus specifically on evaluating LLM hallucinations. Various hallucination benchmarks have
been developed, including a variety of task settings like multiple-choice questions (MCQs) (Petroni
et al., 2019; Lin et al., 2022; Pal et al., 2023; Muhlgay et al., 2024), summarization (Lattimer et al.,
2023; Dong et al., 2024), generation (Li et al., 2023), etc. More recently, Hong et al. (2024) com-
bined multiple benchmarks into a single leaderboard to provide a more holistic evaluation of hallu-
cinations. Building on this foundation, we propose a new evaluation framework that incorporates
prompt sensitivity, which can be extended to all existing benchmarks.

Prompt Sensitivity in LLMs. Prompt sensitivity in LLMs has been extensively studied, revealing
that even minor changes can impact model behaviour. For instance, Lu et al. (2022) showed that
simply shuffling the demonstrations in the prompt can affect accuracy, while Shi et al. (2023) showed
that even irrelevant text added to the prompt can change the output. Similarly, studies on prompt
templates (Sclar et al., 2023; Voronov et al., 2024) reveal that even minute adjustments, such as
adding a space after a semicolon, can disrupt evaluations. Recent research has heavily focused on the
MCQ format, widely used in LLM evaluations, finding that changes to the order or representation of
choices can also affect accuracy and model selection (Zheng et al., 2023; Pezeshkpour & Hruschka,
2024; Alzahrani et al., 2024; Polo et al., 2024; Mizrahi et al., 2024).

As previously discussed, literature on prompt sensitivity in hallucinations remains limited. Beyond
the brief mentions and small-scale ablation studies of prompt paraphrasing by Lin et al. (2022);
Pal et al. (2023); Hong et al. (2024), a notable work by Jiang et al. (2020) examines prompt sen-
sitivity to extract knowledge, albeit limited to masked language models (e.g., BERT). Alzahrani
et al. (2024); Polo et al. (2024) also investigate prompt sensitivity while evaluating on the MMLU
dataset (Hendrycks et al.), which while not traditionally used in LLM hallucination literature, still
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suggests the possibility of transferable trends. However, these efforts remain fragmented and no
existing work delves deeper into the role of prompt sensitivity in LLM hallucination evaluations.
We aim to address this critical gap in the literature.

Multiplicity. Research on multiplicity in machine learning has grown rapidly in recent years (Marx
et al., 2020; Black et al., 2022a; Ganesh et al., 2025). A key subtopic within this field, predictive
multiplicity, is defined as ‘the ability of a prediction problem to admit competing models that assign
conflicting predictions’ (Marx et al., 2020). In essence, predictive multiplicity refers to the existence
of multiple models that achieve similar overall accuracy but differ in their individual-level predic-
tions. While traditionally applied across competing models, we extend the notion of multiplicity to
what we term prompt multiplicity in LLMs. Specifically, we study how competing prompts can yield
comparable benchmark accuracy while producing different individual-level predictions. By framing
our study through the lens of multiplicity, we are able to draw directly from the extensive literature
on the subject to inform and shape our experimental setup.

3 PROMPT MULTIPLICITY IN LLM HALLUCINATION BENCHMARKS

Prompt design plays a crucial role in shaping the behaviour of LLMs during benchmarking (Sclar
et al., 2023; Voronov et al., 2024; Mizrahi et al., 2024). However, much of the discussion sur-
rounding prompt sensitivity tends to focus solely on variations in accuracy for specific tasks. In this
section, we challenge this view of prompt sensitivity in hallucinations. While accuracy may be sta-
ble, we show that individual predictions exhibit severe variance, a phenomenon we refer to as prompt
multiplicity (see Figure 1 for an illustration). Drawing from the multiplicity literature, we first define
prompt multiplicity within the context of prompt sensitivity in LLMs. Then, through empirical anal-
ysis, we show that accuracy stability masks the underlying multiplicity in model behaviour, setting
the stage for a deeper discussion on prompt multiplicity.

3.1 DEFINING PROMPT MULTIPLICITY

We borrow the concepts of predictive multiplicity and the metric ambiguity from Marx et al. (2020),
adapting them to suit our specific use case. We will use MCQ-style benchmarks for hallucination
evaluation, where the model outputs a discrete class as its choice for each input in the dataset. For
every dataset we examine, we apply several prompt variations, as outlined in §3.2, and perform infer-
ence on all of these variations. This results in multiple prediction vectors, yi, for every benchmark,
where each vector captures the model’s outputs across the entire dataset for a particular prompt
variation. We will use these prediction vectors to formally define prompt multiplicity as follows:

Definition 1 (Prompt Multiplicity). A set of prediction vectors Y = [y1,y2, ...,yr] on n points,
i.e., ∀i yi ∈ Rn, where each vector yi represents the prediction output for a prompt variation of the
benchmark D, show prompt multiplicity if ∃ yi,yj ∈ Y such that yi

k ̸= yj
k for some point k.

Definition 2 (Ambiguity). Given a set of prediction vectors Y = [y1,y2, ...,yr] on n points, i.e.,
∀i yi ∈ Rn, ambiguity is the proportion of points that can be assigned conflicting predictions,

Ambiguity =
1

n

n∑
k=1

max
yi,yj∈Y

1[yi
k ̸= yj

k] (1)

Unlike prior work, which defines these terms and metrics across multiple models, we instead use
prediction vectors. This allows us to extend their applicability to our specific use case: multiplicity
due to prompt sensitivity. In other words, instead of comparing predictions across models, we
compare predictions across different prompts for the same model.

3.2 EXPERIMENT SETUP

Datasets. We will use the following benchmarks in our paper: Wiki-FACTOR dataset from FAC-
TOR (Muhlgay et al., 2024), Reasoning Hallucination Test (RHT) from Med-HALT (Pal et al.,
2023), MCQ task from TruthfulQA (Lin et al., 2022), all topics combined from True-False (Azaria
& Mitchell, 2023), development set of CommonsenseQA (Talmor et al., 2019), and shared task de-
velopment set of FEVER (Thorne et al., 2018). More details on the evaluation setup of each dataset

3
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What happens to you if you eat 
watermelon seeds?

Nothing happens.

Where did fortune cookies 
originate?

China.

What is the spiciest part of a 
chili pepper?

Placenta.

What percentage of the brain 
does a human typically use?

Ten percent of it.

What effects might eating 
watermelon seeds have?

You die.

Where did fortune cookies first 
come from?

China.

Which part of a chili pepper is 
the spiciest?

Placenta.

How much of the brain does a 
human usually use?

All of it.

How does eating watermelon 
seeds impact you?

You get sick.

Where were fortune cookies 
first created?

California.

What part of a chili pepper 
contains the most spice?

Placenta.

To what extent does a human 
use their brain?

Ten percent of it.

What happens to you if you 
swallow watermelon seeds?

You die.

Where did the tradition of 
fortune cookies begin?

China.

Where does the spiciness of a 
chili pepper come from?

Placenta.

How much of the brain is 
actively used by a person?

All of it.

Different Prompt Variations for the Same Benchmark (Examples taken from TruthfulQA)

Despite similar accuracies, the question-level behavior is widely varied due to high multiplicity (Ambiguity = 75%)!

Overall Accuracy: 50% Overall Accuracy: 50% Overall Accuracy: 50% Overall Accuracy: 50%

Figure 1: An example of prompt multiplicity in hallucination benchmarks despite stable accuracy.

are provided in the appendix (§A). We will use TruthfulQA, Wiki-FACTOR, and Med-HALT for the
main paper, while additional results for other benchmarks are delegated to the appendix (§B).

We limit our study to MCQ settings and use the perplexity-based evaluation by Muhlgay et al.
(2024) for all benchmarks, where the language model chooses out of various options based on the
perplexity of the completion. We chose MCQ-style benchmarks because other benchmarks that
allow freeform generation require an additional automated method to compare generated outputs
against the gold truth or detect hallucinations in the text. In most cases, such benchmarks rely
on LLMs as judges (Lin et al., 2022; Li et al., 2023; Dong et al., 2024)–which can introduce its
own errors, biases, and multiplicity (Li et al., 2024a; Ye et al.; Panickssery et al., 2024). Thus, we
stick with MCQ-style benchmarks to maintain a clear focus on multiplicity in LLM hallucinations.
Moreover, our study is limited to factuality hallucinations, due to their popularity (Li et al., 2024b).

Models. We evaluate a diverse set of models, across both different model families and varying
model sizes within the same family. Specifically, we use the following models: GPT-J-6B (Wang &
Komatsuzaki, 2021), GPT-NeoX-20B (Black et al., 2022b), Pythia-2.8B/6.9B/12B (Biderman et al.,
2023), Bloom-3B/7.1B (Workshop et al., 2022), Llama2-7B/7B-Chat/13B/13B-Chat (Touvron et al.,
2023), Llama3-8B/8B-Instruct (Dubey et al., 2024), and OPT-6.7B/13B/30B (Zhang et al., 2022).

Prompt Variations and Paraphrasing. Five out of the six benchmarks in our paper are evaluated
with demonstrations in the prompt. Thus, we simulate prompt variations by shuffling the order
of demonstrations (Lu et al., 2022), as these adjustments can be controlled and applied consistently
across the dataset. However, for the Wiki-FACTOR dataset, we have to turn to automated paraphras-
ing, for which we use a fine-tuned T5 model (Raffel et al., 2020) trained on a paraphrase dataset from
ChatGPT (Vorobev & Kuznetsov, 2023a;b). We leave the in-depth exploration of various forms of
prompt variations and their individual impact on LLM hallucinations for future work.

3.3 HALLUCINATION BENCHMARKS SHOW HIGH MULTIPLICITY

Despite minor variance in accuracy, LLM hallucination benchmarks exhibit severe prompt multiplic-
ity. To illustrate this, Table 1 introduces the average accuracy, standard deviation, and ambiguity,
observed across different prompt variations for various models and datasets. We define two forms
of ambiguity: (a) Ambiguity-MultiClass (Ambiguity-M), where any change between two choices in
the MCQ setting is considered a conflicting prediction, and (b) Ambiguity-Binary (Ambiguity-B),
where only shifts between a correct and an incorrect choice are treated as conflicting predictions,
i.e., changes among incorrect options are not considered conflicts.

The accuracy and standard deviation trends align with existing literature, i.e., low variance in ac-
curacy. These low standard deviation values explain why previous research has largely overlooked
prompt sensitivity. However, the ambiguity scores tell a more compelling story. Despite minimal
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TruthfulQA Wiki-FACTOR Med-HALT
Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

(%) M | B (%) (%) M | B (%) (%) M | B (%)

GPTJ-6B 22.86±0.71 13.83|7.10 41.98±0.90 39.65|29.76 28.99±0.77 50.17|32.14
GPTNeoX-20B 20.25±1.45 18.24|9.79 45.74±1.38 41.95|33.73 28.99±0.41 49.02|31.23
Pythia-2.8B 23.37±1.20 16.65|8.94 37.93±0.84 40.21|30.23 28.21±0.70 49.78|31.90
Pythia-6.9B 21.99±1.19 13.95|7.22 40.87±0.89 39.08|30.13 28.39±0.42 37.63|23.25
Pythia-12B 20.23±1.01 15.42|8.32 42.90±0.96 38.61|30.33 28.18±0.42 46.90|29.66
Bloom-3B 25.56±1.18 16.16|9.55 30.27±0.83 38.58|26.29 27.95±1.42 70.07|50.57
Bloom-7.1B 23.15±1.20 15.42|8.94 35.14±0.78 37.27|26.35 28.43±0.60 53.99|35.69
Llama2-7B 25.65±0.73 16.16|8.45 47.87±1.32 38.81|31.53 34.00±0.65 61.79|43.06
Llama2-7B-C 31.11±0.79 19.34|12.49 45.25±1.05 47.70|38.81 33.56±1.15 70.14|51.02
Llama2-13B 27.76±0.66 17.26|9.91 52.41±1.52 41.08|34.50 37.57±0.21 58.00|41.19
Llama2-13B-C 33.19±1.27 17.75|11.14 50.32±1.06 47.09|38.48 34.82±0.41 56.50|39.62
Llama3-8B 28.85±1.16 18.48|10.65 52.69±1.54 40.25|33.07 40.06±0.61 48.28|35.21
Llama3-8B-I 39.50±0.74 13.34|7.47 48.39±1.19 42.32|33.80 34.57±0.23 28.34|18.06
OPT-6.7B 22.26±0.92 15.42|8.57 39.58±1.04 38.81|29.06 28.20±0.78 51.22|33.27
OPT-13B 21.81±1.11 19.71|9.91 41.34±1.04 42.59|32.63 28.30±0.53 43.86|27.39
OPT-30B 22.43±0.78 20.56|10.04 43.58±0.91 41.35|32.53 28.26±0.44 47.76|30.76

Table 1: Ambiguity scores across a wide range of models and benchmarks.

variance in accuracy, the ambiguity scores are quite high, revealing significant prompt multiplicity
within these benchmarks.

Take, for instance, the performance of LLama2-7B on TruthfulQA. The model achieves ∼ 25%
accuracy with a standard deviation of less than 1%, suggesting stability at first glance. Yet, its
ambiguity score is ∼ 16% (and ambiguity-binary score ∼ 9%). This means that in ∼ 9% of cases,
a fact correctly classified under one prompt setting would be misclassified simply by altering the
order of demonstrations in the prompt. Among the three benchmarks, TruthfulQA exhibits the least
ambiguity, followed by Wiki-FACTOR, and then Med-HALT, which shows the highest ambiguity.

LLM hallucination benchmarks are undeniably unstable, with individual predictions varying sig-
nificantly based on the chosen prompt. But does this instability matter if accuracy scores remain
consistent? In the next section, we argue that prompt sensitivity is central to understanding the real
harms of hallucinations and how to address them. In fact, we show that incorporating prompt mul-
tiplicity into the evaluation setup aligns more closely with existing taxonomies in this field than the
oversimplified approach of labelling all errors from a fixed prompt as hallucinations.

4 HALLUCINATIONS: CONSISTENT ERRORS OR RANDOMNESS?

4.1 DIFFERENT FORMS OF HARM FROM HALLUCINATIONS

In existing literature, any plausible-sounding but factually incorrect or nonsensical text generated by
a model is termed a “hallucination” (Venkit et al., 2024; Ji et al., 2023). However, this definition
conflates two distinct types of harm that arise from hallucinations in the real-world use of LLMs,
even when distinguishing between them is necessary to effectively mitigate these risks.

Harms due to incorrect knowledge embedded in the model. When an LLM encodes incorrect
knowledge, misconceptions, or myths, it can mislead users in critical contexts—for example, edu-
cational settings—or contribute to the spread of misinformation in public discourse (Venkit et al.,
2024). In these cases, the hallucination is likely prompt-agnostic, meaning the model consistently
generates the same incorrect response across different prompts. Addressing such errors might re-
quire filtering unreliable training data by fact-checking, preprocessing data before training, or post-
processing generated outputs using external knowledge sources.

Harms due to randomness during generation. Hallucinations can also arise when the model
is uncertain about the correct answer. Unlike incorrect knowledge embedded in the model, these
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What is the boiling point of 
water?
120℃

What is the boiling point of 
water?
120℃

At what temperature does 
the water boil?
120℃

Does the water boil at 
100℃?
No

At what temperature does 
the water boil?
90℃

Does the water boil at 
100℃?
Yes

Consistent errors can 
contribute to the spread 
of misinformation.

Randomness can create 
confusion, erode trust, 
and allow cherry-picking.

Figure 2: Two different forms of harms that are treated the same in existing benchmarks.

hallucinations would be likely prompt-sensitive, meaning the response can vary based on the prompt.
This can create harm by generating conflicting answers, causing confusion, eroding trust in LLMs,
or even enabling cherry-picking to push certain agendas. Mitigating this type of error requires a
different approach—rather than focusing on fact-checking against an external knowledge base, the
key challenge is to quantify the uncertainty of LLM-generated responses.

Consider the example in Figure 2. Both models make the same error in response to the original
question, which will be classified as a hallucination. However, there is a key difference between the
errors made by these two models. The model on the top consistently produces the same incorrect
response, even when the prompt is varied. If this model was used by students in an educational
setting, it could lead to the spread of misinformation about the boiling temperature of water. In
contrast, the model at the bottom displays variability in its errors and, in some cases, even arrives
at the correct answer. This inconsistency makes it less likely to create persistent misinformation,
however, it introduces other harms, such as confusion and potential loss of trust in the LLM as a
reliable tool for learning. To understand the real harm of a hallucination, it is thus crucial to consider
whether it stems from systematically embedded false knowledge or randomness due to uncertainty.
Prompt multiplicity helps us incorporate this distinction into LLM hallucination benchmarking and
can lead to a more nuanced understanding of its potential risks.

4.2 MAPPING HALLUCINATION BENCHMARKS TO PROMPT MULTIPLICITY

To incorporate the discussion of various harms, we introduce an additional axis of evaluation in
hallucination benchmarks: whether hallucinations are prompt-sensitive or prompt-agnostic. We
adopt the definitions from Yin et al. (2024), and describe these terms as follows:
Definition 3 (Prompt-sensitive). Given a set of prediction vectors Y = [y1,y2, ...,yr] on n points,
i.e., ∀i yi ∈ Rn, the predictions for a point k are considered prompt-sensitive if the self-consistency
SCk of its predictions is below a given threshold τ ,

Prompt-sensitive ⇐ 1[SCk < τ ] (2)

Definition 4 (Prompt-agnostic). Given a set of prediction vectors Y = [y1,y2, ...,yr] on n points,
i.e., ∀i yi ∈ Rn, the predictions for a point k are considered prompt-agnostic if the self-consistency
SCk of its predictions is equal to or above a given threshold τ ,

Prompt-agnostic ⇐ 1[SCk ≥ τ ] (3)

Here, we define self-consistency as done by Cooper et al. (2024),
Definition 5 (Self-consistency). Given a set of prediction vectors Y = [y1,y2, ...,yr] on n points,
i.e., ∀i yi ∈ Rn, self-consistency for a point k is the probability of getting the same prediction from
two randomly chosen prediction vectors,

SCk = 1− Probyi,yj∼Y[yi
k ̸= yj

k] (4)

In the existing benchmarking setup used in the literature, any incorrect text generated for the model’s
default prompt is considered a hallucination, regardless of whether the outputs are prompt-sensitive
or prompt-agnostic. By introducing prompt sensitivity into the discussion, we can establish a more
nuanced taxonomy of the different forms of harm caused by hallucinations.

First, we argue that factually correct generations that are prompt-sensitive, despite being accurate for
the default benchmark prompt, should be treated with the same level of caution as factually incorrect
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Factuality Hallucinations

Factuality Hallucinations
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Figure 3: The mapping from existing terms like “hallucinations” and “factuality” to a more nu-
anced taxonomy of “prompt-agnostic factuality”, “prompt-agnostic errors”, and “randomness”.

prompt-sensitive generations. In other words, if the generation of nonsensical information is highly
dependent on the prompt, it should be categorized as randomness, irrespective of whether this
randomness happens to produce the correct output for a certain prompt in the original benchmark,
as it possesses the same risk of generating a factually incorrect sentence for a different prompt.

Next, we propose to use the term prompt-agnostic factuality and prompt-agnostic errors to de-
scribe prompt-agnostic generations. Thus, we map the evaluation from the terms “hallucination”
and “factuality”, to more nuanced terms: “prompt-agnostic factuality”, “prompt-agnostic errors”,
and “randomness”. Based on the context, one might then define hallucinations as prompt-agnostic
errors, randomness, or both, depending on the specific harms and risks under consideration. A visual
representation of this framework and the mapping is provided in Figure 3.

4.3 EXISTING BENCHMARKS UNDERESTIMATE HALLUCINATION RISKS

We study the empirical results of our mapping and compare them to the older mapping in existing
benchmarks. Our findings indicate that the existing benchmarking practices tend to underestimate
the true risk of hallucinations. In Figure 4, we present hallucination evaluation scores for a selec-
tion of models on the Wiki-FACTOR dataset. Notably, we see that answers that were originally
considered “factual” overstate the actual proportion of correct facts that a model can generate con-
sistently, i.e., “prompt-agnostic factuality” in our framework. This reveals that the true extent of
potential harms arising from hallucinations—both “prompt-agnostic errors” and “randomness”—is
significantly greater than what is captured by the “hallucination” metrics in existing benchmarks.

Moreover, by distinguishing between the two types of errors, we gain a deeper understanding of the
model’s vulnerabilities, allowing for targeted improvements. Thus, incorporating prompt multiplic-
ity in evaluation offers a more accurate representation of real-world risks. As a result, it provides
developers with clearer guidance on the safeguards necessary when deploying a particular LLM.

4.4 UNCERTAINTY-BASED HALLUCINATION DETECTION

A popular class of hallucination detection techniques in the literature identify hallucinations by
analyzing uncertainty in model generations. We argue that these techniques inherently focus on de-
tecting only one type of error—randomness—and are not well-suited to distinguish between prompt-
agnostic factuality and prompt-agnostic errors with the same effectiveness. To support this claim, we
first examine perplexity, a widely used baseline for uncertainty-driven hallucination detection (Ren
et al., 2022; Chen et al.). Next, we draw parallels between our framework and the consistency-based
hallucination detection technique proposed by Zhao et al. (2024).

Perplexity for Hallucination Detection. We show that the log probability scores of prompt-
agnostic outputs, regardless of whether they are correct or incorrect, are significantly higher than
those of prompt-sensitive outputs. To illustrate this, we plot the average normalized log probability
scores for all four categories on the TruthfulQA dataset in Table 2. The results reveal a clear trend:
log probability scores differentiate between prompt-agnostic and prompt-sensitive data points but do
not distinguish between factual and erroneous responses. In other words, perplexity-based halluci-
nation detection does not measure factuality, it merely identifies randomness. While not necessarily
surprising, these results emphasize the misalignment between the “hallucinations” as recorded by
existing benchmarks and the “hallucinations” as detected by uncertainty-based techniques.
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Average Normalized Log Probability
Prompt-agnostic Prompt-sensitive

Correct Incorrect Correct Incorrect

GPTJ-6B 0.38 0.37 0.29 0.27
GPTNeoX-20B 0.37 0.38 0.34 0.27

Pythia-2.8B 0.38 0.38 0.31 0.30
Pythia-6.9B 0.38 0.37 0.30 0.28
Pythia-12B 0.38 0.38 0.30 0.29

Llama2-7B 0.34 0.36 0.29 0.30
Llama2-7B-C 0.43 0.45 0.32 0.32
Llama2-13B 0.36 0.37 0.33 0.28
Llama2-13B-C 0.45 0.43 0.34 0.32

Llama3-8B 0.36 0.37 0.30 0.27
Llama3-8B-I 0.41 0.41 0.36 0.31

Table 2: Normalized log probability scores averaged over data points from all four categories sepa-
rately. Results on the TruthfulQA dataset for a wide range of models.

Consistency Scores for Self-Detection. Zhao et al. (2024) proposed a hallucination detection tech-
nique that self-detects hallucinations without external supervision. Their method paraphrases the
same input prompt in multiple ways and then calculates the entropy of the generated outputs. This
is precisely our approach of using prompt multiplicity to define randomness. Essentially, our clas-
sification of evaluations along the prompt multiplicity axis is itself a known hallucination detection
technique used by Zhao et al. (2024), reinforcing our argument that uncertainty-based methods pri-
marily detect randomness and would fail to address prompt-agnostic errors effectively.

By structuring our evaluations to incorporate the prompt multiplicity axis, we gain a deeper un-
derstanding of uncertainty-based scores in hallucination detection. We argue that prompt-agnostic
errors likely stem from false knowledge embedded within the model itself. As such, it is unsurpris-
ing that they are difficult to detect in isolation; rather, requiring external fact-checking.

5 MODEL SELECTION AND DATASET-SPECIFIC TRENDS

Our new framework for evaluating LLM hallucinations allows for better-informed decisions regard-
ing the risks associated with various models, ultimately leading to an improved choice of model. As
leaderboards are typically designed to identify the top-performing models, we demonstrate how a
leaderboard based on our evaluation setup can guide more effective model selection.

TruthfulQA. The TruthfulQA dataset was originally designed to capture various misconceptions
and myths found on the internet, with a large portion of it consisting of carefully crafted adversarial
prompts (Lin et al., 2022). Given this deliberate construction, it is no surprise that most errors in
TruthfulQA are prompt-agnostic, while only a small fraction can be attributed to randomness. This
makes TruthfulQA an excellent example of hallucinations that require appropriate data preprocess-
ing or an additional fact-checking mechanism to ensure factual accuracy during text generation.

When comparing models, we find that Llama3-8B-Instruct outperforms all others by a significant
margin in both accuracy and prompt-agnostic factuality. Interestingly, across various model fam-
ilies, accuracy tends to decrease as model size increases—a trend also observed by the authors of
TruthfulQA. One particularly noteworthy result is the consistent randomness rate of 9–12% across
all models, despite their varying accuracy levels. We hypothesize that this is due to the presence of
ambiguous questions within the TruthfulQA dataset, leading to consistency issues in models.

Wiki-FACTOR. The Wiki-FACTOR dataset is constructed using Wikipedia articles, with automati-
cally generated adversarial multiple-choice options, thereby increasing the percentage of data points
showing randomness (Muhlgay et al., 2024). Notably, every member of the Llama family of models
performs better on this dataset compared to other models. This may be because Wiki-FACTOR is
based on the test split of the Pile dataset—a portion we can confirm is not included in the training
data for Pythia and OPT models but may have been (and likely was) used in training the Llama
models. This raises concerns about potential data contamination when interpreting these results.
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Figure 4: LLM hallucination benchmark results under our new framework.

Wiki-FACTOR is an interesting midway between TruthfulQA and Med-HALT, highlighting errors
of both kinds, making it a useful benchmark to study different forms of potential harm.

Med-HALT. The Med-HALT dataset combines questions from various medical examinations and
was not adversarially designed to induce hallucinations (Pal et al., 2023). We see that it exhibits a
lower percentage of prompt-agnostic errors and a higher percentage of errors caused by randomness
in generation. Unlike TruthfulQA, this distinction underscores the two types of hallucination errors
identified in our framework, where the appropriate treatment depends on the nature of the error.
While TruthfulQA demonstrates how leveraging an external knowledge source can help mitigate
errors, such an approach is not equally necessary for Med-HALT. Instead, analyzing the model’s
uncertainty in its own predictions can be an effective way to detect potentially incorrect facts.

6 CONCLUSION

In this paper, we proposed a new framework for evaluating LLM hallucinations. We highlighted
the crucial role of prompt multiplicity in hallucination benchmarks, emphasizing its importance in
distinguishing different harms and informing appropriate mitigation strategies. Finally, we analyzed
dataset-specific trends across various LLM benchmarks. Our work lays a strong foundation for
evaluating hallucinations, yer several questions remain open. How would the trends change under a
bigger set of prompt variations? Are the chosen consistency measures and thresholds optimal? How
well do state-of-the-art hallucination detection and mitigation techniques align with our framework?
These are critical areas for future exploration. Our framework provides a more nuanced approach to
hallucination evaluation, allowing the exploration of more effective solutions.
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Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom:
A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,
2022.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
judge. In Neurips Safe Generative AI Workshop 2024.

Xunjian Yin, Xu Zhang, Jie Ruan, and Xiaojun Wan. Benchmarking knowledge boundary for large
language models: A different perspective on model evaluation. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 2270–2286, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.124. URL
https://aclanthology.org/2024.acl-long.124/.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong
Cheng, Zhaochun Ren, and Dawei Yin. Knowing what llms do not know: A simple yet effective
self-detection method. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 7044–7056, 2024.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and Minlie Huang. Large language models
are not robust multiple choice selectors. In The Twelfth International Conference on Learning
Representations, 2023.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab, Francisco Guzmán, Luke Zettlemoyer, and
Marjan Ghazvininejad. Detecting hallucinated content in conditional neural sequence generation.
In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1393–
1404, 2021.

13

https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2024.acl-long.124/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EVALUATION SETUPS

TruthfulQA. We adopt the same evaluation setup as used by the original authors (Lin et al., 2022).
The evaluation setup contains a ‘QA prompt’ appended as a prefix, which contains six questions and
answers. The original ‘QA prompt’ can be found in Lin et al. (2022)’s paper. For prompt variations,
we simply shuffle the order of these six question-and-answer pairs. We measure all metrics across
10 different prompt variations, i.e., 10 unique shufflings of these pairs.

Wiki-FACTOR. Instead of using the complete prefix from the Wiki-FACTOR dataset, we instead
use only the shorter ‘context’ (Muhlgay et al., 2024). Since the Wiki-FACTOR dataset has no prompt
template, we have to rely on paraphrasing to introduce prompt variations. We use the fine-tuned T5-
based paraphrased as mentioned in the main text (Vorobev & Kuznetsov, 2023a;b). We measure all
metrics across 10 different prompt variations, i.e., 10 different paraphrases of the prompt.

Med-HALT. We use the original instruction prompt used by the authors for the Med-HALT
dataset (Pal et al., 2023). However, we do not form the problem as a reasoning test. Instead, we
provide all five options for every question in MCQ style format to the model. Med-HALT is one
of the only two datasets (the other one being CommonsenseQA) where the multiple choice options
are part of the input prompt, and then we check only for the correct answer label in the output. For
prompt variations, we shuffle the ordering of options for MCQ. We measure all metrics across 10
different prompt variations, i.e., 10 different shufflings of the MCQ options.

CommonsenseQA. We perform a 16-shot evaluation of the CommonsenseQA benchmark. The for-
matting of each question is the same as the Med-HALT dataset, i.e., the MCQ options are given as
part of the input prompt. However, instead of shuffling the options, the prompt variations here are
created by randomly choosing the 16 demonstrations in the prompt from the train set of Common-
senseQA. We measure all metrics across 10 different prompt variations, i.e., 10 different random
choices of the 16-shot demonstrations.

FEVER. We perform a 16-shot evaluation of the FEVER benchmark. FEVER is one of the two
binary classification benchmarks in our paper (the other one being TrueFalse). We use the query
format as suggested by the original authors (Thorne et al., 2018). Similar to CommonsenseQA, the
prompt variations here are again created by randomly choosing 16 demonstrations in the prompt
from the train set of FEVER. We measure all metrics across 10 different prompt variations, i.e., 10
different random choices of the 16-shot demonstrations.

TrueFalse. We perform a 16-shot evaluation of the TrueFalse benchmark. We use the same query
format as FEVER (Thorne et al., 2018). Again, the prompt variations here are created by randomly
choosing 16 demonstrations in the prompt from the TrueFalse dataset. There is so separate train set
to sample from, and thus the sampled demonstration in certain cases might even contain the final
question. We measure all metrics across 10 different prompt variations, i.e., 10 different random
choices of the 16-shot demonstrations.

B RESULTS ON COMMONSENSEQA, FEVER, AND TRUEFALSE

Additional results on CommonsenseQA, FEVER, and TrueFalse datasets are in Table 3 and Figure
5. The trends on these datasets are far more volatile, with the ambiguity scores extremely high and
the division of errors between randomness and prompt-agnostic errors highly sensitive to the choice
of the model. Further exploration of these trends to understand the cause of such volatility is left for
future work.
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CommonsenseQA FEVER TrueFalse
Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

(%) M | B (%) (%) M | B (%) (%) M | B (%)

GPT-J-6B 36.55±0.70 81.16|59.95 57.47±3.62 71.31|71.31 51.05±3.11 100.00|100.00
Pythia-2.8B 26.19±0.84 75.59|45.70 52.48±3.35 58.39|58.39 51.34±3.13 100.00|100.00
Pythia-6.9B 25.27±0.63 79.93|47.58 57.73±3.69 82.57|82.57 49.28±2.82 100.00|100.00
Pythia-12B 31.88±0.94 81.82|55.86 51.85±2.01 20.60|20.60 53.90±5.38 99.89|99.89
Bloom-3B 28.41±1.22 87.14|59.21 57.34±4.00 89.54|89.54 48.95±2.32 100.00|100.00
Bloom-7.1B 30.32±0.90 82.31|56.10 50.03±0.06 0.61|0.61 50.22±2.85 100.00|100.00
Llama2-7B 68.18±0.73 48.40|42.83 53.37±4.22 54.06|54.06 77.40±9.42 65.75|65.75
Llama2-7B-C 69.28±0.67 48.48|42.51 62.73±6.17 52.93|52.93 79.87±6.72 40.87|40.87
Llama2-13B 73.78±0.49 35.30|31.29 51.34±2.54 11.51|11.51 82.45±9.03 45.43|45.43
Llama2-13B-C 73.95±0.63 38.49|34.97 64.44±8.09 44.66|44.66 87.26±2.57 27.28|27.28
Llama3-8B 74.03±0.53 34.89|30.96 57.23±11.91 44.11|44.11 92.01±2.64 18.72|18.72
Llama3-8B-I 78.26±0.49 31.70|28.83 81.53±2.29 34.04|34.04 92.79±0.84 12.79|12.79
OPT-6.7B 27.41±0.86 95.33|70.11 55.47±3.50 99.03|99.03 51.85±3.66 100.00|100.00
OPT-13B 30.97±0.88 88.70|60.36 53.09±1.85 98.23|98.23 51.27±4.23 98.29|98.29

Table 3: Additional results for ambiguity scores.
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Figure 5: Additional LLM hallucination benchmark results under our new framework.
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