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Abstract—A novel adaptive prescribed performance control
method for the n-DOF robotic manipulators is proposed in this
paper. Firstly, a normalization constraining function g is designed
for state transformation and constructing a new system model.
The risk of singularity problems can be reduced by adjusting the
parameters of function g. Then, an adaptive prescribed perfor-
mance controller is developed based on the constructed system
model, which allows the initial joint positions of the manipulator
to be arbitrary, and can guarantee that the tracking error reaches
the desired accuracy within the preset time TP . Meanwhile,
different velocity constraints can be individually imposed on each
joint. In addition, an adaptive law is designed to estimate the
lumped uncertainty in the system and compensate for its negative
influence, which improves the control performance. Finally, the
effectiveness of the proposed method is verified by simulations
and experiments on a 4-DOF manipulator.

Index Terms—Robotic manipulator, prescribed performance
control, state constraints, arbitrary initial positions, adaptive
estimation law.

I. INTRODUCTION

Robotic manipulators, as essential components of automa-
tion and robotics technology, have demonstrated their enor-
mous potential and extensive application value in many fields
[1]–[5]. Due to the significant increase in complexity and
difficulty of control tasks, the performance requirements for
robotic manipulators have correspondingly increased, espe-
cially for control accuracy. Many researchers have studied the
high-accuracy control of robotic manipulators, such as Liu et
al. [6] proposed two adaptive bias radial basis function neural
network (RBFNN) control schemes: local bias scheme and
global bias scheme, which can improve the approximation
accuracy of the RBFNN and the control performance. Zhong
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et al. [7] designed a control scheme that combines PID control
and fast terminal sliding mode control (TSMC) for a redundant
manipulator, which improves both the control performance and
the system robustness. Meng et al. [8] presented an adaptive
finite-time command filtered backstepping control method
for manipulators with unknown backlash, the explosion of
complexity is avoided, and the tracking error can converge to
a neighborhood of the origin within finite time. Rahmani et al.
[9] proposed a novel sliding mode control method with a new
sliding surface, and an extended grey wolf optimizer is used
to tune the controller parameters. In addition, a backstepping
sliding mode controller with a new integral sliding manifold
and a new nonlinear disturbance observer is developed by Xi
et al. [10] for robot manipulators.

However, the methods mentioned above can only guarantee
that the tracking error ultimately converges to a neighbor-
hood of the origin, and the tracking performance cannot
be accurately quantified or prescribed. Thus many studies
have focused on the prescribed performance control for the
manipulators. For example, Song et al. [11] investigated an
adaptive prescribed performance control scheme for manipu-
lators with input constraint and external disturbances, where a
new accumulated error vector integrated with a performance
enhancement function is constructed to achieve the preset
accuracy. Sai et al. [12] proposed an approximate continuous
fixed-time TSMC scheme based on the designed prescribed
performance function (PPF), which can improve the transient
and steady-state performance of the trajectory tracking. Lyu et
al. [13] used two auxiliary functions to transform the tracking
error, and embedded it into the barrier Lyapunov function to
achieve the prescribed performance control. Besides, Sun et al.
[14] proposed a prescribed performance control strategy based
on the fixed-time non-singular TSMC and the PPF, and built



an auxiliary system to compensate for the negative influence
of the input saturation.

Although these methods can achieve prescribed perfor-
mance control of the robotic manipulators, the initial tracking
errors of the joints are required to satisfy certain conditions,
which is very unfavorable for actual systems with unknown
initial states. Therefore, one motivation of this paper is to solve
this problem. Furthermore, the manipulators are often affected
by model uncertainties and unknown friction, which also
brings about a significant challenge to achieving high-precision
control [15], [16]. Inspired by the above studies and existing
problems, a novel adaptive prescribed performance control
method for the n-DOF robotic manipulators is proposed in
this paper, and the main contributions are as follows:

1) A normalization constraining function g is designed,
which can represent the distance between the input
variable and its boundary. Then a new manipulator
model is constructed using the function g, and changing
the parameters of g can reduce the risk of singularity.

2) Based on the constructed model, a prescribed perfor-
mance control method is proposed, which is independent
of the initial joint positions of the manipulator, and
can guarantee that the tracking error enters the desired
performance within the preset time Tp.

3) The constraint of joint velocity can be consistently
satisfied by using the developed controller. Besides,
an adaptive law is designed to estimate the lumped
uncertainty in the system and compensate for its negative
impact. The effectiveness of the proposed method is
verified through both simulations and experiments.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Model of Robotic Manipulator

The dynamic model of a rigid manipulator with n-DOF can
be described as

q̈ =M−1 (q) τ +M−1 (q) (−C (q, q̇) q̇−G (q))

+M−1 (q) (−F (q̇)−∆)
(1)

where q, q̇, q̈ ∈ Rn denote the position, velocity, and accel-
eration of the joints. M (q) ∈ Rn×n represents the inertia
matrix, which is symmetric and positive definite, C (q, q̇) is
the Centripetal and Coriolis matrix, G (q) is the gravitational
torque vector, F (q̇) is the friction, ∆ is the model uncertainty,
and τ is the driving torque. In this paper, the arguments in
functions or matrices sometimes are sometimes omitted if no
confusion can arise from the context.

If the state vector is defined as [x1,x2]
T

= [q, q̇]
T , then

the robotic manipulator model can be written as{
ẋ1 = x2

ẋ2 = M−1τ + f (x1,x2) + d (x1,x2)
(2)

where f = M−1 (−Cx2 −G) is a known function, d =
M−1 (−F−∆) is the unknown lumped uncertainty, and

xj = [xj,1, · · · , xj,n]T (j = 1, 2). The performance function
λi(t) for the i-th joint of the manipulator is considered as

λi(t) = (λi,0 − λi,∞) · exp (−γit) + λi,∞ (3)

where λi,0 is the initial performance, λi,∞ is the ultimate
performance (λi,0 ≥ λi,∞ > 0), and γi is a positive constant.

The main task of this paper is to achieve the prescribed
performance control of the n-DOF manipulators with velocity
constraints, and the initial positions of all joints are allowed
to be arbitrary, i.e., for any given performance function λi(t)
and preset time Tp, the tracking error satisfies |ei(t)| =
|xd,i(t)− x1,i(t)| < λi(t), t ≥ Tp, where xd,i(t) is the
desired angular trajectory of the i-th joint. Different from
other works, |ei(0)| < λi,0 is not necessary for our method.
Meanwhile, the velocity x2,i satisfies the following constraint:

−c2,i < x2,i(t) < c2,i, t ≥ 0 (4)

where c2,i is the constraint boundary designed by users, and
c2,i can be set to ∞ to remove the corresponding constraint.

Remark 1: The vector ∆ can be expressed as ∆ = ∆Mq̈+
∆Cq̇+∆G, where ∆M, ∆C, and ∆G are the uncertain parts
of the model. In addition, the lumped uncertainty d and its
first-order derivative ḋ are bounded such that ∥d∥ ≤ d̄1 and∥∥∥ḋ∥∥∥ ≤ d̄2, where d̄1 and d̄2 are unknown positive constants.

Assumption 1: The desired trajectory xd,i(t) is continuous
and bounded, and its first-order and second-order derivatives
are also bounded, such that |xd,i (t)| ≤ d̄1,i, |ẋd,i (t)| ≤ d̄2,i,
and |ẍd,i (t)| ≤ d̄3,i, where d̄1,i, d̄2,i, and d̄3,i are unknown
positive constants.

B. Preliminaries

Lemma 1 ( [17]): Consider the following system:

ẋ = f(t, x), x(0) = x0 (5)

where x ∈ R is the system state, and f (·) is a continu-
ous nonlinear function. There exists a continuous funciton
V (x(t)) ≥ 0 defined on t ∈ [0,∞) with bounded initial value
V (0). If the following inequality holds:

V̇ (t) ≤ −aV (t) + b (6)

where a and b are two positive constants, then the solutions
of system (5) are uniformly ultimately bounded (UUB), and
V (t) ≤ b/a as t→ ∞.

Lemma 2 ( [18]): For any given χ1 ≥ 0 and χ2 ≥ 0, if
p > 1 and q > 1 are real numbers satisfying 1/p + 1/q = 1,
then the following inequality (i.e., Young’s inequality) holds:

χ1χ2 ≤ c
χp
1

p
+ c−

q
p
χq
2

q
(7)

where c is a positive scalar.



III. MAIN RESULTS

A. System Model Transformation

Firstly, a normalization constraining function g(x, a, b) is
designed as follows to represent the distance between the input
variable and its boundary:

g(x, a, b) =



0, x ≤ −ab(
1−

( x
ab

)2)3

· exp
[
0.5
( x
ab

)5]
,

−ab < x < 0(
1−

( x
ab

)2)3

· exp
[
−0.5

( x
ab

)5]
,

0 ≤ x < ab

0, x ≥ ab

(8)

where x is the input variable, b is the boundary, and a ≥ 1 is
a parameter that can adjust the shape of the function g. Both
a and b can be time-varying or constant. The partial derivative
of function g with respect to x/ab is

gp(x, a, b) =
∂g

∂
(

x
ab

)

=



0, x ≤ −ab

−6
( x
ab

)(
1−

( x
ab

)2)2

· exp
[
0.5
( x
ab

)5]
+2.5

(
1−

( x
ab

)2)3( x
ab

)4
· exp

[
0.5
( x
ab

)5]
,

−ab < x < 0

−6
( x
ab

)(
1−

( x
ab

)2)2

· exp
[
−0.5

( x
ab

)5]
−2.5

(
1−

( x
ab

)2)3( x
ab

)4
· exp

[
−0.5

( x
ab

)5]
,

0 ≤ x < ab

0, x ≥ ab

(9)

Then two new state variables ψ1,i and ψ2,i are defined as
follows [19]:

ψ1,i =
ei
g1,i

, ψ2,i =
x2,i
g2,i

(10)

with

g1,i = g(ei, h1,i, λi), g2,i = g(x2,i, h2,i, c2,i) (11)

where h1,i and h2,i are design parameters. The curve of g1,i
with different h1,i is shown in Fig. 1 (a). We can see that g1,i
is continuous and bounded. When ei(t) = 0, then g1,i = 1,
and the state variable ψ1,i = ei(t). If h1,i = 1, then g1,i = 0
at ei(t)/λi(t) = 1 (ei(t) on the boundary), while if h1,i > 1,
then g1,i > 0 at ei(t)/λi(t) = 1 and is proportional to h1,i.
The curve of g2,i is omitted here due to similarity. It is worth
noting that h1,i plays a key role in the control performance
of the system. In this paper, h1,i is designed in the following
time-varying form:

h1,i = (hu,i − 1)µ(t) + 1 (12)
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Fig. 1. (a) Curve of g1,i relative to ei(t)/λi(t) with different h1,i. (b) Curve
of µ(t) relative to time t with different Tp.

where hu,i > 1 is a sufficiently large constant, and µ(t) is a
time adjustment function, which is constructed as

µ(t) =

0.25

(
1 + cos

(
πt

Tp

))2

, 0 ≤ t ≤ Tp

0, t > Tp

(13)

where Tp is a user-defined time constant. The curve of function
µ(t) with different Tp is shown in Fig. 1 (b). Obviously, µ(t)
is bounded, continuous, and monotonically decreases from 1
to 0 within t ∈ [0, Tp]. Thus h1,i is monotonically decreasing
for t ∈ [0, Tp] with h1,i (0) = hu,i and h1,i(Tp) = 1, and
remains unchanged at 1 after t > Tp. Now we can obtain the
following Lemma.

Lemma 3: For any initial joint position x1,i(0), if ψ1,i

satisfies ψ1,i ∈ L∞, then −λi(t) < ei(t) < λi(t) holds for
t ∈ [Tp,+∞). For initial velocity satisfying −c2,i < x2,i(0) <
c2,i, and h2,i is designed as h2,i = 1, if ψ2,i ∈ L∞, then
−c2,i < x2,i(t) < c2,i holds for t ∈ [0,+∞).

Proof: From (12), we have h1,i = 1, t ≥ Tp, so g1,i = 0 for
|ei(t)| = λi(t), t ≥ Tp. Assume there exists a time t1 ≥ Tp
such that ei(t1) ≥ λi(t1) or ei(t1) ≤ −λi(t1). Since ei(t)
is continuous, based on the intermediate value theorem, there
exists a time Tp ≤ t2 ≤ t1 such that ei(t2) = λi(t2) or
ei(t2) = −λi(t2), thus g1,i(ei(t2), h1,i(t2), λi(t2)) = 0 and
ψ1,i = ∞, which is contradictory to ψ1,i ∈ L∞. Therefore,
−λi(t) < ei(t) < λi(t) for t ∈ [Tp,+∞). The proofs for
x2,i(t) is similar and will not be repeated here. ■

Remark 2: If hu,iλi,0 is greater than the maximum physical
limit of the tracking error ei, then hu,i is large enough to allow
the initial position x1,i(0) to be arbitrary.

From Lemma 3, guaranteeing that ψ1,i and ψ2,i(i =
1, · · · , n) are bounded is sufficient to achieve the prescribed
performance control and velocity constraints mentioned above.
Now build a new general model of the manipulator with ψ1,i

and ψ2,i as states. Taking the derivative of ψ1,i and ψ2,i yields{
ψ̇1,i = −ω1,ig2,iψ2,i + β1,i

ψ̇2,i = ω2,iẋ2,i + β2,i
(14)



where

ω1,i =
1

g1,i
− ∂g1,i

∂
(

ei
h1,iλi

) ei
h1,iλig21,i

=
1

g1,i
− gp1,i

ei
h1,iλig21,i

β1,i =
∂g1,i

∂
(

ei
h1,iλi

) ḣ1,ie
2
i

λih21,ig
2
1,i

+
∂g1,i

∂
(

ei
h1,iλi

) λ̇ie
2
i

h1,iλ2i g
2
1,i

+

 1

g1,i
− ∂g1,i

∂
(

ei
h1,iλi

) ei
h1,iλig21,i

 ẋd,i

=gp1,i
ḣ1,ie

2
i

λih21,ig
2
1,i

+ gp1,i
λ̇ie

2
i

h1,iλ2i g
2
1,i

+

(
1

g1,i
− gp1,i

ei
h1,iλig21,i

)
ẋd,i

ω2,i =
1

g2,i
− ∂g2,i

∂
(

x2,i

h2,ic2,i

) x2,i
h2,ic2,ig22,i

=
1

g2,i
− gp2,i

x2,i
h2,ic2,ig22,i

β2,i =
∂g2,i

∂
(

x2,i

h2,ic2,i

) ḣ2,ix
2
2,i

c2,ih22,ig
2
2,i

+
∂g2,i

∂
(

x2,i

h2,ic2,i

) ċ2,ix
2
2,i

h2,ic22,ig
2
2,i

=gp2,i
ḣ2,ix

2
2,i

c2,ih22,ig
2
2,i

+ gp2,i
ċ2,ix

2
2,i

h2,ic22,ig
2
2,i

(15)
with

gp1,i = gp(ei, h1,i, λi), gp2,i = gp(x2,i, h2,i, c2,i). (16)

Then combined with (2), we can obtain the new model{
ψ̇1 = −Ω1G2ψ2 + β1

ψ̇2 = Ω2

(
M−1τ + f + d

)
+ β2

(17)

where ψj = [ψj,1, · · · , ψj,n]
T , Ωj = diag {ωj,i}, βj =

[βj,1, · · · , βj,n]T , and G2 = diag {g2,i} (j = 1, 2; i =
1, · · · , n).

B. Adaptive Prescribed Performance Controller Design

Based on the model (17), we now develop an adaptive
prescribed performance controller for n-DOF manipulators.
Define the error variables as follows:

z1 = ψ1,

z2 = ψ2 −α1

(18)

where α1 is a virtual control law that will be designed later.
Step 1: The derivative of z1 can be written as

ż1 =ψ̇1

=−Ω1G2ψ2 + β1

=−Ω1G2 (z2 +α1) + β1.

(19)

The virtual control law α1 is designed as

α1 = (Ω1G2)
−1

(K1z1 + β1) (20)

where K1 = diag {k1,i} (i = 1, · · · , n) is a gain matrix.
Consider the following Lyapunov function:

V1 =
1

2
zT1 z1. (21)

Taking the derivative of V1 and substituting α1 into it yields

V̇1 =zT1 ż1

=− zT1 Ω1G2 (z2 +α1) + zT1 β1

=− zT1 K1z1 − zT1 Ω1G2z2.

(22)

Step 2: The derivative of z2 is

ż2 =ψ̇2 − α̇1

=Ω2

(
M−1τ + f + d

)
+ β2 − α̇1.

(23)

The lumped uncertainty d is estimated by an adaptive law
in this paper, which is designed as

˙̂d = KdΩ2z2 −Bdd̂ (24)

where Kd = diag{kd,i} and Bd = diag{bd,i}(i = 1, · · · , n)
are two parameter matrices, and Bd − In is positive definite,
where In is the identity matrix. The estimation error is defined
as d̃ = d − d̂. Then the adaptive prescribed performance
controller is designed as

τ =−M
(
f + d̂

)
+MΩ−1

2 (α̇1 − β2)−MΩ−1
2 K2z2

+MΩ−1
2 G2Ω1z1.

(25)
where K2 = diag {k2,i} (i = 1, · · · , n) is a gain matrix.

Theorem 1: For the robotic manipulator (2) with any initial
joint positions, if |x2,i(0)| < c2,i, h1,i is designed as (12),
and h2,i = 1(i = 1, · · · , n). Then the developed controller
(25) with adaptive law (24) can guarantee that: 1) The error
variables z1 and z2, and the estimation error d̃ are UUB;
2) With the designed performance function λi(t) and the
preset physically feasible time Tp, the prescribed performance
control, i.e., |ei(t)| < λi(t), t ≥ Tp, can be achieved; 3) The
constraint on velocity, i.e., |x2,i(t)| < c2,i, t ≥ 0, is satisfied.

Proof: Consider the following Lyapunov function:

V2 = V1 +
1

2
zT2 z2 +

1

2
d̃K

−1

d d̃. (26)

Taking the derivative of V2 yields that

V̇2 =V̇1 + zT2 ż2 + d̃K
−1

d (ḋ− ˙̂d)

=− zT1 K1z1 − zT1 Ω1G2z2 + zT2 Ω2

(
M−1τ + f + d

)
+ zT2 β2 − zT2 α̇1 − d̃K

−1

d
˙̂
d+ d̃K

−1

d ḋ.
(27)



Substituting the controller (25) and the adaptive law (24)
into (27), and according to Lemma 2, we have

V̇2 =− zT1 K1z1 − zT2 K2z2 + zT2 Ω2d̃

− d̃TK−1
d

˙̂d+ d̃TK−1
d ḋ

=− zT1 K1z1 − zT2 K2z2 + zT2 Ω2d̃

− d̃TK−1
d

(
KdΩ2z2 −Bdd̂

)
+ d̃TK−1

d ḋ

≤− zT1 K1z1 − zT2 K2z2 −
1

2
d̃TK−1

d (Bd − In) d̃

+
1

2
dTK−1

d Bdd+
1

2
ḋTK−1

d ḋ

≤− φV2 + η

(28)

where
φ = min {2λmin (K1) , 2λmin (K2) , λmin (Bd − In)} ,

η =
1

2
dTK−1

d Bdd+
1

2
ḋTK−1

d ḋ.
(29)

According to Lemma 1, V2 is UUB, and V2 ≤ η/φ as t→
∞. Now the following conclusions can be drawn:

1) z1, z2, and d̃ are all UUB, which indicates that ψ1,i ∈
L∞ and ψ2,i ∈ L∞(i = 1, · · · , n).

2) Based on Lemma 3, for any initial joint position x1,i(0),
−λi(t) < ei(t) < λi(t) holds for t ∈ [Tp,+∞).

3) Also from Lemma 3, if |x2,i(0)| < c2,i, the constraint
on the velocity −c2,i < x2,i(t) < c2,i holds for t ∈
[0,+∞). ■

Remark 3: It is worth pointing out that, if h2,i = 1,
the constraint on x2,i is the strongest, but it is also prone
to singularity problem. However, if h2,i > 1, although the
constraint on x2,i is weakened, the risk of singularity problem
can be reduced.

IV. SIMULATION RESULTS

We conduct simulations based on the Quanser’s QArm
manipulator model to verify the proposed method. For details
of the model, please refer to [20]. The QArm consists of 4
joints in a roll-pitch-pitch-roll configuration: the base (Q1),
the shoulder (Q2), the elbow (Q3), and the wrist (Q4) joints,
which is shown in Fig. 2. We only consider the motion of Q2
and Q3 in the simulation, i.e., the desired angular trajectories
for Q1 and Q4 are xd,1 = xd,4 = 0 rad, for Q2 and Q3 are
xd,2 = 0.5 sin(4πt/15) rad and xd,3 = 0.5 sin(2πt/15) rad.
The model uncertainty is set to ∆M = 0.2M, ∆C = 0.1C,
and ∆G = 0.3G. The performance function for each joint
is selected as γi = 2, λi,0 = 0.2 rad, and λi,∞ = 0.005
rad (i = 1, · · · , 4). The parameters of the proposed con-
troller are design as Tp = 1 s, hu,i = 3, h2,i = 1.5,
K1 = diag {1, 11, 10, 1}, K2 = diag {1, 19, 21, 1}, Kd =
diag {1, 2000, 5000, 1}, and Bd = 2I4. The simulations are
run in the MatlabR2022b/Simulink environment with a 2 ms
step size.

The angle tracking trajectories and the corresponding errors
of Q2 and Q3 with different initial positions are shown
in Fig. 3, where S1: x1,2(0) = x1,3(0) = 0.3 rad; S2:
x1,2(0) = x1,3(0) = 0.1 rad; S3: x1,2(0) = x1,3(0) = −0.3

Fig. 2. Structure details of the QArm.
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Fig. 3. Tracking performance with different initial joint positions in the
simulation. (a) Tracking trajectory of Q2. (b) Tracking error of Q2. (c)
Tracking trajectory of Q3. (d) Tracking error of Q3.
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Fig. 4. Effects of velocity constraints in the simulation. (a) Joint Q2 velocity
x2,2. (b) Joint Q3 velocity x2,3.

rad. The velocity constraints are c2,2 = c2,3 = 2.5 rad/s.
We can see that the tracking errors of both joints converge
quickly to the prescribed performance within the preset time
Tp, regardless of the initial conditions of the manipulator.
For situation S2, the tracking errors e2(t) and e3(t) remain
within the corresponding performance boundaries ±λ2(t) and
±λ3(t) throughout the entire motion process. Furthermore, the
joint velocities of Q2 and Q3 are shown in Fig. 4. It can be
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Fig. 5. Estimation effect of the lumped uncertainty. (a) Uncertainty d2 and its
estimate d̂2. (b) The estimation error d̃2. (c) Uncertainty d3 and its estimate
d̂3. (d) The estimation error d̃3.

seen that x2,2(t) and x2,3(t) with any initial conditions are
always within their constraint boundaries at any time, the peak
value of x2,2(t) is 2.21 rad/s, and the peak value of x2,3(t) is
1.97 rad/s, which demonstrates the powerful state constraint
capability of the proposed method. Finally, the estimation
effect of the lupmed uncertainty is shown in Fig. 5, the initial
joint positions are x1,2(0) = x1,3(0) = 0.3 rad. It is obvious
that the designed adaptive law can estimate the uncertainties
d2 and d3 of the two joints Q2 and Q3 very accurately, with
an average estimation error of 0.0755 for d2 and 0.0738 for
d3 in steady state (1 s- 60 s), which is of great help for the
high-precision control of the manipulator.

V. EXPERIMENTAL RESULTS

To further verify the effectiveness of the proposed method,
we conduct relevant experiments on the QArm manipulator.
It can be configured with the QFLEX 2 USB interface panel,
which allows control and access from a computer via a USB
connection. The control algorithm is developed in the Mat-
labR2022b/Simulink environment equipped with the QUARC
library. We also only consider the motion of Q2 and Q3 in
the experiment, for each joint, the performance function is
selected as γi = 0.5, λi,0 = 0.2 rad, and λi,∞ = 0.05 rad.
The controller parameters are designed as Tp = 1 s, hu,i = 3,
h2,i = 1.5, K1 = diag {1, 25, 70, 1}, K2 = diag {1, 30, 55, 1},
Kd = diag {1, 15, 15, 1}, and Bd = 2I4.

The angle tracking trajectories and the corresponding errors
of two joints with different initial positions are shown in Fig.
6, where S1: x1,2(0) = x1,3(0) = 0.25 rad; S2: x1,2(0) =
x1,3(0) = 0.1 rad; S3: x1,2(0) = x1,3(0) = −0.2 rad. The
desired trajectories are xd,2 = xd,3 = 0.5 sin(2πt/15) rad,
and the velocity constraints are set to c2,2 = c2,3 = 1 rad/s.
For any initial conditions, we can see that the tracking errors
of Q2 and Q3 converge to the prescribed performance within
1 s. Moreover, the velocities of both joints are also kept within
the constraint boundaries, as shown in Fig. 7. Finally, the ex-
perimental scene of QArm motion process with signals display
is shown in Fig. 8, where the desired trajectories are replaced
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Fig. 6. Tracking performance with different initial joint positions in the
experiment. (a) Tracking trajectory of Q2. (b) Tracking error of Q2. (c)
Tracking trajectory of Q3. (d) Tracking error of Q3.
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Fig. 7. Effects of velocity constraints in the experiment. (a) Joint Q2 velocity
x2,2. (b) Joint Q3 velocity x2,3.

Fig. 8. Experimental scene of QArm motion process.

with xd,2 = xd,3 = 0.5 sin(2πt/15) − 0.25(1 − t/30) rad,
and the initial joint positions are x1,2(0) = x1,3(0) = 0 rad.
From the laptop screen, the robotic manipulator remains stable
during operation, and the steady-state tracking errors and joint
velocities are always within the corresponding boundaries.



VI. CONCLUSION

This paper presents an adaptive prescribed performance
control method for the n-DOF manipulators with lumped un-
certainty. We first design a normalization constraining function
g to transform the states and construct a new system model.
The relationship between the constraint ability on tracking
error or velocity and the risk of singularity problems can
be balanced by adjusting the parameters of g. Then develop
a prescribed performance controller with an adaptive law,
which can guarantee that the tracking error reaches the ideal
accuracy from any initial joint positions, and the lumped
uncertainty in the system is estimated and compensated by
the adaptive law. Moreover, the velocity constraint can be
independently imposed on any joint. Finally, the effectiveness
and superior control performance of the proposed method are
verified through simulations and experiments on the QArm
robotic manipulator.

REFERENCES

[1] Z. Li, C. Li, S. Li, and X. Cao, “A fault-tolerant method for motion
planning of industrial redundant manipulator,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 12, pp. 7469–7478, Dec. 2020.

[2] M. Wang, L. Zong, and J. Yuan, “Position/force control for a dual-arm
space manipulator gripping and transporting an unknown target without
grapple fixtures,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 60, no. 2, pp. 1770–1783, Apr. 2023.

[3] J. Byun, I. Jang, D. Lee, and H. J. Kim, “A hybrid controller enhancing
transient performance for an aerial manipulator extracting a wedged
object,” IEEE Transactions on Automation Science and Engineering,
vol. 21, no. 3, pp. 3264–3273, Jul. 2024.
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