
Published as a conference paper at ICLR 2021

REGULARIZATION MATTERS IN POLICY
OPTIMIZATION - AN EMPIRICAL STUDY ON
CONTINUOUS CONTROL

Zhuang Liu1∗, Xuanlin Li1∗, Bingyi Kang2, Trevor Darrell1
1University of California, Berkeley 2National University of Singapore

ABSTRACT

Deep Reinforcement Learning (Deep RL) has been receiving increasingly more
attention thanks to its encouraging performance on a variety of control tasks.
Yet, conventional regularization techniques in training neural networks (e.g., L2

regularization, dropout) have been largely ignored in RL methods, possibly because
agents are typically trained and evaluated in the same environment, and because
the deep RL community focuses more on high-level algorithm designs. In this
work, we present the first comprehensive study of regularization techniques with
multiple policy optimization algorithms on continuous control tasks. Interestingly,
we find conventional regularization techniques on the policy networks can often
bring large improvement, especially on harder tasks. We also compare these
techniques with the more widely used entropy regularization. Our findings are
shown to be robust against training hyperparameter variations. In addition, we study
regularizing different components and find that only regularizing the policy network
is typically the best. Finally, we discuss and analyze why regularization may help
generalization in RL from four perspectives - sample complexity, return distribution,
weight norm, and noise robustness. We hope our study provides guidance for future
practices in regularizing policy optimization algorithms. Our code is available at
https://github.com/xuanlinli17/iclr2021_rlreg.

1 INTRODUCTION

The use of regularization methods to prevent overfitting is a key technique in successfully training
neural networks. Perhaps the most widely recognized regularization methods in deep learning are L2

regularization (also known as weight decay) and dropout (Srivastava et al., 2014). These techniques
are standard practices in supervised learning tasks across many domains. Major tasks in computer
vision, e.g., image classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Ren et al.,
2015; Redmon et al., 2016), use L2 regularization as a default option. In natural language processing,
for example, the Transformer (Vaswani et al., 2017) uses dropout, and the popular BERT model
(Devlin et al., 2018) uses L2 regularization. In fact, it is rare to see state-of-the-art neural models
trained without regularization in a supervised setting.

However, in deep reinforcement learning (deep RL), those conventional regularization methods are
largely absent or underutilized in past research, possibly because in most cases we are maximizing
the return on the same task as in training. In other words, there is no generalization gap from the
training environment to the test environment (Cobbe et al., 2018). Heretofore, researchers in deep
RL have focused on high-level algorithm design and largely overlooked issues related to network
training, including regularization. For popular policy optimization algorithms like Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015), Proximal Policy Optimization (PPO) (Schulman et al.,
2017), and Soft Actor Critic (SAC) (Haarnoja et al., 2018), conventional regularization methods
were not considered. In popular codebases such as the OpenAI Baseline (Dhariwal et al., 2017), L2

regularization and dropout were not incorporated. Instead, a commonly used regularization in RL
is the entropy regularization which penalizes the high-certainty output from the policy network to
encourage more exploration and prevent the agent from overfitting to certain actions. The entropy

∗Equal contribution

1

https://github.com/xuanlinli17/iclr2021_rlreg

Published as a conference paper at ICLR 2021

regularization was first introduced by (Williams & Peng, 1991) and now used by many contemporary
algorithms (Mnih et al., 2016; Schulman et al., 2017; Teh et al., 2017; Farebrother et al., 2018).

In this work, we take an empirical approach to assess the conventional paradigm which omits
common regularization when learning deep RL models. We study agent performance on current
task (the environment which the agent is trained on), rather than its generalization ability to different
environments as in many recent works (Zhao et al., 2019; Farebrother et al., 2018; Cobbe et al., 2018).
We specifically focus our study on policy optimization methods, which are becoming increasingly
popular and have achieved top performance on various tasks. We evaluate four popular policy
optimization algorithms, namely SAC, PPO, TRPO, and the synchronous version of Advantage Actor
Critic (A2C), on multiple continuous control tasks. Various conventional regularization techniques
are considered, including L2/L1 weight regularization, dropout, weight clipping (Arjovsky et al.,
2017) and Batch Normalization (BN) (Ioffe & Szegedy, 2015). We compare the performance of these
regularization techniques to that without regularization, as well as the entropy regularization.

Surprisingly, even though the training and testing environments are the same, we find that many of
the conventional regularization techniques, when imposed to the policy networks, can still bring up
the performance, sometimes significantly. Among those regularizers, L2 regularization tends to be
the most effective overall. L1 regularization and weight clipping can boost performance in many
cases. Dropout and Batch Normalization tend to bring improvements only on off-policy algorithms.
Additionally, all regularization methods tend to be more effective on more difficult tasks. We also
verify our findings with a wide range of training hyperparameters and network sizes, and the result
suggests that imposing proper regularization can sometimes save the effort of tuning other training
hyperparameters. We further study which part of the policy optimization system should be regularized,
and conclude that generally only regularizing the policy network suffices, as imposing regularization
on value networks usually does not help. Finally we discuss and analyze possible reasons for some
experimental observations. Our main contributions can be summarized as follows:

• To our best knowledge, we provide the first systematic study of common regularization methods in
policy optimization, which have been largely ignored in the deep RL literature.

• We find conventional regularizers can be effective on continuous control tasks (especially on harder
ones) with statistical significance, under randomly sampled training hyperparameters. Interestingly,
simple regularizers (L2, L1, weight clipping) could perform better than entropy regularization,
with L2 generally the best. BN and dropout can only help in off-policy algorithms.

• We study which part of the network(s) should be regularized. The key lesson is to regularize the
policy network but not the value network.

• We analyze why regularization may help generalization in RL through sample complexity, return
distribution, weight norm, and training noise robustness.

2 RELATED WORKS

Regularization in Deep RL. There have been many prior works studying the theory of regularization
in policy optimization (Farahmand et al., 2009; Neu et al., 2017; Zhang et al., 2020). In practice,
conventional regularization methods have rarely been applied in deep RL. One rare case of such use
is in Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016), where Batch Normalization
is applied to all layers of the actor and some layers of the critic, and L2 regularization is applied
to the critic. Some recent studies have developed more complicated regularization approaches to
continuous control tasks. Cheng et al. (2019) regularizes the stochastic action distribution π(a|s)
using a control prior and dynamically adjusts regularization weight based on the temporal difference
(TD) error. Parisi et al. (2019) uses TD error regularization to penalize inaccurate value estimation
and Generalized Advantage Estimation (GAE) (Schulman et al., 2016) regularization to penalize
GAE variance. However, most of these regularizations are rather complicated (Cheng et al., 2019) or
catered to certain algorithms (Parisi et al., 2019). Also, these techniques consider regularizing the
output of the network, while conventional methods mostly directly regularize the parameters. In this
work, we focus on studying these simpler but under-utilized regularization methods.

Generalization in Deep RL typically refers to how the model perform in a different environment
from the one it is trained on. The generalization gap can come from different modes/levels/difficulties
of a game (Farebrother et al., 2018), simulation vs. real world (Tobin et al., 2017), parameter
variations (Pattanaik et al., 2018), or different random seeds in environment generation (Zhang et al.,

2

Published as a conference paper at ICLR 2021

2018b). There are a number of methods designed to address this issue, e.g., through training the agent
over multiple domains/tasks (Tobin et al., 2017; Rajeswaran et al., 2017), adversarial training (Tobin
et al., 2017), designing model architectures (Srouji et al., 2018), adaptive training (Duan et al., 2016),
etc. Meta RL (Finn et al., 2017; Gupta et al., 2018; Al-Shedivat et al., 2017) try to learn generalizable
agents by training on many environments drawn from the same family/distribution. There are also
some comprehensive studies on RL generalization with interesting findings (Zhang et al., 2018a;b;
Zhao et al., 2019; Packer et al., 2018), e.g., algorithms performing better in training environment
could perform worse with domain shift (Zhao et al., 2019).

Recently, several studies have investigated conventional regularization’s effect on generalization
across tasks. (Farebrother et al., 2018) shows that in Deep Q-Networks (DQN), L2 regularization
and dropout are sometime beneficial when evaluated on the same Atari game with mode variations.
(Cobbe et al., 2018) shows that L2 regularization, dropout, BN, and data augmentation can improve
generalization performance, but to a less extent than entropy regularization and ε-greedy exploration.
Different from those studies, we focus on regularization’s effect in the same environment, yet on
which conventional regularizations are under-explored.

3 EXPERIMENTS

3.1 SETTINGS

Regularization Methods. We study six regularization methods, namely, L2 and L1 weight regular-
ization, weight clipping, Dropout (Srivastava et al., 2014), Batch Normalization (Ioffe & Szegedy,
2015), and entropy regularization. See Appendix A for detailed introduction. Note that we consider
entropy as a separate regularization method because it encourages exploration and helps to prevent
premature convergence (Mnih et al., 2016). In Appendix N, we show that in the presence of certain
regularizers, adding entropy on top does not lead to significant performance difference.

Algorithms. We evaluate regularization methods on four popular policy optimization algorithms,
namely, A2C (Mnih et al., 2016), TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017), and
SAC (Haarnoja et al., 2018). The first three algorithms are on-policy while the last one is off-policy.
For the first three algorithms, we adopt the code from OpenAI Baseline (Dhariwal et al., 2017), and
for SAC, we use the official implementation at (Haarnoja, 2018).

Tasks. The algorithms with different regularizers are tested on nine continuous control tasks: Hopper,
Walker, HalfCheetah, Ant, Humanoid, and HumanoidStandup from MuJoCo (Todorov et al., 2012);
Humanoid, AtlasForwardWalk, and HumanoidFlagrun from RoboSchool (OpenAI). Among the
MuJoCo tasks, agents for Hopper, Walker, and HalfCheetah are easier to learn, while Ant, Humanoid,
HumanoidStandup are relatively harder (larger state-action space, more training examples). The
three Roboschool tasks are even harder than the MuJoCo tasks as they require more timesteps to
converge (Klimov & Schulman, 2017). To better understand how different regularization methods
work on different difficulties, we roughly categorize the first three environments as “easy” tasks and
the last six as “hard” tasks. Besides continuous control, we provide results on randomly sampled
Atari environments (Bellemare et al., 2012) in Appendix S, which have discrete action space and
different reward properties. Our observations are mostly similar to those on continuous control tasks.

Training. On MuJoCo tasks, we keep all hyperparameters unchanged as in the codebase adopted.
Since hyperparameters for the RoboSchool tasks are not included, we briefly tune the hyperparameters
for each algorithm before we apply regularization (details in Appendix D). For details on regulariza-
tion strength tuning, please see Appendix C. The results shown in this section are obtained by only
regularizing the policy network, and a further study on this will be presented in Section 5. We run
each experiment independently with five seeds, then use the average return over the last 100 episodes
as the final result. Each regularization method is evaluated independently, with other regularizers
turned off. We refer to the result without any regularization as the baseline. For BN and dropout,
we use its training mode in updating the network, and test mode in sampling trajectories. During
training, negligible computation overhead is induced when a regularizer is applied. Specifically,
the increase in training time for BN is ∼ 10%, dropout ∼ 5%, while L2, L1, weight clipping, and
entropy regularization are all < 1%. We used up to 16 NVIDIA Titan Xp GPUs and 96 Intel Xeon
E5-2667 CPUs, and all experiments take roughly 57 days with resources fully utilized.

3

Published as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
1e7

0

1

2

3

1e3 A2C Humanoid
0.0 0.5 1.0 1.5 2.0

1e7

0

1

2

3 1e3 A2C Ant

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

1

2

3
1e3 A2C AtlasForwardWalk

0.0 0.5 1.0 1.5 2.0
1e7

0

2

4

1e3 TRPO Humanoid
0.0 0.5 1.0 1.5 2.0

1e7

0

2

4

1e3 TRPO Ant

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0

1

2

1e3 TRPO AtlasForwardWalk
0.0 0.5 1.0 1.5 2.0

1e7

0

2

4

6

1e3 PPO Humanoid
0.0 0.5 1.0 1.5 2.0

1e7

0

2

4

6
1e3 PPO Ant

0 1 2 3 4 5
1e7

0

1

2

1e3 PPO AtlasForwardWalk
0 1 2 3 4 5

1e6

5

6

7

1e3 SAC Humanoid
0 1 2 3

1e6

3

4

5

6

1e3 SAC Ant

0.0 0.2 0.4 0.6 0.8 1.0
1e7

1.0

1.5

2.0

2.5
1e3 SAC AtlasForwardWalk

0 1 2 3 4 5
1e7

0.0

0.5

1.0

1.5

2.0

2.5 1e3 A2C RoboschoolHumanoid

0 1 2 3 4 5
1e7

0

1

2

1e3 TRPO RoboschoolHumanoid

0 1 2 3 4 5
1e7

0

1

2

3 1e3 PPO RoboschoolHumanoid

0.0 0.2 0.4 0.6 0.8 1.0
1e7

1.5

2.0

2.5
1e3 SAC RoboschoolHumanoid

baseline entropy L2 L1 weight clip dropout batchnorm

Figure 1: Return vs. timesteps, for four algorithms (columns) and four environments (rows).

Additional Notes. 1. Note that entropy regularization is still applicable for SAC, despite it already
incorporates the maximization of entropy in the reward. In our experiments, we add the entropy
regularization term to the policy loss function in equation (12) of (Haarnoja et al., 2018). 2. In our
experiments, L2 regularization loss is added to the training loss, which is then optimized using Adam
(Kingma & Ba, 2015). (Loshchilov & Hutter, 2019) observes that L2 regularization interacts poorly
with Adam and proposes AdamW to decouple weight decay from the optimization steps. However,
in policy optimization algorithms, we find that the performance of AdamW with decoupled weight
decay is slightly worse than the performance of Adam with L2 loss directly added. Comparisons are
shown in Appendix O. 3. Policy network dropout is not applicable to TRPO because during policy
updates, different neurons in the old and new policy networks are dropped out, causing different
shifts in the old and new action distributions given the same state, which violates the trust region
constraint. In this case, the algorithm fails to perform any update from network initialization.

3.2 RESULTS

Training curves. We plot the training curves from four environments (rows) in Figure 1, on four
algorithms (columns). Figures for the rest five environments are deferred to Appendix P. In the
figure, different colors are used to denote different regularization methods, e.g., black is the baseline
method. Shades are used to denote ±1 standard deviation range. Notably, these conventional
regularizers can frequently boost the performance across different tasks and algorithms, demonstrating
that a study on the regularization in deep RL is highly demanding. We observe that BN always
significantly hurts the baseline for on-policy algorithms. The reason will be discussed later. For the
off-policy SAC algorithm, dropout and BN sometimes bring large improvement on hard tasks like
AtlasForwardWalk and RoboschoolHumanoid. Interestingly, in some cases where the baseline (with
the default hyperparameters in the codebase) does not converge to a reasonable solution, e.g., A2C
Ant, PPO Humanoid, imposing some regularization can make the training converge to a high level.

How often do regularizations help? To quantitatively measure the effectiveness of the regulariza-
tions on each algorithm across different tasks, we define the condition when a regularization is
said to “improve” upon the baseline in a certain environment. Denote the baseline mean return over
five seeds on an environment as µenv,b, and the mean and standard deviation of the return obtained
with a certain regularization method over five seeds as µenv,r and σenv,r. We say the performance
is “improved” by the regularization if µenv,r − σenv,r > max(µenv,b, T (env)), where T (env) is the

4

Published as a conference paper at ICLR 2021

minimum return threshold of an environment. The threshold serves to ensure the return is at least in a
reasonable level. We set the threshold to be 105 for HumanoidStandup and 103 for all other tasks.

Table 1: Percentage (%) of environments where the final performance “improves” with regularization, by our
definition in Section 3.2.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 33.3 100.0 77.8 0.0 50.0 33.3 0.0 33.3 22.2 33.3 50.0 44.4 16.7 58.3 44.4
L2 0.0 50.0 33.3 0.0 66.7 44.4 33.3 83.3 66.7 66.7 66.7 66.7 25.0 66.7 52.8
L1 0.0 50.0 33.3 0.0 66.7 44.4 33.3 66.7 55.6 33.3 50.0 44.4 16.7 58.3 44.4

Weight Clip 0.0 16.7 11.1 33.3 33.3 33.3 33.3 66.7 55.6 33.3 16.7 22.2 25.0 33.3 30.6
Dropout 0.0 0.0 0.0 N/A N/A N/A 33.3 50.0 44.4 66.7 50.0 55.6 33.3 33.3 33.3

BatchNorm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 11.1 33.3 50.0 44.4 8.3 16.7 13.9

The results are shown in Table 1. Perhaps the most significant observation is that L2 regularization
is the most often to improve upon the baseline. A2C algorithm is an exception, where entropy
regularization is the most effective. L1 regularization behaves similar to L2 regularization, but is
outperformed by the latter. Weight clipping’s usefulness is highly dependent on the algorithms and
environments. Despite in total it only helps at 30.6% times, it can sometimes outperform entropy
regularization by a large margin, e.g., in TRPO Humanoid and PPO Humanoid as shown in Figure
1. BN is not useful at all in the three on-policy algorithms (A2C, TRPO, and PPO). Dropout is not
useful in A2C at all, and sometimes helps in PPO. However, BN and dropout can be useful in SAC.
All regularization methods generally improve more often when they are used on harder tasks, perhaps
because for easier ones the baseline is often sufficiently strong to reach a high performance.

Note that under our definition, not “improving” does not indicate “hurting”. If we define “hurting” as
µenv,r+σenv,r < µenv,b (the return minimum threshold is not considered here), then total percentage of
hurting is 0.0% for L2, 2.8% for L1, 5.6% for weight clipping, 44.4% for dropout, 66.7% for BN, and
0.0% for entropy. In other words, under our parameter tuning range, L2 and entropy regularization
never hurt with appropriate strengths. For BN and dropout, we also note that almost all hurting cases
are in on-policy algorithms, except one case for BN in SAC. In sum, all regularizations in our study
very rarely hurt the performance except for BN/dropout in on-policy methods.

How much do regularizations improve? For each algorithm and environment (for example, PPO
on Ant), we calculate a z-score for each regularization method and the baseline, by treating results
produced by all regularizations (including baseline) and all five seeds together as a population, and
calculate each method’s average z-scores from its five final results (positively clipped). z-score is
also known as “standard score”, the signed fractional number of standard deviations by which the
value of a data point is above the mean value. For each algorithm and environment, a regularizer’s
z-score roughly measures its relative performance among others. The z-scores are then averaged
over environments of a certain difficulty (easy/hard), and the results are shown in Table 2. In terms
of the average improved margin, we can draw mostly similar observations as the improvement
frequency (Table 1): L2 tops the average z-score most often, and by large margin in total; entropy
regularization is best used with A2C; Dropout and BN are only useful in the off-policy SAC algorithm;
the improvement over baseline is larger on hard tasks. Notably, for all algorithms, any regularization
on average outperforms the baseline on hard tasks, except dropout and BN in on-policy algorithms.
On hard tasks, L1 and weight clipping also perform higher than entropy in total, besides L2. To

Table 2: Average z-scores. Note that a negative z-score does not necessarily mean the method hurts, because it
could be higher than the baseline. The scores within 0.01 range from the highest are in bold.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 0.30 -0.17 -0.02 0.28 0.10 0.16 0.24 -0.54 -0.28 -0.22 -0.47 -0.39 0.15 -0.27 -0.13
Entropy 1.14 1.01 1.06 0.16 0.30 0.26 0.43 -0.25 -0.02 0.32 -0.16 0.00 0.51 0.23 0.32
L2 0.53 0.93 0.80 0.51 0.39 0.43 0.30 0.76 0.61 0.36 0.25 0.28 0.43 0.58 0.53
L1 0.15 0.43 0.34 0.31 0.57 0.48 0.27 0.76 0.60 0.19 -0.17 -0.05 0.23 0.40 0.34

Weight Clip 0.22 0.24 0.24 0.28 0.49 0.42 0.34 0.63 0.53 -0.36 -0.09 -0.18 0.12 0.32 0.25
Dropout -1.16 -1.18 -1.17 N/A N/A N/A -0.12 -0.47 -0.35 0.35 0.49 0.44 -0.31 -0.39 -0.36

BatchNorm -1.19 -1.26 -1.24 -1.54 -1.85 -1.75 -1.47 -0.89 -1.08 -0.64 0.17 -0.10 -1.21 -0.96 -1.04

5

Published as a conference paper at ICLR 2021

further verify our observations, we present z-scores for MuJoCo environments in Appendix G where
we increase the number of seeds from 5 to 10. Our observations are consistent with those in Table 2.

Besides the improvement percentage (Table 1) and the z-score (Table 2), we provide more metrics of
comparison (e.g., average ranking, min-max scaled return) to comprehensively compare the different
regularization methods. We also conduct statistical significance tests on these metrics, and the
improvement are mostly statistically significant (p <0.05). We believe evaluating under a variety
of metrics make our conclusions more reliable. Detailed results are in Appendix F, I, and J. In
addition, we provide detailed justification in Appendix K that, because we test on the entire set
of environments instead of on a single environment, our sample size is large enough to satisfy the
condition of significance tests and provide reliable results.

4 ROBUSTNESS WITH HYPERPARAMETER CHANGES

In the previous section, the experiments are conducted mostly with the default hyperparameters in
the codebase we adopt, which are not necessarily optimized. For example, PPO Humanoid baseline
performs poorly using default hyperparameters, not converging to a reasonable solution. Meanwhile,
it is known that RL algorithms are very sensitive to hyperparameter changes (Henderson et al.,
2018). Thus, our findings can be vulnerable to such variations. To further confirm our findings,
we evaluate the regularizations under a variety of hyperparameter settings. For each algorithm, we
sample five hyperparameter settings for the baseline and apply regularization on each of them. Due to
the heavy computation cost, we only evaluate on five environments: Hopper, Walker, Ant, Humanoid,
HumanoidStandup. Under our sampled hyperparameters, poor baselines are mostly significantly
improved. See Appendix E/ Q for details on sampling and curves. The z-scores are shown in Table 3.
We note that our main findings in Section 3 still hold. Interestingly, compared to the previous section,
L2, L1, and weight clipping all tend to be better than entropy regularization by larger margins. For
the p-scores of statistical significance/improvement percentages, see Appendix F/H.

Table 3: The average z-score for each regularization method, under five sampled hyperparameter settings.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 0.49 -0.05 0.17 0.15 0.14 0.14 0.34 -0.27 -0.03 -0.01 -0.25 -0.15 0.24 -0.11 0.03
Entropy 0.42 0.52 0.48 0.19 0.26 0.24 0.14 -0.14 -0.03 0.21 -0.12 0.01 0.24 0.13 0.17
L2 0.08 0.82 0.52 0.36 0.48 0.43 0.52 0.86 0.72 0.02 0.27 0.17 0.24 0.61 0.46
L1 0.53 0.71 0.64 0.24 0.51 0.41 0.44 0.77 0.64 0.12 0.07 0.09 0.33 0.51 0.44

Weight Clip 0.45 0.50 0.48 0.49 0.41 0.44 0.23 0.52 0.40 -0.50 -0.00 -0.20 0.17 0.36 0.28
Dropout -0.24 -1.07 -0.74 N/A N/A N/A -0.92 -0.83 -0.87 0.01 -0.10 -0.06 -0.38 -0.67 -0.55

BatchNorm -1.74 -1.42 -1.54 -1.43 -1.81 -1.66 -0.75 -0.91 -0.85 0.16 0.14 0.15 -0.94 -1.00 -0.98

To better visualize the robustness against change of hyperparameters, we show the result when a
single hyperparameter is varied in Figure 2. We note that the certain regularizations can consistently
improve the baseline with different hyperparameters. In these cases, proper regularizations can
ease the hyperparameter tuning process, as they bring up performance of baselines with suboptimal
hyperparameters to be higher than that with better ones.

5 POLICY AND VALUE NETWORK REGULARIZATION

Table 4: Percentage (%) of environments where performance “improves” when regularized on policy / value /
policy and value networks.

Reg\Alg A2C TRPO PPO SAC TOTAL
Pol Val P+V Pol Val P+V Pol Val P+V Pol Val P+V Pol Val P+V

L2 50.0 0.0 16.7 50.0 16.7 33.3 66.7 16.7 66.7 66.7 33.3 33.3 58.3 16.7 37.5
L1 50.0 16.7 50.0 33.3 0.0 33.3 66.7 0.0 50.0 33.3 33.3 33.3 45.8 12.5 41.7

Weight Clip 16.7 0.0 16.7 50.0 33.3 16.7 66.7 0.0 66.7 33.3 16.7 16.7 41.7 8.3 29.2
Dropout 0.0 16.7 0.0 N/A 33.3 N/A 66.7 33.3 50.0 50.0 0.0 0.0 38.9 20.8 16.7

BatchNorm 16.7 16.7 16.7 0.0 16.7 0.0 16.7 0.0 50.0 33.3 16.7 0.0 16.7 12.5 16.7

Our experiments so far only impose regularization on policy network. To investigate the relationship
between policy and value network regularization, we compare four options: 1) no regularization, and
regularizing 2) policy network, 3) value network, 4) policy and value networks. For 2) and 3) we tune

6

Published as a conference paper at ICLR 2021

1024 2048 4096 8192 16384 32768 65536
Rollout Timesteps

3

4

5

6

7 1e3 TRPO Humanoid

1024 2048 4096 8192 16384 32768 65536
Rollout Timesteps

0

2

4

6

8

1e3 PPO Humanoid

5e-05 0.0001 0.0003 0.0005 0.001
Learning Rate

4.0

4.5

5.0

5.5

6.0

6.5

1e3 SAC Ant

5e-05 0.0001 0.0003 0.0005 0.001
Learning Rate

0

1

2

3

4

5
1e3 PPO Walker

16 32 64 128 256 512
MLP width

2

3

4

5

1e3 TRPO Humanoid

2 3 4 5
MLP depth

2.5

3.0

3.5

4.0

4.5

5.0

1e3 TRPO Humanoid

16 32 64 128 256 512
MLP width

1.0

1.5

2.0

2.5

3.0

1e5 PPO HumanoidStandup

2 3 4 5
MLP depth

1.5

2.0

2.5

1e5 PPO HumanoidStandup

baseline entropy L2 L1 weight clip dropout batch norm

Figure 2: Final return vs. single hyperparameter change. "Rollout Timesteps" refers to the number of state-action
samples used for training between policy updates.

the regularization strengths independently and then use the appropriate ones for 4) (more details in
Appendix C). We evaluate all four algorithms on the six MuJoCo tasks and present the improvement
percentage in Table 4. Note that entropy regularization is not applicable to the value network. We
observe that generally, only regularizing the policy network is the most often to improve almost all
algorithms and regularizations. Regularizing the value network alone does not bring improvement as
often as other options. Though regularizing both is better than regularizing value network alone, it is
worse than only regularizing the policy network. For detailed training curves, refer to Appendix R.

We also note that the policy optimization algorithms in our study have adopted multiple techniques to
train the value function. For example, SAC uses the replay buffer and the clipped double-Q learning.
A2C, TRPO, and PPO adopt multi-step roll-out, and the sum of discounted rewards is used as the
value network objective. However, analyzing the individual effects of these techniques is not the
main focus of our current work. We would like to leave the interaction between these techniques and
value network regularization for future work.

6 ANALYSIS AND CONCLUSION

Why does regularization benefit policy optimization? In RL, when we are training and evaluating
on the same environment, there is no generalization gap across different environments. However,
there is still generalization between samples: the agents is only trained on the limited trajectories it
has experienced, which cannot cover the whole state-action space of the environment. A successful
policy needs to generalize from seen samples to unseen ones, which potentially makes regularization
necessary. This might also explain why regularization could be more helpful on harder tasks, which
have larger state space, and the portion of the space that have appeared in training tends to be smaller.
We study how regularization helps generalization through the following perspectives:

Sampling Complexity. We compare the return with varying number of training samples/timesteps,
since the performance of learning from fewer samples is closely related to generalization ability. From
the results in Figure 3, we find that for regularized models to reach the same return level as baseline,
they need much fewer training samples. This suggests that certain regularizers can significantly
reduce the sampling complexity of baseline and thus lead to better generalization.

1e6 1.5e6 3e6
Samples

4000

5000

6000

SAC Ant

5e6 1e7 2e7
Samples

0

2000

4000

6000

8000

PPO Humanoid

5e6 1e7 2e7
Samples

2000

3000

4000

TRPO Ant

baseline L2 L1 weight clip

Figure 3: Return with different amount of training samples with error bars from 10 random seeds. Regularized
models can reach similar performance as baseline with less data, showing their stronger generalization ability.

7

Published as a conference paper at ICLR 2021

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e4

0.0

0.2

0.4

0.6

PP
O

 H
um

an
oi

d Baseline

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e4

0.0

0.2

0.4

0.6
L2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e4

0.0

0.2

0.4

0.6
L1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e4

0.0

0.2

0.4

0.6
Weight Clip

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1e3

0.0

0.2

0.4

0.6

TR
PO

 A
nt

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1e3

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1e3

0.0

0.2

0.4

0.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1e3

0.0

0.2

0.4

0.6

Figure 4: Return distribution (frequency vs. return value) over 100 trajectories. Regularized models generalize
to unseen samples more stably with high return.

Return Distribution. We evaluate agents trained with and without regularization on 100 different
trajectories and plot the return distributions over trajectories in Figure 4. These trajectories represent
unseen samples during training, since the state space is continuous (so it is impossible to traverse
identical trajectories). For baseline, some trajectories yield relatively high returns, while others
yield low returns, demonstrating the baseline cannot stably generalize to unseen examples; for
regularized models, the returns are more concentrated at a high level, demonstrating they can more
stably generalize to unseen samples. This suggests that certain conventional regularizers can improve
the model’s generalization ability to larger portion of unseen samples.

Weight Norm. We observe that on many tasks, smaller policy weight norm correlates with better
generalization ability. An example is illustrated in Table 5 and Figure 5. We observe that L2

regularization accomplishes the effect of entropy regularization and, at the same time, limits the
policy norm. Even though both the entropy-regularized model and the L2-regularized model have
similar final policy entropy, L2-regularized model have much higher final performance, which
suggests that simply increasing the policy entropy is not enough. We conjecture that L2-encouraged
small weight norm makes the network less prone to overfitting and provides a better optimization
landscape for the model.
Table 5: Comparison of final performance, policy entropy, and
policy weight norm on PPO Humanoid.

Reg Return Entropy Policy Norm
Baseline 3485±302 -10.32 30.73
Entropy 3805±349 4.46 30.97
L2 8148±335 8.11 8.71

Table 6: Effect of data augmentation on final
performance on PPO Humanoid.

Baseline L2

w/o DA 3485±302 8148±335
w/ DA 3483±293 9006±145

0

5

R
et

ur
n

1e3 Humanoid

10

20

30

Po
lic

y
W

ei
gh

t N
or

m

baseline
L2
entropy

0 1 2
Timesteps 1e7

0

20

Po
lic

y
En

tro
py

Figure 5: Return, policy network
L2 norm, and policy entropy for
PPO Humanoid.

Robustness to Training Noise. Recent works (Kostrikov et al.,
2020; Laskin et al., 2020) have applied data augmentation (DA) to
RL, mainly on image-based inputs, to improve data efficiency and
generalization. Laskin et al. (2020) adds noise to state-based input
observations by random scaling them as a form of DA. We apply this
technique to both baseline and L2 regularization on PPO Humanoid.
At each time step, we randomly scale the input state by a factor of s,
where s ∼ Unif(1−k, 1+k), k ∈ {0.05, 0.1, 0.2, 0.4, 0.6, 0.8}. We
select the k with the highest performance on the original environment
and report the results in Table 6. Interestingly, while DA cannot
improve the baseline performance, it can significantly improve the
performance of L2-regularized model. This suggests L2 regularizer
can make the model robust to, or even benefit from, noisy/augmented
input during training.

Why do BN and dropout work only with off-policy algorithms?
One finding in our experiments is BN and dropout can sometimes
improve on the off-policy algorithm SAC, but mostly hurt on-policy algorithms. We further confirm
this observation through experiments on Deep Deterministic Policy Gradient (DDPG, Lillicrap et al.
(2016)), another off-policy algorithm, and present the results in Appendix M. We hypothesize two
possible reasons: 1) for both BN and dropout, training mode is used to train the network, and testing
mode is used to sample actions during interaction with the environment, leading to a discrepancy
between the sampling policy and optimization policy (the same holds if we always use training
mode). For on-policy algorithms, if such discrepancy is large, it can cause severe “off-policy issues”,
which hurts the optimization process or even crashes it since their theory necessitates that the data

8

Published as a conference paper at ICLR 2021

is “on policy”, i.e., data sampling and optimization policies are the same. For off-policy algorithms,
this discrepancy is not an issue, since they sample data from replay buffer and do not require the
two policies to be the same. 2) BN can be sensitive to input distribution shifts, since the mean and
std statistics depend on the input, and if the input distribution changes too quickly in training, the
mapping functions of BN layers can change quickly too, which can possibly destabilize training. One
evidence for this is that in supervised learning, when transferring a ImageNet pretrained model to
other vision datasets, sometimes the BN layers are fixed (Yang et al., 2017) and only other layers
are trained. In off-policy algorithms, the sample distributions are relatively slow-changing since we
always draw from the whole replay buffer which holds cumulative data; in on-policy algorithms, we
always use the samples generated from the latest policy, and the faster-changing input distribution for
on-policy algorithms could be harmful to BN.

In summary, we conducted the first systematic study of regularization methods on multiple policy
optimization algorithms. We found that conventional regularizations (L2, L1, weight clipping) could
be effective at improving performance, sometimes more than entropy regularization. BN and dropout
could be useful but only on off-policy algorithms. Our findings were confirmed with multiple sampled
hyperparameters. Further experiments have shown that generally, the best practice is to regularize the
policy network but not the value network or both. Finally we analyze why regularization can help in
RL with experiments and discussions.

REFERENCES

Statistics/testing data/t-tests. https://en.wikibooks.org/wiki/Statistics/
Testing_Data/t-tests.

Location test. https://en.wikipedia.org/wiki/Location_test.

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning en-
vironment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL
http://arxiv.org/abs/1207.4708.

Richard Cheng, Abhinav Verma, Gbor Orosz, Swarat Chaudhuri, Yisong Yue, and Joel Burdick. Con-
trol regularization for reduced variance reinforcement learning. arXiv preprint arXiv:1905.05380,
2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Amir M. Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and Csaba Szepesvári. Regularized
policy iteration. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural
Information Processing Systems 21, pp. 441–448. Curran Associates, Inc., 2009. URL http:
//papers.nips.cc/paper/3445-regularized-policy-iteration.pdf.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

9

https://en.wikibooks.org/wiki/Statistics/Testing_Data/t-tests
https://en.wikibooks.org/wiki/Statistics/Testing_Data/t-tests
https://en.wikipedia.org/wiki/Location_test
http://arxiv.org/abs/1207.4708
https://github.com/openai/baselines
https://github.com/openai/baselines
http://papers.nips.cc/paper/3445-regularized-policy-iteration.pdf
http://papers.nips.cc/paper/3445-regularized-policy-iteration.pdf

Published as a conference paper at ICLR 2021

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1587–1596, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pp. 5302–5311, 2018.

Tuomas Haarnoja. Soft actor-critic. https://github.com/haarnoja/sac, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1856–1865, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.

Oleg Klimov and John Schulman. Roboschool. https://openai.com/blog/roboschool,
2017.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Trans. Graph., 36(4), July 2017. ISSN 0730-0301. doi:
10.1145/3072959.3073599. URL https://doi.org/10.1145/3072959.3073599.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data, 2020.

Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

10

https://github.com/haarnoja/sac
https://openai.com/blog/roboschool
https://doi.org/10.1145/3072959.3073599

Published as a conference paper at ICLR 2021

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes, 2017.

OpenAI. Open-source software for robot simulation, integrated with openai gym. https://
github.com/openai/roboschool.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Simone Parisi, Voot Tangkaratt, Jan Peters, and Mohammad Emtiyaz Khan. Td-regularized actor-critic
methods. In Machine Learning, pp. 1–35, 2019.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 2040–2042. International Foundation
for Autonomous Agents and Multiagent Systems, 2018.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pp. 6550–6561, 2017.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. To-
wards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
arXiv:1907.01341, 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91–99, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In International Conference on
Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Mario Srouji, Jian Zhang, and Ruslan Salakhutdinov. Structured control nets for deep reinforcement
learning. In International Conference on Machine Learning, pp. 4749–4758, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE,
2017.

11

https://github.com/openai/roboschool
https://github.com/openai/roboschool

Published as a conference paper at ICLR 2021

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

Jianwei Yang, Jiasen Lu, Dhruv Batra, and Devi Parikh. A faster pytorch implementation of faster
r-cnn. https://github.com/jwyang/faster-rcnn.pytorch, 2017.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. ArXiv, abs/1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Kaiqing Zhang, Bin Hu, and Tamer Başar. Policy optimization for H2 linear control with H∞
robustness guarantee: Implicit regularization and global convergence, 2020.

Chenyang Zhao, Olivier Sigaud, Freek Stulp, and Timothy M. Hospedales. Investigating generalisa-
tion in continuous deep reinforcement learning. ArXiv, abs/1902.07015, 2019.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 3, AAAI’08, pp. 1433–1438. AAAI Press, 2008. ISBN 978-1-57735-368-3. URL
http://dl.acm.org/citation.cfm?id=1620270.1620297.

12

https://github.com/jwyang/faster-rcnn.pytorch
http://dl.acm.org/citation.cfm?id=1620270.1620297

Published as a conference paper at ICLR 2021

APPENDIX

TABLE OF CONTENTS

A Regularization Methods 14

B Policy Optimization Algorithms 15

C Regularization Implementation & Tuning Details 16

D Default Hyperparameter Settings 18

E Hyperparameter Sampling Details 20

F Statistical Significance Test of z-scores 22

G z-score Statistics under More Random Seeds on MuJoCo 22

H Improvement Percentage for Hyperparameter Experiments 23

I Statistical Significance Test of z-scores (Entropy Regularization) 24

J Additional Metrics 25

J.1 Ranking all regularizers . 25

J.2 Scaled Returns . 26

K Justification of Methodology and Statistical Significance 28

L Regularization with a Fixed Strength 31

M DDPG Results 32

N Regularizing with L2 and Entropy 33

O L2 Regularization vs. Fixed Weight Decay (AdamW) 34

P Additional Training Curves (Default Hyperparameters) 35

Q Training Curves for Hyperparameter Experiments 36

R Training Curves for Policy vs. Value Experiments 40

S Atari Experiments 44

13

Published as a conference paper at ICLR 2021

A REGULARIZATION METHODS

There are in general two types of common approaches for imposing regularization. One is to
discourage complex models (e.g., weight regularization, weight clipping), and the other is to inject
certain noise in network activations (e.g., dropout and Batch Normalization). Here we briefly
introduce the methods we investigate in our experiments.

L2 / L1 Weight Regularization. Suppose L is the original empirical loss we want to minimize.
When applying L2 regularization, we add an additional L2-norm squared loss term 1

2λ||θ||
2
2 to

L, where θ are model parameters and λ is a hyperparameter. Similarly, in the case of L1 weight
regularization, the additional loss term is λ||θ||1. In our experiments, the total loss is optimized
using Adam (Kingma & Ba, 2015). Using L2/L1 regularization can encourage the model to be
simpler/sparse. From a Bayesian view, they impose certain prior distributions on model weights.

Weight Clipping. Weight clipping is a simple operation: after each gradient update step, each
individual weight is clipped to range [−c, c], where c is a hyperparameter. This could be formally
described as θi ← max(min(θi, c),−c). In Wasserstein GANs (Arjovsky et al., 2017), weight
clipping is used to enforce the constraint of Lipschitz continuity. This plays an important role in
stabilizing the training of GANs (Goodfellow et al., 2014) Weight clipping can also be seen as a
regularizor since it reduce the complexity of the model space, by preventing any weight’s magnitude
from being larger than c.

Dropout. Dropout (Srivastava et al., 2014) is one of the most successful regularization techniques
developed specifically for neural networks. During training, a certain percentage of neurons is
deactivated; during testing, all neurons in the neural network are kept, and rescaling is applied to
ensure the scale of the activations is the same as training. One explanation for its effectiveness
in reducing overfitting is they can prevent “co-adaptation” of neurons. In the policy optimization
algorithms we investigate, when the policy or the value network performs updates using minibatches
of trajectory data or replay buffer data, we use the training mode of dropout. When the policy network
samples trajectories from the environment, we use the testing mode of dropout.

Batch Normalization. Batch Normalization (BN) (Ioffe & Szegedy, 2015) is invented to address the
problem of “internal covariate shift”, and it does the following transformation: ẑ = zin−µB√

σ2
B+ε

; zout =

γẑ + β, where µB and σB are the mean and standard deviation of input activations over B, and γ and
β are trainable affine transformation parameters. BN turns out to greatly accelerate the convergence
and bring up the accuracy. It also acts as a regularizer (Ioffe & Szegedy, 2015): during training, the
statistics µB and σB depend on the current batch, and BN subtracts and divides different values in
each iteration. This stochasticity can encourage subsequent layers to be robust against such input
variation. In policy optimization algorithms, we switch between training and testing modes the same
way as we do in dropout.

Entropy Regularization. In a policy optimization framework, the policy network is used to model a
conditional distribution over actions, and entropy regularization is widely used to prevent the learned
policy from overfitting to one or some of the actions. More specifically, in each step, the output
distribution of the policy network is penalized to have a high entropy. Policy entropy is calculated
at each step as Hsi = −Eai∼π(ai|si) log π(ai|si), where (si, ai) is the state-action pair. Then the
per-sample entropy is averaged within the batch of state-action pairs to obtain the regularization
term LH = 1

N

∑
si
Hsi . A coefficient λ is also needed, and λLH is added to the policy objective

J(θ). The sum is then maximized during policy updates. Entropy regularization also encourages
exploration and prevents premature convergence due to increased randomness in actions, leading to
better performance in the long run.

14

Published as a conference paper at ICLR 2021

B POLICY OPTIMIZATION ALGORITHMS

The policy optimization family of algorithms is one of the most popular methods for solving reinforce-
ment learning problems. It directly parameterizes and optimizes the policy to gain more cumulative
rewards. Below, we give a brief introduction to the algorithms we evaluate in our work.

A2C. Sutton et al. (2000) developed a policy gradient to update the parametric policy in a gradient
descent manner. However, the gradient estimated in this way suffers from high variance. Advantage
Actor Critic (A3C) (Mnih et al., 2016) is proposed to alleviate this problem by introducing a function
approximator for values and replacing the Q-values with advantage values. A3C also utilizes multiple
actors to parallelize training. The only difference between A2C and A3C is that in a single training
iteration, A2C waits for parallel actors to finish sampling trajectories before updating the neural
network parameters, while A3C updates in an asynchronous manner.

TRPO. Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) proposes to constrain
each update within a safe region defined by KL divergence to guarantee policy improvement during
training. Though TRPO is promising at obtaining reliable performance, approximating the KL
constraint is quite computationally heavy.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) simplifies TRPO and improves
computational efficiency by developing a surrogate objective that involves clipping the probability
ratio to a reliable region, so that the objective can be optimized using first-order methods.

SAC. Soft Actor Critic (SAC) (Haarnoja et al., 2018) optimizes the maximum entropy objective in
reward (Ziebart et al., 2008), which is different from the objective of the on-policy methods above.
SAC combines soft policy iteration, which maximizes the maximum entropy objective, and clipped
double Q learning (Fujimoto et al., 2018), which prevents overestimation bias, during actor and critic
updates, respectively.

15

Published as a conference paper at ICLR 2021

C REGULARIZATION IMPLEMENTATION & TUNING DETAILS

As mentioned in the paper, in Section 3 we only regularize the policy network; in Section 5, we
investigate regularizing both policy and value networks.

For L1 and L2 regularization, we add λ|̇|θ||1 and λ
2 |̇|θ||

2
2, respectively, to the loss of policy network

or value network of each algorithm (for SAC’s value regularization, we apply regularization only
to the V network instead of also to the two Q networks). L1 and L2 loss are applied to all the
weights of the policy or value network. For A2C, TRPO, and PPO, we tune λ in the range of
[1e− 5, 5e− 5, 1e− 4, 5e− 4] for L1 and [5e− 5, 1e− 4, 5e− 4, 1e− 3] for L2. For SAC, we tune
λ in the range of [5e− 4, 1e− 3, 5e− 3, 1e− 2] for L1 and [1e− 3, 5e− 3, 1e− 2, 5e− 2] for L2.

For weight clipping, the OpenAI Baseline implementation of the policy network of A2C, TRPO,
and PPO outputs the mean of policy action from a two-layer fully connected network (MLP). The
log standard deviation of the policy action is represented by a standalone trainable vector. We find
that when applied only to the weights of MLP, weight clipping makes the performance much better
than when applied to only the logstd vector or both. Thus, for these three algorithms, the policy
network weight clipping results shown in all the sections above come from clipping only the MLP
part of the policy network. On the other hand, in the SAC implementation, both the mean and the
log standard deviation come from the same MLP, and there is no standalone log standard deviation
vector. Thus, we apply weight clipping to all the weights of the MLP. For all algorithms, we tune the
policy network clipping range in [0.1, 0.2, 0.3, 0.5]. For value network, the MLP produces a single
output of estimated value given a state, so we clip all the weights of the MLP. For A2C, TRPO, and
PPO, we tune the clipping range in [0.1, 0.2, 0.3, 0.5]. For SAC, we only clip the V network and do
not clip the two Q networks for simplicity. We tune the clipping range in [0.3, 0.5, 0.8, 1.0] due to its
weights having larger magnitude.

For BatchNorm/dropout, we apply it before the activation function of each hidden layer/immediately
after the activation function. When the policy or the value network is performing update using mini-
batches of trajectory data or minibatches of replay buffer data, we use the train mode of regularization
and update the running mean and standard deviation. When the policy is sampling trajectory from the
environment, we use the test mode of regularization and use the existing running mean and standard
deviation to normalize data. For Batch Normalization/dropout on value network, only training mode is
applied since value network does not participate in sampling trajectories. Note that adding policy net-
work dropout on TRPO causes the KL divergence constraint Es∼ρθold [DKL (πθold(·|s)‖πθ(·|s))] ≤ δ
to be violated almost every time during policy network update. Thus, policy network dropout causes
the training to fail on TRPO, as the policy network cannot be updated.

For entropy regularization, we add −λLH to the policy loss. λ is tuned from [5e− 5, 1e− 4, 5e−
4, 1e − 3] for A2C, TRPO, PPO and [0.1, 0.5, 1.0, 5.0] for SAC. Note that for SAC, our entropy
regularization is added directly on the optimization objective (equation 12 in Haarnoja et al. (2018)),
and is different from the original maximum entropy objective inside the reward term.

Note that for the three on-policy algorithms (A2C, TRPO, PPO) we use the same tuning range, and
the only exception is the off-policy SAC. The reason why SAC’s tuning range is different is that SAC
uses a hyperparameter that controls the scaling of the reward signal, while A2C, TRPO, and PPO
do not. In the original implementation of SAC, the reward signals are pre-tuned to be scaled up by
a factor ranging from 5 to 100, according to specific environments. Also, unlike A2C, TRPO, and
PPO, SAC uses unnormalized reward because if the reward magnitude is small, then, according to the
original paper, the policy becomes almost uniform. Due to the above reasons, the reward magnitude
of SAC is much higher than the magnitude of rewards used by A2C, TRPO, and PPO. Thus, the
policy network loss and the value network loss have larger magnitude than those of A2C, TRPO, and
PPO, so the appropriate regularization strengths become higher. Considering the SAC’s much larger
reward magnitude, we selected a different range of hyperparameters for SAC before we ran the whole
experiments.

The optimal policy network regularization strength we selected for each algorithm and environment
used in Section 3 can be seen in the legends of Appendix R. In addition to the results with environment-
specific strengths presented in Section 3, we also present the results when the regularization strength
is fixed across all environments for the same algorithm. The results are shown in Appendix L.

16

Published as a conference paper at ICLR 2021

In Section 5, to investigate the effect of regularizing both policy and value networks, we combine the
tuned optimal policy and value network regularization strengths. The detailed training curves are
presented in Appendix R.

As a side note, when training A2C, TRPO, and PPO on the HalfCheetah environment, the results
have very large variance. Thus, for each regularization method, after we obtain the best strength, we
rerun it for another five seeds as the final result in Table 1 and 2.

17

Published as a conference paper at ICLR 2021

D DEFAULT HYPERPARAMETER SETTINGS

Training timesteps. For A2C, TRPO, and PPO, we run 5e6 timesteps for Hopper, Walker, and
HalfCheetah; 2e7 timesteps for Ant, Humanoid (MuJoCo), and HumanoidStandup; 5e7 timesteps for
Humanoid (RoboSchool); and 1e8 timesteps for AtlasForwardWalk and HumanoidFlagrun. For SAC,
since its simulation speed is much slower than A2C, TRPO, and PPO (as SAC updates its policy and
value networks using a minibatch of replay buffer data at every timestep), and since it takes fewer
timesteps to converge, we run 1e6 timesteps for Hopper and Walker; 3e6 timesteps for HalfCheetah
and Ant; 5e6 timesteps for Humanoid and HumanoidStandup; and 1e7 timesteps for the RoboSchool
environments.

Hyperparameters for RoboSchool. In the original PPO paper (Schulman et al., 2017), hyperpa-
rameters for the Roboschool tasks are given, so we apply the same hyperparameters to our training,
except that instead of linear annealing the log standard deviation of action distribution from −0.7 to
−1.6, we let it to be learnt by the algorithm, as implemented in OpenAI Baseline (Dhariwal et al.,
2017). For TRPO, due to its proximity to PPO, we copy PPO’s hyperparameters if they exist in both
algorithms. We then tune the value update step size in [3e− 4, 5e− 4, 1e− 3]. For A2C, we keep the
original hyperparameters and tune the number of actors in [32, 128] and the number of timesteps for
each actor between consecutive policy updates in [5, 16, 32]. For SAC, we tune the reward scale from
[5, 20, 100].

The detailed hyperparameters used in our baselines for both MuJoCo and RoboSchool are listed in
Tables 7-10.

Table 7: Baseline hyperparameter setting for A2C MuJoCo and RoboSchool tasks.

Hyperparameter Value
Hidden layer size 64× 2

Sharing policy and value weights False
Number of hidden layers 2

Rollout timesteps per actor 5
Number of actors 1

Step size 7e− 4, linear decay
Max gradient norm 0.5
Discount factor (γ) 0.99

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 32

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

Step size 7e− 4, linear decay
Max gradient norm 0.5
Discount factor (γ) 0.99

Table 8: Baseline hyperparameter setting for TRPO Mujoco and RoboSchool tasks. The original OpenAI
implementation does not support multiple actors sampling trajectories at the same time, so we modified the code
to support this feature and accelerate training.

Hyperparameter Value
Hidden layer size 32× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 1024
Number of actors 1

Value network step size 1e− 3, constant
Max KL divergence 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.98

Conjugate gradient damping 0.1
Conjugate gradient iterations 10

Value network optimization epochs 10
Value network update minibatch size 64

Probability ratio clipping range 0.2

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 512

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

value network step size 1e− 3, constant
Max KL divergence 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.98

Conjugate gradient damping 0.1
Conjugate gradient iterations 10

Value network optimization epochs 15
Value network update minibatch size 4096

Probability ratio clipping range 0.2

18

Published as a conference paper at ICLR 2021

Table 9: Baseline hyperparameter setting for PPO MuJoCo and RoboSchool tasks.

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 2048
Number of actors 1

Number of minibatches 32
Step size 3e− 4, linear decay

Max gradient norm 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95

Number of optimization epochs 10
Probability ratio clipping range 0.2

Hyperparameter Value
Hidden layer size 64× 2

Number of hidden layers 2
Sharing policy and value weights False

Rollout timesteps per actor 512

Number of actors 32 (Humanoid, Atlas)
128 (Flagrun)

Minibatch size 4096
Step size 3e− 4, linear decay

Max gradient norm 0.5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95

Number of optimization epochs 15
Probability ratio clipping range 0.2

Table 10: Baseline hyperparameter setting for SAC.

Hyperparameter Value
Hidden layer size 256× 2

Number of hidden layers 2
Samples per batch 256
Replay buffer size 106

Learning rate 3e− 4 constant
Discount factor (γ) 0.99

Target smoothing coefficient (τ) 0.005
Target update interval 1

Reward Scaling
5 (Hopper, Walker, HalfCheetah, Ant)

20 (MuJoCo Humanoid and all RoboSchool tasks)
100 (HumanoidStandup)

19

Published as a conference paper at ICLR 2021

E HYPERPARAMETER SAMPLING DETAILS

In Section 4, we present results based on five hyperparameter settings. To obtain such hyperparameter
variations, we consider varying the learning rates and the hyperparameters that each algorithm is very
sensitive to. For A2C, TRPO, and PPO, we consider a range of rollout timesteps between consecutive
policy updates by varying the number of actors or the number of trajectory sampling timesteps for
each actor. For SAC, we consider a range of reward scale and a range of target smoothing coefficient.

More concretely, for A2C, we sample the learning rate from [2e− 4, 7e− 4, 2e− 3] linear decay, the
number of trajectory sampling timesteps (nsteps) for each actor from [3, 5, 16, 32], and the number
of actors (nenvs) from [1, 4]. For TRPO, we sample the learning rate of value network (vf_stepsize)
from [3e− 4, 5e− 4, 1e− 3] and the number of trajectory sampling timesteps for each actor (nsteps)
in [1024, 2048, 4096, 8192]. The policy update uses conjugate gradient descent and is controlled by
the max KL divergence. For PPO, we sample the learning rate from [1e− 4 linear, 3e− 4 constant],
the number of actors (nenvs) from [1, 2, 4, 8], and the probability ratio clipping range (cliprange) in
[0.1, 0, 2]. For SAC, we sample the learning rate from [1e− 4, 3e− 4, 1e− 3] the target smoothing
coefficient (τ) from [0.001, 0.005, 0.01], and the reward scale from small, default, and large mode.
The default reward scale of 5 is changed to (3, 5, 20); 20 to (4, 20, 100); 100 to (20, 100, 400) for
each mode, respectively. Sampled hyperparameters 1-5 for each algorithms are listed in Table 11-14.

Table 11: Sampled hyperparameter settings for A2C.

Learning rate Nsteps Nenvs
Baseline 7e− 4 5 1

Hyperparam. 1 2e− 3 32 4

Hyperparam. 2 2e− 3 32 1

Hyperparam. 3 7e− 4 16 1

Hyperparam. 4 7e− 4 32 4

Hyperparam. 5 2e− 4 3 4

Table 12: Sampled hyperparameter settings for TRPO.

Vf_stepsize Nsteps
Baseline 1e− 3 1024

Hyperparam. 1 5e− 4 8192

Hyperparam. 2 1e− 3 4096

Hyperparam. 3 3e− 4 2048

Hyperparam. 4 5e− 4 1024

Hyperparam. 5 5e− 4 4096

Table 13: Sampled hyperparameter settings for PPO

Learning rate Nenvs Cliprange
Baseline 3e− 4 linear 1 0.2

Hyperparam. 1 3e− 4 linear 8 0.2

Hyperparam. 2 1e− 4 constant 8 0.2

Hyperparam. 3 3e− 4 linear 4 0.1

Hyperparam. 4 1e− 4 constant 2 0.2

Hyperparam. 5 3e− 4 linear 1 0.1

20

Published as a conference paper at ICLR 2021

Table 14: Sampled hyperparameter settings for SAC

Learning rate τ Mode
Baseline 3e− 4 0.005 default

Hyperparam. 1 3e− 4 0.005 small
Hyperparam. 2 1e− 4 0.001 large
Hyperparam. 3 1e− 3 0.005 small
Hyperparam. 4 3e− 4 0.01 small
Hyperparam. 5 1e− 3 0.005 default

21

Published as a conference paper at ICLR 2021

F STATISTICAL SIGNIFICANCE TEST OF z-SCORES

For each regularization method, we collect the z-scores produced by all seeds and all environments
of a certain difficulty (e.g. for L2 on PPO and hard environments, we have 6 envs × 5 seeds = 30 z-
scores), and perform Welch’s t-test (two-sample t-test with unequal variance) with the corresponding
z-scores produced by the baseline. The resulting p-values for Table 2 in Section 3 and Table 3 in
Section 4 are presented in Table 15 and Table 16, respectively. Note that whether the significance
indicates improvement or harm depends on the relative mean z-score in Table 2 and Table 3. For
example, for BN and dropout in on-policy algorithms, the statistical significance denotes harm, and
in most other cases it denotes improvement. From the results, we observe that the improvement is
statistically significant (p < 0.05) for hard tasks in general, with only a few exceptions. In total, L2,
L1, entropy and weight clipping are all statistically significantly better than baseline. For Welch’s
t-test between entropy regularization and other regularizers, see Appendix I.

Table 15: P-values from Welch’s t-test comparing the z-scores of regularization methods and baseline.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.01 0.00 0.00 0.65 0.16 0.47 0.61 0.21 0.22 0.26 0.24 0.10 0.05 0.00 0.00
L2 0.37 0.00 0.00 0.43 0.05 0.05 0.86 0.00 0.00 0.21 0.01 0.01 0.10 0.00 0.00
L1 0.54 0.00 0.02 0.92 0.00 0.01 0.94 0.00 0.00 0.35 0.25 0.14 0.62 0.00 0.00

Weight Clip 0.78 0.02 0.09 0.99 0.02 0.07 0.79 0.00 0.00 0.76 0.21 0.41 0.87 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.27 0.80 0.74 0.21 0.00 0.00 0.02 0.43 0.05

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.38 0.02 0.25 0.00 0.00 0.00

Table 16: P-values from Welch’s t-test comparing the z-scores of regularization and baseline, under five sampled
hyperparameter settings.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.58 0.00 0.00 0.71 0.14 0.19 0.23 0.36 0.98 0.28 0.40 0.18 0.96 0.00 0.01
L2 0.00 0.00 0.00 0.12 0.00 0.00 0.31 0.00 0.00 0.89 0.00 0.01 0.99 0.00 0.00
L1 0.77 0.00 0.00 0.40 0.00 0.00 0.55 0.00 0.00 0.51 0.04 0.05 0.25 0.00 0.00

Weight Clip 0.77 0.00 0.00 0.01 0.01 0.00 0.51 0.00 0.00 0.02 0.14 0.69 0.37 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.00 0.00 0.00 0.96 0.29 0.41 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.05 0.03 0.00 0.00 0.00

G z-SCORE STATISTICS UNDER MORE RANDOM SEEDS ON MUJOCO

To further verify our result, we increase the number of seeds from 5 to 10 and present z-scores
for the six MuJoCo environments (easy: Hopper, Walker, HalfCheetah; hard: Ant, Humanoid,
HumanoidStandup) in Table 17. We also present tests of statistical significance in Table 18. Our
observations are consistent with those in Table 2. Due to the large computation cost required, we do
not include the three hard Roboschool environments in the calculation of z-scores.

Table 17: Average z-scores comparing regularizers vs. baseline on MuJoCo under the default hyperparameter
setting, where experiments in each environment are conducted over 10 random seeds.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 0.34 -0.73 -0.19 0.26 0.11 0.18 0.32 -1.36 -0.52 -0.21 -0.35 -0.28 0.18 -0.58 -0.20
Entropy 1.15 0.94 1.05 0.20 0.35 0.28 0.40 -1.06 -0.33 0.29 0.23 0.26 0.51 0.12 0.31
L2 0.50 1.27 0.88 0.54 0.46 0.50 0.25 0.69 0.47 0.33 0.38 0.35 0.40 0.70 0.55
L1 0.19 0.56 0.38 0.34 0.46 0.40 0.26 0.79 0.52 0.13 -0.42 -0.15 0.23 0.34 0.29

Weight Clip 0.16 0.09 0.12 0.19 0.71 0.45 0.31 0.77 0.54 -0.38 0.12 -0.13 0.07 0.42 0.25
Dropout -1.16 -0.98 -1.07 N/A N/A N/A -0.10 0.57 0.24 0.33 0.22 0.28 -0.31 -0.06 -0.19

BatchNorm -1.19 -1.15 -1.17 -1.53 -2.08 -1.81 -1.43 -0.40 -0.92 -0.49 -0.18 -0.33 -1.16 -0.95 -1.06

22

Published as a conference paper at ICLR 2021

Table 18: p-values from Welch’s t-test comparing the z-scores of regularization methods and baseline under the
default hyperparameter setting and 10 random seeds.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.00 0.00 0.00 0.85 0.00 0.27 0.67 0.00 0.30 0.21 0.03 0.02 0.02 0.00 0.00
L2 0.52 0.00 0.00 0.13 0.00 0.00 0.86 0.00 0.00 0.10 0.02 0.00 0.06 0.00 0.00
L1 0.29 0.00 0.00 0.73 0.00 0.03 0.87 0.00 0.00 0.25 0.57 0.23 0.66 0.00 0.00

Weight Clip 0.44 0.00 0.01 0.94 0.00 0.01 0.80 0.00 0.00 0.74 0.10 0.32 0.54 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.08 0.00 0.00 0.08 0.05 0.01 0.00 0.00 0.70

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.32 0.37 0.94 0.00 0.01 0.00

H IMPROVEMENT PERCENTAGE FOR HYPERPARAMETER EXPERIMENTS

We provide the percentage of improvement result in Table 19 as a complement with Table 3, for the
experiments with multiple sampled hyperparameters.

Table 19: Percentage (%) of environments where the final performance ”improves” when using regularization,
under five randomly sampled training hyperparameters for each algorithm.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 20.0 40.0 32.0 0.0 26.7 16.0 10.0 33.3 24.0 60.0 13.3 32.0 22.5 28.3 26.0
L2 20.0 60.0 44.0 10.0 40.0 28.0 20.0 86.7 60.0 10.0 40.0 28.0 15.0 56.7 40.0
L1 10.0 53.3 36.0 10.0 46.7 32.0 10.0 86.7 56.0 20.0 26.7 24.0 12.5 53.3 37.0

Weight Clip 0.0 46.7 28.0 40.0 46.7 44.0 10.0 73.3 48.0 0.0 33.3 20.0 12.5 50.0 35.0
Dropout 20.0 0.0 8.0 N/A N/A N/A 0.0 40.0 24.0 0.0 20.0 12.0 6.7 20.0 14.7

BatchNorm 0.0 0.0 0.0 10.0 0.0 4.0 10.0 33.3 24.0 20.0 20.0 20.0 10.0 13.3 12.0

23

Published as a conference paper at ICLR 2021

I STATISTICAL SIGNIFICANCE TEST OF z-SCORES (ENTROPY
REGULARIZATION)

As a complement to Table 2 in Section 3 and Table 3 in Section 4, we present the p-value results
from Welch’s t-test comparing the z-scores of entropy regularization with other regularizers in Table
20 and Table 21. Note that whether the significance indicates improvement or harm over entropy
regularization depends on the relative mean z-score in Table 2 under default hyperparameter setting
and Table 3 under sampled hyperparameter setting. We observe that in total, L2 has significant
improvement over entropy in both default hyperparameter setting and sampled hyperparameter
setting. L1 and weight clipping are significantly better than entropy under sampled hyperparameter
setting. In general, the improvement over entropy is statistically more significant for hard tasks.

Table 20: P-values from Welch’s t-test comparing the z-scores of entropy regularization and other regularizers,
under the default hyperparameter setting.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

L2 0.05 0.56 0.07 0.22 0.59 0.21 0.66 0.00 0.00 0.89 0.07 0.12 0.58 0.00 0.02
L1 0.00 0.00 0.00 0.57 0.05 0.07 0.62 0.00 0.00 0.67 0.93 0.75 0.06 0.10 0.83

Weight Clip 0.01 0.00 0.00 0.64 0.27 0.25 0.79 0.00 0.00 0.05 0.81 0.37 0.02 0.42 0.42
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.07 0.43 0.12 0.93 0.01 0.03 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.16 0.60 0.00 0.00 0.00

Table 21: P-values from Welch’s t-test comparing the z-scores of entropy regularization and other regularizers,
under five sampled hyperparameter settings for each policy optimization algorithm.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

L2 0.01 0.00 0.59 0.25 0.00 0.01 0.02 0.00 0.00 0.33 0.01 0.17 0.96 0.00 0.00
L1 0.41 0.04 0.04 0.69 0.00 0.01 0.07 0.00 0.00 0.63 0.20 0.53 0.23 0.00 0.00

Weight Clip 0.76 0.86 0.96 0.03 0.11 0.01 0.59 0.00 0.00 0.00 0.45 0.11 0.40 0.00 0.04
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.00 0.00 0.00 0.31 0.85 0.56 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.17 0.33 0.00 0.00 0.00

24

Published as a conference paper at ICLR 2021

J ADDITIONAL METRICS

J.1 RANKING ALL REGULARIZERS

We compute the “average ranking” metric to compare the relative effectiveness of different regular-
ization methods. Note that the average ranking of different methods across a set of tasks/datasets has
been adopted as a metric before, as in (Ranftl et al., 2019) and (Knapitsch et al., 2017). Here, we rank
the performance of all the regularization methods, together with the baseline, for each algorithm and
task, and present the average ranks in Table 22 and Table 23, with statistical significance tests in Table
24 and 25. The ranks of returns among different regularizers are collected for each environment (after
averaging over 5 random seeds), and then the mean rank over all seeds is calculated. From Table 22
and Table 23, we observe that, except for BN and dropout in on-policy algorithms, all regularizations
on average outperform baselines. Again, L2 regularization is the strongest in most cases. Other
similar observations can be made as in previous tables. For every algorithm, baseline ranks lower on
harder tasks than easier ones; in total, it ranks 3.50 for easier tasks and 5.25 for harder tasks. This
indicates that regularization is more effective when the tasks are harder.

Table 22: The average rank in the mean return for different regularization methods under default hyperparameter
settings. L2 regularization tops the ranking for most algorithms and environment difficulties.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 3.33 4.50 4.11 3.33 4.67 4.22 3.00 6.00 5.00 4.33 5.83 5.33 3.50 5.25 4.67
Entropy 1.00 1.50 1.33 4.67 3.00 3.56 3.00 4.17 3.78 3.00 3.83 3.55 2.92 3.13 3.06
L2 2.67 1.50 1.89 1.33 2.83 2.33 3.00 2.17 2.45 3.00 2.67 2.78 2.50 2.29 2.36
L1 4.33 3.67 3.89 2.67 2.17 2.34 3.33 2.67 2.89 3.67 4.83 4.44 3.50 3.34 3.39

Weight Clip 3.67 3.83 3.78 3.00 2.33 2.55 3.00 2.50 2.67 4.33 4.17 4.22 3.50 3.21 3.31
Dropout 6.00 6.00 6.00 N/A N/A N/A 5.67 4.67 5.00 3.33 3.17 3.22 5.00 4.61 4.74

BatchNorm 7.00 7.00 7.00 6.00 6.00 6.00 7.00 5.83 6.22 6.33 3.50 4.44 6.58 5.58 5.92

Table 23: The average rank in the mean return for different regularization methods, under five randomly sampled
training hyperparameters for each algorithm.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 2.70 4.13 3.65 3.70 3.40 3.50 3.00 5.53 4.69 4.20 5.00 4.73 3.40 4.52 4.14
Entropy 3.50 2.93 3.12 3.60 3.47 3.51 4.30 4.40 4.37 3.10 4.47 4.01 3.63 3.82 3.75
L2 4.40 2.27 2.98 2.50 2.53 2.52 1.90 1.80 1.83 3.50 2.73 2.99 3.08 2.33 2.58
L1 2.70 2.53 2.59 3.10 2.27 2.55 2.80 2.20 2.40 3.70 4.00 3.90 3.08 2.75 2.86

Weight Clip 3.30 3.13 3.19 2.20 3.33 2.95 3.70 2.87 3.15 5.80 4.27 4.78 3.75 3.40 3.52
Dropout 4.40 6.07 5.51 N/A N/A N/A 6.10 5.33 5.59 4.20 4.27 4.25 4.90 5.22 5.12

BatchNorm 7.00 6.93 6.95 5.90 6.00 5.97 6.20 5.80 5.93 3.50 3.27 3.35 5.65 5.50 5.55

Table 24: P-values from Welch’s t-test comparing the average rank of regularization and baseline, under the
default hyperparmeter setting.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.12 0.00 0.00 0.38 0.07 0.41 1.00 0.02 0.06 0.63 0.25 0.18 0.46 0.00 0.00
L2 0.69 0.00 0.01 0.07 0.01 0.00 1.00 0.00 0.03 0.60 0.07 0.06 0.21 0.00 0.00
L1 0.58 0.22 0.75 0.53 0.00 0.00 0.91 0.00 0.08 0.67 0.28 0.21 1.00 0.00 0.00

Weight Clip 0.67 0.29 0.47 0.87 0.05 0.09 1.00 0.01 0.05 1.00 0.28 0.42 1.00 0.00 0.01
Dropout 0.09 0.01 0.00 N/A N/A N/A 0.29 0.35 1.00 0.73 0.02 0.05 0.23 0.21 0.90

BatchNorm 0.05 0.00 0.00 0.09 0.01 0.00 0.12 0.85 0.25 0.37 0.07 0.44 0.00 0.51 0.01

25

Published as a conference paper at ICLR 2021

Table 25: P-values from Welch’s t-test comparing the average rank of regularization and baseline, under the 5
randomly sampled hyperparmeter settings.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.31 0.04 0.31 0.91 0.45 0.54 0.10 0.08 0.74 0.39 0.43 0.23 0.73 0.01 0.10
L2 0.09 0.00 0.43 0.01 0.02 0.00 0.33 0.00 0.00 0.28 0.04 0.02 0.34 0.00 0.00
L1 0.89 0.04 0.10 0.49 0.01 0.01 0.45 0.00 0.00 0.63 0.19 0.18 0.35 0.00 0.00

Weight Clip 0.65 0.09 0.30 0.06 0.60 0.10 0.21 0.00 0.03 0.04 0.39 0.74 0.51 0.00 0.03
Dropout 0.08 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.02 1.00 0.27 0.39 0.00 0.25 0.00

BatchNorm 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.40 0.00 0.39 0.04 0.03 0.00 0.01 0.00

J.2 SCALED RETURNS

Min-max scaling is a linear-mapping operation to map values ranging from [min(x),max(x)] to
[0, 1], using x′ = x−min(x)

max(x)−min(x) . For each environment and policy optimization algorithm (for
example, PPO on Ant), we calculate a "scaled return" for each regularization method and the baseline,
using the maximum mean return obtained using any regularization method (including baseline) as
max(x) and 0 as min(x), on positively clipped returns. We then average the scaled returns of mean
return over environments of a certain difficulty (easy/hard). We present the results under the default
hyperparameter setting in Table 26-28 and the results under sampled hyperparameter settings in
Table 29-31. To analyze whether regularization significantly improves over the baseline and whether
conventional regularizers significantly improves over entropy, we perform Welch’s t-test on the scaled
returns, using an identical approach to the one we used for z-score. Our observation is similar to the
ones we made in Section 3 and Section 4.

Table 26: Scaled returns for each regularization method under the default hyperparameter setting.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 100.0 93.0 95.3 86.2 84.3 85.0 95.2 57.2 69.9 94.9 89.0 91.0 94.1 80.9 85.3
L2 74.8 90.2 85.1 97.2 87.2 90.6 88.0 93.2 91.5 97.1 92.4 93.9 89.3 90.7 90.3
L1 58.8 70.6 66.7 91.9 95.5 94.3 90.0 93.5 92.3 95.0 89.7 91.5 83.6 87.3 86.2

Weight Clip 61.2 65.3 63.9 90.7 89.6 90.0 92.7 88.4 89.8 91.6 89.2 90.0 84.0 83.1 83.4
Dropout 0.85 9.05 6.32 N/A N/A N/A 76.2 42.5 53.7 97.0 96.2 96.5 58.0 49.3 52.2

BatchNorm 0.00 6.32 4.21 21.8 12.9 15.9 25.7 30.7 29.1 88.2 92.9 91.4 33.9 35.7 35.1
Baseline 64.1 48.9 54.0 91.8 77.9 82.5 89.3 47.9 61.7 90.5 86.4 87.8 83.9 65.3 71.5

Table 27: P-values from Welch’s t-test comparing the scaled returns of regularization and baseline, under the
default hyperparmeter setting.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.01 0.00 0.00 0.64 0.33 0.66 0.67 0.34 0.36 0.23 0.54 0.25 0.07 0.00 0.00
L2 0.38 0.00 0.00 0.50 0.16 0.14 0.92 0.00 0.00 0.11 0.07 0.02 0.27 0.00 0.00
L1 0.62 0.01 0.06 0.99 0.00 0.03 0.95 0.00 0.00 0.26 0.26 0.12 0.99 0.00 0.00

Weight Clip 0.80 0.04 0.14 0.94 0.10 0.22 0.80 0.00 0.00 0.80 0.46 0.44 0.98 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.29 0.56 0.34 0.12 0.00 0.00 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.60 0.03 0.15 0.00 0.00 0.00

26

Published as a conference paper at ICLR 2021

Table 28: P-values from Welch’s t-test comparing the scaled returns of entropy and other regularizers, under the
default hyperparmeter setting.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

L2 0.07 0.58 0.07 0.25 0.70 0.29 0.49 0.00 0.00 0.70 0.30 0.28 0.42 0.00 0.07
L1 0.00 0.00 0.00 0.63 0.07 0.09 0.66 0.00 0.00 0.74 0.73 0.86 0.05 0.05 0.77

Weight Clip 0.01 0.00 0.00 0.69 0.49 0.42 0.84 0.00 0.01 0.16 0.88 0.73 0.07 0.54 0.51
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.09 0.14 0.05 0.72 0.02 0.03 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.22 0.91 0.00 0.00 0.00

Table 29: Scaled returns for each regularization method under the five sampled hyperparameter settings.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 86.8 60.8 71.2 87.9 88.3 88.1 93.7 66.6 77.4 92.8 86.8 89.2 90.3 75.6 81.5
Entropy 83.8 81.2 82.2 86.8 91.0 89.3 89.8 65.8 75.4 97.5 87.5 91.5 89.5 81.4 84.6
L2 69.9 92.8 83.6 93.6 95.4 94.7 96.4 90.6 92.9 93.3 95.5 94.6 88.3 93.6 91.5
L1 89.1 88.7 88.8 89.9 97.1 94.2 95.2 89.0 91.5 92.7 91.7 92.1 91.7 91.6 91.7

Weight Clip 85.5 81.3 83.0 96.4 96.6 96.5 91.3 84.1 87.0 86.7 91.6 89.6 90.0 88.4 89.0
Dropout 59.3 21.9 36.9 N/A N/A N/A 71.2 57.6 63.0 94.1 89.3 91.2 74.9 56.3 63.7

BatchNorm 0.00 14.9 8.96 41.7 47.9 45.4 70.6 53.0 60.0 96.1 92.6 94.0 52.1 52.1 52.1

Table 30: P-values from Welch’s t-test comparing the scaled returns of regularization and baseline, under five
sampled hyperparameters.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 0.59 0.00 0.01 0.74 0.18 0.51 0.22 0.87 0.57 0.06 0.69 0.18 0.63 0.07 0.04
L2 0.00 0.00 0.00 0.09 0.00 0.00 0.40 0.00 0.00 0.86 0.00 0.00 0.32 0.00 0.00
L1 0.71 0.00 0.00 0.51 0.00 0.00 0.63 0.00 0.00 0.98 0.03 0.12 0.49 0.00 0.00

Weight Clip 0.80 0.00 0.00 0.01 0.00 0.00 0.47 0.00 0.00 0.08 0.05 0.83 0.86 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.00 0.03 0.00 0.66 0.26 0.26 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.02 0.01 0.00 0.00 0.00

Table 31: P-values from Welch’s t-test comparing the scaled returns of entropy and other regularizers, under five
sampled hyperparameters.

Reg \Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

L2 0.01 0.00 0.69 0.07 0.01 0.00 0.03 0.00 0.00 0.07 0.00 0.05 0.57 0.00 0.00
L1 0.37 0.05 0.04 0.36 0.00 0.00 0.08 0.00 0.00 0.10 0.06 0.72 0.24 0.00 0.00

Weight Clip 0.75 0.99 0.82 0.01 0.00 0.00 0.64 0.00 0.00 0.00 0.10 0.32 0.77 0.00 0.00
Dropout 0.00 0.00 0.00 N/A N/A N/A 0.00 0.07 0.00 0.17 0.47 0.87 0.00 0.00 0.00

BatchNorm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.52 0.05 0.14 0.00 0.00 0.00

27

Published as a conference paper at ICLR 2021

K JUSTIFICATION OF METHODOLOGY AND STATISTICAL SIGNIFICANCE

In this section, we provide rigorous justification that, (1) when the sample size is large enough
(n ≥ 30) , the normality assumption for the sampling distribution is not needed (loc); (2) since we
test on the entire set of environments instead of on a single environment, our sample size is large
enough to satisfy the condition of Welch’s t-test and provide reliable results.

Consider two distributions with mean and variance pairs (µ1, σ
2
1) and (µ2, σ

2
2), respectively, where

neither distribution needs to be normal, and the mean and variances are unknown. Let H0 : µ1 =
µ2 be the null hypothesis, and H1 : µ1 6= µ2 be the alternate hypothesis. Let (X1, X2, . . . , Xn) and
(Y1, Y2, . . . , Yn) be independent samples from the two distributions. Then, under the null hypothesis,
the t statistic from Welch’s t-test converges in distribution to N (0, 1) as n→∞. We formalize the
above statement below.

Theorem K.1. Consider two distributions with mean and variance pairs (µ1, σ
2
1) and (µ2, σ

2
2),

where the mean and variances are unknown. Define H0 : µ1 = µ2 and H1 : µ1 6= µ2. Let
(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be independent samples from the two distributions. Then,
under H0, the t statistic from Welch’s t-test converges in distribution to the standard normal distribu-
tion as n→∞. That is, tn =

√
n(Xn−Y n)√
S2
X,n+S

2
Y,n

d−→ N (0, 1), where Xn, Y n are the sample means for

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn); S2
X,n and S2

Y,n are the sample variances.

Proof. We have S2
X,n

p−→ σ2
1 and S2

Y,n

p−→ σ2
2 . Then due to independence, (S2

X,n, S
2
Y,n)

p−→
(σ2

1 , σ
2
2). By the continuous mapping theorem,

√
S2
X,n + S2

Y,n

p−→
√
σ2
1 + σ2

2 . The rejection /
acceptance region of tn is based on the null hypothesis. Under the null hypothesis, according to the
Central Limit Theorem,

√
n(Xn − µ1)

d−→ N (0, σ2
1),
√
n(Y n − µ1)

d−→ N (0, σ2
2). Then due to

independence, (
√
n(Xn − µ1),

√
n(Y n − µ1))

d−→ (N (0, σ2
1),N (0, σ2

2)). By Slutsky’s theorem,
√
n(Xn − Y n)

d−→ N (0, σ2
1 + σ2

2). Again by Slutsky,
√
n(Xn−Y n)√
S2
X,n+S

2
Y,n

d−→ N (0, 1).

Therefore, if n ≥ 30 (i.e. the sample size is large), we do not need the normality assumption of our
distribution to apply Welch’s t-test, and we can use our t-statistic to obtain the p-value the same way
as from the z-test (loc) (i.e. the p-value equals 2 · Φ(−|t|), where Φ is the cumulative distribution
function (CDF) of the standard normal distribution). Also, the t-test can be applied when n grows
much larger than 30 (lar).

We now show that our sample size is large enough to apply the above theorem. For each algorithm
and regularizer, we calculate the average z-score, the average ranking, and the average scaled return
over a set of environments and all seeds. We then test whether the performance of a regularizer
is significantly different from that of baseline. We take the average z-score metric as an example.
Let E be the set of environments with uniform distribution over the environments, and let S be the
set of seeds. For e ∈ E and s ∈ S, let freg(e, s) denote the z-score of a certain regularizer under
an environment e and seed s, and let fbaseline(e, s) denote the z-score under the baseline. We use
Welch’s t-test to test whether µreg 6= µbaseline, given unknown σreg, σbaseline, on a policy optimization
algorithm.

For experiments in Section 3 (e.g. Table 2), for each policy optimization algorithm, we test the
distribution of {freg(e, s) : e ∈ E, s ∈ S} versus {fbaseline(e, s) : e ∈ E, s ∈ S} on 9 environments
(3 easy, 6 hard). We obtain 5 seeds * 3 envs = 15 data samples for "easy" environments, and 5 seeds
* 6 envs = 30 data samples for "hard" environments, so that the "total" column has 15 + 30 = 45
data samples. In Appendix G, we increase the number of seeds from 5 to 10, so that we obtain 30
data samples for "easy" environments. In the last three columns, we aggregate the data from each
policy optimization algorithm and test whether a regularizer performs significantly different from the
baseline across algorithms, environments, and seeds. Since there are 4 algorithms, we obtain 15 * 4 =
60 samples for "easy", 30 * 4 = 120 for "hard", and 60 + 120 = 180 for "total". The sample size is
large enough and satisfy our condition for Welch’s t-test.

For experiments in Section 4 (e.g. Table 3), for each policy optimization algorithm, we test
{freg(h, e, s) : h ∈ H, e ∈ E, s ∈ S} versus {fbaseline(h, e, s) : h ∈ H, e ∈ E, s ∈ S}, where

28

Published as a conference paper at ICLR 2021

H is the set of training hyperparameters. In other words, we test whether a regularizer’s performance
over training hyperparameters, environments, and seeds is significantly different from that of baseline.
We conducted experiments on 2 easy environments and 3 hard environments. We obtain 5 hyperpa-
rameters * 5 seeds * 2 envs = 50 data samples for "easy" environments, 5 * 5 * 3 = 75 for "hard", and
50 + 75 = 125 samples for "total". In the last three columns, we aggregate the data from each policy
optimization algorithm. We obtain 50 * 4 = 200 data samples for "easy", 75 * 4 = 300 for "hard", and
200 + 300 = 500 for "total". The sample size is large enough and satisfy our condition for Welch’s
t-test.

We further plot the distribution of our z-score metric in the quantile-quantile (Q-Q) plots in Figure 6
and Figure 7. A Q-Q plot plots the quantiles of two distributions X and Y against each other, where
in our case X is normal. If the plot approximately follows the line y = x, then the two distributions
have approximately the same cumulative distribution function (CDF). In our case, this means that Y
is approximately normal. We observe that empirically, the distribution of our performance metric is
close to normal. As a result, the t-statistic we calculate from our samples is close to the t-distribution
with parameter n, which converges to N (0, 1) quickly as n increases.

1 0 1 2

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Sa
m

pl
e

Qu
an

til
es

TRPO L2

1 0 1 2
Normal Theoretical Quantiles

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Sa
m

pl
e

Qu
an

til
es

TRPO baseline
1 0 1 2

1

0

1

2

SAC L2

4 2 0 2
Normal Theoretical Quantiles

5

4

3

2

1

0

1

2

SAC baseline
1 0 1 2

1

0

1

2

TOTAL L2

4 2 0 2
Normal Theoretical Quantiles

4

2

0

2

TOTAL baseline

Figure 6: Quantile-Quantile (Q-Q) plot for our z-score metric on all environments under the default hyperparame-
ter setting in Section 3. As an example, in the first figure, the x-axis denotes the theoretical quantile for the normal
distribution with mean and standard deviation from {freg(e, s) : e ∈ E, s ∈ S} when we apply L2 regularization
on TRPO. The blue points denote the actual quantiles of {freg(e, s) : e ∈ E, s ∈ S}. The red line denotes what
the quantile-quantile relation looks like if {freg(e, s) : e ∈ E, s ∈ S} were perfectly normal. We observe that
the blue points are close to the red line, suggesting that the distribution of {freg(e, s) : e ∈ E, s ∈ S} is close to
a normal distribution. Similarly, we observe that {fbaseline(e, s) : e ∈ E, s ∈ S} is close to normal.

We have presented the mean values for our performance metrics (z-scores in Table 2, 3; average
ranking in Table 22, 23; scaled return in Table 26, 29). Given statistical significance, whether a
regularizer improves upon baseline depends on whether the performance metric is higher than the
baseline. For example, in the "Total" column and "hard" subcolumn of Table 2, the z-score of L2

regularization is 0.58, while the z-score of baseline is -0.27. The p-value in the corresponding entry
of Table 15 is 0.00. Therefore, L2 regularization significantly improves over the baseline on hard
tasks. Note that the p-value is not a standalone performance metric. It only serves as a complement
to our metrics and indicates whether the performance of a regularizer differs significantly from our
baseline.

In addition, we note that the Figure 5 in Henderson et al. (2018) shows that, under the same
hyperparameter configuration, two sets of 5 different runs on the HalfCheetah environment can be

29

Published as a conference paper at ICLR 2021

1 0 1 2 3

1

0

1

2

3

Sa
m

pl
e

Qu
an

til
es

A2C L2

1 0 1 2
Normal Theoretical Quantiles

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Sa
m

pl
e

Qu
an

til
es

A2C baseline
1 0 1 2 3

1

0

1

2

3
PPO L2

2 1 0 1 2
Normal Theoretical Quantiles

2

1

0

1

2

PPO baseline
2 0 2

2

1

0

1

2

3
TOTAL L2

2 0 2
Normal Theoretical Quantiles

3

2

1

0

1

2

TOTAL baseline

Figure 7: Quantile-Quantile (Q-Q) plot for our z-score metric on all environments under the 5 sampled
hyperparameters in Section 4. We observe that the blue points are close to the red line, suggesting that the
distribution of {freg(h, e, s) : h ∈ H, e ∈ E, s ∈ S} is close to a normal distribution. Similarly, we observe
that {fbaseline(h, e, s) : h ∈ H, e ∈ E, s ∈ S} is close to normal.

significantly different from each other. We find that the unique environment property of HalfCheetah
contributes to such observation. For A2C, PPO, and TRPO on HalfCheetah, there is a certain
probability that the policy found is suboptimal, where the half cheetah robot runs upside-down using
its head. In this case, the final return never rises above 2200. In other cases, the half cheetah robot
runs using its legs, and the final return is almost always above 4000. Therefore, it is possible that
in a set of 5 runs, 4 of the runs have final returns above 4000, while for another set of 5 runs, 4 of
the runs have final returns below 2200. This causes a significant performance difference between
the two sets of runs. However, for all other environments, the final return is approximately normally
distributed with respect to seeds, instead of categorically distributed like HalfCheetah. The variance
on the other environments is much smaller than that of HalfCheetah. For example, according to Table
3 of Henderson et al. (2018), PPO Walker’s 95% confidence interval for the final return has a range
of 800, while HalfCheetah has a range of 2200. Thus, other environments do not yield as much
fluctuations as HalfCheetah. In fact, in our experiments under the default hyperparameter setting
in Section 3, we do not find any regularization on any algorithm to "improve" upon HalfCheetah,
according to our definition that a regularizer "improves" upon the baseline in Section 3. Thus, our
observations do not change if we take away the HalfCheetah environment.

30

Published as a conference paper at ICLR 2021

L REGULARIZATION WITH A FIXED STRENGTH

In previous sections, we tune the strength of regularization for each algorithm and environment,
as described in Appendix C. Now we restrict the regularization methods to a single strength for
each algorithm, across different environments. The results are shown in Table 32 and 33. The
selected strength are presented in Table 34. We see that the L2 regularization is still generally the
best performing one, but SAC is an exception, where BN is better. This can be explained by the fact
that in SAC, the reward scaling coefficient is different for each environment, which potentially causes
the optimal L2 and L1 strength to vary a lot across different environments, while BN does not have a
strength parameter.

Table 32: Percentage (%) of environments that, when using a regularization, ”improves”. For each algorithm,
one single strength for each regularization is applied to all environments.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Entropy 33.3 66.7 55.6 0.0 33.3 22.2 0.0 16.7 11.1 0.0 16.7 11.1 8.3 33.3 25.0
L2 0.0 50.0 33.3 0.0 50.0 33.3 33.3 66.7 55.6 33.3 33.3 33.3 16.7 50.0 38.9
L1 0.0 33.3 22.2 0.0 50.0 33.3 33.3 50.0 44.4 33.3 33.3 33.3 16.7 41.7 33.3

Weight clipping 0.0 0.0 0.0 33.3 33.3 33.3 33.3 50.0 44.4 33.3 0.0 11.1 25.0 20.8 22.2
Dropout 0.0 0.0 0.0 N/A N/A N/A 33.3 50.0 44.4 66.7 16.7 33.3 33.3 22.2 25.9

BatchNorm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 11.1 33.3 50.0 44.4 8.3 16.7 13.9

Table 33: The average z-score for different regularization methods. For each algorithm, one single strength for
each regularization is applied to all environments.

Reg \ Alg A2C TRPO PPO SAC TOTAL
Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total Easy Hard Total

Baseline 0.56 0.08 0.24 0.38 0.22 0.27 0.38 -0.39 -0.14 0.15 -0.14 -0.04 0.37 -0.06 0.08
Entropy 1.07 0.86 0.93 0.25 0.33 0.3 0.02 -0.25 -0.16 -0.03 -0.22 -0.16 0.33 0.18 0.23
L2 0.82 1.05 0.97 0.33 0.44 0.40 0.39 0.68 0.58 -0.33 0.08 -0.06 0.30 0.56 0.48
L1 0.39 -0.01 0.12 0.22 0.63 0.49 0.32 0.44 0.40 -0.14 -0.15 -0.15 0.20 0.23 0.22

Weight Clip -0.87 0.14 -0.20 0.38 0.19 0.25 0.39 0.36 0.37 -0.19 -0.36 -0.30 -0.08 0.09 0.03
Dropout -0.96 -1.01 -0.99 N/A N/A N/A -0.05 -0.19 -0.15 0.61 0.33 0.43 -0.13 -0.29 -0.24

BatchNorm -1.00 -1.11 -1.07 -1.54 -1.81 -1.72 -1.44 -0.64 -0.91 -0.08 0.45 0.27 -1.02 -0.78 -0.86

Table 34: The fixed single regularization strengths that are used in each algorithm to obtain results in Table 32
and Table 33.

Reg \ Alg A2C TRPO PPO SAC
Entropy 5e− 4 5e− 4 5e− 4 1.0
L2 1e− 4 5e− 4 5e− 4 5e− 2
L1 1e− 4 1e− 4 1e− 4 5e− 3

Weight clipping 0.2 0.2 0.2 0.3
Dropout 0.05 0.05 0.05 0.2

BatchNorm True True True True

31

Published as a conference paper at ICLR 2021

M DDPG RESULTS

To study the effect of regularization on off-policy algorithms, besides the SAC results, we also present
results on DDPG (Lillicrap et al., 2016) in Table 35. We run DDPG on 5 MuJoCo environments:
Hopper, Walker, Ant, Humanoid, and HumanoidStandup. We did not run DDPG on HalfCheetah
due to its large variance. We then analyze the performance through the calculation of z-scores,
and we also perform Welch’s t-test. Note that entropy regularization is not applicable here because
DDPG’s policy network outputs a deterministic action. We obtain similar observations as we did
in SAC. Notably, Dropout and Batch Normalization can be useful in DDPG, as indicated by the
higher average z-score than the baseline, which supports our hypothesis that they can be helpful on
off-policy algorithms.

Table 35: The average z-score for each regularization method on DDPG, and p-value from Welch’s t-test
comparing the regularization methods to the baseline.

Reg z-score p-value
Baseline -0.71 /
L2 0.1 0.01
L1 0.44 0.00

Weight Clip -0.12 0.04
Dropout 0.47 0.00

BatchNorm -0.17 0.05

32

Published as a conference paper at ICLR 2021

N REGULARIZING WITH L2 AND ENTROPY

We also investigate the effect of combining L2 regularization with entropy regularization, given that
both cases of applying one of them alone yield performance improvement. We take the optimal
strength of L2 regularization and entropy regularization together and compare with applying L2

regularization or entropy regularization alone. From Figure 8, we find that the performance increases
for PPO HumanoidStandup, approximately stays the same for TRPO Ant, and decreases for A2C
HumanoidStandup. Thus, the regularization benefits are not always addable. This phenomenon is
possibly caused by the fact that the algorithms already achieve good performance using only L2

regularization or entropy regularization, and further performance improvement is restrained by the
intrinsic capabilities of algorithms.

0.0 0.5 1.0 1.5 2.0
1e7

0.5

1.0

1.5

2.0

1e5 A2C HumanoidStandup

baseline entropy L2 entropy+L2

0.0 0.5 1.0 1.5 2.0
1e7

0

1

2

3

4

1e3 TRPO Ant

0.0 0.5 1.0 1.5 2.0
1e7

1.50

1.75

2.00

2.25

2.50

2.75

3.00
1e5 PPO HumanoidStandup

Figure 8: The effect of combining L2 regularization with entropy regularization. For PPO HumanoidStandup,
we use the third randomly sampled hyperparameter setting. For A2C HumanoidStandup and TRPO Ant, we use
the baseline as in Section 3.

33

Published as a conference paper at ICLR 2021

O L2 REGULARIZATION VS. FIXED WEIGHT DECAY (ADAMW)

For the Adam optimizer (Kingma & Ba, 2015), “fixed weight decay” (AdamW in Loshchilov &
Hutter (2019)) differs from L2 regularization in that the gradient of 1

2λ||θ||
2 is not computed with the

gradient of the original loss, but the weight is “decayed” finally with the gradient update. For Adam
these two procedures are very different (see Loshchilov & Hutter (2019) for more details). In this
section, we compare the effect of adding L2 regularization with that of using AdamW, with PPO on
Humanoid and HumanoidStandup. The result is shown in Figure 9. Similar to L2, we briefly tune
the strength of weight decay in AdamW and the optimal one is used. We find that while both L2

regularization and AdamW can significantly improve the performance over baseline, the performance
of AdamW tends to be slightly lower than the performance of L2 regularization.

0.0 0.5 1.0 1.5 2.0
1e7

0

2

4

6

8

1e3 PPO Humanoid
baseline
L2_Adam
WeightDecay

0.0 0.5 1.0 1.5 2.0
1e7

0.5

1.0

1.5

2.0

2.5

1e5 PPO HumanoidStandup
baseline
L2_Adam
WeightDecay

Figure 9: Comparison between L2 regularization and weight decay. For PPO Humanoid and HumanoidStandup,
we use the third randomly sampled hyperparameter setting.

34

Published as a conference paper at ICLR 2021

P ADDITIONAL TRAINING CURVES (DEFAULT HYPERPARAMETERS)

0 1 2 3 4 5
1e6

0.0

0.5

1.0

1.5

2.0

1e3 A2C Hopper

0.0 0.5 1.0 1.5 2.0
1e7

0.5

1.0

1.5

2.0

1e5 A2C HumanoidStandup

0 1 2 3 4 5
1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e3 TRPO Hopper

0.0 0.5 1.0 1.5 2.0
1e7

0.6

0.8

1.0

1.2

1.4

1.6

1e5 TRPO HumanoidStandup

0 1 2 3 4 5
1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e3 PPO Hopper

0.0 0.5 1.0 1.5 2.0
1e7

1.00

1.25

1.50

1.75

2.00

2.25
1e5 PPO HumanoidStandup

0.0 0.2 0.4 0.6 0.8 1.0
1e6

1

2

3

1e3 SAC Hopper

0 1 2 3 4 5
1e6

1.2

1.4

1.6

1.8

2.0

2.2

1e5 SAC HumanoidStandup

0 1 2 3 4 5
1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e3 A2C Walker

0 1 2 3 4 5
1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 1e3 A2C HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.00

0.25

0.50

0.75

1.00

1.25

1.50 1e3 A2C HumanoidFlagrun

0 1 2 3 4 5
1e6

0

1

2

3

4

1e3 TRPO Walker

0 1 2 3 4 5
1e6

0

1

2

3

1e3 TRPO HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e8

0.8

1.0

1.2

1.4

1.6

1.8

1e3 TRPO HumanoidFlagrun

0 1 2 3 4 5
1e6

0

1

2

3

4

5
1e3 PPO Walker

0 1 2 3 4 5
1e6

0

1

2

3

4

1e3 PPO HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e8

1.0

1.2

1.4

1.6

1.8

2.0

1e3 PPO HumanoidFlagrun

0.0 0.2 0.4 0.6 0.8 1.0
1e6

1

2

3

4

1e3 SAC Walker

0 1 2 3
1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50
1e4 SAC HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.8

1.0

1.2

1.4

1.6

1.8

1e3 SAC HumanoidFlagrun

baseline entropy L2 L1 weight clip dropout batchnorm

Figure 10: Return vs. timesteps, for four algorithms (columns) and five environments (rows).

As a complement with Figure 1 in Section 3, we plot the training curves of the other five environments
in Figure 10.

35

Published as a conference paper at ICLR 2021

Q TRAINING CURVES FOR HYPERPARAMETER EXPERIMENTS

In this section, we plot the full training curves of the experiments in Section 4 with five sampled
hyperparameter settings for each algorithm in Figure 11 to 14. The strength of each regularization is
tuned according to the range in Appendix C.

Figure 11: Training curves of A2C regularizations under five randomly sampled hyperparameters.

36

Published as a conference paper at ICLR 2021

Figure 12: Training curves of TRPO regularizations under five randomly sampled hyperparameters.

37

Published as a conference paper at ICLR 2021

Figure 13: Training curves of PPO regularizations under five randomly sampled hyperparameters.

38

Published as a conference paper at ICLR 2021

Figure 14: Training curves of SAC regularizations under five randomly sampled hyperparameters.

39

Published as a conference paper at ICLR 2021

R TRAINING CURVES FOR POLICY VS. VALUE EXPERIMENTS

We plot the training curves with our study in Section 5 on policy and value network regularizations in
Figure 15-18.

Figure 15: The interaction between policy and value network regularization for A2C. The optimal policy
regularization and value regularization strengths are listed in the legends. Results of regularizing both policy and
value networks are obtained by combining the optimal policy and value regularization strengths.

40

Published as a conference paper at ICLR 2021

Figure 16: The interaction between policy and value network regularization for TRPO.

41

Published as a conference paper at ICLR 2021

Figure 17: The interaction between policy and value network regularization for PPO.

42

Published as a conference paper at ICLR 2021

Figure 18: The interaction between policy and value network regularization for SAC.

43

Published as a conference paper at ICLR 2021

S ATARI EXPERIMENTS

We present results on 5 randomly sampled Atari environments (Asteroids, Pacman, Qbert, Roadrunner,
Riverraid) in Table 36. Note that SAC not applicable here because it requires the environment to
have continuous action space, while Atari environments have discrete action space. We find that
L2 regularization can still significantly improve over the baseline, while L1 and weight clipping are
slightly less effective. Interestingly, while BN still significantly harms performance on on-policy
environments (A2C, TRPO, PPO), dropout can significantly outperform the baseline. We also observe
that, different from continuous control tasks, entropy regularization can improve a lot on baseline,
perhaps due to the action space being discrete.

Table 36: Average z-scores on Atari envs with p-values testing regularizers against baseline.

Reg \ Alg A2C TRPO PPO TOTAL p-value
Baseline 0.10 0.07 0.03 0.07 N/A
Entropy 0.59 0.24 0.65 0.49 0.00
L2 0.23 0.49 0.39 0.37 0.01
L1 0.01 0.15 0.15 0.10 0.73

Weight Clip 0.14 -0.16 0.09 0.03 0.74
Dropout 0.43 N/A 0.55 0.49 0.00

BatchNorm -1.51 -0.79 -1.86 -1.39 0.00

44

