
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A GPU-ACCELERATED LARGE-SCALE SIMULATOR FOR
TRANSPORTATION SYSTEM OPTIMIZATION BENCH-
MARKING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the development of artificial intelligence techniques, transportation system
optimization is evolving from traditional methods relying on expert experience
to simulation and learning-based decision and optimization methods. Learning-
based optimization methods require extensive interactions with highly realistic
microscopic traffic simulators. However, existing microscopic traffic simulators
are inefficient in large-scale scenarios and thus fail to support the adoption of these
methods in large-scale transportation system optimization scenarios. In addition,
the optimization scenarios supported by existing simulators are limited, mainly fo-
cusing on the traffic signal control. To address these challenges, we propose the first
open-source GPU-accelerated large-scale microscopic simulator for transportation
system simulation and optimization. The simulator can iterate at 84.09Hz, which
achieves 88.92 times computational acceleration in the large-scale scenario with
2,464,950 vehicles compared to the best baseline CityFlow. Besides, it achieves
a more realistic average road speeds simulated on real datasets by adopting the
IDM model as the car-following model and the randomized MOBIL model as
the lane-changing model. Based on it, we implement a set of microscopic and
macroscopic controllable objects and metrics provided by Python API to support
typical transportation system optimization scenarios including traffic signal control,
dynamic lane assignment within junctions, tidal lane control, congestion pricing,
road planning, e.t.c. We choose five representative transportation system opti-
mization scenarios and benchmark classical rule-based algorithms, reinforcement
learning algorithms, and black-box optimization algorithms in four cities. These
experiments effectively demonstrate the usability of the simulator for large-scale
traffic system optimization. The anonymous code of the simulator is available
at https://anonymous.4open.science/r/moss-AF45 and the others
are shown at Appendix A. In addition, we build an open-registration web platform
to support no-code trials.

1 INTRODUCTION

With the increasing level of urbanization and residents’ travel demand, the urban transportation
system faces heavier traffic pressure, which brings higher commuting costs, environmental pollution
and other society problems, affecting the sustainable development of the city (Kirago et al., 2022;
Wang et al., 2021; Treiber et al., 2008). To alleviate the above problems, governments usually
build more transportation infrastructure and optimize the existing transportation infrastructure to
enhance the systems’ capacity. For instance, these transportation system optimization methods
include traffic signal control, congestion pricing, etc. However, the traditional transportation system
optimization process is highly dependent on the experience of experts, which is labor-heavy and often
sub-optimal (McNally, 2007). With the development of reinforcement learning (Mnih et al., 2013;
Schulman et al., 2017) and black-box optimization (Hansen et al., 2010; Costa & Nannicini, 2018),
the above optimization methods have great potential for improving the transportation system. But
since all of these optimization methods use extensive interactions with the environment for feedback
to perform optimization, it requires that the environment be able to model the transportation system as
realistically as possible and can provide feedback fast. In the field of transportation system, simulators

1

https://anonymous.4open.science/r/moss-AF45

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that use kinetic formulations with individual motion models to calculate individual motions to provide
realistic results are referred to as microscopic simulators.

At present, there are several available microscopic simulators that can evaluate the efficiency of the
transportation system, including SUMO (Behrisch et al., 2011), CityFlow (Zhang et al., 2019), and
CBLab (Liang et al., 2023). However, these simulators face the following two key challenges:

• Computational inefficiency in large-scale scenarios. Since the urban transportation system is
a complex system with strong direct spatial and temporal correlation between different regions,
the traffic improvement in a one area may lead to congestion in another area. Therefore, the
effect of transportation system optimization should be evaluated in a global city-level perspective,
which poses a requirement for large-scale microscopic simulation. However, existing simulators
typically use CPUs for computation, making it difficult to simulate city-level scenarios with a
large number of individuals fast. For example, the most popular open-source simulator, SUMO,
is still using a single-threaded computing architecture, which significantly reduces the efficiency
of the data sampling process of optimization algorithms such as reinforcement learning. Even
though CityFlow and CBLab use multi-threading techniques, it still takes more than 100 seconds to
simulate 1 hour in a scenario of about 100,000 vehicles. Due to the large number of environmental
interactions required by optimization methods, especially learning-based ones, existing simulators
fail to support the adoption of these methods in large-scale transportation system optimization
scenarios. Therefore, we need a simulator capable of simulating large-scale scenarios with about 1
million vehicles at a frequency of at least 10 Hz for supporting it.

• Limited supported optimization scenarios. In order to improve the efficiency of the transportation
system, traffic management authorities usually apply a variety of transportation system optimization
methods, including traffic signal control optimization, intersection lane turn assignment, tidal lane,
congestion pricing, etc. If these methods can be used jointly, transportation system efficiency
improvements will be further enhanced. However, existing simulators and related optimization
studies usually focus on only a few of these scenarios, such as the traffic signal control optimization
problem (Wei et al., 2019; Wu et al., 2023b), ignoring other scenarios. This situation prevents
traffic managers from fully evaluating and comparing the effectiveness of various transportation
system optimization methods from microscopic like traffic signal control (Zheng et al., 2019; Wei
et al., 2019; Wu et al., 2021; Zhang et al., 2022) to macroscopic like congestion pricing (Buini
et al., 2018; Pandey & Boyles, 2018). To improve it, the simulator should be implemented to be
able to support more common transportation system optimization methods and scenarios.

To address the above challenges, considering the characteristics of individual independent computation
in microscopic simulation matches the GPU architecture and the massive computational power of
GPUs compared to CPUs, we propose the first open-source GPU-accelerated large-scale microscopic
simulator. This simulator adopts a parallel-friendly design of computational flow and data partitioning,
and designs an efficient indexes for sensing between vehicles. Based on these, we implement
microscopic traffic simulation on CUDA and substantially improves the scale and efficiency of
simulation. In the largest scenario with 2,464,950 vehicles, this simulator can iterate at 84.09Hz,
which is 88.92 times better than the optimal baseline CityFlow. it achieves a more realistic average
road speeds than CityFlow simulated on real datasets by adopting the IDM model as the car-following
model and the randomized MOBIL model as the lane-changing model. To support the optimization of
various scenarios, it also implements a set of microscopic and macroscopic controllable objects and
metrics, and provides a Python application programming interface (API). By combining controllable
objects and metrics, we implement five typical transportation system optimization scenarios including
traffic signal control, dynamic lane assignment within junctions, tidal lane control, congestion pricing,
and road planning for benchmarking and evaluate the performance of classical rule-based algorithms,
reinforcement learning algorithms and black-box optimization algorithms for these scenarios in 4
large cities including Beijing, Shanghai, Paris, and New York. The experiments show the usability of
the simulator for large-scale traffic system optimization.

In short, our contribution are two-fold. First, we propose a realistic high-performance large-scale
microscopic simulator for transportation system simulation on GPU and implement microscopic and
macroscopic controllable objects and metrics to support transportation system optimization. Second,
we choose and implement five typical transportation system optimization scenarios and benchmark
common optimization algorithms in four cities to show the usability of our proposed simulator.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of microscopic simulators for transportation system. The Scale field indicates the
approximate number of vehicles that can be computed by the simulator at a simulation computation
frequency of 10Hz on an Intel(R) Xeon(R) Platinum 8462Y CPU (64 threads) and an NVIDIA
GeForce RTX 4090 GPU. (Citations are left in the text to avoid out-of-width.)

Simulator SUMO CityFlow CBLab Ours

Scale (10Hz) < 10, 000 ∼ 130, 000 ∼ 150, 000 > 10, 000, 000

Simulation
Models

Car-following
Selectable1 Krauß Krauß IDM

Lane-changing Earliest Private Randomized MOBIL

Controllable
Objects

Traffic Signal ✓ ✓ ✓ ✓
Lane/Road Max Speed ✓ × ✓ ✓

Lane Function × × × ✓
Vehicle Route ✓ ✓ ✓ ✓

Metrics

Lane Queue Length ✓ ✓ ✓ ✓
Road Travelling Time ✓ × × ✓

Average Travelling Time ✓ ✓ ✓ ✓
Throughput ✓ × × ✓

2 RELATED WORKS

2.1 EXISTING SIMULATORS FOR TRANSPORTATION SYSTEM

Existing simulators for transportation system can be divided into three categories based on the
level of simplification of the simulation models: microscopic simulators, mesoscopic simulators,
and macroscopic simulators. Macroscopic simulators (Mahmassani, 1992; Group) typically do not
consider modeling individual vehicles, but rather treat the vehicles as a fluid for using velocity and
density to describe them. Mesoscopic simulators often speed up the simulation by simplifying the
vehicle motion models. For instance, MATSIM (W Axhausen et al., 2016) use a uniform motion model
with intersection waiting queues (Gawron, 1998) to model vehicles and do not consider acceleration
and deceleration. Since macroscopic and mesoscopic simulators oversimplify vehicle motion, they are
not usually used for AI algorithm based transportation system optimization. Among the microscopic
simulators, SUMO (Behrisch et al., 2011), CityFlow (Zhang et al., 2019), and CBLab (Liang et al.,
2023) shown in Table 1 are popular simulators for transportation system optimization. They all use
a car-following model and a lane-change model to simulate the vehicle’s behaviors and calculate
the acceleration, velocity, and position of vehicles. SUMO provides multiple simulation models for
user selection and offer a rich set of controllable objects and metrics. However, due to its software
architecture, SUMO can almost exclusively use one CPU core for computation, which leads to
small simulation scales. For CityFlow and CBLab, they both use a multi-threaded architecture
for computational acceleration, which improve computational speed by about 20 ∼ 30 times on
64-threaded CPUs relative to SUMO. But with city-scale simulations of at least 100,000 vehicles,
it still takes minutes for them to simulate an hour, which constrains the speed of reinforcement
learning algorithms to learn by interacting with the environment. Both CityFlow and CBLab use
Krauß et al. (1997) as the car-following model. For the lane-changing model, CityFlow uses an
as-early-as-possible lane changing strategy, while CBLab implements its own private adaptive lane
changing algorithm. Besides, in terms of controllable objects, CityFlow only provides interfaces for
setting traffic signal phases and vehicle routes while CBLab adds the setting of road speed limits as
an additional feature. In terms of metrics, both CityFlow and CBLab provides lane queue length and
average traveling time (ATT) directly. Most of these controllable objects and metrics are designed
for traffic signal optimization, and other optimization scenarios cannot be directly implemented
accordingly. Overall, there is a lack of microscopic simulators that can effectively simulate and
provide rich controllable objects and metrics to support transportation system optimization problems
in large scale scenarios.

1Shown in the Car-Following Models and Lane-Changing Models sections at https://sumo.dlr.de/
docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html

3

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

C/Python Binding

Optimization
Rule-based

Our Proposed Simulator

①
Prepare
Phase

②
Update
Phase

replicate

update

Sim
ulation

M
odels

updateOpenStreetMap

Satellite
Imagery

Reinforcement Learning
PPO
DQN

…

Greedy Algorithm
…

Black-box Optimization
Simulated Annealing

GeneralBO
…

Legend

M
ap

Travel Dem
ands

Toolchain

Snapshot
Runtime

Snapshot
Runtimesense

Runtime Vehicle Read-write Private Data Partition

Snapshot Vehicle Read-only Public Data Partition Vehicle Sensing Indexes

Parallel computing on GPU

Next Step

Inputs

M
etric API

Co
nt

ro
l A

PI

(a)

Le
ge

nd

Side Pointer
Main Pointer
Vehicle Node

(b)

Figure 1: (a) The framework of the proposed simulator. (b) The linked-list of the center line for
vehicle sensing by one pointer operation. (best view in color)

2.2 EXISTING TRANSPORTATION SYSTEM OPTIMIZATION METHODS

Existing methods for optimizing transportation systems can be classified into rule-based and learning-
based methods. Rule-based methods use expert experience to design and improve rules, relying on
rules for control and optimization, e.g. the maximum pressure algorithm (Varaiya, 2013) in traffic
signal control and the ∆-tolling algorithm (Sharon et al., 2017) in congestion pricing. Such methods
are difficult to adapt to complex and changing traffic conditions and only consider local optimization.
Learning-based methods usually use reinforcement learning (Mnih et al., 2013; Schulman et al.,
2017) to find the global optimal solution by making a large number of tries in a simulation envi-
ronment. The traffic signal control problem is the most extensively studied problem in the field of
transportation system optimization, with both rule-based methods (Varaiya, 2013) and learning-based
methods (Zheng et al., 2019; Wei et al., 2019; Wu et al., 2021; Zhang et al., 2022; Wu et al., 2023a;
Oroojlooy et al., 2020). In the congestion pricing problem, the reinforcement learning algorithm
has also been adopted (Buini et al., 2018; Chen et al., 2018; Pandey & Boyles, 2018; Qiu et al.,
2019; Wang et al., 2022). Comparatively, other transportation system optimization scenarios such as
dynamic lane assignment (Li et al., 2009; Zhou et al., 2019; Jiang et al., 2021), tidal lane control (Li
et al., 2013; Zhang & Tang, 2021; Li et al., 2023), etc. do not seem to have received much attention
from researchers. And existing works only focus on small-scale problems. This is most likely due to
the lack of simulators that support multiple scenarios including those mentioned above.

3 THE SIMULATOR

To address two key challenges in the simulation and optimization of large-scale urban transportation
systems, we first introduce to the design of our proposed simulator for efficient microscopic traffic
simulation and then discuss the microscopic and macroscopic controllable objects and metrics with
their APIs to support optimization in the section. The framework of the proposed simulator is shown
in Figure 1(a).

3.1 SYSTEM DESIGN

Microscopic traffic simulation is the process of modeling and discrete-time simulation calculations
for each vehicle in the transportation system. Performing one step simulation usually represents
simulating a 1-second change in the real world. When facing large-scale scenarios with hundreds
of thousands of vehicles, the large number of vehicle model calculations will consume a lot of
computational power, resulting in a low running speed.

The development of modern computational acceleration hardware provides the basis for a solution to
this problem. Single instruction multiple data (SIMD), as the basic computational model of hardware
acceleration cards such as GPUs, trades off instruction flexibility for the ability to parallelize a large

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

number of homogeneous tasks and has been used with great success in areas such as matrix arithmetic
acceleration and 3D image rendering. In microscopic traffic simulation, the simulation models of
individual vehicles are also highly homogeneous and therefore highly compatible with the SIMD
computational model.

However, before we can implement vehicle simulation models as CUDA code, we need to address
the two problems posed by the need for vehicles to sense each other. First, in an iteration, the vehicle
needs to read the position, velocity, and other attributes of other vehicles as inputs to the simulation
models for computing appropriate driving behaviors such as accelerating, decelerating, and changing
lanes. Thereafter, the vehicle will also modify its own attributes such as position, velocity, etc. based
on the driving behavior of the decision. This leads to the problem of read/write conflict of vehicle
data, which will affect the correctness of the simulation results. Second, the range that the vehicle
senses includes only the front vehicle in the current lane and the front and rear vehicles in the adjacent
lanes, which is spatially localized. Thus, implementing SIMD-friendly vehicle sensing indexes
for the above retrieval task is the key to fully utilize the massive arithmetic power of the modern
computational acceleration cards. The two key designs of our proposed simulator to solve the above
two problems respectively are described below.

Two-phase Parallel Process for Read/Write Separation. In order to ensure that vehicles always
correctly read the previous step’s attributes of other vehicles and to avoid the read/write conflict, we
divide the vehicle’s attributes into two partitions: snapshot and runtime. The snapshot is a read-only
data partition that always saves the public attributes of the previous step for other vehicles to access.
The runtime is a private and read-write partition, the attributes of which are changed after the vehicle
completes its simulation calculations. In order to implement the data replication from the runtime
partition to the snapshot partition, we also divide each iteration into two sequential phases, the
prepare phase and the update phase. The prepare phase is used to perform vehicle data replication
in parallel and update the vehicle sensing indices based on the new snapshot data. In the update
phase, the vehicle performs sensing to obtain the attributes of the snapshot partitions of other vehicles
and performs the IDM model (Treiber et al., 2000) as the car-following model and the randomized
MOBIL model (Kesting et al., 2007; Feng et al., 2021) as the lane-changing model to update its own
runtime partition attributes. The above process effectively avoids the read/write conflict of vehicle
data, which on one hand ensures the correctness of the calculation results, and on the other hand
makes the calculation flow more suitable for the SIMD calculation model due to the mutex-free
structure and the highly homogeneous calculation procedures.

Linked-list based Vehicle Sensing Indexes. The key to design a SIMD-friendly spatial relative
position indexing is to pick the suitable data structure. Since branching will lead to the thread
divergence and reduce the execution efficiency under SIMD architecture, the adjacent element query
operation with constant time complexity is required. Because vehicle lane changes will result in
random insertions and deletions, such actions of the data structure should be efficient. Commonly
used ordered structures include ordered vectors, ordered linked lists, and binary trees. Binary trees
are discarded due to their inconstant adjacent element query. The insertion and deletion of ordered
vectors will result in a large number of data movement operations, resulting in on-chip memory
bandwidth pressure. Therefore, ordered linked lists are the most suitable candidates as the vehicle
sensing indexes. In order to solve the query with constant time complexity for the front and rear
vehicles in the adjacent lanes, we add side pointer design to the bidirectional ordered linked list.
Shown in Figure 1(b), one linked list records all vehicles in order of spatial location in one lane. Each
vehicle node has two pointers to the front and rear vehicle in the same lane respectively, named as
main pointers. In addition, we add four pointers pointing to the front and rear vehicles in the left
and right lanes respectively, named as side pointers. With such an index structure, vehicle sensing
always requires only one pointer operation, avoiding the thread divergence problem. Since there are
usually only a small number of vehicles entering or leaving the lane at each iteration, the number of
operations including adding nodes, deleting nodes, and reordering of the linked list during the index
update process is relatively small so that the impact on the computational performance is acceptable.
With this design, we address the second problem by providing a SIMD-friendly vehicle sensing
indexes with low update cost for vehicle simulation model computation.

To make it user-friendly, we provide its Python API and a toolchain for building its inputs.

Python API. The simulator exposes the C interfaces as Python API. The Python API consists of
a series of initialization functions, getter functions, setter functions, and the next step function

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that control the progress of the simulation. The setter functions usually provide batch versions
additionally with the batch suffix to minimize the data transfer overhead for large numbers of
calls. We will mention some of the key APIs in Section 3.2 and Section 3.3 and leave most of the
general APIs like get vehicle speeds() in the public documentation. This Python API dose
not directly provide the gymnasium-style reinforcement learning environments, but rather requires
users to build the environment by combining the above functions according to the need of scenarios.
The benchmark open-source codes for the five scenarios provides examples of how to encapsulate the
gymnasium-style reinforcement learning environments on top of the Python API.

Simulator Inputs and Toolchain. Following microscopic traffic simulation setup, the simulator
inputs are map data and travel demand. The map data describes the geospatial attributes and
topological relationships of road networks and the candidate traffic signal phases of junctions. Travel
demand describes the vehicle’s origin, destination, departure time, and chosen route. These inputs
are stored in a binary format defined by Protobuf2. In order to facilitate the construction of simulator
inputs, we have developed a open-source toolchain. The toolchain mainly provide map building
based on OpenStreetMap3 and real travel demand generation based on globally available public data
represented by satellite imagery. By using the toolchain, users can easily build maps, generate travel
demands, and subsequently begin simulation and optimization.

Appendix B will introduce the system implementation details, including the execution process,
vehicle model implementation, etc., and further compare the system with baselines in terms of system
implementation for the interested readers.

3.2 CONTROLLABLE OBJECTS

To support the major transportation system optimization scenarios, we set up the following APIs
for the controllable objects of the transportation infrastructure and traffic participants, where the
simulator instance in Python is always labeled with engine.

Traffic Signal. The simulator allows the user to set the traffic signal control policies for given junc-
tions via engine.set tl policy(id, policy). The policy enumeration includes MANUAL,
FIXED TIME, MAX PRESSURE and NONE. Under the MANUAL policy, the user can change the
current phase and duration of the signal via engine.set tl phase(id, phase index) and
engine.set tl duration(id, duration). The FIXED TIME policy indicates that the
fixed phase procedure built into the map data is used. The MAX PRESSURE policy indicates that the
adaptive maximum pressure algorithm (Varaiya, 2013) is used. The NONE policy indicates that there
is no signaling.

Lane. Lanes in the simulator include both clearly marked lanes on the roadway and ”virtual” lanes
within junctions that connect the two roadways. For lanes, the user can first set their maximum speed
via engine.set lane max speed(id, max speed). Secondly, the user can set whether
the lane is restricted from passing via engine.set lane restriction(id, flag).

Road. To support dynamic changes in lane function combinations, the roadway is pre-configured
with multiple lane function combination plans. Of these, lane functions are referred to as being used
for going straight, turning left, and turning right. The user can set the road’s lane function plan via
engine.set road lane plan(id, plan index).

Vehicle. The user can change the route of the vehicle via engine.set vehicle route
(vehicle id, route, end lane, end s) to modify its route and destination.

In addition to these controllable objects, the user can also change the map before simulating to build
optimization scenarios.

3.3 METRICS

To make it easier for users to calculate common microscopic and macroscopic metrics, we also
provide the following metric APIs.

2https://protobuf.dev/
3https://openstreetmap.org/

6

https://protobuf.dev/
https://openstreetmap.org/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

②

①
③

Microscopic
Scenarios

Macroscopic
Scenarios

① Traffic signal control
② Dynamic lane assignment
③ Tidal lane control

Cost $1Cost $2④

⑤

④ Congestion pricing
⑤ Road planning

Figure 2: The overview of the five transportation system optimization scenarios. (best view in color)

Lane Queue Length. Lane queue length is used to count the number of vehi-
cles waiting to be released at the end of the lane, which is a microscopic metric of-
ten used as an input to traffic signal control algorithms. The metric is provided via
engine.get lane waiting at end vehicle counts().

Road Traveling Time. Road traveling time indicates the time taken by vehicles to
pass through the road under the current traffic flow on the road, which is a micro-
scopic metric that directly shows how congested the road is. The metric is provided via
engine.get road average vehicle speed().

Average Traveling Time. Average traveling time (ATT) is the average time taken by
all vehicles to complete a trip. It is a commonly used macroscopic metric that directly
reflects the overall efficiency of the transportation system. The metric is provided via
engine.get finished vehicle average traveling time().

Throughput. Throughput (TP) is used to indicate how many vehicles complete a trip
in a given time period. It is also commonly used as a macroscopic metric for assess-
ing the efficiency and capacity of a transportation system. The metric is provided via
engine.get finished vehicle count().

4 TRANSPORTATION SYSTEM OPTIMIZATION SCENARIOS

As shown in Figure 2, we choose three microscopic optimization scenarios and two macroscopic ones
for benchmarking. The former ones focus on both junction-level and roadway-level transportation
infrastructure control. The latter ones include pre-construction planning phase as well as the post-
construction management phase.

Traffic Signal Control. Traffic signal control is the most convenient approach to optimize the
transportation system, which is also the scenario where the AI optimization methods are most widely
used in the research field of transportation. The approach adjusts the phase and duration of traffic
signals at junctions to control the number of vehicles passing in different directions, making full
use of road resources to reduce the time spent by vehicles in the transportation system. Therefore,
the appropriate setting of signal phasing and timing taking into account the interactions between
junctions will substantially affect the efficiency of the transportation system.

Dynamic Lane Assignment within Junctions. Dynamic lane assignment within junctions refers
to the adaptive reallocation of lane functions, such as for straight, left turn or right turn, across all
lanes at the junctions based on real-time traffic conditions. For example, when there is an increase in
the number of left-turning vehicles in a particular direction at an junction, the method will increase
the number of lanes on the corresponding roadway used for left-turning and decrease the number of
lanes used for going straight, thereby decreasing the waiting time for vehicles at the junction. How to
make the correct dynamic lane assignment based on the current situation and the prediction of the
future is an important transportation system optimization problem.

Tidal Lane Control. Tidal lanes are a classical traffic management strategy to manage the increased
traffic pressure that is predominantly in one direction during morning and evening rush hours. This
method increases roadway capacity and reduces congestion by redirecting lane usage. For instance,
during the morning rush hour, more lanes might be designated for inbound traffic, while in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

102 103 104 105 106

Vehicle Count

100

101

102

103

104

Ti
m

e
/ s

Roadnet-S
Roadnet-M
Roadnet-L
SUMO
CityFlow
CBLab
Ours

(a)

0 10 20 30 40 50 60 70 80
Real-world Road Average Speed (km/h)

0

10

20

30

40

50

60

70

80

Ou
r R

oa
d

Av
er

ag
e

Sp
ee

d
(k

m
/h

)

0 10 20 30 40 50 60 70 80
Real-world Road Average Speed (km/h)

0

10

20

30

40

50

60

70

80

Ci
ty

Fl
ow

 R
oa

d
Av

er
ag

e
Sp

ee
d

(k
m

/h
)

(b)

Figure 3: (a) The performance comparison with different sizes of road networks and number of
vehicles. (b) Comparison of real-world and simulated average vehicle speeds. (best view in color)

evening, the direction is reversed to accommodate outbound traffic. Thus, optimization of the timing
and direction of tidal lane adjustments can improve commuting efficiency throughout the city.

Congestion Pricing. Congestion pricing is a macroscopic traffic management strategy that uses
congestion charges for vehicles driving into specific areas or roads to control and reduce traffic flow,
thereby improving traffic conditions. Through such pricing tactics, vehicles will change to routes
with lower costs. From a global perspective, a good pricing strategy will balance the traffic flow and
traffic pressure in different areas, and thus improve the overall traffic congestion situation.

Road Planning. Building new roads is the most direct way to increase the carrying capacity of the
transportation system. Properly planning the location of new roads and their relationship to existing
roads is a prerequisite for maximizing the return on investment. In this scenario, we consider a
numerous set of potential new road candidates and use optimization approaches to identify the road
combinations that are optimal in terms of efficiency improvement of the overall transportation system
under specific constraints such as total distances, total investment, number, etc.

5 EXPERIMENTS

Simulator Performance. To illustrate the computational performance of our proposed simulators,
we compared the computational efficiency of simulators including SUMO, CityFlow, CBLab, and our
proposed simulator for different road network scales and vehicle sizes. We adopt the datasets from
CBLab (Liang et al., 2023) and choose three road networks of different sizes. For each road networks,
we choose three travel demands of different sizes. We simulated 3600 steps for all the datasets
and record the total running times as the performance of each simulator. As shown in Figure 3(a),
the result indicates that our proposed simulator has a huge performance improvement over existing
simulators under all conditions. On the largest dataset, the running time of ours is 42.81s and that of
the best baseline (CityFlow) is 3806.7s, a relative performance improvement of 88.09 times. The
statistics of the datasets and hardware used are left in Appendix C.

Simulator Realism. To indicate its realism, we compared the similarity between our and CityFlow’s
(the best baseline in performance comparison) simulation results and the real traffic situation dataset
from Shenzhen, China (Yu et al., 2023). The dataset contains 4.22 million vehicle GPS trajectories as
the ground truth of average vehicle speeds and 156,856 vehicle trips captured by traffic cameras as the
input. The experiment compares the simulated average vehicle speeds of 1,341 roads from 8 to 9 AM
and the results are shown in Figure 3(b). The average road speeds obtained from the our simulator
(RMSE=8.5km/h, correlation coefficient=0.7691) are closer to the real-world data compared to
CityFlow (RMSE=16km/h, correlation coefficient=0.5286), which shows that our simulator achieves
a more realistic simulation by adopting the newer car-following model (IDM) and lane-change model
(randomized MOBIL). The visualization results of road traffic status are shown in Figure A3.

To benchmark the optimization algorithms for the five scenarios described above, we chose Beijing,
Shanghai, Paris and New York as test cities. The road networks of these cities are built using the
toolchain. The real origin-destination (OD) matrices of these cities are also generated by the toolchain

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

using generative AI methods. As synthetic datasets, in terms of vehicle departure times, we kept only
the morning and evening peaks to challenge the optimization algorithms for each scenario. The total
number of vehicles was scaled based on the generated real OD matrix to construct travel demand
data for three different congestion levels including smooth (marked as City-S), normal (marked as
City-N), congested (marked as City-C). More information on the synthetic datasets will be provided
in Appendix E. We evaluate the optimization effectiveness of different algorithms under the above
cities and congestion levels, using ATT and TP as global metrics for comparison. In the following
text, the comparisons of the various optimization algorithms used in all the five scenarios and their
performance under normal congestion will be reported. The detailed experimental settings and the
complete results are presented in Appendix F and Appendix G, respectively.

Traffic Signal Control Benchmark. In this scenario, the task is to choose the best traffic signal
signal phase from the list of available phases for each junction. We compared the rule-based
algorithms, including fixed-time algorithm (Koonce & Rodegerdts, 2008) and maximum pressure
algorithm (Varaiya, 2013), and the reinforcement learning-based algorithms, including FRAP (Zheng
et al., 2019), MPLight (Chen et al., 2020), CoLight (Wei et al., 2019), Efficient-MPLight (Wu et al.,
2021), Advanced-MPLight and Advanced-Colight (Zhang et al., 2022), as well as a pressure-based
model trained with PPO (Schulman et al., 2017). The related algorithms are trained and tested in the
morning rush hour scenario, from 7:00 to 10:00. The results are presented in Table 2.

Table 2: The results for the traffic signal control scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

FixedTime 4,843.1 120,049 4,324.1 131,020 4,245.9 60,020 4,682.1 72,725
MaxPressure 4,580.4 132,055 4,045.8 144,640 3,984.2 64,405 4,309.9 83,927

FRAP 5,105.2 112,321 4,671.5 121,896 4,404.2 58,481 5,002.5 68,196
MPLight 4,790.1 124,991 4,674.9 122,198 3,980.1 64,921 4,196.4 85,331
CoLight 5,108.9 112,672 4,640.5 124,565 4,413.9 58,513 4,989.2 68,184

Efficient-MPLight 5,101.1 113,272 4,480.3 132,995 4,364.9 60,428 5,019.9 67,303
Advanced-MPLight 5,049.5 117,568 4,603.6 127,911 4,281.7 61,470 5,031.1 67,322
Advanced-CoLight 5,107.2 112,778 4,661.1 123,336 4,408.1 58,929 5,014.7 68,292

PPO 4,452.1 136,630 4,143.2 141,768 4,017.6 64,277 4,254.9 84,411

Dynamic Lane Assignment within Junctions Benchmark. In this scenario, the task is to assign the
direction, e.g. left or straight, for the in-going lanes of each junction. We compared the following
methods: 1) NoChange, where we keep lane direction unchanged, 2) Random, where we randomly
change the direction in every period, 3) Rule, where we estimate the number of vehicles going for
each direction and choosing the direction with the maximum number of vehicles, 4) PPO, where we
use a PPO-trained model to estimate the number of vehicles. The above algorithms are trained and
tested in the morning rush hour scenario, from 7:00 to 10:00. The results are presented in Table 3.

Table 3: The results for the dynamic lane assignment scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,846.7 119,890 4,322.2 131,145 4,245.8 60,020 4,674.1 72,870
Random 4,839.7 120,338 4,325.0 131,216 4,176.7 61,810 4,636.1 74,055

Rule 4,761.3 123,673 4,258.2 133,346 4,155.1 62,366 4,615.0 74,254
PPO 4,770.0 122,929 4,256.5 133,379 4,160.9 61,792 4,614.5 73,907

Tidal Lane Control Benchmark. In this scenario, the task is to switch the direction of the tidal lane
to be forward or backward. We compared the following methods: 1) NoChange, where we disable the
tidal lane, 2) Random, where we randomly change the direction in every period, 3) Rule, where we
count the number of vehicles going in each direction and choosing the direction with the maximum
number of vehicles, 4) PPO, where we use a PPO-trained model to estimate the number of vehicles.
The above algorithms are trained and tested in the morning rush hour scenario, from 7:00 to 10:00.
The results are presented in Table 4.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: The results for the tidal lane control scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,844.6 120,105 4,334.8 130,604 4,224.9 60,794 4,675.1 72,834
Random 4,827.8 120,778 4,338.4 130,283 4,216.2 60,946 4,665.8 73,335

Rule 4,823.4 120,901 4,313.5 131,315 4,192.9 61,636 4,638.0 74,284
PPO 4,820.5 120,936 4,304.3 132,167 4,187.4 61,738 4,628.5 74,756

Congestion Pricing Benchmark. In this scenario, each driver has three candidate routes and the
task is to set the price of each road to motivate drivers to choose the route that avoids congested
areas. We compared ∆-toll (Sharon et al., 2017) and EBGtoll (Qiu et al., 2019) with two baselines:
1) NoChange, where we do not set the prices, 2) Random, where the drivers randomly choose a route.
The above algorithms are trained and tested in the morning rush hour scenario, from 7:00 to 10:00.
The results are presented in Table 5.

Table 5: The results for the congestion pricing scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,840.2 120,207 4,328.3 130,621 4,239.2 60,100 4,681.8 72,765
Random 5,190.4 105,640 4,422.0 131,346 4,144.5 62,284 4,830.9 68,976
∆-toll 4,667.8 131,747 4,096.6 147,533 4,040.7 65,024 4,549.3 78,182

EBGtoll 5,637.3 80,476 4,637.6 116,624 4,240.8 60,362 5,096.6 59,154

Road Planning Benchmark. In this scenario, the algorithms are asked to select at most 30 roads
from 50 candidates for construction to minimize post-construction ATT. We compared 5 methods:
1) NoChange, no of these 50 roads are built, 2) Random, where we select random roads to build,
3) Rule-based, where we select the top-30 vehicle count roads to build, 4) simulated annealing
(SA) (Kirkpatrick et al., 1983), 5) bayesian optimization named GeneralBO (Cowen-Rivers et al.,
2020). The above algorithms are tested both on morning peak from 6:00 to 12:00 and evening peak
from 17:00 to 23:00 and computes the mean of metrics. The result are presented in Table 6.

Table 6: The results for the road planning scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

No-Change 8,439.4 161,722 6,699.7 161,722 7,193.9 7,6327 7,892.5 105,533
Random 8,304.7 163,148 6,567.1 181,063 7,106.2 75,839 7,967.2 102,996

Rule 8,235.5 164,247 6,570.7 181,504 7,177.9 76,176 7,956.1 102,951
SA 8,332.4 163,660 6,590.7 180,954 7,154.2 76,164 7,871.2 105,507

GeneralBO 8,242.2 164,182 6,721.8 178,790 7,161.7 75,979 7,759.9 106,883

6 CONCLUSION

In this paper, we propose a high-performance large-scale microscopic simulator powered by GPU
for transportation system simulation and optimization. We also benchmarked the effect of different
optimization algorithms on five transportation system optimization scenarios with different traffic
flows in four cities. Interested researchers can use the same pipeline to benchmark most cities around
the world with our open source simulator and toolchain. To help interested researchers quickly try
out the simulator, we also build a web platform introduced in Appendix H to support no-code trials.
We believe that the proposed simulator and platform will contribute to more researchers joining
the research work on urban transportation system optimization. We hope that this will not only
support more research work on transportation system optimization scenarios, but also promote the
development of urban transportation systems towards AI-driven intelligent transportation systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban
mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on
Advances in System Simulation. ThinkMind, 2011.

Hamid Mirzaei Buini, Guni Sharon, Stephen D. Boyles, Tony Givargis, and Peter Stone. Enhanced
delta-tolling: Traffic optimization via policy gradient reinforcement learning. 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC), pp. 47–52, 2018. URL
https://api.semanticscholar.org/CorpusID:26308573.

C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li. Toward a thousand lights:
Decentralized deep reinforcement learning for large-scale traffic signal control. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pp. 3414–3421, 2020.

Haipeng Chen, Bo An, Guni Sharon, Josiah P. Hanna, Peter Stone, Chunyan Miao, and Yeng Chai Soh.
Dyetc: Dynamic electronic toll collection for traffic congestion alleviation. In AAAI Conference on
Artificial Intelligence, 2018. URL https://api.semanticscholar.org/CorpusID:
19247305.

Alberto Costa and Giacomo Nannicini. Rbfopt: an open-source library for black-box optimization
with costly function evaluations. Mathematical Programming Computation, 10:597–629, 2018.

Alexander I Cowen-Rivers, Wenlong Lyu, Zhi Wang, Rasul Tutunov, Hao Jianye, Jun Wang, and
Haitham Bou Ammar. Hebo: Heteroscedastic evolutionary bayesian optimisation. arXiv preprint
arXiv:2012.03826, pp. 7, 2020.

Shuo Feng, Xintao Yan, Haowei Sun, Yiheng Feng, and Henry X Liu. Intelligent driving intelligence
test for autonomous vehicles with naturalistic and adversarial environment. Nature communications,
12(1):748, 2021.

Christian Gawron. An iterative algorithm to determine the dynamic user equilibrium in a traffic
simulation model. International Journal of Modern Physics C, 9(03):393–407, 1998.

PTV Group. Transport Planning Software — PTV Visum. https://www.ptvgroup.com/en/
products/ptv-visum. Accessed: 2024-06-03.

Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošı́k. Comparing results
of 31 algorithms from the black-box optimization benchmarking bbob-2009. In Proceedings of
the 12th annual conference companion on Genetic and evolutionary computation, pp. 1689–1696,
2010.

Qize Jiang, Jingze Li, Weiwei Sun, and Baihua Zheng. Dynamic lane traffic signal control with
group attention and multi-timescale reinforcement learning. In International Joint Conference on
Artificial Intelligence, 2021. URL https://api.semanticscholar.org/CorpusID:
237100780.

Arne Kesting, Martin Treiber, and Dirk Helbing. General lane-changing model mobil for car-following
models. Transportation Research Record, 1999(1):86–94, 2007.

Leonard Kirago, Michael J Gatari, Örjan Gustafsson, and August Andersson. Black carbon emissions
from traffic contribute substantially to air pollution in nairobi, kenya. Communications Earth &
Environment, 3(1):74, 2022.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

P. Koonce and L. Rodegerdts. Traffic signal timing manual. Technical report, United States. Federal
Highway Administration, 2008.

Stefan Krauß, Peter Wagner, and Christian Gawron. Metastable states in a microscopic model of
traffic flow. Physical Review E, 55(5):5597, 1997.

11

https://api.semanticscholar.org/CorpusID:26308573
https://api.semanticscholar.org/CorpusID:19247305
https://api.semanticscholar.org/CorpusID:19247305
https://www.ptvgroup.com/en/products/ptv-visum
https://www.ptvgroup.com/en/products/ptv-visum
https://api.semanticscholar.org/CorpusID:237100780
https://api.semanticscholar.org/CorpusID:237100780

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lili Li, Zhao wei Qu, Xian min Song, and Dianhai Wang. Research on variable lane signalized control
method. 2009 International Conference on Measuring Technology and Mechatronics Automation, 3:
575–578, 2009. URL https://api.semanticscholar.org/CorpusID:14075038.

Tao Li, Nengmin Wang, Meng Zhang, and Zheng wen He. Dynamic reversible lane optimization in
autonomous driving environments: Balancing efficiency and safety. Journal of Industrial and Man-
agement Optimization, 2023. URL https://api.semanticscholar.org/CorpusID:
261573411.

Xu Li, Jun-Hua Chen, and Hao Wang. Study on flow direction changing method of reversible lanes
on urban arterial roadways in china. Procedia - Social and Behavioral Sciences, 96:807–816, 2013.
URL https://api.semanticscholar.org/CorpusID:143642485.

Chumeng Liang, Zherui Huang, Yicheng Liu, Zhanyu Liu, Guanjie Zheng, Hanyuan Shi, Kan Wu,
Yuhao Du, Fuliang Li, and Zhenhui Jessie Li. Cblab: Supporting the training of large-scale
traffic control policies with scalable traffic simulation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4449–4460, 2023.

HS Mahmassani. Dynamic traffic assignment and simulation for advanced network informatics
(dynasmart). In the 2nd International Seminar on Urban Traffic Networks, 1992, 1992.

Michael G McNally. The four-step model. In Handbook of transport modelling, volume 1, pp. 35–53.
Emerald Group Publishing Limited, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Afshin Oroojlooy, M. Nazari, Davood Hajinezhad, and Jorge Silva. Attendlight: Universal attention-
based reinforcement learning model for traffic signal control. Advances in Neural Information
Processing Systems, 2020.

Venktesh Pandey and Stephen D. Boyles. Multiagent reinforcement learning algorithm for distributed
dynamic pricing of managed lanes. 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), pp. 2346–2351, 2018. URL https://api.semanticscholar.org/
CorpusID:54462344.

Wei Qiu, Haipeng Chen, and Bo An. Dynamic electronic toll collection via multi-agent deep
reinforcement learning with edge-based graph convolutional networks. In IJCAI, pp. 4568–4574,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guni Sharon, Michael W Levin, Josiah P Hanna, Tarun Rambha, Stephen D Boyles, and Peter Stone.
Network-wide adaptive tolling for connected and automated vehicles. Transportation Research
Part C: Emerging Technologies, 84:142–157, 2017.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical review E, 62(2):1805, 2000.

Martin Treiber, Arne Kesting, and Christian Thiemann. How much does traffic congestion increase
fuel consumption and emissions? applying a fuel consumption model to the ngsim trajectory data.
In 87th Annual Meeting of the Transportation Research Board, Washington, DC, volume 71, pp.
1–18, 2008.

Pravin Varaiya. Max pressure control of a network of signalized intersections. Transportation
Research Part C: Emerging Technologies, 36:177–195, 2013.

Kay W Axhausen, Andreas Horni, and Kai Nagel. The multi-agent transport simulation MATSim.
Ubiquity Press, 2016.

Qi Wang, Haixia Feng, Haiying Feng, Yue Yu, Jian Li, and Erwei Ning. The impacts of road traffic
on urban air quality in jinan based gwr and remote sensing. Scientific reports, 11(1):15512, 2021.

12

https://api.semanticscholar.org/CorpusID:14075038
https://api.semanticscholar.org/CorpusID:261573411
https://api.semanticscholar.org/CorpusID:261573411
https://api.semanticscholar.org/CorpusID:143642485
https://api.semanticscholar.org/CorpusID:54462344
https://api.semanticscholar.org/CorpusID:54462344

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yiheng Wang, Hexi Jin, and Guanjie Zheng. Ctrl: Cooperative traffic tolling via reinforcement learn-
ing. Proceedings of the 31st ACM International Conference on Information & Knowledge Manage-
ment, 2022. URL https://api.semanticscholar.org/CorpusID:252904909.

Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic
signal control. In Proceedings of the 28th ACM international conference on information and
knowledge management, pp. 1913–1922, 2019.

Qiang Wu, Liang Zhang, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Efficient pressure:
Improving efficiency for signalized intersections. arXiv preprint arXiv:2112.02336, 2021.

Qiang Wu, Ming Li, Jun Shen, Linyuan Lü, Bo Du, and Kecheng Zhang. Transformerlight: A
novel sequence modeling based traffic signaling mechanism via gated transformer. Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023a. URL
https://api.semanticscholar.org/CorpusID:260499801.

Qiang Wu, Mingyuan Li, Jun Shen, Linyuan Lü, Bo Du, and Ke Zhang. Transformerlight: A novel
sequence modeling based traffic signaling mechanism via gated transformer. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2639–2647,
2023b.

Fudan Yu, Huan Yan, Rui Chen, Guozhen Zhang, Yu Liu, Meng Chen, and Yong Li. City-scale
vehicle trajectory data from traffic camera videos. Scientific data, 10(1):711, 2023.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide web conference, pp. 3620–3624, 2019.

Liang Zhang, Qiang Wu, Jun Shen, Linyuan Lü, Bo Du, and Jianqing Wu. Expression might be
enough: representing pressure and demand for reinforcement learning based traffic signal control.
In International Conference on Machine Learning, pp. 26645–26654. PMLR, 2022.

Zuoting Zhang and Suhua Tang. Enhancing urban road network by combining route planning
and dynamic lane reversal. 2021 Thirteenth International Conference on Mobile Computing
and Ubiquitous Network (ICMU), pp. 1–6, 2021. URL https://api.semanticscholar.
org/CorpusID:245146969.

Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu,
and Zhenhui Li. Learning phase competition for traffic signal control. In Proceedings of the 28th
ACM international conference on information and knowledge management, pp. 1963–1972, 2019.

Lihua Zhou, Juanjuan Li, and Kangkang Ding. Research on variable lane control method based on
traffic priority. In International Conferences on Artificial Intelligence, Information Processing
and Cloud Computing, 2019. URL https://api.semanticscholar.org/CorpusID:
209168252.

13

https://api.semanticscholar.org/CorpusID:252904909
https://api.semanticscholar.org/CorpusID:260499801
https://api.semanticscholar.org/CorpusID:245146969
https://api.semanticscholar.org/CorpusID:245146969
https://api.semanticscholar.org/CorpusID:209168252
https://api.semanticscholar.org/CorpusID:209168252

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDICE

We present the following items in the appendix section:

1. Our statement on the open-source codes mentioned in the paper. (Section A)
2. System design, implementation details, and comparison with the baseline systems. (Sec-

tion B)
3. Datasets and settings for simulator performance comparison. (Section C)
4. Visualization of simulator realism comparison. (Section D)
5. Datasets for transportation system optimization benchmarking. (Section E)
6. The settings of transportation system optimization scenarios. (Section F)
7. Complete benchmark results. (Section G)
8. The guidance of our web platform. (Section H)

A STATEMENT OF OPEN-SOURCE CODES

All the codes with documentation including the simulator, the toolchain, the benchmark codes are
open-source and available at Github. However, due to ICLR’s double-blind policy, we will not
publicize their links in the paper as well as the documentation page. Instead, we anonymize the codes
and publish the anonymized links. The anonymized codes may not compile and run properly due to
the anonymization process that removes some of the dependent links, and the codes are used ONLY
to demonstrate the authenticity of the contributions in the paper in peer review.

• The simulator: https://anonymous.4open.science/r/moss-AF45
• The toolchain: https://anonymous.4open.science/r/mosstool-0242/
• The benchmark: https://anonymous.4open.science/r/moss-benchmark-7E7F

We are constantly developing the simulator and toolchain, so implementation details such as interface
names may change with version updates. Replication of benchmark experiments should always be
based on the specified version.

B SYSTEM DESIGN, IMPLEMENTATION, AND COMPARISON

In the section, we present our system execution process to help the reader understand how GPU
acceleration is implemented, and detail the vehicle model implementation and related considerations
about regarding balancing computational performance with realism.

B.1 PRELIMINARY

Legend

Lane belonging to the road

Lane belonging to the junction

AOI (Area of Interest)

Figure A1: An road network example used for simulation. (best view in color)

To help better understand the system implementation presented in the section, we give the simulation
object categories and their definitions as follows.

14

https://anonymous.4open.science/r/moss-AF45
https://anonymous.4open.science/r/mosstool-0242/
https://anonymous.4open.science/r/moss-benchmark-7E7F

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lane. A lane is the polyline geospatial space in which a vehicle moves and contains center line
coordinates. Vehicles always travel along the center line of the lane. There are topological connections
between lanes to help the vehicle identify the next lane that can be reached at the end of the current
lane travel. Lanes are divided into those belonging to roads and those belonging to junctions as shown
in Figure A1. Lanes belonging to a road are parallel to each other without crossing, do not require
traffic signals, and allow vehicles to change lanes. In contrast, lanes belonging to a junction may be
crossed, requiring a signal and not allowing lane changes.

Road. A road is a collection of lanes that are parallel to each other without crossing.

Junction. A junction is a collection of lanes that may cross each other and contain a set of traffic
signals.

AOI. As shown in Figure A1, an area of interest (AOI) is a polygonal geospatial space that has
multiple connections to lanes for vehicle entering and exiting. The AOI can be used as a starting and
ending location for the vehicle. Alternatively, the start and end locations of the vehicle can be also
locations in the lane.

Person. Person is a generic term for vehicles, pedestrians, etc. Currently, only vehicles are supported
for simulation.

B.2 EXECUTION PROCESS

② Update Phase① Prepare Phase
Stream 1

Remove nodes that left

lane::Prepare0<<<…>>>

Popup disordered nodes

Sort new nodes and merge

Update lane observation

lane::Prepare1<<<…>>>

Compute pressure

Rebuild side pointers

lane::Prepare2<<<…>>>

Statistic

Replicate runtime to snapshot

Clear side pointers

person::Prepare<<<…>>>

Stream 2

Set lane’s traffic signal status
junction::Prepare<<<…>>>

Stream 3

Process the people
entering the AOI

aoi::Prepare<<<…>>>

Stream 3

Release vehicles reaching their
departure times

aoi::Update<<<…>>>

Stream 1

Run vehicle model

Update vehicle motion status

Update the sensing indexes
incrementally

person::Update<<<…>>>

Handle vehicles arriving the end

Output (optional)

Stream 4

Statistic

lane::Update<<<…>>>

Output (optional)

Stream 2

Compute pressures

junction::Update<<<…>>>

Update traffic signal phases

cudaD
eviceSynchronize()

cudaD
eviceSynchronize()

Write output into file (optional)
Next Step

Legend

Code block in functions

Code Function

CUDA Stream

Execution on GPU

Execution on CPU

Figure A2: The Step() execution process of the proposed simulator. (best view in color)

Same as the baselines, our proposed simulator uses the paradigm of discrete-time simulation for
microscopic traffic simulation. The Step() function for executing each iteration is displayed in
Figure A2. As shown in the figure, all simulation processes are performed on the GPU to avoid the
PCI bus data transfer between the CPU and the GPU from becoming a system bottleneck. Based on
the two-phase parallel process for read/write separation system design discussed in Section 3.1, the
entire iterative process is divided into the prepare phase and the update phase for sequential execution.
The CUDA global synchronization function cudaDeviceSynchronize() is executed after each
phase to ensure that all tasks launched in that phase are finished. In each stage, in addition to using the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CUDA kernel function (marked as foo<<<...>>> in the figure) programming approach directly
to perform SIMD calculations, we also use multiple CUDA asynchronous streams to simultaneously
execute multiple sets of kernel functions. The above combination maximizes the utilization of GPU
hardware power for computational acceleration.

In the prepare phase, there are three CUDA asynchronous streams. In Stream 1, we first perform
the statistics for vehicle related data through atomic operations and then perform data replication
from runtime to snapshot, which is the key task of the read/write separation strategy in the prepare
phase. Subsequently, the linked-list based vehicle sensing indexes are updated including clearing side
pointers for all nodes, removing nodes that left, reordering, and processing inserted nodes, and finally
the side pointers will be rebuilt. To support the other features of the simulation, lane observations are
updated so that the AOI knows whether its connection to the lane can put in a vehicle or not, and
lane pressures are computed for adaptive traffic signals based on the maximum pressure method. In
Stream 2, traffic signal phases at junctions are replicated to the corresponding lanes. In Stream 3,
AOIs process people who completed their trip and entered in the previous step.

In the update phase, there are four CUDA asynchronous streams. In Stream 1, we perform simulation
computations for all people in parallel, including executing vehicle simulation models will be
presented in Section B.3, and updating vehicle motion states such as position and velocity based on
the actions output from the models. Subsequently, if the lane the vehicle is in changes, the deletion
and addition are stored in the buffer of the old lane and the new lane, respectively. If the vehicle
reaches the end, it is processed accordingly, e.g., it is added to the AOI addition buffer. All vehicle’s
motion statuses can be saved for file output if needed. In Stream 2, the junctions collect the pressures
of entering and exiting lanes and updates the signal phases using the maximum pressure algorithm.
Additionally, signal phase updates can also be made using fixed phases or specified via the Python
API. In Stream 3, AOIs put vehicles reaching their departure times into the corresponding lanes if the
connections are safe for collision by checking the lane observations. In Stream 4, we perform lane
related statistics like average speed and output lane status including traffic signal status.

Besides, we implement the process of writing simulation output into the files on CPU, which becomes
a system bottleneck due to both PCI bus bandwidth and disk write speed. However, in reinforcement
learning applications, we usually do not need detailed information such as the position and speed of
all vehicles at each moment, but rather statistics such as the length of queues at intersections. Also,
the data is stored in memory instead of files. Therefore the performance experiments for our proposed
simulator and baselines do not include writing simulation results to a file.

B.3 VEHICLE MODEL IMPLEMENTATION COMPARED TO THE BASELINE SYSTEMS

The implementation of the execution process described above focuses on illustrating how to simulate
efficiently, and this subsection focuses on the vehicle simulation model used in our proposed simulator
and the performance versus realism trade-offs considered. We will also discuss comparisons and
differences among our vehicle simulation models and baseline systems.

In our simulator, the vehicle behavior is controlled by the car-following model, the lane-changing
model, and the traffic signal strategy.

For the car-following model, we use the IDM model (Treiber et al., 2000). The formula is as follows:

a(t) = amax

[
1−

(
v(t)

v0

)δ

−
(
s∗(t)

s(t)

)2
]

(1)

s∗(t) = s0 +max

(
0, v(t) · T +

v(t) ·∆v(t)

2
√
amax · acomf

)
, (2)

where amax is the maximum acceleration of the vehicle, acomf is the comfortable deceleration, T
is the headway, s0 is the minimum distance from the front vehicle. The four parameters are set in
the vehicle’s profile. v0 is the expected velocity of the vehicle, that is, the minimum value of road
velocity limit and maximum vehicle velocity. v(t), s(t), and a(t) are the velocity, the distance from
the front vehicle, the acceleration at the moment t, respectively. ∆v(t) is the difference in velocity
between the vehicle and the front one. δ is a hyper-parameter of the model, which is set 4.0. In the
implementation, the velocity and distance of the front vehicle is obtained by the vehicle sensing

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

indexes with only one pointer operation. If there is no front vehicle in the lane, the first vehicle in the
next lane will be used as a substitution.

For the lane-changing model, we use a randomized MOBIL model. The MOBIL model (Kesting
et al., 2007) first calculate a utility by the following formula:

u = (ãego − aego) + p · ((ãnew − anew) + (ãold − aold)) ,

where p is the politeness factor which is set 0.1. ãego and aego denote the original acceleration of
the vehicle and its new acceleration if the vehicle changes its lane, respectively. ãnew and anew
denote the original acceleration of the new follower and its new acceleration if the ego vehicle
changes its lane, respectively. ãold and aold denote the original acceleration of the old follower and
its new acceleration if the ego vehicle changes its lane, respectively. Following Feng et al. (2021),
we introduce randomization to avoid identical lane-changing behavior of all vehicles and to break
perfect symmetry. The total utility is calculated as follows:

uT = max(0, uL) +max(0, uR),

where uL and uR denote the utilities of changing lanes to the left and right lanes, respectively. Then
a total lane change probability is computed as follows:

pLC =


0.9, uT ≥ 1

(0.9− 2× 10−8)uT , 0 < uT < 1

2× 10−8, uT = 0

The vehicle firstly determines whether to change lanes based on the probability pLC , and secondly
determines the direction of lane change based on uL and uR. The all acceleration computation use
the car-following model and the inputs are also obtained by the side pointer mechanism in the vehicle
sensing indexes. Vehicles are prohibited from changing lanes away from the group of lanes that allow
access to the next road.

For traffic signals, the vehicle always checks the status of the signal for the next lane and decelerates
to a stop based on the IDM model (assuming a stationary vehicle at the end of the current lane) in a
red or yellow light situation.

Table A1: Comparison of key components in vehicle simulation modeling.

Vehicle Behavior SUMO CityFlow CBLab Ours
Car-following Selectable Krauß Krauß IDM
Lane-changing Earliest Private Randomized MOBIL
Traffic Signal ✓ ✓ ✓ ✓

Overlap and priority
in junction ✓ ✓ - -

We compare the key components in vehicle simulation modeling among the baseline systems and
our proposed simulator in the above Table A1. Car-following and Lane-changing are discussed at
Section 2.1. Traffic signal indicates whether the vehicle is capable of adjusting its speed to the signal
status before the junction, which is plain. Overlap and priority in junction means whether vehicles
within the junction are considered for access prioritization to avoid potential intersecting vehicles.
Both SUMO and CityFlow model overlap and priority in junction. However, based on the findings
reported in the CBLab article (in Section 2.5.1) with our test results, modeling of overlap and priority
in junction can easily lead to vehicle deadlocks (i.e., 3 or more vehicles waiting for each other) under
large-scale simulations. Therefore, we adopt the same treatment as CBLab, dropping the modeling of
overlap and priority in junction to ensure the practicability of the simulation in large-scale scenarios.
In this setup, the realism of the junction simulation relies on conflict-free signal phase settings. This
is a limitation of our proposed simulator.

C DATASETS AND SETTINGS FOR SIMULATOR PERFORMANCE COMPARISON

The statistics of the datasets used for the simulator performance comparison experiments are shown
in Table A2. For hardware settings, all simulations are conducted in the same hardware environment

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A2: The statistics of the datasets used for simulator performance comparison.

Roadnet #Road #Junction #Vehicle

Roadnet-S 214 67 {19; 194; 1,944}
Roadnet-M 10,502 2,929 {1,145; 11,456; 114,561}
Roadnet-L 93,564 26,479 {24,649; 246,495; 2,464,950}

with an Intel(R) Xeon(R) Platinum 8462Y CPU (64 threads) and an NVIDIA GeForce RTX 4090
GPU.

D VISUALIZATION OF SIMULATOR REALISM COMPARISON

Figure A3: Visualization and comparison of road traffic status from (a) the Shenzhen dataset, (b) our
proposed simulator, and (c) CityFlow. (best view in color)

E DATASETS FOR TRANSPORTATION SYSTEM OPTIMIZATION
BENCHMARKING

In the section, we describe in detail the process of constructing the datasets used for transportation
system optimizaiton benchmarking. We chose 4 representative big cities around the world, including
Beijing, Shanghai, Paris and New York, as our targets. We use OpenStreetMap (OSM) 4 as the
data source for map construction and a diffusion model based on publicly available data represented
by satellite imagery as input to generate realistic travel origin-destination (OD) matrices as travel
demands.

Map Building. First, based on the toolchain, we selected the bounding boxes as shown in Table A3
for each city for to build the map.

Table A3: Geometry bounding boxes of four cities.

Bounding Box maximum latitude minimum latitude maximum longitude minimum longitude

Beijing 40.131 39.771 116.626 116.158
Shanghai 31.389 31.100 121.676 121.313

Paris 48.949 48.745 2.514 2.131
New York 40.941 40.567 -73.697 -74.058

4https://openstreetmap.org/

18

https://openstreetmap.org/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Specifically, we first convert OSM data within the bounding boxes to GeoJSON format, and secondly
build maps from GeoJSON format data. The statistics of the maps of the four cities are shown in
Table A4.

Table A4: Statistics of the four maps.

Statistics # of roads # of junctions

Beijing 25,945 11,953
Shanghai 14,837 6,270

Paris 14,411 6,588
New York 19,046 8,339

Realistic OD Matrix Generation. In order to generate realistic travel demands of the four cities, we
perform OD matrix generation based on a diffusion model provided in the toolchain that has been
pre-trained in several regions around the world.

Obtaining Travel Demand of Different Congestion Levels. In order not to introduce too many
variables, we assume that driving is used for all trips. In addition, to better represent commuting
traffic, we assume that the departure times of all vehicles are limited to the morning and evening
peaks. And we scale the total traffic volume to get the travel demand under different congestion
levels. For the morning peak, we adjust vehicles’ arrival time to create a morning peak flows by using
a uniform distribution between 8 o’clock and 9 o’clock. We then subtracted the estimated travel time
from the arrival time to get the departure time. The estimated travel time is calculated by dividing the
route length by the vehicle speed, which is set as 60km/h for our experiment.

Similarly, we create an evening peak group by exchanging the origin and destination of individuals
from the morning peak flows. Their departure times are set to be uniformly distributed between 17
o’clock and 18 o’clock.

After completing the above steps, we use A* algorithm to calculate the route based on the shortest
time and assign it to each vehicles and remove those who are unable to reach their destinations. For
each city, we scale the number of vehicles and observe the arrival rate of all vehicles, which refers to
the rate of vehicles that successfully reached their destinations, to construct datasets with different
congestion levels.

The arrival rate of the dataset is determined as the minimum rate between the morning and evening
peak periods. Specifically, an arrival rate of 80% is considered congested, 90% is considered normal,
and 95% is considered smooth. Based on the above rates, we construct the travel demand datasets
under different congestion levels in the four cities, and the relevant statistics are shown in Table A5.

Table A5: #trips of the datasets with different congestion level.

Congestion Level Smooth Normal Congested

Beijing 350,838 439,280 571,412
Shanghai 348,880 436,888 612,160

Paris 154,276 202,664 251,236
New York 218,712 262,706 306,078

F THE SETTINGS OF TRANSPORTATION SYSTEM OPTIMIZATION SCENARIOS

All experiments are conducted in the same hardware environment with an Intel(R) Xeon(R) Platinum
8462Y CPU (64 threads) and an NVIDIA GeForce RTX 4090 GPU. The training time varies across
different scenarios. The optimal hyper-parameters are grid-searched and hard-coded into the released
code. Please refer to the release files for detailed hyper-parameter settings.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.1 TRAFFIC SIGNAL CONTROL.

Scenario. There are multiple junctions in the road network with traffic signals to be controlled.
Each junction has a list of available traffic signal phases predefined according to the geometry of the
junction, like the number and direction of the incoming and outgoing lanes. Every T = 30 seconds,
the agent has to choose one phase from the list to be applied in the next period.

Observation. The observation includes the geometry of the junction and the number of (all/waiting)
vehicles on each lane.

Action. Choose one phase from the given list.

Reward. Opposite of the average number of waiting vehicles on the incoming lanes.

Training. The learning-based methods are all trained for 4 hours.

F.2 DYNAMIC LANE ASSIGNMENT WITHIN JUNCTIONS.

Scenario. There are multiple roads in the road network with dynamic lanes at the end where the
roads connect to junctions. Each road has exactly one dynamic lane whose direction can be either
LEFT or STRAIGHT. Every T = 30 seconds, the agent has to assign the direction of the dynamic
lane.

Observation. The observation includes the geometry of the junction and the number of (all/waiting)
vehicles on each lane.

Action. Choose one of the two directions.

Reward. Opposite of the average number of waiting vehicles on the lanes of the road.

Training. The learning-based methods are all trained for 3 hours.

F.3 TIDAL LANE CONTROL.

Scenario. There are multiple road pairs in the road network with tidal lanes. Each road pair has
exactly one tidal lane in the center whose direction can be either FORWARD or BACKWARD. Every
T = 180 seconds, the agent has to choose the direction of the tidal lane.

Observation. The observation includes the geometry of the road and the number of (all/waiting)
vehicles on each lane.

Action. Choose one of the two directions.

Reward. Opposite of the average number of waiting vehicles on the lanes of the road.

Training. The learning-based methods are all trained for 3 hours.

F.4 CONGESTION PRICING.

Scenario. All the roads in the road network can be set with a congestion price for vehicles traveling
through it. Every T = 20 seconds, the agent can change the prices according to the traffic condition.

Observation. The observation includes the geometry of the road network and the number of
(all/waiting) vehicles on each lane.

Action. Set the prices for each road.

Reward. The number of finished vehicles in the past period.

Training. The learning-based methods are all trained for 3 hours.

F.5 ROAD PLANNING.

Scenario. In the road network, there are multiple newly constructed roads during the past five years.
Each of these roads has two statuses, either KEEP or REMOVE. The algorithms observe the ATT
and are asked to minimize the ATT by setting the road statues as KEEP or REMOVE.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Beijing

Paris New York

Shanghai

New York

ShanghaiBeijing

Paris

Spatial Distribution of Candidate Roads Length Distribution of Candidate Roads

Figure A4: The spatial and length distribution of all candidate roads.

Candidate Roads Identification. For each city, we extract driving roads from OSM of 2019. We
match every road in our map to the road network of 2019, there are three aspects to evaluate the
matching, the distance between two roads, the distance between the middle point of road in our map
and difference highway level between two roads. Any road that cannot be matched with any roads
in 2019 is identified as a newly constructed road, and regarded as a candidate road. The spatial and
length statistics of candidate roads are shown in Figure A4. We select the 50 roads with the highest
number of vehicles from each candidate set as the optimization set for the algorithm.

Table A6: # of candidate roads.

Basic Statistics # of roads

Beijing 263
Shanghai 136

Paris 156
New York 612

G COMPLETE BENCHMARK RESULTS

G.1 TRAFFIC SIGNAL CONTROL.

Table A7: The results for the traffic signal control scenario with smooth traffic conditions.

Method Beijing-S Shanghai-S Paris-S New York-S

ATT TP ATT TP ATT TP ATT TP

FixedTime 4,426.5 109,588 3,878.6 120,449 3,749.7 52,459 4,369.4 67,046
MaxPressure 4,099.1 122,737 3,523.4 132,028 3,477.4 55,123 3,951.8 77,018

FRAP 4,741.0 102,556 4,261.8 113,613 3,920.7 51,301 4,725.9 63,572
MPLight 4,087.0 121,620 3,474.9 133,044 3,486.6 55,946 3,840.8 78,125
CoLight 4,757.3 102,433 4,221.9 115,244 3,922.7 51,351 4,714.3 63,553

Efficient-MPLight 4,529.5 110,199 4,013.2 121,301 3,953.4 51,236 4,390.9 69,279
Advanced-MPLight 4,750.3 102,649 3,997.8 120,529 3,786.5 53,982 4,378.7 70,352
Advanced-CoLight 4,740.8 103,172 4,245.1 114,927 3,945.8 51,164 4,748.6 63,463

PPO 4,005.7 124,001 3,636.3 130,485 3,485.3 55,915 3,914.8 77,007

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table A8: The results for the traffic signal control scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

FixedTime 4,843.1 120,049 4,324.1 131,020 4,245.9 60,020 4,682.1 72,725
MaxPressure 4,580.4 132,055 4,045.8 144,640 3,984.2 64,405 4,309.9 83,927

FRAP 5,105.2 112,321 4,671.5 121,896 4,404.2 58,481 5,002.5 68,196
MPLight 4,790.1 124,991 4,674.9 122,198 3,980.1 64,921 4,196.4 85,331
CoLight 5,108.9 112,672 4,640.5 124,565 4,413.9 58,513 4,989.2 68,184

Efficient-MPLight 5,101.1 113,272 4,480.3 132,995 4,364.9 60,428 5,019.9 67,303
Advanced-MPLight 5,049.5 117,568 4,603.6 127,911 4,281.7 61,470 5,031.1 67,322
Advanced-CoLight 5,107.2 112,778 4,661.1 123,336 4,408.1 58,929 5,014.7 68,292

PPO 4,452.1 136,630 4,143.2 141,768 4,017.6 64,277 4,254.9 84,411

Table A9: The results for the traffic signal control scenario with congested traffic conditions.

Method Beijing-C Shanghai-C Paris-C New York-C

ATT TP ATT TP ATT TP ATT TP

FixedTime 5,274.9 130,419 4,928.6 145,308 4,587.8 66,608 4,923.7 76,165
MaxPressure 5,106.5 142,654 4,790.7 158,804 4,371.4 71,874 4,596.3 87,897

FRAP 5,490.9 122,061 5,205.6 133,039 4,743.1 64,711 5,219.1 71,448
MPLight 5,496.3 121,452 4,740.9 160,551 4,378.1 72,643 4,468.6 90,632
CoLight 5,484.5 122,508 5,185.2 135,131 4,750.7 64,463 5,214.9 72,091

Efficient-MPLight 5,375.6 130,151 5,104.4 142,562 4,718.1 65,795 5,225.2 71,556
Advanced-MPLight 5,358.1 129,512 5,129.9 138,727 4,650.8 67,593 5,227.9 71,713
Advanced-CoLight 5,481.2 122,564 5,207.1 133,709 4,756.0 64,517 5,222.8 71,697

PPO 4,975.5 149,589 4,814.6 155,279 4,394.6 71,491 4,536.0 90,111

G.2 DYNAMIC LANE ASSIGNMENT WITHIN JUNCTIONS.

Table A10: The results for the dynamic lane assignment scenario with smooth traffic conditions.

Method Beijing-S Shanghai-S Paris-S New York-S

ATT TP ATT TP ATT TP ATT TP

NoChange 4,426.4 109,588 3,878.6 120,449 3,749.6 52,459 4,369.5 67,046
Random 4,435.4 109,450 3,875.3 120,896 3,681.6 53,474 4,344.2 67,271

Rule 4,340.6 112,462 3,807.6 122,688 3,675.5 53,244 4,310.5 67,737
PPO 4,345.0 111,391 3,804.2 122,692 3,663.4 53,629 4,309.7 67,626

Table A11: The results for the dynamic lane assignment scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,846.7 119,890 4,322.2 131,145 4,245.8 60,020 4,674.1 72,870
Random 4,839.7 120,338 4,325.0 131,216 4,176.7 61,810 4,636.1 74,055

Rule 4,761.3 123,673 4,258.2 133,346 4,155.1 62,366 4,615.0 74,254
PPO 4,770.0 122,929 4,256.5 133,379 4,160.9 61,792 4,614.5 73,907

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table A12: The results for the dynamic lane assignment scenario with congested traffic conditions.

Method Beijing-C Shanghai-C Paris-C New York-C

ATT TP ATT TP ATT TP ATT TP

NoChange 5,275.0 130,419 4,928.5 145,308 4,587.8 66,608 4,923.8 76,165
Random 5,294.3 129,976 4,932.6 144,774 4,539.3 68,410 4,907.5 77,460

Rule 5,221.1 134,661 4,875.0 148,393 4,521.8 68,795 4,863.8 78,469
PPO 5,240.1 131,854 4,874.5 148,228 4,522.4 68,413 4,854.7 78,857

G.3 TIDAL LANE CONTROL.

Table A13: The results for the tidal lane control scenario with smooth traffic conditions.

Method Beijing-S Shanghai-S Paris-S New York-S

ATT TP ATT TP ATT TP ATT TP

NoChange 4,422.7 109,912 3,884.8 120,156 3,723.2 52,992 4,388.5 66,269
Random 4,418.9 110,150 3,887.8 119,940 3,711.3 53,313 4,360.2 67,295

Rule 4,416.8 109,997 3,870.3 120,366 3,687.6 53,626 4,341.3 68,113
PPO 4,411.0 110,161 3,857.9 121,344 3,674.5 53,922 4,325.1 68,775

Table A14: The results for the tidal lane control scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,844.6 120,105 4,334.8 130,604 4,224.9 60,794 4,675.1 72,834
Random 4,827.8 120,778 4,338.4 130,283 4,216.2 60,946 4,665.8 73,335

Rule 4,823.4 120,901 4,313.5 131,315 4,192.9 61,636 4,638.0 74,284
PPO 4,820.5 120,936 4,304.3 132,167 4,187.4 61,738 4,628.5 74,756

Table A15: The results for the tidal lane control scenario with congested traffic conditions.

Method Beijing-C Shanghai-C Paris-C New York-C

ATT TP ATT TP ATT TP ATT TP

NoChange 5,278.4 130,133 4,937.9 144,546 4,575.6 67,201 4,923.7 76,253
Random 5,274.2 130,456 4,937.8 143,921 4,568.5 67,661 4,903.8 77,236

Rule 5,260.0 131,304 4,908.7 146,094 4,555.5 68,025 4,877.9 79,096
PPO 5,258.7 131,709 4,909.5 146,145 4,544.7 68,274 4,860.9 79,731

G.4 CONGESTION PRICING.

Table A16: The results for the congestion pricing scenario with smooth traffic conditions.

Method Beijing-S Shanghai-S Paris-S New York-S

ATT TP ATT TP ATT TP ATT TP

NoChange 4,433.4 109,604 3,875.9 120,444 3,743.2 52,611 4,368.1 66,984
Random 4,865.6 96,231 3,969.0 121,137 3,705.2 53,904 4,571.7 63,670
∆-toll 4,267.1 118,077 3,630.4 133,056 3,611.0 54,762 4,246.6 72,188

EBGtoll 5,348.1 75,078 4,230.1 107,683 3,759.7 52,424 4,837.9 55,155

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table A17: The results for the congestion pricing scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

NoChange 4,840.2 120,207 4,328.3 130,621 4,239.2 60,100 4,681.8 72,765
Random 5,190.4 105,640 4,422.0 131,346 4,144.5 62,284 4,830.9 68,976
∆-toll 4,667.8 131,747 4,096.6 147,533 4,040.7 65,024 4,549.3 78,182

EBGtoll 5,637.3 80,476 4,637.6 116,624 4,240.8 60,362 5,096.6 59,154

Table A18: The results for the congestion pricing scenario with congested traffic conditions.

Method Beijing-C Shanghai-C Paris-C New York-C

ATT TP ATT TP ATT TP ATT TP

NoChange 5,281.9 129,904 4,927.9 145,154 4,588.8 66,603 4,928.0 76,140
Random 5,558.6 115,184 5,027.3 143,400 4,488.2 69,075 5,066.6 72,916
∆-toll 5,141.4 143,518 4,767.7 162,829 4,399.9 72,309 4,801.0 82,602

EBGtoll 5,912.5 86,945 5,182.9 128,301 4,571.6 66,971 5,275.4 63,052

G.5 ROAD PLANNING.

Table A19: The results for the road planning scenario with smooth traffic conditions.

Method Beijing-S Shanghai-S Paris-S New York-S

ATT TP ATT TP ATT TP ATT TP

No-Change 7,411.5 137,793 5,432.1 151,689 5,997.5 62,016 6,954.1 92,756
Random 7,216.4 139,070 5,325.6 151,828 5,899.9 62,070 7,176.5 88,947

Rule 7,240.7 138,795 5,352.5 152,124 5,907.3 62,155 6,942.7 92,463
SA 7,272.0 139,326 5,358.9 151,983 5,772.8 62,990 6,921.1 92,754

GeneralBO 7,102.8 139,983 5,297.7 152,046 5,755.4 62,478 6,808.2 93,858

Table A20: The results for the road planning scenario with normal traffic conditions.

Method Beijing-N Shanghai-N Paris-N New York-N

ATT TP ATT TP ATT TP ATT TP

No-Change 8,439.4 161,722 6,699.7 161,722 7,193.9 7,6327 7,892.5 105,533
Random 8,304.7 163,148 6,567.1 181,063 7,106.2 75,839 7,967.2 102,996

Rule 8,235.5 164,247 6,570.7 181,504 7,177.9 76,176 7,956.1 102,951
SA 8,332.4 163,660 6,590.7 180,954 7,154.2 76,164 7,871.2 105,507

GeneralBO 8,242.2 164,182 6,721.8 178,790 7,161.7 75,979 7,759.9 106,883

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table A21: The results for the road planning scenario with congested traffic conditions.

Method Beijing-C Shanghai-C Paris-C New York-C

ATT TP ATT TP ATT TP ATT TP

No-Change 9,684.4 191,786 8,793.1 216,625 8,310.1 87,786 8,624.6 117,606
Random 9,496.8 195,463 8,652.0 219,199 8,230.8 87,704 8,663.1 115,278

Rule 9,489.2 195,427 8,656.6 218,214 8,250.9 87,872 8,682.7 114,650
SA 9,487.0 195,918 8,600.0 219,711 8,188.4 88,650 8,589.7 118,036

GeneralBO 9,369.1 198,446 8,508.8 221,049 8,161.1 88,803 8,542.2 118,579

H WEB PLATFORM GUIDANCE

Since the simulation and optimization of urban transportation systems needs to include map construc-
tion, travel demand generation, simulation, and optimization, its requires interested researchers to
invest their time in learning and writing the relevant code. In order to help researchers quickly try out
the simulator and simulate and optimize urban transportation systems in any region of the world, we
build a web platform to support no-code trials. This platform is open for registration and contains
mainly the wizard program with documentation for the simulator as shown in Figure A5.

Figure A5: The home page of the web platform. (best view in color)

Upon entering the Wizard page, the platform provides a complete process of building maps, generat-
ing trips, simulation, and optimization.

As shown in Figure A6, you can select any rectangular area on the world map or input the bounding
box to submit a map building task. The platform is also pre-built with some of the world’s major
cities to select from. You can download the map binary file as the simulation input or continue to use
the online platform to generate trip by clicking the Select & Continue button.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure A6: The map building page of the web platform. (best view in color)

After building or selecting the map, the second step is to generate the travel demands named as trips
in the platform as shown in Figure A7. Following the travel demand construction methodology used
in the article as mentioned in Section E, we provide a diffusion model based OD matrix generation
method named as AIGC. You can customize the area grid density and total number of people used for
OD matrix generation, which will affect the time required for execution. You can also customize the
departure time distribution through the web GUI. In addition to OD generation, the platform also
automatically performs route selection based on minimum elapsed time to generate the correct inputs
that can be used directly for simulation. The results can also download for local execution. Once you
have finished generating trips, you can click Select & Continue to access the simulation page.

Figure A7: The trip generation page of the web platform. (best view in color)

As shown in Figure A8, you can start the simulation by simply setting the time range to be simulated.
Once the simulation is complete, you can click the Show Result button to view the simulation results.
The visualization of the simulation results is based on the WebGL online map rendering framework,
in which you can view the movement of vehicles, changes in junction traffic signals, etc., as well as
observe the automatically constructed road network and its connectivity.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure A8: The simulation page of the web platform. (best view in color)

As shown in Figure A9, the online platform also supports two transportation system optimization
scenarios, traffic signal control and dynamic lane assignment within junctions, and provides corre-
sponding baseline methods for selection. You can execute it online and get the results of an hour of
training based on the corresponding method.

Figure A9: The optimization page of the web platform. (best view in color)

Moreover, we also write the documentation of our whole system including the simulator and the
toolchain to guide researchers that are interested at coding to use the simulator. One of the documen-
tation page is shown in Figure A10.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure A10: The documentation page of the web platform. (best view in color)

28

	Introduction
	Related Works
	Existing Simulators for Transportation System
	Existing Transportation System Optimization Methods

	The Simulator
	System Design
	Controllable Objects
	Metrics

	Transportation System Optimization Scenarios
	Experiments
	Conclusion
	Statement of Open-source Codes
	System Design, Implementation, and Comparison
	Preliminary
	Execution Process
	Vehicle Model Implementation Compared to the Baseline Systems

	Datasets and Settings for Simulator Performance Comparison
	Visualization of Simulator Realism Comparison
	Datasets for Transportation System Optimization Benchmarking
	The Settings of Transportation System Optimization Scenarios
	Traffic Signal Control.
	Dynamic Lane Assignment within Junctions.
	Tidal Lane Control.
	Congestion Pricing.
	Road Planning.

	Complete Benchmark Results
	Traffic Signal Control.
	Dynamic Lane Assignment within Junctions.
	Tidal Lane Control.
	Congestion Pricing.
	Road Planning.

	Web Platform Guidance

