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ABSTRACT

This paper explores the key factors that influence the performance of models work-
ing with point clouds, across different tasks of varying geometric complexity. In
this work, we explore the trade-offs between flexibility and weight-sharing intro-
duced by equivariant layers, assessing when equivariance boosts or detracts from
performance. It is often argued that providing more information as input improves
a model’s performance. However, if this additional information breaks certain
properties, such as SE(3) equivariance, does it remain beneficial? We identify
the key aspects of equivariant and non-equivariant architectures that drive success
in different tasks by benchmarking them on segmentation, regression, and gen-
eration tasks across multiple datasets with increasing complexity. We observe a
positive impact of equivariance, which becomes more pronounced with increasing
task complexity, even when strict equivariance is not required.

1 INTRODUCTION

The inductive bias of weight sharing in convolutions, as introduced in LeCun et al. (2010) tradi-
tionally refers to applying the same convolution kernel (a linear transformation) across all neigh-
borhoods of an image. To extend this to transformations beyond translations, Cohen & Welling
(2016) introduced Group Equivariant CNN (G-CNNs), adding group equivariance properties to en-
compass group actions and have weight-sharing across group convolution kernels. G-CNN layers
are explicitly designed to maintain equivariance under group transformations, allowing the model
to handle transformations naturally without needing to learn invariance to changes that preserve ob-
ject identity. Following this work—in the spirit of ’convolution is all you need’ (Cohen et al., 2019),
several works emerged like (Ravanbakhsh et al., 2017; Worrall et al., 2017; Kondor & Trivedi, 2018;
Bekkers et al., 2018; Weiler et al., 2018; Cohen et al., 2019; Weiler & Cesa, 2019; Bekkers, 2019;
Sosnovik et al., 2019; Finzi et al., 2020). Advancements in geometric deep learning have demon-
strated the effectiveness of incorporating geometric structure as an inductive bias, which reduces
model complexity while enhancing generalization and performance (Bronstein et al., 2021). Thus,
incorporating group structure into neural networks has become a promising area of research.

However, there is a growing debate as to whether group structure is overly restrictive and if similar
advantages could be obtained by simply adding more data. To address this question, we thoroughly
investigate the impact of equivariant versus non-equivariant layers in various computational tasks.
We explore the balance between leveraging group structures that can provide powerful inductive
biases and maintaining the inherent model flexibility. We implemented a convolutional architec-
ture in which the linear layers are either classical or group convolution layers, whilst the overall
architecture remains otherwise identical for fair comparison. We evaluate this model on tasks of
varying complexity and the extent to which equivariance is desirable under the task description. Our
goal is to understand how these design choices affect performance, generalization capabilities, and
computational efficiency.

The contributions of this paper can be summarized as follows:

• Hypothesis formulation: We present a set of hypotheses that allow us to investigate the
different aspects of equivariant neural networks and symmetry breaking.
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• Empirical study: To test these hypotheses, we conduct experiments on the point cloud
datasets Shapenet 3D, QM9, and CMU Motion Capture across different tasks to assess the
empirical effects of using equivariant versus non-equivariant layers.

• Scalable architecture: We present a scalable architecture, Rapidash, based on recent
work on regular group convolutional architectures, that enables fast computation of differ-
ent group equivariant and non-equivariant methods, facilitating comprehensive testing of
our hypotheses.

2 BACKGROUND

In this section, we begin by explaining how equivariant neural networks differ from non-equivariant
ones, focusing on their architectural distinctions and the impact of weight-sharing—or the lack
thereof—on data efficiency. We then delve into the specifics of 3D convolutions and separable
group convolutions, which inform the design of the architecture presented later.

2.1 ARGUMENTS FOR AND AGAINST EQUIVARIANCE

Equivariant neural networks differ from standard networks in four key aspects:

1. High-dimensional representation spaces: They typically represent data on higher-
dimensional feature maps, allowing for richer internal representations.

2. Constraint layers: They employ constrained linear layers that are equivariant to specific
transformations, which, while less flexible, preserve important structural properties of data.

3. Weight-sharing: These constraints not only prevent overfitting to nuisance variables (e.g.
arbitrary rotations) but also introduce a form of weight-sharing that could benefit learning.

4. Data efficiency: Equivariant architectures are data efficient, as they do not need to learn
patterns repeatedly for different transformations (poses) under which they may appear.

When comparing equivariant networks such as group convolutional CNNs (GCNNs) to standard
CNNs, we observe that: (1) the higher dimensionality could possibly be offset in a standard CNN by
increasing hidden dimensions; (2) the equivariance constraint may disadvantage equivariant methods
in settings where such constraints are not crucial; however, (3) the induced weight-sharing and (4)
improved data efficiency might compensate for these limitations by enabling more effective and
efficient learning. So, there are arguments against (1-2) and in favor of G-CNNs (3-4).

This paper explores the scenarios in which G-CNNs outperform standard CNNs. We hypothesize
that equivariant networks offer advantages not only in tasks explicitly requiring equivariance but
also in challenging tasks where strict equivariance is not necessary.

2.2 INTRODUCTION TO EQUIVARIANT NEURAL NETWORKS

To address the above arguments we first provide a high-level introduction to group equivariant con-
volutions in this section and provide the technical details in the next Section 2.3.

Linear Layers and Equivariance Consider a vanilla neural network of the form:

NN(x) =
[
σ(L) ◦ L(L) ◦ . . . σ(2) ◦ L(2) ◦ σ(1) ◦ L(1)

]
(x) , (1)

where L(l) are linear layers and σ(l) are element-wise activation functions. The input x can represent
various data structures, such as images in RX×Y×C or graphs in RN×C . In such an architecture—as
well as in modern variants, the bulk of the computations are done through linear transformations L,
which form features as linear combinations of input patterns. For structured data, these linear trans-
formations are designed to be equivariant to preserve data structure. For instance, graph networks
require permutation equivariance, while image processing networks demand translation equivari-
ance. These constraints result in convolution operators which are efficiently implementable via
sparse and parallelized operations.

2
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Equivariant Layer Design G-CNNs are equivariant networks that operate over higher-
dimensional feature maps in which an additional axis (fiber) is used to keep track of feature informa-
tion relative to (sub-)groups of transformations. For example, regular roto-translation equivariant
group convolutions for image data add an extra axis for storing the response to rotated versions of a
convolution kernel (Cohen & Welling, 2016). In other words, a standard 2D CNN uses linear maps
L : RX×Y×C → RX×Y×C′

, where C and C ′ are the in- and output channel dimensions, X,Y the
spatial dimensions. A G-CNN internally uses linear layers L : RX×Y×F×C → RX×Y×F×C′

, in
which F is the number of grid points (e.g. discrete rotations) on which the feature maps are sampled.

Hidden Representations and Constraints While in principle increasing the dimensionality of
hidden representations can enhance capacity in both standard and equivariant networks, the key
distinction lies in the constraints imposed on the linear layers. Equivariant layers, despite potentially
having similar total dimensionality, are more constrained in their operations. This constraint, while
limiting flexibility, introduces beneficial properties such as weight-sharing and invariance to certain
transformations.

For instance, an unconstrained layer L : RX×Y×FC → RX×Y×FC′
may be more expressive than

an equivariant layer L : RX×Y×F×C → RX×Y×F×C′
, even when the total dimensionality of

the feature maps are equivalent. However, the equivariant layer’s constraints can lead to improved
generalization and sample efficiency in certain tasks. Our study aims to identify the conditions under
which the benefits of equivariance outweigh the potential limitations in expressivity, particularly in
tasks where strict equivariance is not explicitly required.

Equivariant Networks and Symmetry-Breaking Relaxing equivariant constraints to improve
generalization has been well studied. Finzi et al. (2021) presents RPP, which allows for relaxing
architectural constraints of equivariance by introducing neural network priors that allow for approx-
imate equivariance. Prior works like Wang et al. (2022); van der Ouderaa et al. (2022); Pertigkio-
zoglou et al. (2024) focus on relaxing equivariant constraints and show the benefit in performance on
learning approximate or partial equivariance. To understand the effects of explicit symmetry break-
ing while learning strict equivariance in tasks with different geometric complexity, our approach
consists of breaking a) internal symmetry and b) external symmetry. See A.3 for more details.

Data Efficiency and Large-Scale Learning The data efficiency provided by equivariant architec-
tures is a significant advantage, particularly in scenarios with limited data. By leveraging symmetries
in the data, these networks can learn patterns once and recognize them across various transforma-
tions, reducing the amount of data required for effective learning. However, as datasets grow larger,
a critical question emerges: Does the benefit of equivariance diminish when data is abundant? We
hypothesize that equivariant methods maintain their relevance even in large-scale learning scenarios
for several reasons:

1. Structured Representation Learning: The constraints imposed by equivariance guide the
network to learn more structured and potentially more meaningful representations, which
may generalize better regardless of dataset size.

2. Computational Efficiency: Equivariant networks can potentially learn from large datasets
more efficiently, requiring fewer parameters and computations to achieve similar or better
performance.

3. Inductive Bias: The equivariance constraint serves as a strong inductive bias, which may
lead to better generalization even when data is plentiful, by focusing the model on learning
relevant features rather than spurious correlations.

Our study aims to (empirically) investigate these hypotheses (precise formulation in Section 3.1),
comparing the performance and learning dynamics of equivariant networks against standard archi-
tectures across various dataset sizes and task complexities. By doing so, we seek to delineate the
conditions under which equivariance provides substantial benefits, even in the era of big data.

2.3 EQUIVARIANT LINEAR LAYERS (CONVOLUTIONS)

3D Point Cloud Convolutions Let us consider a 3D point cloud X = {x1,x2, . . . ,xN} ⊂ R3 of
N points and assume feature fields f : X → RC . Thus with every point xi we have an associated

3
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C-dimensional feature vector f(xi) ∈ RC . We further assume connectivity between points to be
given in the form of neighborhood sets, that is, let N (i) ⊂ V denote a subset of nodes connected to
node i, with V = {1, 2, . . . , N} indicating the set that indexes the point cloud.

The general form of a linear layer for such point cloud feature fields is given by (Bekkers, 2019)

[Lf ](xi) =
∑

j∈N (i)

k(xi,xj)f(xj) , (2)

where we note that k(xi,xj) ∈ RC′ × RC is a matrix depending on both the receiving and sending
nodes, i and j respectively, such that the output feature map has C ′ channels. Also, note that the
aggregation is permutation invariant. In works such as (Cohen et al., 2019; Bekkers, 2019) it is
shown that when constraining linear layers of the form (2) to be equivariant, they become (group)
convolutions. For example, if we want (2) to be translation equivariant, it has to take the form

[Lf ](xi) =
∑

j∈N (i)

k(xj − xi)f(xj) . (3)

I.e., k(xi,xj) must then be constrained to be a one-argument kernel k(xj −xi), conditioned on rel-
ative position. If we further want the linear layer to be equivariant to both translations and rotations,
the kernel is further constrained to be symmetric via

[Lf ](xi) =
∑

j∈N (i)

k(∥xj − xi∥)f(xj) . (4)

I.e., the kernel can only depend on pair-wise distances. The influential works Schnett (Schütt et al.,
2023) and PointConv (Wu et al., 2019) are of this type.

Group convolutions In case one does not want to impose any further constraints on the kernel k
but still wants to remain fully SE(3) equivariant, one has no other option than adding an axis over
which to organize convolution responses in terms of rotations (Bekkers, 2019, Theorem 1). One
then has to utilize lifting convolutions, followed by group convolutions:

lifting conv: [Lf ](xi,R) =
∑

j∈N (i)

k(RT (xj − xi))f(xj) , (5)

group conv: [Lf ](xi,R) =
∑

j∈N (i)

∫
SO(d)

k(RT (xj − xi),R
T R̃)f(xj , R̃)dR̃ , (6)

with dR̃ denoting the Haar measure over the rotation group SO(3). Note that now the convolution
kernel in equation 5 is an unconstrained function over R3, and that of Eq. 6 over R3 × SO(3), and
that this kernel is rotated for every possible R ∈ SO(3). Both the lifting and group convolution
layers generate feature maps X × SO(3) → RC′

over the joint space of positions X ⊂ R3 and
rotations SO(3). In other words, at each point xi we now have a signal over the rotation group
SO(3) which stores the convolution response for every “pose” R in SO(3), and the linear layer is
defined using convolution kernels that match feature patterns of relative spatial and rotational poses.

Eqs. 5 and 6 are forms of regular group convolutions Cohen & Welling (2016). Brandstetter et al.
show that such layers can also be implemented through tensor field layers (Thomas et al., 2018),
which form a popular class of steerable group convolutions that are parametrized by Clebsch-Gordan
tensor products and work with vector fields that transform via irreducible representations (Weiler
et al., 2021). Following Bekkers et al. (2024), we note however, that tensor-field networks unneces-
sarily constrain neural network design—as they require specialized activation functions, they require
in-depth knowledge of representation theory, and they are computationally demanding due to the use
of Glebsch-Gordan tensor products. Our study therefore focuses on regular group convolutions.

Separable group convolution Regular group convolutions can be efficiently computed when the
kernel is factorized via

kc′c(x,R) = kR
3

c (x)kSO(3)
c (R)k

(channel)
c′c ,

with c, c′ the row and column indices of the ”channel mixing” matrix. Then Eq. 6 can be split into
three steps that are each efficient to compute: a spatial interaction layer (message passing), a point-
wise SO(3) convolution, and a point-wise linear layer (Knigge et al., 2022; Kuipers & Bekkers,
2023). It would result in the group convolutional counterpart of depth-wise separable convolution
(Chollet, 2017), which separates convolution in two steps (spatial mixing and channel mixing).
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Compute and memory-efficient group convolutions Finally, we base our equivariant layers on
recent work (Bekkers et al., 2024) that defines separable SE(3) group convolutions over the space
X × S2, thus working with feature fields of spherical S2 signals instead of SO(3)-signals. In
that work it is shown that such models are computationally and memory-wise more efficient than
full group convolutions over X × SO(3), whilst maintaining expressivity and the universal ap-
proximation property of equivariant functions (Bekkers et al., 2024, Corrolary 1.1), despite the
convolution kernels—which are functions over R3 × S2—having a symmetry constraint given by
∀R∈SOz(2) : k(Rx,Rn) = k(x,n) , with SOz(2) the group of rotations around the z-axis and
n ∈ S2. I.e., the kernels are axially symmetric.

When factorizing such kernels into a spatial, orientation, and channel component via k(x,n) :=

k(R
3)(x)k(S

2)(n)k(channel), the group convolution is split into three steps

L = L(channel) ◦ L(S2) ◦ L(R3) (7)
with

[L(R3)f ](xi,n) :=
∑

j∈N (i)

k(R
3)(RT

n (xj − xi))⊙ f(xi) , (8)

which is just a spatial convolution in which the kernel is a function R3 → RC that for each transla-
tion, relative to the orientation n ∈ S2, returns a C-dimensional vector that is element-wise multi-
plied with the feature at the neighboring location. Then, L(S2) is a point-wise spherical convolution

[L(S2)f ](xi) =

∫
S2

k(S
2)(nT ñ)⊙ f(xi, ñ)dñ , (9)

again, with no channel-mixing taking place. Note that when the sphere S2 is dis-
cretized with O number of orientations, Eq. 9 is implemented as a point-wise ma-
trix multiplication with a precomputed kernel matrix of size O × O × C, e.g. via
einsum("noc,poc->npc", features, spherical_kernel), with tensors of f being
of dimensions N × O × C. Finally, L(channel) is simply a point-wise linear layer that mixes the
channels without any spatial or orientation mixing, i.e., it is distributed over all points (N axis) and
orientations (O axis) and thus is efficiently computed.

Handling vector input and outputs The result of the R3×S2-convolutional network is a spherical
signal per node, and this allows to predict displacement vectors per node by simply taking a weighted
sum of the spherical grid points over which the signal is sampled. I.e.,

vout
i =

∑
ñ∈S

f(xi, ñ)ñ .

Similarly, input vectors vin
i at nodes i can be embedded as spherical signals f(xi,n) = nTvin

i
simply by taking the inner product between the reference vector (grid point) n and the input vector.
The R3×S2 group convolution paradigm thus allows us to build universal equivariant approximators
that can predict vectors in an equivariant manner, as well as take them as inputs.

3 EXPERIMENTAL DESIGN

In this section, we present our hypotheses aimed at understanding the effect of equivariance, fol-
lowed by architectural designs specifically crafted so that these models can evaluate the hypotheses.

3.1 HYPOTHESES ON THE IMPACT OF EQUIVARIANCE

Our main hypothesis is that equivariance is useful for two primary reasons:

1. Equivariance promotes weight sharing and is thus data efficient.
2. Equivariance guarantees generalization over symmetries.

However, we also recognize that standard (non-equivariant) neural networks may not need to rely
on these properties when a large amount of data is available. In such cases, the first argument no
longer applies, and the second argument becomes less significant because a large training set might
be representative of the test set—or, in a sense, even include it.1. Moreover, data augmentation might

1A highly unlikely scenario when dealing with real-world data.
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Figure 1: Progression of tasks based on geometric complexities.

be used to promote generalization over symmetries2. We thus formulate the following hypothesis,
which will be tested with scaling experiments, with data augmentation enabled in both cases.

Hypothesis 1 (Scaling laws) For tasks that require invariance or equivariance, both equivariant
and non-equivariant models will converge to similar performance with increasing dataset size.

(a) In the large-scale regime both equivariant and non-equivariant will perform equally well.

(b) In small-scale data regimes equivariant models will outperform non-equivariant models.

We must also consider task complexity, shown in Figure 1. We will focus the study on tasks that
require either invariance or equivariance and formulate the following hypothesis to study the role of
equivariance in tasks with varying geometric complexity.

Hypothesis 2 (Geometric complexity) The advantages of equivariant methods over non-
equivariant ones become more pronounced in tasks that require a stricter form of equivariance.

(a) For invariant tasks the gap in performance between equivariant and non-equivariant mod-
els will be less pronounced than in equivariant tasks.

(b) There is a hierarchy of tasks in terms of how geometrically demanding they are, and thus
to what extent equivariance is needed.

• Low complexity: Invariant tasks like classification and regression;
• Moderate complexity: Equivariant tasks that make point-wise scalar predictions rel-

ative to a geometry (shape), like segmentation;
• High complexity: Equivariant tasks that make point-wise vector predictions relative

to a geometry, like denoising diffusion models and dynamics forecasting methods.

The performance gap will increase with geometric complexity.

Next, we want to investigate the effect of expanding the domain over which features are organized.
In group convolutions, one typically adds an additional axis to store features that have a meaning
relative to a set or grid of reference poses. For example, consider a classical CNN with a 256-
dimensional feature vector per node (Table 1: rows 1-4, 16− 19). A G-CNN with the same number
of independent features per node effectively has O × 256 dimensional feature vectors per node and
arguably more representation capacity (rows 5-11). To test the following hypothesis, models with
equal representation capacity need to be compared.

Hypothesis 3 (Representation capacity) Under the same representation capacity (e.g. same num-
ber of total channels per node), equivariant and non-equivariant models perform on par.

The previous hypothesis is likely to be rejected because even when the dimensionality of the repre-
sentation spaces might be the same (e.g. models 1-4 in comparison to 16-19), the invariant models
are constrained to only produce invariant feature vectors and thus have a smaller effective dimension-
ality. For all models, we have universal approximation results (invariant or equivariant), so as long

2Moskalev et al. (2023) however empirically showed that at best, an apparent equivariance property is
attained, which breaks under distribution shifts.
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as we reach the limit of performance per model we cannot say that one model was structurally lim-
ited to finding the solution, especially when considering strictly invariant/equivariant tasks. Then,
what could cause a difference in performance, if both types of models could represent the optimal
solution, in principle? We thus formulate the following two hypotheses.

Hypothesis 4 (Kernel constraint) We expect that unconstrained (translational) models (Eq. 3) out-
perform (roto-translation) models (Eq. 4) over R3 as the former is less constrained. Similarly, we
expect that SE(3) equivariant group convolution methods (Eq. 7) outperform the constrained R3

convolutional models (Eq. 4), even when matched in representation capacity.

Considering the above hypothesis, it might also be beneficial to break equivariance, i.e., allow a
model to learn non-equivariant solutions even though it is primed for equivariant solutions. In Sec-
tion 4 we test several options for breaking equivariance by providing features defined in the global
coordinate system as input features. Not only will this break equivariance it will also provide the
models with an explicit representation of geometry, whereas strictly equivariant models only have
access to geometry implicitly via pair-wise relations that condition the convolution kernels. We thus
formulate the following.

Hypothesis 5 (Symmetry breaking and explicit geometric representations) In non-equivariant
tasks, where symmetry breaking is allowed, models that are provided with explicit geometric infor-
mation (such as taking coordinates as features) outperform those that do not have this information.

3.2 ARCHITECTURE

Figure 2: Block design for Rapidash
with base space R3 (L) and R3×S2 (R).

Based on (Bekkers et al., 2024), we design a model class
called Rapidash that is capable of incorporating vari-
ous forms of equivariances, and thus has the flexibility to
test the above hypotheses.

ConvNext blocks Our architecture is fully convolu-
tional and is based on the ConvNext block from Liu et al.
(2022). See 2 for an illustration. The block consists of the
following sequence of operations: a depth-wise separable
convolution, followed by a LayerNorm, then a point-wise
linear layer that increases the channel dimension four-
fold, a GELU activation, and a linear back to the original
channel dimensions. This output is added via a skip con-
nection. The depth-wise separable convolution is either implemented via Eq. 3 or 4 for the classical
(base space R3) architecture, and via Eq. 8 and 9 in the R3 × S2 case. Thus, the only difference to
the point-cloud implementation of ConvNext is that in our group convolutional implementation, the
convolution is over R3 × S2 instead of just over R3.

Rapidash To handle large point clouds, such as in the ShapeNet experiments, we need down-
and up-sampling layers. Downsampling happens via strided convolution, by subsampling the point
cloud using farthest point sampling, and only evaluating the convolution at the down-sampled points.
Up-sampling does the inverse; it is also just a convolution layer, but sampled on a denser grid. See
figure 2. The resulting model is in essence a multi-scale version of PΘNITA (Bekkers et al., 2024)
and will be referred to as Rapidash.

4 EXPERIMENTS

We present a thorough analysis of the hypotheses mentioned in Section 3 through a series of ex-
periments on various point cloud datasets like Shapenet 3D, QM9, and the CMU human motion
prediction dataset, which are tasks with increasing levels of complexity (Fig. 1). For each of the
experiments, we have different variations of Rapidash arising from equations Eq. 3 or 4 for R3

and Eq. 8 and 9 in R3 × S2 case, all with different input variations. For each table, the top section
shows models with SE(3) equivariance, and the bottom section shows models with T3 equivariance.
Symmetry breaking is indicated by: ! (SE(3)), ! (T3 or SO(3)), and ! (conditional SO(3)). A
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✓indicates an option is used, ✗, indicates it is not used, and ”-” indicates the option is not avail-
able. ➟ marks the model with maximal equivariance and information access. All experiments use
Rapidash under different equivariance constraints. Note, all models have implicit access to posi-
tional information via pair-wise geometric attributes. For implementation details see App. A.5. Our
code is made available at [see anonymous supplementary .zip file].

4.1 3D POINT CLOUD SEGMENTATION AND GENERATION EXPERIMENTS

In this experiment, we evaluate our models on the ShapeNet 3D dataset (Chang et al., 2015) part
segmentation and generation tasks. ShapeNet consists of 16,881 shapes from 16 categories. Each
shape is annotated with up to six parts, totaling 50 parts. We use the point sampling of 2,048
points and the train/validation/test split from (Qi et al., 2017). We compare our models to various
state-of-the-art methods like PointnXt (Qian et al., 2022), Deltaconv (Wiersma et al., 2022), and
GeomGCNN (Srivastava & Sharma, 2021)for the part segmentation task. For the generation task,
we compare to the latent diffusion model, LION, (Zeng et al., 2022).

Table 1: Ablation study on ShapeNet 3D dataset for part segmentation task (using mean intersection
over union (IOU) as the performance metric) for both the aligned and randomly rotated dataset, and
shape generation experiments using the one-nearest-neighbor accuracy (1-NNA) metric. Best result
per section in blue.

Rapidash with internal SE(3) Equivariance Constraint

Model
Variation

Type
!

Coordinates
as Scalars

!
Coordinates
as Vectors

!
Normals

as Scalars
Normals

as Vectors

!
Global
Frame

Effective
Equivariance

IOU ↑
(aligned)

IOU↑
(rotated)

1-NNA ↓
CD

Normalized
Epoch
Time

1 R3 ✗ - ✗ - - SE(3)
80.26±0.06

80.31±0.15

80.33±0.13

80.20±0.07
- ∼ 1

∼ 10

2 R3 ✗ - ✓ - - T3
83.95±0.06

83.87±0.09

52.09±0.87

49.63±0.87
- ∼ 1

∼ 10

3 R3 ✓ - ✗ - - none 84.23±0.08

84.01±0.06

34.15±0.05

32.22±0.27
65.92±0.98

∼ 1
∼ 10

4 R3 ✓ - ✓ - - none 84.75±0.02

84.48±0.16

34.07±0.43

32.90±0.47
- ∼ 1

∼ 10
5 R3 × S2 ✗ ✗ ✗ ✗ ✗ SE(3) 84.10±0.13 84.75±0.10 - ∼ 5
6 R3 × S2 ✗ ✗ ✗ ✗ ✓ SE(3) 85.52±0.13 85.79±0.10 64.25±0.30 ∼ 5
7 R3 × S2 ✗ ✗ ✗ ✓ ✗ SE(3) 84.35±0.12 84.74±0.05 - ∼ 5

➟ 8 R3 × S2 ✗ ✗ ✗ ✓ ✓ SE(3) 85.69±0.10 85.81±0.06 - ∼ 5
9 R3 × S2 ✗ ✓ ✗ ✗ ✗ SO(3) 84.17±0.12 84.55±0.17 - ∼ 5

10 R3 × S2 ✗ ✓ ✗ ✗ ✓ SO(3) 85.28±0.09 85.61±0.03 62.09±1.04 ∼ 5
11 R3 × S2 ✗ ✓ ✗ ✓ ✗ SO(3) 84.44±0.16 84.68±0.07 - ∼ 5
12 R3 × S2 ✗ ✓ ✗ ✓ ✓ SO(3) 85.48±0.07 85.80±0.08 - ∼ 5
13 R3 × S2 ✗ ✗ ✓ ✗ ✗ T3 85.62±0.06 45.04±1.62 - ∼ 5
14 R3 × S2 ✓ ✗ ✗ ✗ ✗ none 85.82±0.11 38.97±0.83 63.69±1.17 ∼ 5
15 R3 × S2 ✓ ✗ ✓ ✗ ✗ none 85.69±0.18 36.08±0.75 - ∼ 5

Rapidash with Internal T3 Equivariance Constraint

16 R3 ✗ - ✗ - - T3
85.26±0.01

85.38±0.05

31.41±0.86

32.78±0.59
67.49±0.41

∼ 1
∼ 10

17 R3 ✗ - ✓ - - T3
85.82±0.10

85.71±0.17

35.42±0.98

32.25±0.07
- ∼ 1

∼ 10

18 R3 ✓ - ✗ - - none 85.51±0.06

85.52±0.09

32.79±0.74

31.11±0.15
65.06±1.05

∼ 1
∼ 10

19 R3 ✓ - ✓ - - none 85.66±0.02

85.16±0.06

33.55±0.49

30.62±0.21
- ∼ 1

∼ 10

Reference methods from literature

LION - - - - - - - - - 51.85 -
PVD - - - - - - - - - 58.65 -
DPM - - - - - - - - - 62.30 -

DeltaConv - - - - - - - 86.90 - - -
PointNeXt - - - - - - - 87.00 - - -

GeomGCNN3 - - - - - - - 89.10 - - -

4.2 MOLECULAR PROPERTY PREDICTION AND MOLECULE GENERATION (DISCOVERY)

For predicting molecular properties and generating molecules, we use QM9 (Ramakrishnan R.,
2014), a dataset which consists of 130k small molecules and their 3-dimensional coordinates, along
with molecular properties, integer-valued atom charges, and atom coordinates. It contains up to
9 heavy atoms and 29 atoms including hydrogens. We use the train/val/test partitions introduced
in Gilmer et al. (2017), which consists of 100K/18K/13K samples respectively for each partition.
We evaluate the prediction of molecular properties using the MAE metric and compare these with
EGNN (Satorras et al., 2021), Dimenet++ (Gasteiger et al., 2022) and SE(3)- Transformer Fuchs
et al. (2020)

3GeomGCNN is trained with 1024 points instead of 2048.
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Table 2: Ablation study on QM9 for property prediction task using mean absolute error (MAE) as
the performance metric for three properties mu, alpha and ϵHOMO, as well as molecule generation
task (discovery) using atom stability, molecule stability and discover as performance metric.

Rapidash with internal SE(3) Equivariance Constraint

Regression Generation

Model
Variation

Type
!

Coordinates
as Scalars

!
Coordinates
as Vectors

Effective
Equivariance

MAE
µ

(D)

MAE
α

(a3o)

MAE
ϵHOMO

(meV)

Stab
Atom %

Stab
Mol % Discover %

Normalized
Epoch
Time

1 R3 ✗ - SE(3) 0.0185±0.0005
0.0609±0.0001

0.1196
24.21±0.20

31.87
- - - ∼ 1

∼ 20

2 R3 ✓ - none 0.0183±0.0003
0.0544±0.0001

0.1195
23.17±0.3

32.21
97.50±0.68 77.01±1.14 90.18±0.87

∼ 1
∼ 20

3 R3 × S2 ✗ ✗ SE(3) 0.0109±0.0005 0.034±0.10 20.43±.59 99.02±0.09 91.12±.41 91.61±.188 ∼ 10
➟ 4 R3 × S2 ✗ ✓ SO(3) 0.0107±0.001 0.0397±0.0011 18.80±3.24 99.29±.02 92.34±.20 91.13±.35 ∼ 10

5 R3 × S2 ✓ ✗ none 0.009±0.0007 0.038±0.005 18.42±0.31 97.77±.02 91.11±.53 90.42±.84 ∼ 10

Rapidash with Internal T3 Equivariance Constraint

6 R3 ✗ - T3 0.02196±0.023
0.0615±0.005

0.0940
28.02±.78

38.15
98.90±.03 86.1±.61 92.89±.32

∼ 1
∼ 19

7 R3 ✓ - none 0.0219±0.0002
0.0672±0.001

0.2051
27.54±.68

38.63
98.91±.01 85.99±.38 90.05±.50

∼ 1
∼ 19

Reference methods from literature

EGNN - - - - 0.0290 0.0710 29.00 98.7 82.0 - -
DimeNet++∗ - - - - 0.0297 0.0435 24.60 - - - -
SE(3)-T - - - - 0.1420 0.0510 53.00 - - - -

MiDi (adaptive)∗∗ - - - - - - - 99.8 97.5 64.5 -
Clifford-EDM - - - - - - - 99.5 93.4 89.5 -
EGNN-EDM - - - - - - - 99.25 90.73 89.5 -

PΘNITA - - - - - - - 98.9 87.8 - -
∗ Not a fair comparison as trained for longer. ∗∗Not a fair comparison, as MiDi uses open Babel optimization procedure.

For the molecule generation (discovery) task, we train an equivariant generative model that uses
equivariant denoising layers in a diffusion model like that in Karras et al. (2022) to unconditionally
generate molecules. We evaluate molecular generation on metrics from Hoogeboom et al. (2022)
like atomic stability and molecule stability. We introduce a new metric, discover, defined as a
product of validity × unique × novelty , which represents a discovery rate for a generated sample.
It represents the fraction of generated samples that are jointly valid, unique, and new, which is crucial
for discovering new molecules. We compare our models with EGNN-based denoising diffusion
(Ho et al., 2020) model like Hoogeboom et al. (2022), , MiDi (Vignac et al., 2023), and PΘNITA
(Bekkers et al., 2024) based diffusion model.

4.3 HUMAN MOTION PREDICTION TASK

In table 3, we evaluate our models on the CMU Human Motion Capture dataset (Gross & Shi, 2001),
consisting of 31 equally connected nodes, each representing a specific position on the human body
during walking. Given node positions at a random frame, the objective is to predict node positions
after 30 timesteps. As per Huang et al. (2022) we use the data of the 35th human subject for the
experiment. We compare our models to NRI (Kipf et al., 2018), EGNN (Satorras et al., 2021),
CEGNN (Ruhe et al., 2023) and CSMPN Liu et al. (2024) and show improved performance. We
demonstrate that equivariant architectures enable better performance in motion prediction. See Fig:5
in Appendix.

5 RESULTS

Hypothesis 1 is accepted: Equivariant methods are more data-efficient then their non-equivariant
counter part. The hypothesis is tested on Shapenet segmentation for various dataset size regimes as
shown in Fig. 3 and Tab. 6 in the Appendix.

Hypothesis 2 is accepted: The advantage of equivariant models gets more pronounced with task
complexity. Although, on all experiments the equivariant models have an edge over non-equivariant
models, this improvement is more pronounced in complex and equivariant tasks, such as QM9 re-
gression and generation (Tab. 2), Shapenet generation (Tab. 1) and motion prediction (Tab. 3), in
which we note that both Shapenet generation and CMU motion prediction do not require equivari-
ance, but are complex geometric tasks.

Hypothesis 3 is rejected: Increasing model capacity by increasing the number of channels does not
lead to a performance gain as seen by the group convolutional methods. The performance of low
vs high capacity (compared gray vs regular numbers in the tables) is often negligible. The results
suggest that all of the models are already maxed-out in net capacity to reach optimal performance.
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Table 3: Ablation study on Human motion prediction task on CMU Motion Capture dataset. We
evaluate our models using the mean squared error (×10−2) metric.

Rapidash with internal SE(3) Equivariance Constraint

Model
Variation

Type
!

Coordinates
as Scalars

!
Coordinates
as Vectors

!
Velocity

as Scalars
Velocity

as Vectors

!
Global
Frame

Effective
Equivariance MSE MSE

(rotated)

Normalized
Epoch
Time

1 R3 ✗ - ✗ - - SE(3)
> 100
> 100

> 100
> 100

∼ 1
∼ 20

2 R3 ✗ - ✓ - - T3
5.44±0.12

4.81±0.13

24.45±0.66

25.66±1.53

∼ 1
∼ 20

3 R3 ✓ - ✗ - - none 6.88
5.93

> 100
84.54

∼ 1
∼ 20

4 R3 ✓ - ✓ - - none 5.93
5.53

> 100
> 100

∼ 1
∼ 19

5 R3 × S2 ✗ ✗ ✗ ✗ ✗ SE(3) 6.17 8.71 ∼ 4
6 R3 × S2 ✗ ✗ ✗ ✓ ✗ SE(3) 4.62±0.02 4.70±0.09 ∼ 4

➟ 7 R3 × S2 ✗ ✗ ✗ ✓ ✓ SE(3) 4.95 6.71 ∼ 4
8 R3 × S2 ✗ ✓ ✗ ✗ ✗ SO(3) 7.26 10.03 ∼ 4
9 R3 × S2 ✗ ✓ ✗ ✗ ✓ SO(3) 4.95 7.57 ∼ 4

10 R3 × S2 ✗ ✓ ✗ ✓ ✗ SO(3) 5.31 7.99 ∼ 4
11 R3 × S2 ✗ ✓ ✗ ✓ ✓ SO(3) 5.14 7.50 ∼ 4
12 R3 × S2 ✗ ✗ ✓ ✗ ✗ T3 4.77±0.14 31.34±0.67 ∼ 4
13 R3 × S2 ✓ ✗ ✗ ✗ ✗ none 5.29 60.82 ∼ 4
14 R3 × S2 ✓ ✗ ✓ ✗ ✗ none 5.31 65.80 ∼ 4

Rapidash with Internal T3 Equivariance Constraint

15 R3 ✗ - ✗ - - T3
6.53
5.99

43.80
> 100

∼ 1
∼ 19

16 R3 ✗ - ✓ - - T3
5.3±0.04

24.32±1.97

40.69±0.87

> 100±6.65

∼ 1
∼ 19

17 R3 ✓ - ✗ - - none 6.03
6.82

77.78
69.42

∼ 1
∼ 19

18 R3 ✓ - ✓ - - none 5.49
5.54

66.47
76.12

∼ 1
∼ 19

Reference methods from literature

TFN - - - - - - - 66.90 - -
EGNN - - - - - - - 31.70 - -

CGENN - - - - - - - 9.41 - -
CSMPN - - - - - - - 7.55 - -

Hypothesis 4 is accepted: For equivariant tasks, having less constraints on the model is beneficial.
See, e.g., Tab. 1, comparing models 1-4 with models 16-19, the latter being less constrained, and
performing significantly better. Consider also the QM9 experiments (Tab. 2) which is an equivariant
task. All models 1,2 and 5-12 are equivariant and universal approximators and should be able to
solve the problem. Models 1-2 however use constrained kernels (symmetric, distance-based) while
the group convolutional models are not. The latter largely outperforms the former.

Hypothesis 5 is accepted: Providing explicit geometric information can improve performance, even
when breaking symmetry. This is, e.g., observed in the tables by comparing the group convolutional
models that take either coordinates as scalars (breaks equivariance) or as vectors (maintains equvari-
ance) against those models that do not take any coordinate information as input.

6 DISCUSSION AND CONCLUSION

Discussion Beyond hypothesis insights, our basic convolutional architecture (Rapidash) performs
exceptionally well on all considered tasks, often reaching state-of-the-art (SotA) performance, s.a.
on ShapeNet/QM9 generation and CMU motion prediction. Surprisingly, even non-equivariant
methods perform well on equivariant tasks, though not at SotA level and without equivariant gen-
eralization guarantees. These results support the ”convolution is all you need” idea (Cohen et al.,
2019; Bekkers et al., 2024), contrasting the popular ”attention-is-all-you-need” claim (Vaswani,
2017). The generalizability of the presented hypotheses remains to be tested outside of class of con-
volutional architectures, to which Rapidash belongs. Conclusion In this work, we conducted a
comprehensive evaluation of equivariant and non-equivariant models across various tasks of varying
geometric complexities. In the debate of equivariant vs non-equivariant models, we provide strong
evidence in favor of introducing structure over mere scaling. Specifically, we find that equivariant
models (1) are more data efficient, (2) increasingly outpace non-equivariant models when increasing
task geometric complexity, and (3) see performance benefits from targeted symmetry breaking.
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository, 2015. URL https://arxiv.org/abs/
1512.03012.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homo-
geneous spaces. Advances in neural information processing systems, 32, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolu-
tional neural networks for equivariance to lie groups on arbitrary continuous data. In Hal Daumé
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A APPENDIX

A.1 MATHEMATICAL PREREQUISITES AND NOTATIONS

Groups. A group is an algebraic structure defined by a set G and a binary operator · : G×G → G,
known as the group product. This structure (G, ·) must satisfy four axioms: (1) closure, where
∀h,g∈G : h · g ∈ G; (2) the existence of an identity element e ∈ G such that ∀g∈G, e · g = g · e = g,
(3) the existence of an inverse element, i.e. ∀g∈G there exists a g−1 ∈ G such that g−1 · g = e; and
(4) associativity, where ∀g,h,p∈G : (g ·h) · p=g · (h · p). Going forward, group product between two
elements will be denoted as g, g′ ∈ G by juxtaposition, i.e., as g g′.

For Special Euclidean group SE(n), the group product between two roto-translations g=(x,R)
and g′=(x′,R′) is given by (x,R) (x′,R′)=(Rx′ + x,RR′), and its identity element is given by
e=(0, I).

Homogeneous Spaces. A group can act on spaces other than itself via a group action T : G×X →
X , where X is the space on which G acts. For simplicity, the action of g ∈ G on x ∈ X is
denoted as g x. Such a transformation is called a group action if it is homomorphic to G and its
group product. That is, it follows the group structure: (g g′)x=g (g′ x) ∀g, g′ ∈ G, x ∈ X , and
e x=x. For example, consider the space of 3D positions X = R3, e.g., atomic coordinates, acted
upon by the group G=SE(3). A position p ∈ R3 is roto-translated by the action of an element
(x,R) ∈ SE(3) as (x,R)p=Rp+ x.

A group action is termed transitive if every element x ∈ X can be reached from an arbitrary origin
x0 ∈ X through the action of some g ∈ G, i.e., x=gx0. A space X equipped with a transitive action
of G is called a homogeneous space of G. Finally, the orbit Gx := {g x | g ∈ G} of an element
x under the action of a group G represents the set of all possible transformations of x by G. For
homogeneous spaces, X=Gx0 for any arbitrary origin x0 ∈ X .

Quotient spaces. The aforementioned space of 3D positions X=R3 serves as a homogeneous space
of G = SE(3), as every element p can be reached by a roto-translation from 0, i.e., for every p there
exists a (x,R) such that p=(x,R)0=R0 + x=x. Note that there are several elements in SE(3)
that transport the origin 0 to p, as any action with a translation vector x=p suffices regardless of
the rotation R. This is because any rotation R′ ∈ SO(3) leaves the origin unaltered.

We denote the set of all elements in G that leave an origin x0 ∈ X unaltered the stabilizer subgroup
StabG(x0). In subsequent analyses, the symbol H is used to denote the stabilizer subgroup of a
chosen origin x0 in a homogeneous space, i.e., H=StabG(x0). We further denote the left coset of
H in G as g H := {g h | h ∈ H}. In the example of positions p ∈ X=R3 we concluded that we
can associate a point p with many group elements g ∈ SE(3) that satisfy p=g 0. In general, letting
gx be any group element s.t. x=gx x0, then any group element in the left set gx H is also identified
with the point p. Hence, any x ∈ X can be identified with a left coset gxH and vice versa.

Left cosets g H then establish an equivalence relation ∼ among transformations in G. We say that
two elements g, g′ ∈ G are equivalent, i.e., g ∼ g′, if and only if g x0=g′ x0. That is, if they belong
to the same coset g H . The space of left cosets is commonly referred to as the quotient space G/H .

We consider feature maps f : X → RC as multi-channel signals over homogeneous spaces X . Here,
we treat point clouds as sparse feature maps, e.g., sampled only at atomic positions. In the general
continuous setting, we denote the space of feature maps over X with X . Such feature maps undergo
group transformations through regular group representations ρX (g) : X → X parameterized by g,
and which transform functions f ∈ X via [ρX (g)f ](x)=f(g−1x) .

A.2 RETHINKING EQUIVARIANT MESSAGE PASSING AS GROUP CONVOLUTION

Message Passing Consider the graph representation of a point cloud G = (V,E) with points in a
homogeneous space X . Label nodes as i ∈ V and edges between nodes as (i, j) ∈ E. Each node
i has a corresponding coordinate xi ∈ X . To each node, a feature fi ∈ RC is associated, forming
a discrete analog to the previously defined dense feature maps f : X → RC , where fi = f(xi).
Thus, the features associated with a node i are (xi, fi). Additionally, one can associate attributes to
the edges between nodes as aij .
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Message passing is defined in three steps as follows:

(1) Compute messages mij = ϕm(fi, fj , aij)

(2) Aggregate messages mi =
∑

j∈N (i)

mij

(3) Update features fout
i = ϕu(fi,mi)

where N (i) = {j | (i, j) ∈ E} denotes the set of nodes in the neighborhood of the ith node.

Group Convolution as Equivariant Message Passing.

Group convolution can be written in terms of the message passing formalism. Given the graph
G = (V,E) defined above, group convolution can be written as the sum

[ϕ(G)](gxi
) =

∑
j∈N (i)

k(g−1
xi

xj)fj

Defining aij = g−1
xi

xj as the edge feature between a pair of nodes, (1) the message function is
ϕm(fi, fj , aij) = k(g−1

xi
xj)fj , (2) the permutation invariant aggregation function is the sum, and

(3) the update map is ϕu(fi,mi) = mi. Indeed, the message function is a linear map which is
determined by the attribute aij , in this case, determined by the relative pose between two nodes. This
dependence on only relative pose underlies both the equivariance and weight sharing of equivariant
message passing.

Equivalence Classes and Invariant Attributes. Equivalence classes of position-orientation coor-
dinates with [xi, xj ] is defined as

[xi, xj ] = {(x′
i, x

′
j) ∈ X ×X | (x′

i, x
′
j) ∼ (xi, xj)}

where equivalence classes are given by equivalence under group action on each element, i.e.

(xi, xj) ∼ (x′
i, x

′
j) ⇐⇒ ∃ g ∈ G : (x′

i, x
′
j) = (gxi, gxj)

The list of invariant attributes for position orientation that determine the equivalence relations are
given below for completeness (Bekkers et al., 2024).

R2 and R3 : [pi,pj ] 7→ aij = ∥pj − pi∥,
R2 × S1 and SE(2) : [(pi,oi), (pj ,oj)] 7→ aij =

(
R−1

oi
(pj − pi), arccoso

⊤
i oj

)
,

R3 × S2 : [(pi,oi), (pj ,oj)] 7→ aij =

 o⊤
i (pj − pi)

∥ (pj − pi)− o⊤
i (pj − pi)oi∥

arccoso⊤
i oj

 ,

SE(3) : [(pi,Ri), (pj ,Rj)] 7→ aij =
(
R−1

i (pj − pi),R
−1
i Rj

)
.

A.3 INTERNAL VS EXTERNAL SYMMETRY BREAKING

In this section, we provide an analysis of symmetry breaking in equivariant neural networks, distin-
guishing between what we consider to be two fundamentally different types: external and internal
symmetry breaking.

A.3.1 EXTERNAL SYMMETRY BREAKING

External symmetry breaking occurs when an inherently equivariant architecture loses its equivari-
ance properties due to the way inputs are provided to the network. Consider a linear layer L de-
signed to be G-equivariant for some group G (e.g., SE(3)). Let v be a vector that transforms under
the group action, and define xg = g · v as its transformed version in global coordinates. When these
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coordinates are provided as scalar triplets, they are processed independently with no relation to the
group action, thus:

x ̸= xg =⇒ L(xg) ̸= L(x) (10)

This means the network processes transformed inputs differently, breaking equivariance. In contrast,
when inputs are properly specified as vectors that transform under the group action, we maintain
equivariance:

L(g · v) = g · L(v) ∀g ∈ G (11)

Moreover, for truly invariant features (such as one-hot encodings of atom types in QM9), the group
action is trivial:

g · x = x =⇒ L(g · x) = L(x) (12)

which guarantees invariance of the entire network to group transformations.

A.3.2 INTERNAL SYMMETRY BREAKING

Internal symmetry breaking then refers to the deliberate relaxation of equivariance constraints within
the layers themselves. Recent works have explored various approaches to this, including:

• Basis decomposition methods that mix equivariant and non-equivariant components

• Learnable deviation from strict equivariance through regularization

• Progressive relaxation of equivariance constraints during training

In some cases, an internally symmetry-broken layer Lbroken can be expressed as:

Lbroken = Lequiv + αLnon-equiv (13)

where α controls the degree of symmetry breaking, some approaches (e.g., (Wang et al., 2022))
implement schemes where α is annealed during training to gradually enforce stricter equivariance.

A.3.3 COMBINING INTERNAL AND EXTERNAL BREAKING

In practice, both types of symmetry breaking often occur simultaneously and can interact. For ex-
ample, a network may use non-stationary filters (internal breaking) while also accepting coordinate
inputs in a global reference frame (external breaking). The total degree of symmetry breaking then
depends on both mechanisms. Theoretical quantitative bounds on models with task-specific sym-
metries show that aligning data symmetry with architecture leads to the best model, although having
partial or approximate equivariance can improve generalization (Petrache & Trivedi, 2023).

A.3.4 RELATIONSHIP TO OUR WORK

While our study primarily focuses on external symmetry breaking (cf. the red exclamation marks in
our tables), we note that the transition between translation-equivariant layers (Table 1, rows 15-18)
and roto-translation equivariant layers (rows 1-4) could be viewed as a form of internal symmetry
breaking. However, we distinguish our approach from explicit internal symmetry-breaking methods
as we do not implement continuous relaxation of equivariance constraints within layers, but rather
compare discrete architectural choices with different symmetry properties.

The experiments demonstrate that carefully controlled symmetry breaking, whether internal or ex-
ternal, can significantly improve model performance when the underlying data exhibits only ap-
proximate symmetries. This aligns with recent findings in the field showing the benefits of relaxed
equivariance constraints (van der Ouderaa et al., 2022; Kim et al., 2023; Pertigkiozoglou et al.,
2024).
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A.4 ADDITIONAL RESULTS AND DISCUSSION

Modelnet40C dataset We present experiments for 9 different model variations for ModelNet40-C
Sun et al. (2022), a dataset designed to evaluate robustness in point-cloud methods using differ-
ent levels of corruptions to the ModelNet dataset. It mainly consists of three different types of
corruptions: density corruptions, Noise corruptions and Transformation corruptions. We present
Modelnet40 classification results in Tab. 4 and Modelnet40C classification results in Tab. 5.

Practical implications of the results Our experiments on ModelNet40 demonstrate similar trends
to those discussed in the main paper for the experiments on ShapeNet, QM9 and CMU motion
datasets. For a non-equivariant task (low geometric complexity) like classification, we see that
equivariant methods perform best, model 6-7 in Tab . 4. For ModelNet40C, which presents different
corruptions, we see that the error rates for rotation transformation corruptions are lower than the
other corruptions. Additionally, we see that translation equivariant methods models 8-9, in Tab. 5
perform best across various corruptions (except rotation).

Table 4: Ablation study on ModelNet40 for classification task using accuracy as metric.

Rapidash with internal SE(3) Equivariance Constraint

Model
Variation

Type
!

Coordinates
as Scalars

!
Coordinates
as Vectors

!
Global
Frame

Effective
Equivariance

Accuracy
(%)

1 R3 ✗ - - SE(3) 73.41
2 R3 ✓ - - none 81.84
3 R3 × S2 ✗ ✗ ✗ SE(3) -
4 R3 × S2 ✗ ✗ ✓ SO(3) 82.13
5 R3 × S2 ✗ ✓ ✗ none 84.00
6 R3 × S2 ✗ ✓ ✓ none 84.84
7 R3 × S2 ✓ ✗ ✗ none 82.73

Rapidash with Internal T3 Equivariance Constraint

8 R3 ✗ - - T3 83.87
9 R3 ✓ - - none 83.00

Reference methods from literature

PointNet∗ - - - - - 90.7
PointNet++∗ - - - - - 93.0

DGCNN∗ - - - - - 92.6
∗ Not a fair comparison as trained for much longer.

Experiments with data reduction in training Experiments in data reduction show that the model
variant with greatest equivariance, and the most non-symmetry-breaking information (SE3-pV-
100%) performed the best, and suffered from the least performance degradation when trained on
a smaller percentage of the training set. See Figure 3 for training curves.

A.5 IMPLEMENTATION DETAILS

We implemented our models using PyTorch (Paszke et al., 2019), utilizing PyTorch-Geometric’s
message passing and graph operations modules (Fey & Lenssen, 2019), and employed Weights and
Biases for experiment tracking and logging. A pool of GPUs, including A100, A6000, A5000, and
1080Ti, was utilized as computational units. To ensure consistent performance across experiments,
computation times were carefully calibrated, maintaining GPU homogeneity throughout.

For all experiments, we use Rapidash with 7 layers with 0 fiber dimensions for R3 and 0 or 8 fiber
dimensions for R3×S2. The polynomial degree was set to 2. We used the Adam optimizer (Kingma
& Ba, 2014), with a learning rate of 1e− 4, and with a CosineAnealing learning rate schedule with
a warmup period of 20 epochs.
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Table 5: Model performance (% error rate) under different types of corruptions for ModeNet40-C
dataset. MV corresponds to the model variation listed out in Tab. 4

Density Corruptions

MV Occlusion LiDAR Density
Inc.

Density
Dec. Cutout

1 80.3 87.5 - 68.0 57.4
2 62.0 69.3 - 30.8 26.1
3 71.97 79.54 33.0 29.1
4 67.5 76.2 - 27.9 27.0
5 67.4 74.3 - 30.0 26.7
6 65.4 73.9 - 25.3 24.3
7 59.6 66.3 - 27.2 25.0
8 57.8 56.0 - 24.2 22.1
9 53.1 52.9 - 22.5 20.6

Noise Corruptions

MV Uniform Gauss. Impulse Upsamp. Backgr.

1 46.3 55.1 82.4 41.2 96.2
2 20.2 20.9 41.5 20.0 95.9
3 24.0 26.5 39.3 22.4 94.8
4 20.2 21.3 38.3 20.5 95.7
5 20.9 23.2 45.6 20.3 94.5
6 20.9 22.9 44.4 20.7 95.9
7 19.3 20.7 32.0 19.7 95.5
8 18.8 20.5 39.5 18.9 95.3
9 18.7 20.1 32.1 19.1 92.7

Transformation Corruptions

MV Rotation Shear FFD RBF Inv. RBF

1 37.1 41.0 42.4 - -
2 24.7 22.0 22.9 - -
3 18.6 22.6 24.1 - -
4 18.8 23.2 24.0 - -
5 18.2 23.1 22.9 - -
6 17.2 21.5 21.5 - -
7 24.7 22.5 23.0 - -
8 22.5 19.4 20.9 - -
9 23.2 20.6 20.9 - -

Figure 3: Smoothed IOU (Instance average) performance curves over time for ShapeNet part seg-
mentation. The legend codes correspond to the effective equivariance, types of features being passed
in (c = coordinates, n = normals, p = poses, S = as scalars, V = as vectors), and percent of the training
dataset being trained on.

ShapeNet 3D (Generation). For this task, we trained we trained model variation (1-4 & 16-19) in
Tab.2 with two different settings of hidden features C = 256 (gray) and C = 2048. The later inflated
model was trained to match the representation capacity of the rest of the models. For segmentation
task, we use rotated samples and compute IOU with aligned and rotated samples. All the models
were trained for 500 epochs with a learning rate 5e− 3 and weight decay of 1e− 8.

QM9 (Segmentation and Generation). For the segmentation task, we trained we trained model
variation (1,2 & 6,7) in Tab.2 with two different settings of hidden features C = 256 (gray) and C
= 2048. The later inflated model was trained to match the representation capacity of the rest of the
models. All the models were trained for 500 epochs with a learning rate 5e− 3 and weight decay of
1e− 8.

CMU Motion Prediction. For this task we trained model variation (1-4 & 16-19) in Tab.3 with
two different settings of hidden features C = 256 (gray) and C = 2048. The later inflated model was
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Table 6: Ablation study on ShapeNet 3D part segmentation using instance mean IOU as the perfor-
mance metric for randomly rotated dataset, comparing validation-set performance when trained on
different percentages of the training dataset

Rapidash with internal SE(3) Equivariance Constraint

Model
Variation

Type
!

Coordinates
as Scalars

!
Coordinates
as Vectors

!
Normals

as Scalars
Normals

as Vectors

!
Global
Frame

Effective
Equivariance

IOU ↑
100%

IOU↑
80%

IOU↑
60%

Normalized
Epoch
Time

➟ 8 R3 × S2 ✗ ✗ ✗ ✓ ✓ SE(3) 85.45 85.46 85.10
9 R3 × S2 ✗ ✓ ✗ ✗ ✗ SO(3) 84.48 84.21 84.07 -

Rapidash with Internal T3 Equivariance Constraint

17 R3 ✗ - ✓ - - T3 83.00 82.50 82.03 -

trained to match the representation capacity of the models (5-15). All the models were trained for
1000 epochs with a learning rate 5e− 3 and weight decay of 1e− 8.

ModelNet40 and ModelNet40C (Classifcation) For this task we trained 9 model variations pre-
sented in Tab.4 and Tab. 5. All the models were trained for hidden features C = 256 for 120 epochs
with a learning rate 1e− 4 and weight decay of 1e− 8.

A.6 ADDITIONAL FIGURES

Illustrating the effect of equivariant models in ShapeNet segmentation

Figure 4: Depiction of an instance of ShapeNet segmentation for the class airplane. When the sample
is rotated, a non-equivariant model mistakes wings for the nose of the airplane, while a rotationally
equivariant model does the segmentation perfectly.
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Human motion prediction using CMU motion capture dataset

Figure 5: Depiction of an instance from CMU motion capture dataset.
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