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ABSTRACT

Imitating enterprise dynamics characterized by volatility, long-horizon coordina-
tion, and decision-making offers executives and operational teams a structural
understanding of the organization at a much lower cost. Existing LLM-based
agent systems have great potential to simulate these activities, yet they still face
three challenges to understand the dynamics at the enterprise scale in terms of
structure, strategy, and operation. This motivates us to propose TaskWeave, a
novel LLM-based multi-agent framework that aims to imitate complex enterprise
dynamics. Inspired by theories in the fields of control and business management,
our TaskWeave operates at three levels: strategic (executives, e.g. generating phase
plans), tactical (coordination, e.g. scheduling resource allocation), and operational
(task execution, e.g. leveraging multiple tools), simulating modern enterprise dy-
namics in an end-to-end manner. Our TaskWeave instantiates an IT company to
simulate year-long operations, demonstrating diverse enterprise dynamics. Experi-
ments, including human evaluations, show that it improves performance with less
real-world overhead, while also generating internal data as a downstream task and
enabling interactions with external contexts.

1 INTRODUCTION

Modern enterprises operate as highly dynamic ecosystems (Teece, 2007; Zollo et al., 2016) in
unprecedented volatility, where strategic decisions must account for rapidly evolving markets, internal
stakeholder dynamics, and socioeconomic uncertainties. Accurate imitation of these dynamics offers
a structured understanding of organizational behavior with lower real-world overhead. Previous
studies can be categorized into three groups, including equation-based ones (Zimmer, 2010) that
utilize physical laws to model system behaviors, data-driven ones (Ghadami & Epureanu, 2022)
that leverage machine learning to approximate complex systems, and agent-based ones (Rolón &
Martínez, 2012) that simulate systems as interactions between autonomous agents. Early agent-based
methods (Drogoul et al., 2002) rely on mathematical paradigms such as Kermack-McKendrick (Macal,
2010) and discrete event models (Borshchev & Filippov, 2004). Recently, numerous LLM-based
agentic systems, which involve single or cooperative multi-agents (Park et al., 2023), have been
widely used in various domains, such as planning (Chen et al., 2024b), task decomposition (Huang
et al., 2024), and scenario simulation (Li et al., 2024b). These advances show great potential to
simulate system dynamics, such as economics (Li et al., 2024c; Yang et al., 2025), tiny society (Xu
et al., 2023; Gao et al., 2023b), social media (Yao et al., 2024; Yukhymenko et al., 2024).

Although effective, existing LLM-based agentic systems, such as AutoGen (Wu et al., 2023),
BabyAGI (Nakajima, 2023) and CAMEL (Li et al., 2023) struggle to produce accurate simula-
tions of enterprise dynamics primarily due to three challenges: ❶ Structure dynamics: Enterprise
structures (Galbraith, 2014) vary widely across sectors, scales, and workflows, thus requiring agents
to be capable of modeling diverse coordination patterns while remaining structurally grounded. ❷
Strategy dynamics: Enterprise processes (Xu et al., 2008)are intrinsically hierarchical and temporally
layered, and this entails agents to yield planning strategies that ensure coherence across long-horizon
goals and fine-grained execution (Hou et al., 2024). ❸ Operation dynamics: Organizational work-
flows (Chebbi et al., 2006) are context-dependent and task-driven, where each action builds on
evolving plans, prior progress, and external socioeconomic uncertainties. Hence, it requires agents to
efficiently fuse heterogeneous clues while maintaining semantic continuity across tasks.

To address these challenges, this paper proposes TaskWeave, an LLM-based multi-agent framework
that aims to imitate complex enterprise dynamics (show in Figure 1) through hierarchical planning,
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Figure 1: An overview of enterprise dynamics, derived from corporate strategy, generate interdepen-
dent tasks that are decomposed into subtasks and assigned to LLM-instantiated agents.

role-based collaboration, and context-aware execution. Inspired by recursive control theory (Dem-
ing, 1986), strategic management (Anand & Ward, 2002; Mintzberg, 1979), and division-of-labor
theory (Becker & Murphy, 1992), our TaskWeave operates at three levels: strategic (executive
decision-making), tactical (departmental and individual coordination), and operational (task execu-
tion), simulating modern enterprise dynamics in an end-to-end manner.

We first instantiate tens and hundreds of diverse LLM-based agents with structured delegation
reflecting real-world sectors and roles, and workers, and then assign them to execute interdependent
tasks under temporally evolving goals. At the strategic level, we present a novel control cycle termed
as Formulate-Partition-Diagnose-Align (FPDA) to simulate long-term business activities with certain
objectives. At the tactical level, agents dynamically shift between orchestrator and executor roles,
enabling structured delegation, plan refinement, and inter-agent alignment across organizational
tiers. At the operational level, agents enhance execution context via structured memory, dependency
tracking, and external tool access, enabling tool-augmented reasoning with continuity and traceability
in dynamic workflows. We conduct a comprehensive evaluation of TaskWeave across multiple
core dimensions. Experimental results show that the proposed framework produces diverse task
trajectories, maintains long-horizon strategic coherence, and generates enterprise data with richer
contextual and semantic content compared to baseline systems, while also enabling interactions with
external contexts and demonstrating generalizability across different backgrounds.

Our key contributions and empirical insights are summarized as follows.

• We propose TaskWeave, a novel framework that simulates enterprise dynamics through struc-
tured multi-agent collaboration. By instantiating LLM-based agents with stratified roles and
coordinating them through hierarchical planning and execution, TaskWeave captures the temporal,
structural, and contextual complexity.

• We introduce a three-level orchestration, including strategic planning, tactical delegation, and
operational activities. It empowers agents to align global intent while executing fine-grained
actions, effectively mirroring enterprise coordination. By doing so, we can properly imitate the
three challenging enterprise dynamics, providing insights for executives and operational teams.

• We conduct comprehensive empirical studies across various dimensions, demonstrating
TaskWeave’s effectiveness in imitating coherent and diverse enterprise behavior. Experiments
further indicate its potential for scalable organizational simulation, with generalizability to diverse
scenarios. We show that TaskWeave can assist management teams and academics in driving
performance in rapidly evolving ecosystems with less real-world overhead, while generating
enterprise data that supports downstream analysis and decision-making.
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2 RELATED WORK

Enterprise-Level Process Simulation. Corporate activity has long been modeled through Business
Process Management (BPM) pipelines that specify task flows. Early work emphasized rule-driven
formalisms such as BPMN (van der Aalst, 2011; Dumas et al., 2018), later extended with re-
design (Reijers, 2003), declarative models (Pesic et al., 2007), and process mining from execution
logs (van der Aalst, 2011; 2013). Even modern BPM engines rely on static templates and pre-defined
logic, limiting their ability to capture the dynamic and adaptive nature of real enterprise coordination.

Multi-Agent Systems (MAS): MAS (Hong et al., 2024; Park et al., 2023) mark a paradigm shift
by integrating LLMs’ reasoning, planning (Hu et al., 2024), and communication (Gao et al., 2024;
Li et al., 2024a) into agent-based frameworks. Leveraging pre-trained LLMs, these systems exhibit
emergent planning skills, natural language collaboration, and contextual memory, enabling complex
task decomposition, scenario simulation (Yang et al., 2025), and adaptive behavior modeling. Recent
surveys (Chen et al., 2025) classify their trajectories into three: (i) collaborative task-solving via
role-aligned agents (Islam et al., 2024; Shen et al., 2024; Yu et al., 2024; Du et al., 2023), (ii) realistic
simulation of social (Mou et al., 2024; Li et al., 2024b; Gao et al., 2023c; Park et al., 2022; Wang
et al., 2024; Pan et al., 2024; Xu et al., 2024; Gong et al.; Li et al., 2024c) and physical dynamics (Gao
et al., 2023a; Zou et al., 2023), and (iii) meta-evaluation and training of generative agents through
structured multi-agent interactions (Chen et al., 2024a; Zhao et al., 2024; Shi et al., 2024; Gao et al.,
2025; Liu et al., 2024a). Meanwhile, most existing frameworks remain constrained by a focus on
short-horizon planned actions, with limited coordination and temporal continuity, which restricts
their applicability to realistic enterprise simulations.(detailed comparison in Appendix D)

3 METHOD

3.1 FRAMEWORK OVERVIEW

As shown in Figure 2, TaskWeave simulates complex enterprise behavior as structured populations
of LLM-based agents, coordinated through a comprehensive three-level orchestration: strategic,
tactical, and operational. This end-to-end simulation is supported by three core functional modules:

Structured Agent Population. Agents are instantiated from enterprise metadata and organized into a
graph that mirrors real-world relationship, forming the structural backbone for coordinated planning.

Hierarchical Task Propagation (Strategic–Tactical). At the strategic level, the system
perceives both internal and external conditions and refines global intent via the Formu-
late–Partition–Diagnose–Align (FPDA) cycle; at the tactical layer, agents alternate between or-
chestrator and executor roles to decompose goals, delegate vertically, and align horizontally.

Context-Aware Task Execution (Operational). At the operational layer, agents operate with
structured memory and tool access, retrieving historical outputs and resolving task dependencies.
This supports context-grounded reasoning and traceable output aligned with evolving objectives.

3.2 STRUCTURED AGENT POPULATION

To capture organizational role dynamics, we construct a Structured agent population. Each agent is
initialized with identity descriptors and functional roles, and embedded within a fixed delegation
topology that encodes permissible coordination flows.Given organizational metadata B (e.g., industry,
scale, departmental layout), we instantiate N agents A = {ai}Ni=1, each defined as:

ai = (ϕi, ρi) , ϕi ∼ Pϕ, ρi ∼ Pρ(B) (1)

where ϕi captures immutable identity traits (e.g., tenure, background), and ρi denotes role descriptors
(e.g., title, responsibility), sampled from structured distributions conditioned on metadata B.

To model hierarchical delegation, we partition the population into T tiers:

A[t] = {ai ∈ A | ρi ∈ R[t]},
⋃T

t=1A[t] = A, A[t] ∩ A[t′] = ∅ if t ̸= t′ (2)

Here,R[t] defines the role family assigned to tier t, derived from B to reflect enterprise stratification.
Furthermore, to enable recursive planning across strategic, tactical, and operational layers under

3
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Figure 2: TaskWeave simulates enterprise dynamics with structured agents under a three-level
orchestration (strategic, tactical, operational) that connects global planning with adaptive execution.
The framework prepares agents from metadata, propagates intent via the FPDA cycle to generate
plans and tasks, then executes them through decomposition, assignment, and external interaction.

structural constraints, We define a static delegation graph H = (A, EH):

EH =

T−1⋃
t=1

{
(ai → aj) | ai ∈ A[t], aj ∈ A[t+1]

}
(3)

Each edge (ai → aj) encodes a valid delegation path from a higher-tier agent to a subordinate.

3.3 HIERARCHICAL TASK PROPAGATION

At the strategic level, we design a recursive mechanism that perceives internal and external information
to produce high-quality enterprise plans. Inspired by control theory (Deming, 1986) and strategic
management (Anand & Ward, 2002; Mintzberg, 1979), this mechanism models organizations as
temporally evolving, feedback-regulated systems. We formalize the enterprise state space as S:

Sp
l,i =

(
πp
l,i, , T

p
l,i, , σ

p
l,i

)
, πp

l,i = argmax
π

∑
j wjVj(π)− C(π) (4)

where each state node Sp
l,i encapsulates localized planning and execution status, with π denoting

strategic intent, T a structured task bundle, and σ a performance summary derived from execution
outcomes. Nodes are arranged across temporal levels l and linked to parent nodes p for top-down
intent inheritance and lateral adaptation to simulate long-horizon planning.

Planning Objective. As defined in Equation equation 4, each plan πp
l,i across the temporal hierarchy

is optimized by balancing multiple utility objectives against execution cost. While we do not compute
this objective function explicitly, we use it to guide prompt construction—encouraging LLM agents
to implicitly weigh alignment, value, and feasibility during plan generation. Here, Vj(π) denotes the
value of plan π with respect to objective j, wj is the assigned weight, and C(π) denotes cost.

Recursive Propagation. Enlightened by foundational ideas in classical quality-control theory, we in-
troduce a multi-agent-compatible reformulation: the Formulate–Partition–Diagnose–Align (FPDA)
cycle. FPDA extends traditional feedback loops such as PDCA (Plan–Do–Check–Act) (Johnson,
2002) into a recursive substrate for hierarchical task propagation, lateral coordination, and adaptive
refinement. It ultimately bridging strategic planning with fine-grained operational execution.
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Each node Sp
l,i initiates propagation as follows:
Sp
l+1,j = FAlign ◦ FDiagnose ◦ FPartition ◦ FFormulate

(
Sp
l,i, A

[t]
)

(Downward)

πp
l+1,k ← Gπ

(
πp
l+1,k, σ

p
l+1,j

)
, ∀k ∈ N+

sibling(j) (Lateral)
(6)

The proposed FPDA operator encapsulates the following control phases:

• Formulate: Derives a localized subgoal πp
l+1,j from the parent plan πp

l,i, conditioned on current
enterprise context, structural constraints, and historical performance summaries σp

l,i.

• Partition: Translates the subgoal into an executable task list T p
l+1,j , and injects them into the

global task pool T for role-aware assignment and distributed processing (see Section 3.4).
• Diagnose: Aggregates execution signals and results R from downstream agents to produce a

performance summary σp
l+1,j that reflects task progress, deviations from intent, and latent blockers.

• Align: Applies the adaptive function GAlign to synchronize sibling nodes, leveraging diagnostic
signals for lateral coordination and fine-tuned plan correction.

At the tactical level, agents dynamically alternate between orchestrator and executor based on tiers.
Given a propagated subgoal πp

l,i and diagnostic summary σp
l,i, the tactical tier refines them into

actionable subgoals and partitions them into task bundles T p
l+1 for downstream execution. This

enables top-down delegation and peer coordination, with the tactical layer refining and integrating.

3.4 CONTEXT-AWARE TASK EXECUTION

At the operational level, drawing on division-of-labor theory (Becker & Murphy, 1992), we design a
pipeline that turns high-level plans into agent actions. Rather than open-ended negotiation (Cemri
et al., 2025), TaskWeave decomposes tasks into role-aligned subtasks, delegating them along organi-
zational chains, and augmenting execution with historical task retrieval and external tool interactions.

Decomposition. For a composite task τl,i,j = (ηj , δj , ξj) in state node Sl,i, where ηj includes
background, description and constraints. A deterministic operator D decomposes it
into a set of atomic subtasks:

D(ηj) = {τ̂l,i,j,k = (η̂j,k,Ψj,k)}
Kj

k=1 (5)

where η̂j,k denotes the k-th atomic goal, and Ψj,k encodes dependency queries.

Role-Based Dispatch. Each atomic subtask τ̂j,k is assigned to an agent aj,k ∈ A[t] within the target
execution tier t, selected based on profile compatibility and organizational delegation structure:

aj,k = arg max
a∈A[t]

ϕ (prof(a), η̂j,k, ρa) (6)

where ϕ scores the alignment between the agent’s role and profile (e.g., expertise, prior outputs,
functional scope) and the semantic intent of η̂j,k. The selection is constrained to tier t as determined
by the delegation origin (typically from agents in A[t−1]) and structural routing rules in H.

Tool-Augmented Contextual Execution. Before execution, each agent aj,k interprets its assigned
subtask τ̂j,k and resolves Ψj,k by retrieving a contextual bundle Γj,k from the result pool R, querying
external tools. These tool-mediated actions enable agents to access external environments (e.g.,
databases, search engines, or cloud services) while grounding outputs in prior results. The agent then
performs a context-grounded reasoning step on (η̂j,k, δj,k, ξj,k), yielding an output that integrates
historical knowledge, task semantics, and situational dependencies. Formally, the execution yields:

rj,k = (η̂j,k, δj,k, ξj,k) ∈ R (7)

where δj,k is the model-generated output, and ξj,k encodes provenance metadata which is stored in R.

Result Integration. Once all atomic results {rj,k}
Kj

k=1 are completed, they are merged to update the
composite task τpl,i,j , producing an aggregated digest δj and aggregated execution metadata ξj , both
of which are stored in the result pool R for future retrieval and propagation.

5
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4 EXPERIMENTS

4.1 SIMULATION SETUP

From Sec.4.2 to Sec.4.7, we evaluate TaskWeave through a year-long simulation of an example
SaaS company, CompanyA. The organization is instantiated with 14 role-specialized agents dis-
tributed across 3 hierarchical tiers (boss, managers, workers) and spanning three functional do-
mains—Technology, Marketing, and Strategy. This setup mirrors real-world enterprise structure,
enabling strategic, managerial, and operational delegation. The simulation unfolds along a four-
level temporal hierarchy (year → quarter → month → week), supporting long-horizon planning
and short-horizon execution. Under this CompanyA background, we analyze all key modules of
TaskWeave, including task generation, role assignment, plan propagation, execution dynamics, down-
stream utility, and interaction with external environments. To assess backbone influence, we instan-
tiate the framework with six LLMs—GPT-4o-mini, Gemini-2.0-Flash, Deepseek-v3,
Moonshot-v1-8K, LLaMA3.1-70B, and GLM-4-Flash, while keeping parameters fixed for
comparability. Beyond CompanyA, we further test generalizability across three distinct settings in
Sec. 4.8. Furthermore, we conduct an ablation analysis on each level in Appendix E, with details on
human and LLM-as-a-judge evaluations, both reliably validated, in Appendix F.

4.2 TASK GENERATION DYNAMICS

At the strategic level, we evaluate whether TaskWeave improves task generation quality compared
with single-agent baselines. The focus is on producing balanced, diverse, and high-quality.

Settings. We assess generation along three axes: (i) functional balance, measured by KL divergence
against an expert-defined distribution (Tech 40%, Mkt 40%, Strat 20%), which serves only as
a balanced standard rather than the unique ratio;; (ii) semantic diversity, computed via pairwise
embedding similarity with all-mpnet-base-v2 (H. Face, 2024); and (iii) task criticality, judged
against a human-curated list of essential tasks. In addition, we rate realism, logical soundness, and
actionability on a 1–10 scale using both domain experts and LLMs.

Table 1: Task Evaluation across 6 backbones and single-agent baselines. Total (task count),
Tech/Mkt/Strat (functional allocation), KL-D (distributional balance), Div. (semantic diversity),
Core-M (Core tasks by model judgment), and Core-H (by human judgment), Appendix M).

Model Method Total Tech Mkt Strat KL-D Div. Core-M Core-H

ChatGPT
Single 300 40.33% 27.33% 32.34% 0.0788 35.22 5.67% 7.33%
Ours 228 16.67% 68.42% 14.91% 0.2561 48.52 72.81% 81.14%

Gemini
Single 300 60.00% 20.00% 20.00% 0.1510 32.59 3.00% 8.67%
Ours 255 43.53% 32.16% 24.31% 0.0203 55.85 37.25% 78.03%

Deepseek
Single 300 51.00% 20.00% 29.00% 0.1342 55.52 13.33% 18.67%
Ours 241 42.74% 30.29% 26.79% 0.0323 57.20 48.55% 92.12%

Moonshot
Single 300 50.34% 28.00% 21.66% 0.0478 40.03 8.33% 11.00%
Ours 128 31.25% 50.78% 17.97% 0.0358 42.87 66.41% 93.75%

LLaMa3
Single 100 77.00% 2.00% 21.00% 0.5423 32.74 8.00% 10.67%
Ours 79 43.04% 30.38% 26.58% 0.0340 39.35 37.97% 86.08%

GLM
Single 300 57.00% 23.00% 20.00% 0.1076 41.72 9.33% 12.33%
Ours 299 17.79% 31.87% 50.34% 0.3579 54.58 37.46% 76.92%

Results. Across all LLM backbones, TaskWeave yields more balanced task allocations, greater
semantic diversity, and higher coverage of critical managerial tasks. Quality scores remain above 7.0
for all models, indicating that the generated tasks are coherent and actionable.(detailed in Appendix H)

Insight.① Coordinated MAS can generate balanced, diverse, and strategically aligned tasks with
high quality, making them powerful engines for realistic enterprise simulation.

6
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4.3 ROLE ASSIGNMENT DYNAMICS
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Figure 3: Role assignment distribution across dif-
ferent backbone models. Each bar shows the pro-
portion of tasks executed by each role and the KL
divergence above each column.

At the tactical level, we examine whether agents
distribute work across all roles rather than con-
centrating execution on a few. Using the enter-
prise background, we curated an ideal distribu-
tion over 14 positions (Appendix G.2, a balance
benchmark as above, not the only standard)),
and measured divergence between observed as-
signments and this reference profile via KL di-
vergence.

Insight.② Role activation in MAS reflects the
backbone model’s generative preferences and
its capacity for balanced coordination. Weaker
models(e.g., GLM) tend to overuse certain roles,
while stronger ones(e.g., Gemini, Deepseek)
achieve more structured coverage, showing that
delegation fidelity is constrained by both orches-
tration design and base model expressiveness.

4.4 TASK PROPAGATION DYNAMICS

Across strategic and tactical layers, we evaluate whether hierarchical plans in TaskWeave are ef-
fectively coordinated testing if high-level intents are properly decomposed and refined under the
FPDA mechanism. For each plan, an external LLM (Gemini-2.5-Flash) generates a checklist
of actionable checkpoints, and we measure completion rates from execution summaries, consid-
ering both current-phase progress and cumulative resolution under delayed execution (e.g., two
months for monthly plans). This simulates temporal spillover in enterprise workflows, with details in
Appendix ??.

Table 2: Completion rate across different backbone under monthly and
weekly evaluation. ’-’ means that the plan propagates poorly

Model Monthly Weekly
n-check Timely Finalized n-check Timely Finalized

ChatGPT 30 76.67% 91.39% 14.25 71.35% 95.32%
Gemini 29.58 81.92% 92.66% 14.41 87.28% 98.58%

Deepseek 27.8 75.18% 82.01% 13.41 78.88% 92.55%
Moonshot 24.3 71.03% 83.79% 13.08 72.61% 91.72%
LLaMa3 – – – – – –

GLM – – – 11.53 57.80% 68.21%

As shown in Table 2, hier-
archical plans are progres-
sively decomposed and re-
alized across monthly and
weekly layers. While some
models struggle to complete
monthly tasks, subgoals are
often finished in later cy-
cles, showing sustained in-
tent and coherent progres-
sion. Weekly plans achieve
higher completion due to
finer granularity.

Insight.③ Enterprise simulation ultimately hinges on the capabilities of the backbone LLMs. When
models lack reasoning ability and generative capacity, they struggle to sustain complex workflows,
leaving strategic goals unrealized. Thus, the fidelity of MAS simulation is bounded not only by
orchestration design but also by the fundamental competence of the models that enact it.

4.5 TASK EXECUTION DYNAMICS

At the operational level, we evaluate TaskWeave’s ability to execute interdependent tasks under
evolving plans. Agents retrieve historical context, use tools for reasoning, and produce emergent
execution chains. Figure 4 illustrates a workflow generated without predefined scripts, while degree
analysis of the task-dependence graph (Appendix M) highlights core initiators and coordination hubs.

Insight.④ Agents can simulate enterprise emergency operations by generating structured plans,
coordinating realistic workflows, and producing varied outcomes that mirror the execution dynamics.
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Change Current 
Allocation Budget Category 

Proposed
Allocation

User Feedback Survey
Database 

Schema Changes

Task Dependence Graph

Interlaced Workflow

1. How would you rate your 
overall onboarding experience
with SyncFlow?
   - [ ] Very Satisfied  
   - [ ] Satisfied  
   - [ ] Neutral  
   - [ ] Dissatisfied  
   - [ ] Very Dissatisfied  
2. What challenges did you
encounter during onboarding,
 if any?
 ________________________
 ________________________

- Users Table
  - Additional columns:  
    - `referral_code` (VARCHAR): 
       Unique code assigned to 
       users for tracking.
    - `referrer_id` (VARCHAR): 
      ID of the user who referred
      the new sign-up.
- Referrals Table  
  - Columns:  
    - `id` (INT, PK)
    - `referrer_id` (VARCHAR) 
    - `signup_date` (DATETIME)

Dear Team, 
I have scheduled a meeting
for March 6, 2024,from 
10:00 AM to 12:00 PM CST 
to discuss the finalized design
mockups for the Enhanced 
Reporting Dashboard and User
Role Management System. 
Please confirm your attendance
at your earliest convenience.  
Best,  
Norma Fisher  
Product Manager

Marketing
Campaign

Budget

Meeting 
Confirmation Message

- Description: Assign a role to a user.
- Request Body:
  ```json{
    "userId": "string",  // the ID of the user
    "roleId": "string"   // the ID of the role }
  ```
- Response:
  - 200 OK: Role assigned successfully.
    ```json{
 "message": "Role assigned successfully",
 "roleId": "string"}
    ```
  - 400 Bad Request: Invalid input or ……

Role Management 
API Documentation

List of 
Overseas
Research
Company

Task Results

Each box represents a task handled by multiple agents ; "→" indicate dependency on the previous task's results.

   High-Performing Campaigns $50,000 $60,000 +$10,000

   Low-Converting Campaigns $30,000 $15,000 -$15,000 

    Retargeting Ads $20,000 $25,000 +$5,000

    Total $100,000 $100,000 $0

 1. Nielsen Indonesia  
  - Contact Information:  
   - Website: [nielsen.com/id]
        (https://www.nielsen.com/id)  
   - Phone: +62 12 345 6789  
  - Areas of Expertise:  
   - Audience measurement, retail
     analytics, and consumer …….

Figure 4: Case study. LLM agents generate hierarchical, temporally dependent workflows with
diverse structured outputs; the dependency graph (bottom right) shows inter-task relations.

4.6 DOWNSTREAM UTILITY

To demonstrate the utility of generated data, we propose Organizational Sensitive Span Detection
(OSSD), a NLP task motivated by compliance needs (e.g., GDPR (European Union, 2016), EU Data
Act (Union, 2023)). OSSD detects spans in textual data that contain sensitive information and assigns
each a category and rationale. Formally, given a text T , the model outputs S = {(ti, ci, ri)}ki=1,
where ti is a span, ci a label (e.g., Financial Data), and ri a rationale. Unlike standard NER,
OSSD supports enterprise-specific boundaries and categories and explicitly requires ri for compliance.
Annotation Pipeline. We design a multi-stage label-and-verify process with GPT-4o-mini: (1)
extract spans, (2) generate justifications, and (3) verify via. Human reviewers performed consistency
checks on stages (2)–(3), both reliability and fairness of the annotation process (Appendix K).

Table 3: Internal sensitive span quantity and usage.

Method API Spans Len Tokens (P/C) Div.
MoA 14.1 454 34.77 27k/5k 11

Megenic-One 31.0 1538 52.04 465k/19k 83
G-Designer 40.6 252 28.22 16k/25k 19

Ours 5.6 643 37.78 30k/4k 31

Settings. We use 3 baselines: MoA (Wang
et al., 2025), Megenic-One (Fourney
et al., 2024), and G-Designer (Zhang
et al., 2025), all deployed on the same sce-
nario (CompanyA) with 26 tasks across
3 departments under identical agent roles.
Evaluation uses API calls (API), span count
(Spans), avg. length (Len), tokens (P/C),
and label diversity (Div., span types ≥3).

Results and Analysis. As shown in Table 3, while all methods can generate some internal-sensitive
spans, TaskWeave yields richer spans (643) with lower API cost (5.6 calls per task) and higher token
efficiency. To further validate the non-triviality of the OSSD task, we evaluated 300 short spans
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(length ≤ 10) using two advanced NER models (Zhou et al., 2024; Ding et al., 2024), and observed
F1-score drops of over 40%, highlighting the intrinsic distinction between our generated textual spans
and publicly available entity types. Furthermore, a file-level sensitive data analysis in Appendix I.

Insight.⑤ By simulating the realistic dynamics, MAS frameworks can enrich enterprise simulations
with semantically grounded content at lower cost, while also supporting sensitive synthetic data
generation by emulating the processes behind sensitive information rather than accessing it directly.

4.7 INTERACTING WITH EXTERNAL ENVIRONMENTS

Policy Economic Technology
Event Type
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Figure 5: Impact of external incidents.

Beyond internal various dynamics, we evaluate
TaskWeave under two complementary settings:
(i) injecting external incidents into the strategi-
cal level (ENV→MAS), and (ii) agents interact
with environment via tools (MAS→ ENV).

External Incidents. We injected 15 realis-
tic events for 3 types into quarterly planning
of CompanyA. The system adaptively shifted
workloads—policy shocks emphasized strategic
planning, while economic shocks increased mar-
ket tasks (Fig. 5).(detailed in Appendix N.1).

Tool Interaction. Equipped with 63 tools spanning SQL, social-media, and office, agents completed
a one-month simulation with 534 tool calls (41.3% of steps). Office tools dominated usage, SQL
enabled centralized queries, and media tools supported communication.(detailed in Appendix N.2).
Insight.⑥ LLM agents in MAS can imitate enterprise dynamics by adapting to external perturbations
and leveraging tools, thereby realistically bridging organizational behavior with its environment.

4.8 GENERALIZABILITY ACROSS DOMAINS

Table 4: Generalizability experiments. Size (number
of agents), Tiers (hierarchical depth), Dep. (functional
departments), Task (executed tasks), Div. (task diversity
index), Role (agent activations), Com. (task completion
rate), Spans (OSSD spans labeled in 50 tasks).

Scene Size Tiers Dep. Task Div. Role Com. Spans
Fin 15 3 3 20 45.05 119 81.6% –

Manu ∼50 4 4 129 54.36 655 88.0% –
Gov ∼100 5 5 290 58.55 1782 86.0% 1651

We evaluate TaskWeave across three other
organizational settings: a financial com-
pany (Fin), a manufacturing plant (Manu),
and a government agency (Gov) for one
month(detailed settings in Appendix.L. As
shown in Table 4, the framework gener-
alize across different backgrounds, larger
sizes, deeper hierarchies, and more func-
tional departments while sustaining stable
task completion. With increasing organiza-
tional complexity, task diversity and agent
activations also rise, indicating stronger
adaptability. In government case, 1,651 sensitive spans further highlight the value of TaskWeave for
downstream data synthesis, demonstrating both robustness in execution and utility in data synthesis.
Insight.⑦ By capturing the core features of enterprise dynamics, MAS frameworks can generalize
across domains and remain robust under growing complexity, while higher agent activations reveal
the growing cost and complexity of coordination.(as reflected by Com. and Role)

5 CONCLUSION

This paper presents TaskWeave, a multi-agent framework that simulates enterprise dynamics by or-
chestrating LLM-based agents across three interlocking layers: strategic planning, tactical delegation,
and operational execution. By aligning role specialization with temporal abstraction, TaskWeave
addresses key challenges in modeling structural complexity, long-horizon planning, and context-
grounded execution. Experiment results show its ability to support faithful, scalable simulations
that reduce the overhead of studying organizational behavior. Our insights suggest that TaskWeave
can serve as a valuable foundation for data synthesis, enterprise modeling, and decision support in
dynamic environments. Future work includes the deployment of our TaskWeave in more ecosystems.
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A LLM USAGE

In preparing this work, we made use of large language models (LLMs) to assist with specifictasks.
LLMs were used for linguistic refinement (grammar and style polishing) and related research
exploration. All model outputs were carefully reviewed by the authors to ensure factual accuracy and
faithfulness to the intended meaning of our work. We explicitly verified that no fabricated references,
hallucinated claims, or misleading statements were introduced. The scientific content, analysis, and
contributions remain solely the responsibility of the authors.

B ETHICS STATEMENT

Our experiments involve the generation of synthetic enterprise data, which may contain elements
resembling company backgrounds or personal information. We emphasize that all such data are
entirely artificial and constructed for simulation purposes only. No real organizations, employees, or
proprietary records are included, and the synthetic nature of the data ensures that it does not impact
or compromise any real individuals or enterprises. We believe that this work poses no risk of privacy
infringement or misuse of sensitive information.

C OPEN RESOURCE

Our code and generated data can get from: https://anonymous.4open.science/r/
TaskWeave-F0F6.

D COMPARISON

In this section, we provide additional comparisons of TaskWeave against (i) traditional enterprise
modeling tools such as BPMN and process mining systems, and (ii) existing LLM-based MAS
frameworks. These materials complement our discussion in the main text and highlight the unique
positioning of TaskWeave.

D.1 COMPARISON WITH BPM METHODS

Traditional enterprise modeling tools, such as Business Process Management Notation (BPMN)
simulators and process mining engines, have been widely adopted to model organizational workflows.
However, these tools typically rely on static process templates and pre-defined control logic, making
them less effective in environments that require continuous adaptation to shifting goals, unexpected
events, or external shocks.

By contrast, TaskWeave complements such tools by enabling open-ended, hierarchical simulation
through LLM-based agents. In particular, compared to template- or log-driven approaches, TaskWeave
provides:

• Higher fidelity: It captures both formal and informal coordination via dynamic intent
propagation, rather than relying solely on fixed schemas or historical logs.

• Greater flexibility: It supports adaptive task generation and multi-agent workflows without
pre-defined process templates.

• Practical efficiency: Despite higher token usage, TaskWeave reduces manual modeling
effort and runs effectively on low-cost LLM backbones.

We further conducted qualitative case analyses, summarized below, with detailed discussions deferred
to the Appendix.

D.2 COMPARISON WITH EXISTING MAS

Prior LLM-based MAS frameworks (Hong et al., 2024; Park et al., 2023; Chen et al., 2025) have
demonstrated strong capabilities in collaborative task-solving, sandboxed simulations, and meta-
evaluation of generative agents. However, most emphasize local planning or isolated task execution,
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Table 5: Qualitative comparison of BPMN and TaskWeave

Aspect BPMN TaskWeave
Process Structure Static Dynamic
Adaptability Low High
Error Handling Predefined Dynamic
Context Integration Limited Supported
Domain Portability Limited Supported
Simulation Capability Descriptive Executable

with limited centralized coordination or temporal hierarchy. As a result, they often fall short in
modeling long-horizon enterprise workflows with continuity, dependencies, and adaptive feedback.

TaskWeave is not a generic MAS or dialog agent framework, but a structured system tailored for
enterprise modeling and data synthesis. It uniquely integrates hierarchical planning, adaptive control
loops, and traceable execution, enabling end-to-end simulation of organizational processes at scale.
Table 6 presents a conceptual comparison.

Table 6: Conceptual comparison of TaskWeave and prior LLM-based MAS frameworks across eight
key dimensions. Symbols: ✓ supported, ✗ not supported, ▲ partially supported.

Framework Sim Hier Goal Long Loop Trace Auto Vers
TaskWeave ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CAMEL ✗ ✗ ▲ ✗ ✗ ✗ ▲ ✓
Autogen ✗ ▲ ✓ ✗ ✗ ▲ ✓ ✓
GPTSwarm ✗ ▲ ✓ ✗ ✓ ▲ ✓ ✓
MacNet ✗ ▲ ✓ ✗ ✗ ▲ ✓ ✓
GenAgents ▲ ✗ ✗ ✓ ✗ ✓ ✓ ✓
MetaGPT ▲ ✓ ✓ ✗ ▲ ✓ ✓ ✗
TwinMarket ✓ ✗ ✗ ✓ ✗ ✓ ✓ ▲
SOCIODOJO ✓ ✗ ▲ ✓ ▲ ✓ ✓ ▲
VIRSCI ▲ ✗ ▲ ✗ ✗ ✓ ✓ ✗

E ABLATION ANALYSIS

We verify the contribution of each level through targeted empirical analyses. The strategic level
(Section 4.2, 4.4) ensures long-horizon coherence planning and adaptive refinement. The tactical level
(Section 4.3, 4.4) promotes inclusive collaboration and balanced role engagement. The operational
level (Section 4.5, 4.6) enables context-aware execution with traceable, high-utility outputs. Together,
these results validate that each level enhances TaskWeave’s fidelity, adaptability, and coherence.

F RELIABILITY OF EVALUATION METHODS

Given the novelty of our LLM-based MAS simulation setting, some open-ended evaluations nec-
essarily involve human and LLM-based judgments. We followed best practices from prior MAS
simulation worksPark et al. (2023) and designed structured evaluation method to ensure rigor and
transparency. The key evaluation dimensions and protocols are summarized as follows.

LLM-as-a-judge. As described in Section 4, we carefully designed prompts with three categories,
nine criteria, and dual-descriptor definitions (see Appendix M). We further validated reliability via
Cohen’s Kappa over 100 repeated samples, obtaining a high agreement score of 0.88. In Section
4.4, we implemented a two-stage pipeline consisting of (a) generation and (b) reasoning and tracing,
and verified consistency between two independent LLMs. An ablation study was also conducted
(Appendix F). For Section 4.6, we applied a three-stage labeling pipeline ( K).

Human Expert. We involved four experts (A–D): Expert A has over 8 years of management
experience in IT companies; B–D have 1–2 years of experience in development/operations, all
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holding a master’s degree or above. All experts underwent standardized training before conducting
evaluations.

Table 7: Evaluation Methods and Reliability Measures

Method Location in Paper Quality Assurance Strategy

LLM-as-a-judge
Section 4.2 Crafted prompts with 3 categories, 9 criteria, and dual-

descriptor definitions (Appendix D). Cohen’s Kappa
over 100 repeated samples (score = 0.88).

Section 4.4 Two-stage pipeline: (a) generation; (b) reasoning and
tracing. Consistency between two LLMs. Ablation
study (Appendix J).

Section 4.6 Three-stage labeling pipeline (Appendix K ).

Human Expert
Section 4.1 / 4.3 Expert A designed; distributions represent one realistic

configuration (Appendix M and Appendix G).
Section 4.2 Based on semantic clustering; Expert A refined the final

list and Experts B, C, D classified (Appendix M).
Section 4.6 500 samples manually checked by Experts B, C, D;

∼5–10% noise retained to reflect LLM imperfection
(Appendix K).

F.1

G AGENT POPULATION

G.1 ROLE-EXAMPLE

To achieve a more realistic and credible simulation effect, we utilize customized prompts to com-
prehensively define each character by incorporating both personal identifiers (e.g., name, email,
education, etc.) and role-specific attributes (e.g., goals, constraints, etc.) during the construction of
various agents. To enhance comprehension, the following two representative prompt examples are
presented. The first example is from the managerial strata, while the other is from the operational
strata.

Figure 6: Prompt Examples.
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G.2 IDEAL ROLE DISTRIBUTION

We invite experts to design roles according to their company background. The job distribution is as
follows.

Role Proportion
HR 0.12
Product Manager 0.15
Technical Support Engineer 0.05
Backend Engineer 0.05
Data Analyst 0.15
Marketing Specialist 0.15
QA Engineer 0.05
UI/UX Designer 0.05
Frontend Engineer 0.05
DevOps Engineer 0.05
Customer Success Manager 0.10

Table 8: Expert-defined ideal role distribution for the simulated SaaS enterprise.

H TASK QUALITY EVALUATION

H.1 TASK DESCRIPTION QUALITY

We used a comprehensive evaluation of task quality to ensure the reliability and validity of the results
generated. The evaluation process integrated both automated and human evaluations to obtain a
multifaceted and objective quality analysis.

The task quality evaluation was primarily focused on the core criteria in Table 9.

Figure 7: Task Quality Evaluated by Model. The score range
is set [0, 10]. Obviously, all generated tasks have scores
above 7, which means that all generated tasks are of high
quality.

During the process of the model eval-
uation, we used two models ——
ChatGPT-4o-mini and Gemini-2.0-
flash, to evaluate task quality accord-
ing to the descriptions of different met-
rics in the Task Generation Evaluation
Metric System. The result of model
evaluation shows that the final tasks
generated using different models in
our framework have similar quality
and all obtain a high score of more
than 7 out of 10. Meanwhile, these
scores from both models have a con-
sistent gradient of change and the phe-
nomenon is shown in Figure 7.

This result is basically the same as
the result of human evaluation, that
is, the quality of different tasks gen-
erated is similar and relatively high.
This demonstrates that PriGen, the
company employing framework sim-
ulation, possesses strong operational
capabilities, high usability, and proven authenticity.
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Dimension Metric Name Concise Meaning

Realism
Factuality

1. Does the generated task content accurately re-
flect the real company background and business
situation?
2. Is the key information in the task description
consistent with known facts?

Industry Relevance

1. Does the generated task align with the standard
operations and norms of the target industry or do-
main?
2. Does the task content match the business pro-
cesses of the relevant industry?

Detail Realism

1. Are the details in the task description specific
and reasonable?
2. Does it include practical timelines, budget esti-
mates, and assigned roles?

Logicality
Completeness

1. Does the task decomposition cover all necessary
aspects to achieve the original goal?
2. Does the sub-task list include all crucial infor-
mation and steps required for the overall objective,
without omissions?

Coherence

1. Is the logical order and structure between tasks
and sub-tasks reasonable and smooth?
2. Does the task list have clear relationships of
sequence and causality, avoiding abrupt shifts or
irrelevant content?

Non-Redundancy

1. Are there any duplicate, conflicting, or irrele-
vant sub-tasks in the task list?
2. Does the task avoid redundant steps or contra-
dictory requirements?

Actionability
Feasibility

1. Is the generated task plan practically imple-
mentable in reality?
2. Can each sub-task be completed by a specific
role or team within the given resource and time
constraints?

Actionability

1. Is the task presented in a clear, actionable for-
mat? Does it include specific action verbs, subjects,
and steps?
2. Does the task clearly state "who does what"?

Resource Clarity

1. Is the information regarding resource needs,
timelines, and deliverables sufficiently clear in the
task plan?
2. Does it explicitly mention required roles, budget
estimates, tools, or processes?

Table 9: Task Generation Evaluation Metric System

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.2 GENERATE TASKS WITH SINGLE AGENT

When modeling the company, we carefully construct the company background, which is shown in
Figure 8, to simulate the company situation in the real environment. In the background, we define
seven essensial parts: Company Overview, Company Mission & Values, Products & Services, Market
& Target Audience, Technology & Data Management, Operational Data & Internal Processes and
Team Culture & Growth Plans. These settings cover all the key information that companies care
about in the real world.

Figure 8: The background of the simulated company–PriGen.

In order to prove the strong ability of our framework to generate high-quality tasks, we carefully
construct prompt (Figure 9), which is used to guide different single agents to generate tasks as a
control. In the prompt, we provide exactly the same company background information and the fixed
format of tasks to help the agent generate the tasks.

H.3 KL-D

The Kullback-Leibler (KL) divergence, also known as relative entropy, is an asymmetric measure of
the difference between two discrete probability distributions, P and Q. It quantifies the information
lost when Q is used to approximate P . Mathematically, for discrete distributions, the KL divergence
is defined as:

DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)

It’s important to note that the KL divergence is generally not symmetric, meaning DKL(P ||Q) ̸=
DKL(Q||P ). Furthermore, if there exists an event i such that P (i) > 0 but Q(i) = 0, the KL
divergence becomes infinitely large. Because of these properties, the KL divergence is a crucial
concept in fields like machine learning and information theory for measuring the dissimilarity between
discrete probability distributions.

We employ the Kullback-Leibler (KL) divergence to quantitatively evaluate the discrepancy between
the distribution of generated task types and the ideal task type distribution. P presents the distribution
of generated task types by models while Q presents the ideal task type distribution. The tasks are

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: The prompt that we provided for single agents.

categorized into three distinct types: Technology & Product, Marketing & Customer and Organization
& Strategy. Based on empirical findings, the ideal task proportion vector Q is determined to be 4:4:2.

H.4 TASK DIVERSITY

Incorporating task diversity indicator during task quality evaluation can significantly improve the
comprehensiveness and reliability of the assessment outcomes. Evaluating the diversity of generated
tasks helps move beyond a one-dimensional perspective, enabling a more holistic assessment of the
task set’s applicability and completeness, and offering a more accurate reflection of its overall quality.

We quantify task diversity by measuring the semantic differences between task descriptions. Specifi-
cally, we use the "all-mpnet-base-v2" model to encode each task in one task set T into a semantic
vector t⃗i(0 < i ≤ |T |) , and calculate DIS:

DIS = 100× 2

|T |(|T | − 1)

∑
i<j

(1− cos(⃗ti, t⃗j))

as the indicator, where larger values indicate greater semantic dispersion and thus higher task diversity.

We observed that Single Model often generates repetitive tasks. To address the impact of this
phenomenon on diversity evaluation, we apply Algorithm 1 to aggregate overlapping tasks and adjust
the DIS based on the task group characteristics, such as the number of tasks in each group and the
total number of overlapping tasks.

H.5 CORE TASK EVALUATION

According to the company’s background, we set up a core-task list (Table 10) for priGen after a lot
of research and thinking. It consists of 7 tasks, 3 of which belong to the "Technology & Product"
category, 3 belong to the "Marketing & Customer" category, and 1 belongs to the "Organization &
Strategy" category. The ratio of task categories in the list is set to ensure that it is consistent with the
ideal distribution of task category distribution–4:4:2 (metioned in H.3).

We first filter non-repetitive tasks using a method similar to part of Algorithm 1. Notably, we observe
that the number of remaining tasks in the task set generated by the Single Agent is significantly
reduced after filtering. It indicates that there are a large number of duplicate tasks in the task set
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Algorithm 1 Calculate Task Diversity

Require: logs: List of log file paths
1: model← InitializeSentenceTransformer(’all-mpnet-base-v2’)
2: for all log ∈ logs do
3: tasks← get_tasks(log)
4: embeddings← model.encode(tasks)
5: count← length(tasks)
6: flags, losses← [0]× count, [ ]
7: diversity_sum← 0
8: for i = 0 to count− 2 do
9: for j = i+ 1 to count− 1 do

10: sim← cosine_similarity(embeddings[i], embeddings[j])
11: diversity_sum← diversity_sum+ (1− sim)
12: if (flags[i] = 1 ∧ flags[j] = 1) ∨ sim > 0.98 then continue
13: group_found← False
14: for all group ∈ losses do
15: if tasks[i] ∈ group ∨ tasks[j] ∈ group then
16: group.add(tasks[i])
17: group.add(tasks[j])
18: flags[i], f lags[j]← 1, 1
19: group_found← True
20: break
21: if not group_found then
22: losses.append({tasks[i], tasks[j]})
23: flags[i], f lags[j]← 1, 1

24: sum_len, loss_weight← 0, 0
25: for all group ∈ losses do
26: loss_weight← loss_weight+ len(group)

10
27: if len(group) ≥ 4 then
28: loss_weight← loss_weight+ 1

29: sum_len← sum_len+ len(group)
30: if sum_len

count > 0.1 then
31: loss_weight← loss_weight+

(
sum_len
count × 10

)
32: diversity ← 2×diversity_sum

count×(count−1)

33: for k = 1 to len(losses) do
34: diversity ← diversity × 0.99
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generated by the Single Agent, and the conclusion is also consistent with the determination result
of diversity. Next, both model-based and manual evaluations are used to determine whether a task
qualified as a core task. Finally, the number of core tasks is taken as the final output.

Task Content Category
Product Development and Launch. Technology & Product

Performance Monitoring and Analysis. Technology & Product
Customer Experience and Success. Technology & Product

Sales Strategy and Execution. Marketing & Customer
Marketing Campaign Optimization and Growth. Marketing & Customer

Financial Planning and Investment. Marketing & Customer
Strategic Partnership. Organization & Strategy

Table 10: The set of the core task list.

H.6 GENERATED TASK EXAMPLES

In this section, we show part of generated tasks from single agents (Figure 10) and TaskWeave
(Figure 11). It is observed that even within only the first five tasks, those generated by a single agent
are already repetitive. In contrast, TaskWeave not only effectively reduces such duplication, but also
organizes tasks in a structured and coherent manner, thereby better simulating a real-world workflow.

Figure 10: The generated tasks from single agents using ChatGPT-4o-mini.
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Figure 11: The generated tasks from TaskWeave using ChatGPT-4o-mini.
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I ITHC

I.1 INTERNAL TEXT HIERARCHICAL CLASSIFICATION (ITHC)

Given a natural language input, the goal is to assign it a fine-grained internal category from a
predefined three-level taxonomy and to generate a textual rationale for the prediction. Let T denote
the space of input texts (e.g., paragraphs or documents), and Y the hierarchical label space, andR
the space of natural language rationales that explain the assigned label.The task is to learn a function:

fITHC(T |Dgen) = (y, r) , T ∈ T , y ∈ Y, r ∈ R

Where each label y = (y(1), y(2), y(3)) corresponds to a structured taxonomy level: Category >
Subcategory > Fine-Grained Label. The explanation r describes why the label applies to the input.
The pair (y, r) is automatically derived from T using a rule-based extractor applied to synthetic data
Dgen.

I.2 CLASSIFICATION LABEL SYSTEM

To simulate enterprise dynamics in a realistic and controllable manner, it is crucial to ground agent
behaviors in structured organizational knowledge. We propose a three-level hierarchical taxonomy
Y = {(y(1), y(2), y(3))} tailored for internal enterprise documentation. This taxonomy serves as the
backbone for classifying documents, guiding agent planning, and aligning simulated workflows with
real-world business structures.

Unlike general-purpose classification schemas, enterprise environments demand fine-grained labels
that reflect actual operational divisions, team structures, and role-specific responsibilities. A single
document may inform decisions at multiple organizational levels—ranging from strategic planning
to task execution. Without a semantically grounded taxonomy, agentic systems struggle to perform
accurate routing, delegation, or progress tracking.

Moreover, internal documents often follow recurring patterns in scope and structure. For example,
a “User Engagement Report” typically belongs to the Customer & Marketing domain, under the
Customer Insights & Analytics subcategory, and conveys user interaction data that guides acquisition
or retention campaigns. A flat or ad-hoc labeling approach would obscure these functional signals
and impair model interpretability.

The taxonomy is organized into three levels:

• Category (y(1)): The top-level layer captures broad business areas such as Human Resources or
Operations, aligning with major departments or role clusters in a company.

• Subcategory (y(2)): The second level reflects domain-specific processes, e.g., Employee Develop-
ment & Training or Technology Research & Planning, which typically correspond to team-level
responsibilities or functional workflows.

• Fine-Grained Label (y(3)): The bottom layer contains task- or report-level identifiers (e.g.,
HR_TRAINING_FEEDBACK), serving as atomic units of enterprise knowledge.

This structure mirrors the actual information granularity observed in internal communications and
records. It supports flexible abstraction for both high-level planning and low-level execution. When
combined with large-scale language models, such structured label spaces enable hierarchical reason-
ing, plan decomposition, and goal tracking in long-horizon simulations.

The taxonomy provides multiple downstream benefits:

• Task Decomposition: Enables agents to decompose goals into role-appropriate subgoals by
leveraging label hierarchies.

• Trace Explainability: Enhances interpretability of agent decisions via label-aligned rationales.

• Cross-role Collaboration: Facilitates structured hand-offs between roles (e.g., from strategists to
operators) by ensuring semantic continuity in document types.
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• Data Generation and Evaluation: Supports automatic annotation and fine-grained evaluation in
synthetic or semi-supervised corpora via label-conditioned rules.

A full listing of all categories, subcategories, and fine-grained labels is shown in Table 11. This
taxonomy is not merely descriptive—it is designed as a functional schema to drive realistic simulations
of enterprise workflows, planning structures, and role-based decision-making.

Primary Category Secondary Category Tags (Tertiary Level)

Customer & Marketing
Campaigns & Promotions

MKT_CAMPAIGN_ANALYSIS
MKT_CAMPAIGN_PERFORMANCE
MKT_EVENT_OPERATION
MKT_PROMOTION_ANALYSIS

Customer Insights &
Analytics

CUST_ENGAGEMENT_REPORT
CUST_FEEDBACK_ANALYSIS
CUST_MARKET_ANALYSIS
MKT_DATA_REPORT

User Growth & Profiling
MKT_USER_ACQUISITION
MKT_USER_CONVERSION
MKT_USER_PROFILE

Content & Media Content Creation &
Publications CONTENT_BLOG_POST

Data & Technology
Management

Data Quality &
Infrastructure

DATA_COMPLETENESS_REPORT
DATA_QUALITY_ISSUE
OPS_SYSTEM_MONITORING

Technology Research &
Planning

OPS_NEW_TECH_RESEARCH
STRAT_TECH_INNOVATION_PLAN
STRAT_TECH_PARTNERSHIP_REPORT

Human Resources

Talent Acquisition &
Onboarding

HR_NEW_EMPLOYEE_REPORT
HR_RECRUITMENT_PLAN
HR_RECRUITMENT_RECORDS

Employee Development &
Training

HR_TRAINING_FEEDBACK
HR_TRAINING_PROGRAM
HR_TRAINING_RECORDS

Engagement & Compliance

HR_EMPLOYEE_ENGAGEMENT_REPORT
HR_EMPLOYEE_FEEDBACK
HR_COMPLIANCE_REPORT
HR_POLICY_DOCUMENT

Operations Task Execution &
Management

OPS_TASK_EXECUTION
TASK_EXECUTION_STATUS
TASK_EXECUTION_SUMMARY

Security & Compliance Risk & Policy Management

SEC_COMPLIANCE_AUDIT
SEC_DATA_PROTECTION_GUIDELINE
SEC_POLICY_DOCUMENT
SEC_INCIDENT_RESPONSE_PLAN

Strategy & Innovation
Strategic Execution &

Growth

STRAT_CROSS_DEPARTMENT_COLLAB
STRAT_IMPLEMENTATION_PLAN
STRAT_USER_EXPERIENCE_IMPROVEMENT
STRAT_USER_GROWTH_PLAN
STRAT_WEBINAR_IMPROVEMENT_STRATEGY

Market & User Strategy STRAT_MARKETING_STRATEGY
STRAT_USER_ENGAGEMENT_STRATEGY

User Experience &
Research

Behavior & Feedback
Analysis

UX_INTERACTION_ANALYSIS
UX_USER_BEHAVIOR
UX_USER_ENGAGEMENT
UX_USER_FEEDBACK_SUMMARY

User Testing & Research UX_USER_RESEARCH_REPORT
UX_USER_TESTING_REPORT

Table 11: Internal Text Hierarchical Classification Label System
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I.3 EVALUATING MODEL OUTPUTS WITH ITHC

To systematically evaluate the consistency and semantic richness of document labels generated
by different models, we propose a unified re-classification framework based on a three-stage self-
consistency filtering pipeline using GPT-4o-mini. The full set of prompts used in this process is
shown in Figure 12.

"""
## AGENT ROLE
You are the Data Protection Officer (DPO) at PriGen, a major telecom enterprise. You are 
responsible for classifying operational documents based on their content sensitivity, 
ensuring compliance with privacy, security, and regulatory standards.Your primary 
objective is to **analyze and categorize documents** into a **hierarchical classification 
system**, marking those that contain **privacy-sensitive, legally protected, or 
confidential business data**.The classification results are strictly in accordance with # # 
EXPECTED OUTPUT EXAMPLE

## CLASSIFICATION SYSTEM
The classification follows a multi-level structure, starting with broad categories and 
refining into more specific subcategories. Categories focus on **customer data, 
employee records, financial transactions, telecom network information, security reports, 
and legal compliance.**
{classificaction system}

## TASK INSTRUCTIONS
1. You will receive a document from telecom operations.
2. Analyze the document and classify it using the hierarchical classification system.
3. Assign the most specific applicable label(s) to the document.
4. If a document does not fit an existing label, propose a new label under the 
appropriate category.
5. Output the classification result in **LIST** format.
6. Avoid adding extra commentary or explanation outside the final classification output.
7. Strictly output in the format of ##EXPECTED OUTPUT EXAMPLE
8. Can output multiple results

## EXPECTED OUTPUT EXAMPLE
("Category > Subcategory > Label", "reason")
Where:
-'"reason"'is a **short explanation** why the spansensitive and why this entity applies

## DOCUMENT TO BE CLASSIFIED:
{file_content}
"""

"""
## AGENT ROLE
You are a Classification Review Agent at PriGen, a major telecom enterprise. Your 
responsibility is to **carefully review and validate existing classification labels** 
assigned to telecom operational documents. Your goal is to ensure that each label is 
**accurate, precise, and contextually appropriate**. You should only make changes to 
labels that are **clearly incorrect, inconsistent, or misleading**. If a label is reasonable, 
it should be retained to preserve labeling consistency. All changes must follow the 
established hierarchical classification system.

## TASK INSTRUCTIONS
1. You will receive a document and its initial classification result.
2. Review whether each label is **broadly reflective** of the document content.
3. For each original label:
- If the label is **clearly wrong, misleading, or not related at all** to the document, 
replace it with a more suitable one.
- If the label is **generally acceptable**, even if not perfect, **do not modify it**.
4. Be conservative in making changes. **Aim to minimize the number of revisions 
unless strongly justified.**
5. Maintain the existing label hierarchy and structure.
6. Output the revised classification result in **LIST** format.
7. Do not include any extra comments outside the required format.
8. Be mindful not to overfit or over-classify — favor clarity and generality over detail.

## EXPECTED OUTPUT EXAMPLE
("Category > Subcategory > Label", "reason")
Where:
- "reason" is a **brief explanation** of why the document content fits this label.

## DOCUMENT TO BE REVIEWED:
{file_content}

## ORIGINAL LABELS:
{original_labels}
"""

Figure 12: The prompt of ITHC

In the first stage, GPT-4o-mini is prompted to assign a top-level category based solely on the
original output from each base model. In the second stage, it performs a self-review by re-evaluating
the same input document, but this time with access to its own first-stage prediction and reasoning
process. In the third stage, it conducts another round of self-assessment, taking as input the output
from the second stage.

This progressively reflective setup ensures that later evaluations are not independent reruns, but
informed reassessments of previous reasoning. A label is considered stable and accepted only if it
remains unchanged across all three stages.

This approach enables consistent and comparable analysis of outputs across six mod-
els: GPT-4o-mini, Gemini-2.0-Flash, Deepseek-v3, Moonshot-v1-8K,
LLaMA3.1-70B, and GLM-4-Flash, regardless of the original document content.

As illustrated in Figure 13, the most frequent label across all models is Customer &
Marketing. However, the semantic coverage varies considerably. Gemini-2.0-Flash ex-
hibits the most balanced and comprehensive label distribution, covering all eight top-level cate-
gories—including low-frequency ones such as Content & Media and Data & Technology
Management—demonstrating superior contextual sensitivity and label expressiveness.

By contrast, models like Deepseek-v3 and GLM-4-Flash display a strong bias toward dominant
categories, indicative of mode-seeking tendencies. GPT-4o-mini and Moonshot-v1-8K achieve
broader coverage, though not to the extent of Gemini-2.0-Flash.

These results suggest that Gemini-2.0-Flash is particularly well-suited for classification tasks
requiring fine-grained label diversity and robust representation of long-tail categories.
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ChatGPT DeepseekGemini

Moonshot LLaMa3 GLM

Figure 13: ITHC outputs of six models

J MAS CHECKPOINT

This section provides an in-depth description of the MAS Checkpoint mechanism, which serves as
the backbone for task tracking and completion verification in our system. The methodology simulates
enterprise-grade planning and execution cycles, leveraging both language models and structured
sliding window logic to achieve robust evaluation.

J.1 TASK POOL CONSTRUCTION

For each evaluation week t, we define a unified task pool Tt composed of newly planned tasks and
previously uncompleted tasks from a retrospective window of w weeks:

Tt = Tt ∪
w⋃
i=1

T
(u)
t−i (8)

Where:

• Tt is the set of newly generated tasks for the current evaluation week t.

• T
(u)
t−i denotes the set of uncompleted tasks from week t− i.

• w is the length of the sliding window, empirically set to 4 to match common enterprise
monthly cycles.

J.2 LLM-BASED TASK DECOMPOSITION

To convert free-form planning text into structured task lists, we prompt a language model to act as a
task planning expert. The output is constrained to be a Python list of clearly defined, actionable items.
We avoid explicitly requesting a fixed number of tasks; instead, we guide the model through prompt
structure, examples, and abstraction control.
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Figure 14: Prompt used for Task Decomposition

Prompt Template for Task Decomposition

J.3 DUAL-MODEL TASK COMPLETION EVALUATION

Each task τ ∈ Tt is evaluated independently by two large language models: Gemini 2.5 Flash and GPT-
4o-mini. These models determine whether the task is considered Completed or Uncompleted
based on current documentation Ct.

fLLM(τ, Ct)→ {Completed,Uncompleted} (9)

Where fLLM is the evaluation function powered by either language model.τ is a single task to
evaluate.Ct represents the execution records of week t, including summaries and structured lists.

J.4 PROMPT TEMPLATE FOR COMPLETION EVALUATION

Figure 15: Prompt used for Completion Reasoning Evaluation

J.5 SLIDING WINDOW LIFECYCLE TRACKING

If a task remains uncompleted, it is carried into the next week’s evaluation pool, provided it falls
within the window constraint:
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τ ∈ T
(u)
t ⇒ τ ∈ Tt+1 iff t− created_week(τ) < w (10)

Where created_week(τ) denotes the week when task τ was originally created.

Figure 16: Monthly completion counts and rates within a 4-month window.

Figure 17: Monthly completion time distribution.

As shown in Figure 17, over 85% of tasks are completed within the same month, indicating the
effectiveness of our LLM-generated decomposition in producing tractable, scoped workloads.

Figure 16 further confirms that tasks not completed in the origin month are typically recovered in
subsequent months (within a 4-month window), supporting the robustness of our window-based
carry-over mechanism.

Finally, To validate the reliability of LLM judgments, 10% of evaluated tasks are randomly sampled
and reviewed manually. If the disagreement exceeds 10%, full re-evaluation is conducted. This
feedback loop also produces high-quality supervision data for potential model fine-tuning.

J.6 ABLATION STUDY AND COMPLETION RATE ANALYSIS

To evaluate the role of documentation Ct in supporting model judgment, we conduct an ablation
experiment. We define the original completion function as: ŷfull(τ) = fLLM(τ, Ct) Then we define
a reduced variant: ŷablated(τ) = fLLM(τ, C ′

t) with C ′
t ⊂ Ct The empirical drop in completion rate
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is computed as: ∆R = Rfull − Rablated ≈ 50% Where: ŷ is the predicted completion decision. R
denotes the proportion of tasks labeled Completed. C ′

t excludes critical context such as status
summaries or key execution lists. This significant drop in performance underscores the necessity of
comprehensive context and validates our system’s sensitivity to semantically grounded documentation.
It also serves as an implicit test for whether the model truly understands the evidence rather than
relying on shallow keyword features.

K OSSD

Using LLMs to annotate or verify LLM outputs has proven effective in prior work across instruction
generation (Wang et al., 2023), plan synthesis (Liu et al., 2024b), and trajectory validation (Gao
et al., 2025). Building on these insights, we extend this paradigm to privacy annotation in simulated
enterprise settings. We design a multi-stage structured prompting strategy for identifying and
validating privacy-sensitive text spans, termed OSSD (Organizational Sensitive Span Detection).
This mechanism simulates the role of a Data Protection Officer (DPO) and enables scalable, structured
supervision for downstream tasks OSSD.

Each annotation process consists of the following two stages:
Label Stage: Given a task, paragraph, or document, the system identifies privacy-relevant content.
For OSSD, this involves extracting sensitive spans and assigning privacy category labels with
accompanying textual explanations. For ITHC, the system predicts a hierarchical label and provides
a rationale for the classification.
Check Stage: A validation module re-evaluates the predicted label and explanation for consistency,
specificity, and semantic adequacy. This step mimics the human review process, correcting errors
such as generic reasoning or misclassified categories.

K.1 ANNOTATION PIPELINE OVERVIEW

The OSSD procedure consists of three stages: broad discovery, contextual refinement, and reasoning-
based validation. Stage 1: Broad Discovery The model is prompted to extract a wide range of
potentially sensitive spans. The prompt prioritizes recall and avoids committing to specific type
assignments. The prompt template is:

Figure 18: Prompt used in Stage 1: Broad Discovery

The model returns:
Bx = {(ei,“UNCERTAIN”)}ki=1 (11)

Where: ei is a candidate privacy-relevant span.

Stage 2: Contextual Refinement In this stage, the system is prompted to re-evaluate each span from
Stage 1 and assign a type ti ∈ T from a predefined taxonomy, with a natural language explanation ri.
The refined annotation set is:

Sx = {(ri, ei, ti)}ni=1 (12)
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Where: ei: the refined entity. ti: the specific privacy type from the taxonomy. ri: the reasoning for
labeling.

The prompt is:

Figure 19: Prompt used in Stage 2: Contextual Refinement

Stage 3: Reasoning-Based Validation This phase performs critical audit of Stage 2 outputs. The
goal is to revise or discard weak, vague, or inconsistent annotations. The final output is:

S ′x = Validate(Sx) (13)
The validation prompt asks the model to simulate logical DPO review:

Figure 20: Prompt used in Stage 3: Reasoning-Based Validation

K.2 PROMPT ENGINEERING AND STABILITY

To ensure robustness, we instantiate all stages with the same model (GPT-4o-mini), but vary the
temperature across stages to simulate cognitive diversity:

• Stage 1: Temperature T = 0.8 (encouraging exploration).
• Stage 2: Temperature T = 0.5 (balanced contextual judgment).
• Stage 3: Temperature T = 0.3 (focused logical validation).

This setup stabilizes the pipeline by introducing soft redundancy. We further evaluate consistency by
computing the Jaccard similarity:

Jaccard(Sx,S ′x) =
|Sx ∩ S ′x|
|Sx ∪ S ′x|

(14)

Where Sx: refined annotations from Stage 2 S ′x: validated annotations from Stage 3. A match is
defined on both (ei, ti) pairs.
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K.3 ROLE SIMULATION AS DPO

This three-stage structure mirrors real-world workflows of a Data Protection Officer. In actual
enterprise settings, the DPO first flags potentially sensitive content (analogous to Stage 1), then audits
those decisions for policy compliance and annotation quality (Stage 2), and finally performs logical
consistency checks (Stage 3).

By embedding explanatory rationales ri and enabling feedback-driven correction, the OSSD process
supports transparency and interpretability. With such two core principles in high-stakes governance
environments. Beyond this, our enterprise-level annotation setup demonstrates the model’s ability
to surface multiple categories of sensitive internal information, such as strategic plans, employee
identifiers, and operational intents. This capability not only verifies that OSSD effectively simulates
the real-world internal workflows of data protection within enterprises, but also confirms its potential
as a practical tool for constructing large-scale privacy datasets. These annotated internal spans serve
as high-quality supervision signals {(x, ri, ei, ti)}, which can be used to train models for downstream
privacy tasks and facilitate generalization of privacy reasoning across domains.

Figure 21: Label distribution in our system.

L GENERALZABILITY

L.1 FINANCIAL COMPANY

We evaluate TaskWeave by simulating the month-long operation of a representative financial company,
denoted as Fin. The organization is composed of 15 role-specialized agents distributed across 3
organizational tiers (Tier 1–3).

Tier 1. Chief Executive Officer

Tier 2. Chief Investment Officer, Chief Risk Officer, Chief Operations Officer

Tier 3. Equity Trader, Fixed Income Analyst, Portfolio Assistant, Credit Risk Analyst, Market Risk
Specialist, Internal Auditor, Settlement Officer, Compliance Associate, Fund Accountant,Relationship
Manager, Client Onboarding Specialist
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L.2 MANUFACTURING COMPANY

We evaluate TaskWeave by simulating the month-long operation of a representative automotive
manufacturing company, denoted as Manu. The organization is composed of more than 30 role-
specialized agents distributed across 4 organizational tiers (Tier 1–4).

Tier 1. Chief Executive Officer

Tier 2. Chief Product Officer, Chief Marketing Officer, Chief Operations Officer, Chief Technology
Officer

Tier 3. Production Manager, Quality Manager, Maintenance Manager, Logistics Manager, Digital
Systems Manager

Tier 4. Under Production Manager: CNC Operator, Tool Setter, Assembly Worker, Soldering
Technician, Robotics Technician

Under Quality Manager: Final Inspector, Visual Inspector, Compliance Auditor

Under Maintenance Manager: PLC Technician, Wiring Technician, Machine Repairman, Hy-
draulics Technician, Predictive Maintenance Engineer

Under Logistics Manager: Receiving Clerk, Forklift Operator, Shipping Coordinator, Boxing
Technician, Packaging Design Engineer

Under Digital Systems Manager: MES Analyst, Data Security Officer, AI Vision Specialist,
Traceability Systems Specialist

L.3 GOVERNMENT AGENCY (GOV)

We evaluate TaskWeave by simulating the month-long operation of a representative government
agency, denoted as Gov. The organization is composed of around 100 role-specialized agents
distributed across 5 organizational tiers (Tier 1–5).

Tier 1. Minister

Tier 2. Director of Strategic Planning, Director of Public Infrastructure, Director of Social Programs,
Director of Policy Analysis, Director of Inter-Agency Coordination

Tier 3. Chief of Strategic Planning, Chief of Infrastructure Development, Chief of Social Programs,
Chief Policy Analyst, Chief Administrative Officer

Tier 4. Under Chief of Strategic Planning: Senior Planning Manager, Urban Strategy Manager

Under Chief of Infrastructure Development: Infrastructure Project Manager, Public Health
Program Manager

Under Chief of Social Programs: Social Policy Manager, Sustainability & Environment Manager

Under Chief Policy Analyst: Policy Research Supervisor, Regional Coordination Manager

Under Chief Administrative Officer: HR & Admin Manager, Budget & Resource Allocation
Manager

Tier 5. Under Senior Planning Manager: Planning Officer, Municipal Data Analyst, Health
Policy Assistant, Citizen Complaint Registrar

Under Urban Strategy Manager: Administrative Clerk, Digital Records Clerk, Public Service
Trainee

Under Infrastructure Project Manager: Construction Analyst, Infrastructure Surveyor, Strategic
Affairs Associate
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Under Public Health Program Manager: Stakeholder Liaison, Legal Compliance Officer, Public
Opinion Analyst

Under Social Policy Manager: Welfare Program Officer, Community Outreach Assistant, Procure-
ment Assistant

Under Sustainability & Environment Manager: Citizen Engagement Officer, Smart City Systems
Technician, Site Inspector

Under Policy Research Supervisor: Field Research Associate, Education Policy Aide, Audit
Support Officer

Under Regional Coordination Manager: Regional Coordination Manager, Training Coordinator,
Statistical Reporting Assistant

Under HR & Admin Manager: HR Specialist, Transportation Planner, Scheduling & Logistics
Clerk

Under Budget & Resource Allocation Manager: Project Evaluation Assistant, E-Government
Support Officer, Facility Oversight Technician

M KEY TASKS GENERATED BY TASKWEAVE

To understand the structural importance of tasks within the company’s yearly operations, we analyze
the directed task dependency graph generated by the multi-agent simulation. In this graph, nodes
represent atomic business tasks and edges indicate task-level dependencies or references.

The in-degree of a task indicates how many other tasks rely on it. A higher in-degree implies broader
influence and strategic importance. We present the Table 12, reflecting their centrality in enabling or
being referenced by other activities.

Table 12: Top 20 Tasks by In-Degree in the Task Dependency Graph

Task Name In-Degree

Conduct_Keyword_Research_for_SEM_Campaign 103
Monitor_and_Analyze_Referral_Program_Performance 98
Analyze_Performance_of_Referral_Program_After_Launch 88
Optimize_Email_Marketing_Campaigns 75
Launch_PriGen_Referral_Rewards_Program 58
Create_Focus_Groups_for_UI_Improvement_Feedback 58
Enhance_Incentivized_Referral_Program 53
Launch_Incentivized_Referral_Program 52
Enhance_Social_Media_Advertising_Campaign 51
Refine_SEM_Targeting_Strategy 50
Revise_UI_Based_on_Focus_Group_Feedback 50
Formalize_Strategic_Partnership_Agreements 48
Monitor_and_Optimize_Digital_Marketing_Campaigns 45
Create_Distinct_SEM_Campaign_Structures 45
Design_Ad_Copy_for_SEM_Campaigns 42
Prepare_Co-Marketing_Materials_with_Strategic_Partners 36
Collect_and_Analyze_User_Feedback_on_New_Features 33
Enhance_the_Incentivized_Referral_Program 32
Refine_SEM_Targeting_Strategy_for_Improved_Lead_Generation 32

To complement the in-degree analysis, we now examine tasks with the highest out-degree, as
summarized in Table 13. Out-degree reflects how many downstream tasks each task depends on
or triggers. Tasks with high out-degree typically represent coordination hubs, campaign rollouts,
or integrative planning activities, indicating their central role in initiating or orchestrating complex
workflows.
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Table 13: Top 20 Tasks by Out-Degree in the Task Dependency Graph

Task Name Out-Degree

Review_and_Optimize_User_Engagement_Strategies_based_on_Feedback 59
Monitor_and_Optimize_Digital_Marketing_Campaigns 24
Engage_in_Social_Media_Campaign_Analysis 24
Optimize_Digital_Marketing_Campaigns_Based_on_Performance_Data 24
Conduct_Deep_Dive_Analysis_of_SEM_Performance_Metrics 22
Initiate_Keyword_Optimization_for_SEM_Campaigns 21
Revise_and_Enhance_the_Onboarding_Feedback_Mechanism 21
Enhance_User_Feedback_Mechanism_through_Incentives 20
Initiate_Content_Marketing_Strategy 19
Optimize_User_Feedback_Collection_Post-Onboarding 19
Implement_Feedback_Mechanisms_for_Onboarding_Reviews 18
Launch_Interactive_Social_Media_Campaigns 18
Monitor_and_Optimize_SEM_Campaign_Performance 17
Review_and_Finalize_A/B_Testing_Strategies_Across_Ad_Campaigns 17
Launch_Content_Marketing_Initiatives_with_Focused_Webinars 16
Implement_Lookalike_Audiences_for_Marketing_Campaigns 16
Conduct_A/B_Testing_for_SEM_Ad_Copies 16
Finalize_A/B_Testing_Adjustments_on_Ad_Copies 15
Implement_A/B_Testing_for_Ad_Copies 15
Execute_Targeted_Social_Media_Engagement_Campaigns 15

N INTERACTION WITH THE EXTERNAL ENVIRONMENT

Our work focuses on designing a more realistic and generalizable multi-agent system that simulates
enterprise operations.

External-environment modeling is important and complex: different enterprises face different envi-
ronments, the required granularity must be designed case by case, and different simulation needs lead
to different external-environment design requirements. This paper concentrates on high-quality and
generalizable modeling of the intra-enterprise scenario.

To verify that TaskWeave can effectively couple with external environments, we supplement one
experiment that demonstrates the framework’s bidirectional interaction capability:

• ENV→MAS: TaskWeave receives external information via external-event injection.

• MAS→ENV: Agents are configured with tools to act upon the environment.

N.1 EXTERNAL-EVENT INJECTION

To verify that external events can influence TaskWeave, we inject realistic, real-world-based incidents
and subsequently assess agent awareness through structured interviews; key words are extracted from
the newly generated planning documents to quantify the resulting strategic shift.

N.1.1 EXPERIMENTAL CONFIGURATION

The experiments are based on the CompanyA scenario, using 4o-mini as the backbone model. The
simulation spans one quarter, with events injected during the quarterly planning stage. We collected
70 events in total across the three domains of Policy, Economic, and Technology, of which 15 were
injected into the experiments. Several representative events are shown in Table 14.
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Table 14: Representative Injected Events

Title Catalog Real World Basis
Digital Resilience Certification
Mandate

Policy EU CRA political agreement reached 30 Nov
2023; certification bodies already booking audits
for 2025.

Regulatory Tightening Policy During the first week of PIPL in Aug 2021,
dozens of SaaS firms received urgent self-
inspection notices.

Cross-Border Data Ban Policy Cyber-Security Law 2017 forced Apple iCloud
China migration.

Macro Downturn Economic Q2 2022 China GDP printed 0.4%; multiple SaaS
earnings calls cited budget freezes.

Interest-Rate Spike Economic Fed’s first 25 bp hike in Mar 2022 triggered a
global SaaS de-rating.

CPI 8% Inflation Shock Economic U.S. Bureau of Labor Statistics, 10 Jun 2022.
WASM-First Web Frameworks
Reshape Client-Side Perfor-
mance Baselines

Technology Based on trends in Qwik, WASM adoption in
Figma-like editors, and Cloudflare Workers + UI
thread offload frameworks (2024–2025).

Zero-Day Cascade Technology Dec 2021 Log4j crisis required 48-hour global
patch cycle.

LLM-Driven Collaboration
Norm Shift

Technology Trend based on Mixtral, Claude 3, DBRX, and
OpenDevin integration patterns in 2024–2025.

N.1.2 EVENT IMPACT

Response Strategy We extract the key words in the plan as follows:

• Original: search engine marketing, tiered support system, user acquisition strategies,
predictive analytics, AI-driven features.

• Policy: lifecycle assessments, Corporate Sustainability Reporting Directive, Cross-Border
Data Ban, stakeholder engagement, resource allocation challenges, compliance documenta-
tion.

• Economic: zero-based budgeting, operational cash flow management, performance metrics,
user acquisition strategies, churn risk mitigation, consultative selling techniques.

• Technology: digital marketing initiatives, document loading optimization, AI feature devel-
opment, operational robustness, zero-trust architecture.

Agents also exhibit situational awareness (affirmative interviews) and generate corresponding strategic
responses, indicating that TaskWeave supports adaptive, context-aware planning in response to
external dynamics

In conclusion, TaskWeave demonstrates sensitivity to external environmental factors.

N.2 TOOL INVOCATION

In TaskWeave, every agent can be initialized with a set of tools, interact with real-world products and
operate with the local operating system. These tools enhance the MAS’s ability to interact with the
external environment, enabling the system to exert real-world effects and yielding more authentic task
outcomes. To demonstrate that TaskWeave can indeed engage with the outside world, we conducted
the following supplementary experiment.

N.2.1 EXPERIMENT CONFIGURATION

The experiment adopts the CompanyA architecture; we equip selected agents with 63 tools spanning
three categories (SQL, Social-Media, and Office) and run 30 distinct tasks. The detailed tool
assignment for each agent is listed in Table 15.
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Table 15: Agent–Tool Assignment in CompanyA (✓= equipped)

Agent SQLite MotherDuck Word Excel Email Twitter

Backend Engineer ✓ ✓
Data Analyst ✓ ✓
Product Manager ✓ ✓ ✓
Marketing Specialist ✓ ✓ ✓
Customer Success Manager ✓ ✓ ✓
DevOps Engineer ✓ ✓
HR Manager ✓ ✓
Technical Support Engineer
UI/UX Designer
Frontend Engineer
QA Engineer

N.2.2 TOOLS IMPACT

Impact by Tool Category

SQL When data-analysis agents invoked SQL tools, they retrieved critical information from the
database. The database acted as a centralised shared memory for the MAS, enhancing col-
laborative decision-making. During the experiment, 33 SELECT queries and 8 additional
SQL operations were executed.

Social-Media When agents responsible for market promotion triggered social-media tools, they
proactively posted tweets and sent e-mails to partners. Company-wide announcements were
also distributed via e-mail, reproducing internal communication workflows. Throughout the
experiment, the MAS published 8 promotional tweets and sent 46 e-mails.

Figure 22: Example tweet sent by an agent via the social-media tool.

Figure 23: Example email sent by an agent via the social-media tool.
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Office When an agent activated office-suite tools, it generated Word and Excel reports. These
auditable documents persist in the external environment, providing the MAS with reusable
data assets. During the experiment, the MAS produced 51 office documents.

Figure 24: Example excel created by an agent via the office tool.

In summary, agents in TaskWeave can influence the external environment through tool usage.
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