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Abstract

An increasing number of advancements have
been accomplished in agents empowered by
Large Language Models (LLM), particularly
in resolving simple dialogue tasks. However,
existing agents still face intractable robustness
issues for solving complex tasks, encounter-
ing the cascading hallucinations induced by
multi-step invocations of LLM. Certain recent
studies utilize multi-step reasoning, planning
strategies, and domain workflows to improve
the success rate of complex tasks, yet they ne-
glect the scientific methodology that encom-
passes the accumulated wisdom derived from
centuries of scientific inquiry. Drawing inspi-
ration from the scientific methodology, we pro-
pose the S-Agent - an agent collaborative frame-
work meticulously designed to actively exper-
iment and refine theories based on the analy-
sis of experimental results, thereby enhancing
the deductive capabilities of LLMs and com-
plementing their inductive and communicative
strengths. Additionally, we introduce an inno-
vative parallel planning methodology, wherein
agents with identical roles collaborate to simul-
taneously address the same inquiry. Extensive
experiments demonstrate the effectiveness and
efficiency of our approach. Notably, we achieve
a new state-of-the-art 33.3% pass@1 accuracy
on the LeetcodeHardGym coding benchmark
and a relatively good 96.3% pass@1 on Hu-
manEval with GPT-4.

1 Introduction

Recently, significant advancements have been
achieved in the realm of problem-solving through
agents founded upon Large Language Models
(LLM). Existing studies incorporated step by step
reasoning & planning strategies (Yao et al., 2023b;
Shinn et al., 2023; Yao et al., 2023a; Zhou et al.,
2023), and used tools to extend agents’ capabili-
ties(Wu et al., 2023; Yang et al., 2023; Shen et al.,
2023). These studies have demonstrated their ca-
pability to tackle uncomplicated dialogue tasks.

However, current agents continue to confront insur-
mountable challenges in terms of resilience when
it comes to resolving complex tasks, as they en-
counter the cascading hallucinations brought about
by the multi-step invocations of LLM.

In order to improve the proficiency of agents
in resolving complex tasks, some recent studies
employ domain expertise to guide agents towards
adhering to standard operating procedures (SOP)
(Hong et al., 2023; Qian et al., 2023). These studies
can only serve specialized applications as they rely
on domain-specific procedural knowledge, still lack
of principled guidance.

To address the aforementioned issues, we draw
inspiration from the scientific method ! that encom-
passes the wisdom accumulated through centuries
of scientific exploration and has been validated
across various disciplines. The magnificent mod-
ern science usually adheres to an iterative paradigm:
deriving ideas from observations and constructing
hypotheses. These hypotheses are then subjected
to experimentation, with the outcomes serving as
observations that either validate or question the hy-
potheses. At the heart of this paradigm lies the
notion of "falsifiability," introduced by Karl Pop-
per(Popper, 1959), which asserts that there must
exist experimental findings capable of disproving
the hypotheses. Guided by this paradigm, theory
and experiment can mutually inform and enhance
scientific understanding.

In this paper, we propose the S-Agent, a multi-
agent framework where agents partake in dialogues
and collaborations inspired by the scientific method.
This framework encompasses crucial processes in-
cluding idea generation, experiment conduction,
and the discussion of results. Our experiments

'scientific method: A method of procedure that has char-
acterized natural science since the 17th century, consisting in
systematic observation, measurement, and experiment, and the
formulation, testing, and modification of hypotheses: criticism
is the backbone of the scientific method.


https://web.archive.org/web/20160620062539/http://www.oxforddictionaries.com/definition/english/scientific-method

demonstrate that the system performs exceptionally
well in tackling challenging tasks, such as coding,
multi-hop QA .

To summarize, our key contributions are the fol-
lowing:

* To the best of our knowledge, we are pioneer-
ing the integration of formulating, experiment-
ing, and modifying of hypotheses within the
LLM agent system. These mechanisms repre-
sent the accumulated wisdom of centuries of
scientific research and are poised to enhance
the credibility and accuracy of LLM agents.

* We present S-Agent, a collaborative frame-
work for agents that integrates an automated
workflow planner and a parallel agent task
management unit. The framework offers
adaptable assistance for developing agents of
complex and high-reliability tasks, enabling
simultaneous operation at the agent level and
significantly enhancing efficiency.

* We conduct extensive experiments to demon-
strate the effectiveness and efficiency of
our approach. Notably, we achieve a new
state-of-the-art 33.3% pass @ laccuracy on the
leetcode-hard benchmark with GPT-4 and rel-
ative good result 96.3% pass@1 accuracy on
the HumanEval coding benchmark with GPT-
4.

2 Related work

2.1 Think Like Human

In the early phase of the Language Model
(LLM) era, researchers began exploring LLMs
with the goal of achieving universal question-
answering capabilities, formulated as answer =
LLM (question)(Devlin et al., 2018; Raffel et al.,
2020). Subsequently, GPT-3(Brown et al., 2020),
a pioneer in this domain, introduced the con-
cept of few-shot learning. This method reflects
the human ability to improve problem-solving
skills through exposure to a limited number
of examples, thereby shifting the paradigm to
answer = LLM/ (demos, question). Further-
more, the Chain of Thought (COT) approach(Wei
et al., 2022) demonstrated that incorporating sim-
ple instructions such as ’please do it step by
step’ significantly enhances performance. Con-
sequently, the paradigm evolved to answer =
LLM (instructions, demos, question).

By crafting diverse instructions, the Tree of
Thoughts (ToT) framework(Yao et al., 2023a)
enables LLMs to generate multiple plans and
select the most appropriate one. The ReAct frame-
work(Yao et al., 2023b), which integrates reasoning
and action, modifies the paradigm to result; 11 =
LLM (instruction, demos, result;, question).
Reflexion(Shinn et al., 2023) advances this ap-
proach by supervising the entire decision-making
process and offering feedback on the complete
sequence of actions.

This paradigm closely mirrors the human pro-
cess of problem-solving: step-by-step refinement
of solutions based on past experiences and logical
analysis. However, we observe that when faced
with more complex issues, humans employ another
cognitive approach not yet utilized in LLM-based
agents: the scientific method, which includes con-
ducting experiments. Scientists design experiments
to test their theories, comparing experimental re-
sults with expectations to identify discrepancies
before actual implementation. Current LLM agents
lack this capability; they do not formulate expecta-
tions prior to taking actions.

2.2 Use Tool Like Human

While the Marxist philosophy posits that tool uti-
lization and creation are key distinctions between
humans and animals, it’s the transformative impact
of tools on human evolution and dominance on
Earth that is truly noteworthy. This concept finds a
parallel in the realm of language models like Chat-
GPT. Despite their impressive performance and
global recognition, these models have inherent lim-
itations, including constrained calculation abilities,
restricted access to rare knowledge, and limited
proficiency in handling other modalities. Mirroring
the human approach to overcoming similar con-
straints, the strategic use of tools has emerged as
an effective solution in augmenting these models.
Pioneering efforts such as Visual ChatGPT(Wu
et al., 2023) and HuggingGPT(Shen et al., 2023)
laid the groundwork by integrating multi-modal
models as auxiliary tools, thereby expanding the
functionalities of LL.Ms beyond single-modal ca-
pabilities. This trajectory was further propelled
by MM-ReAct(Yang et al., 2023), which cleverly
incorporated a search engine and Microsoft API
services into the mix. This innovative approach
has been widely adopted, with OpenAl’s ChatGPT
introducing plugin functions and Microsoft’s New-
Bing exemplifying an LLM integrated with Bing



search capabilities.

In today’s landscape, the ability to configure
and customize tool sets has become a fundamental
feature in most agent assistant applications. In-
tegrating tools transforms the paradigm into tool =
LLM (instructions, toolset, question), answer
LLM (demos, tool, question). However, most
previous work has primarily focused on the
correctness of tool selection, without considering
how to enable LLMs to use complex tools. We aim
for our approach to empower LLMs to effectively
utilize tools with which they are not yet familiar.

2.3 Collaborate like Human

Researchers have ventured beyond exploring hu-
man cognition and tool usage, delving into the
intricacies of organizational dynamics. This ex-
ploration has been facilitated by employing multi-
agent systems to create artificial entities that sim-
ulate the workings of a company. The innovative
concept of role-playing was pioneered by Camel(Li
et al., 2023), utilizing the paradigm answer =
LLM(..., personality, question).

This concept was expanded in subsequent
studies that modeled their operations explicitly
after a corporate structure. Notable examples
include MetaGPT(Hong et al., 2023) and Chat-
Dev(Qian et al., 2023), which emulate software
companies handling programming tasks. These
models assign roles like CEO, CTO, product
manager, programmer, and designer, system-
atically reflecting the organizational structure
of a real-world company. The adoption of a
Standard Operating Procedure (SOP), crafted
by professionals and fed into the system, guides
the collaborative process, creating a workflow
similar to that of a traditional software company.
These works shift the paradigm to output; =

2023; Chen et al., 2023b; Du et al., 2023) has high-
lighted the benefits of cooperative approaches, such
as debates, in enhancing performance. Our work
introduces an innovative parallel planning method-
ology, where agents with identical roles collaborate
to simultaneously address the same question. This
parallel approach has been instrumental in boosting
performance, demonstrating the efficacy of multi-
agent cooperation in complex problem-solving.

3 Methodology

To empower the S-Agent system with the scientific
method, we have structured the process into three
distinct parts: idea generation, experiment conduc-
tion, and panel discussion. Each part is facilitated
by purpose-built agents, as illustrated in figure 1.

3.1 Idea Generation

The Idea generation part serves as the initial stage
for proposing ideas and formulating hypotheses
during the execution process of the agent system.
Throughout the experiment iterations, ideas un-
dergo refinement and new ones emerge. In this
phase, we specifically design LLM-powered agents,
termed idea generation agents, to emulate the role
of scientists in generating structured ideas easily
verifiable by subsequent experiments. Meanwhile,
these agents can analyze feedback from discussion
parts and revise their ideas accordingly. In pro-
gramming scenarios, these agents initially receive
a coding question as input and directly generate
Python solutions. In the next few rounds, the agent
shall take the discussion feedback as input and gen-
erate new solutions if the solutions generated by the
previous ideas do not pass the targeted experiments.
As shown in Figure 1, the idea generation agents
receive the input and produce ideas. A detailed
task adaption will be presented in the experiments

LLM (personality;, instruction;, demos;, input;), section.

where each index represents a different role. By
following a sequence of roles, the answer is
generated through this process.

Building on this foundation, AgentVerse(Chen
et al., 2023b) and AutoAgents(Chen et al., 2023a)
introduced a job market system, simulating the re-
cruitment of expert agents for specific roles. This
approach also generate the SOP. By automating ev-
erything, the artificial company of agents achieves
a high level of task proficiency and autonomy.

While these models typically employ a sequen-
tial waterfall workflow, addressing each compo-
nent of a task linearly, recent research(Zhang et al.,

3.2 Experiments Conduction

The experiment conduction phase consists of de-
signing appropriate experiments and carrying out
the designed experiments. These steps are often
considered the most crucial in the scientific method.
A well-designed experiment can determine not only
the validity of a hypothesis but also highlight its
advantages over previous theories when the results
support the hypothesis. Conversely, when the re-
sults reject the hypothesis, the experiment can pin-
point the specific issues that remain unresolved.
This focused feedback can make the iteration of
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Figure 1: Illustration of S-Agent. The idea generation phase showcases agents responsible for generating ideas,
encompassing both solution concepts and corresponding code. The experiment conduction phase begins with
the generation of experiment ideas by experiment generation agents, followed by the execution of experiments
through experiment execution agents. Experiment reports contained thorough analysis of results and the collection
of feedback from the environment are also generated in this phase. In the panel discussion session, a discussion
host synthesizes experiment reports from preceding agents, facilitating the generation of valuable feedback. This
feedback is systematically organized to serve as input for the subsequent iteration, fostering continuous idea and

experiment setting improvement.

hypotheses much faster, also help avoid deduction
analysis from wrong start. In our system, applying
this hypotheses experiment alignment phase prop-
erly can avoid machine hallucination effectively.
To equip this mechanism in our system, we de-
signed experiment generation agents to do exper-
iments design and experiment execution agents
to test out hypotheses and produce detailed exper-
iment reports after receiving the results. As illus-
trated in Figure 1, the experiment generation agents
formulated the targeted experiment plan based on
proposed idea and execution reports, and the exper-
iment execution agents execute codes with these
test cases in execution environment.

3.3 Panel Discussion

Observing the workflow of a scientist reveals that
panel discussion, often through paper publications
and sharing, is a vital component of the modern
academic community. Therefore, when an exper-
iment validates an idea, we facilitate discussion
among different agents. This process allows them
to review others’ work, ensuring internal logic con-
sistency and providing references and inspiration

to other agents. The discussion results in either
feedback on analyzing experiment results or final
answers if the designed experiments successfully
verify the proposed ideas. To manage this pro-
cess effectively, we have designed a specialized
agent called a discussion host, responsible for ag-
gregating information, assessing previous results,
and overseeing the overall status of ongoing discus-
sions.

3.4 Supporting Component

To simplify the deployment of the entire system and
reduce execution time, we also include two support-
ing components named the planner and agent task
management.

Automated Workflow Planner The automated
workflow planner is a specially designed agent re-
sponsible for generating sequences of execution
flows for agents and managing their interdependen-
cies. This critical component strategically plans
and organizes the order in which agents operate,
ensuring a coherent and efficient workflow. To for-
mulate this plan, only the input-output information



and the agents’ goals are required. As shown in
Figure 1, the edges of the directed workflow graph
are generated by the planner automatically. This
approach draws inspiration from the methodology
introduced in LLMCompiler(Kim et al., 2023). The
detailed prompt design and sample illustration are
given in the appendix.

Agent Task Management Unit The agent task
management unit, drawing inspiration from the in-
struction fetching mechanism in modern computer
architecture, plays a crucial role in determining the
optimal execution flow of agents based on the in-
termediate representation generated by the Planner.
Employing a greedy policy, this unit swiftly adds
agents to the task list as soon as they become ready
for parallel calling. The implementation of this
agent task management unit involves a straightfor-
ward fetching and queue mechanism, foregoing the
need for a dedicated agent system.

4 Experiment

We assess the effectiveness of our framework in
tackling complex problems using the coding bench-
mark LeetcodeHardGym(Shinn et al., 2023), along-
side evaluations through HumanEval (Chen et al.,
2021) and EvalPlus(Liu et al., 2023). Furthermore,
we conduct a focused analysis to evaluate the effi-
cacy of our approach in reducing hallucinations on
the multi-hop QA benchmark HotpotQA dataset
(Yang et al., 2018).

4.1 Coding

HumanEval(Chen et al., 2021)(distributed under
the MIT license) is a benchmark for code synthe-
sis, which consists of 164 programming problems
with several test cases each. The problems in this
dataset are designed to test the ability of LLMs to
generate functionally correct codes, which means
the generated codes can not only execute success-
fully but also pass the provided test cases, instead
of being linguistically similar to the canonical so-
Iution. EvalPlus is a benchmark that aims to im-
prove the quality and quantity of test cases for the
existing HumanEval benchmark. EvalPlus con-
tains new test cases that can catch more errors and
bugs in the LLM-synthesize code. The LeetCode-
HardGym(Shinn et al., 2023) consists of 40 open
LeetCode hard problems. It was introduced in Re-
flexion, where the benchmark utilizes LeetCode’s
API and the traditional RL package gym (Brock-
man et al., 2016) to construct this dataset in the

humaneval format, requiring no additional configu-
ration modifications.

Our performance on these benchmarks is note-
worthy, achieving a Pass@1 (Pass@1 is the prob-
ability that a model generates at least one correct
solution out of one attempt) of 33.3% on LeetCode-
HardGym, establishing a new SOTA. Additionally,
we achieve strong performance with 96.3% on Hu-
manEval and 86.6% on EvalPlus,

4.1.1 Implementation Details

As discussed earlier, the scientific method involves
three phases: idea generation, experiment conduc-
tion, and panel discussion. In this section, we detail
our approach to applying this methodology in the
adaptation of the HumanEval dataset. We elaborate
on our process for prompt design and provide a
detailed example in the appendix for clarity.

In the idea generation phase, we task the idea
generation agents with the dual roles of analysis
and coding. Initially, these agents analyze and for-
mulate a comprehensive strategy to tackle the cur-
rent task. Subsequently, during the coding phase,
they annotate each step of their proposed solution
with explanatory comments. This process can be
represented as analysis, modified_code =
LLM (task, previous_code, feedback).

This approach mirrors the scientific method
where analysis, modi fied_theory =

Scientist(phenomenon, previous_theory,
experiment_result) is analogous. The general
structure of the prompt format is detailed in Figure
2, which also specifies the output format.

prompt for idea generation agent output format

there is the original file to complete: #reply

## analysis

The feedback from discussion:
““\n{THE FEEDBACK}\n""

## modified code completion:
“*{MODIFIED CODE}"™

You should reply with:
““\n{THE OUTPUT FORMAT\n"""

Figure 2: Prompt for idea generation agents and the
output template. FEEDBACK is all the previous experi-
ments reports.

During the experiment conduction stage, spe-
cialized agents are designated for experiment gen-
eration and execution. Experiment generation
agents are tasked with creating specific experi-
ments (in the context of coding, experiments re-
fer to test cases), determining the experimental
inputs, defining expected outputs, specifying mes-
sages for various types of output during analy-
sis, and providing implementation code formatted



as ’assert f(input)==output, description of the ex-
periment’. Detailed instructions for this process
are illustrated in Figure 4, where test_script =
LLM (task,current_code). This parallels the
scientific method, where experiment_plan =
experiment_scientist(phenomenon,
current_theory).

The experiment execution agent is tasked with
running Python code generated from idea genera-
tion within a functional environment and generat-
ing the experiment report. The output format of this
agent is outlined in Figure 5, with detailed specifi-
cations of the report format provided in Figure 10
in the appendix. The agent interprets standard out-
put and error messages to provide precise feedback,
facilitating the refinement of theories or experiment
designs.

Following the generation of experiment reports
during the experiment conduction phase, the dis-
cussion host assumes responsibility for aggregating
all reports and assessing the resolution of the issue.
If the issue persists, each idea generator conducts a
thorough analysis of their respective reports to re-
fine their proposed ideas embedded within the gen-
erated code. Moreover, each participant involved in
experiment generation reviews the reports to make
adjustments to their experiments. This process ex-
emplifies the effective panel discussion mechanism
established by our framework.

In each test case, we initiate by feeding input to
our system. Subsequently, each interaction with
received feedback is considered a round. We set
a maximum of 10 rounds per test case; exceeding
this limit leads to the system being deemed unsuc-
cessful. Conversely, upon achieving success, we
derive the final solution from the resulting code.
Upon completing all 164 cases, we run the official
script to compute a Pass@1 score. We chose the
number 10 to balance the system’s performance,
as increasing this limit might lead to chance im-
provements without substantial benefit. Compa-
rable frameworks, such as Reflexion(Shinn et al.,
2023), use a parameter of 6 for similar reasons.
Additionally, our analysis shows that among the
158 successful cases, only 4 required more than
2 rounds to solve. Hence, reducing this number
would not notably affect overall performance.

4.1.2 Result and Analysis

We evaluated S-Agent system using both GPT-4
and GPT-3.5. By utilizing GPT-4, our system suc-
cessfully completed 158 out of 164 tasks (pass@1

=96.3%), achieving state-of-the-art performance.
Furthermore, our system leveraged GPT-3.5 to pass
137 out of 164 tasks (pass@1 = 84.1%), surpass-
ing the performance of all our known works based
on the same LLM. The results are summarized in
Table 1. We have also attained a SOTA result on
the LeetCodeHard benchmark, achieving a Pass@1
accuracy of 33%. Previously, the highest accu-
racy was 15%, achieved by Reflexion(Shinn et al.,
2023).

Recent methodologies in coding tasks aim to
enhance performance through several strategies:
leveraging the Python execution environment, in-
corporating reflection mechanisms, and facilitat-
ing multi-agent discourse. The Python execution
environment allows systems to execute code and
verify its validity. Reflection enhances system
performance by using verbal reinforcement cues
generated by LLMs based on past experiences.
Different systems implement reflection in varied
ways: MetaGPT(Hong et al., 2023) employs a spe-
cialized agent for reflection, language-agent-tree-
search (LATS)(Zhou et al., 2023) utilizes reflection
in a trajectory format, and Reflexion(Shinn et al.,
2023) focuses on enabling the LLM itself to re-
view and learn from feedback. In coding tasks,
feedback includes outputs such as standard out-
put (stdout) and error messages generated during
code execution.Multi-agent discourse, studied ex-
tensively in this context, involves aggregating ideas
from different personas to generate more compre-
hensive and accurate answers(Du et al., 2023; Chen
et al., 2023b).

Prior methodologies typically receive feedback
passively from the Python Interpreter. In contrast,
our approach uniquely empowers the agent to ac-
tively influence the feedback process, as detailed
in Figure 3. In our framework, outlined in the im-
plementation section, the experiment generation
agents configure experiments to produce interme-
diate results. This approach introduces additional
lines such as printed statements that provide de-
tailed insights into any encountered errors. These
lines not only utilize feedback but also enrich it
through agent-driven efforts, thereby enhancing
the feedback with more valuable information. This
enrichment guides the system towards effectively
addressing complex problems. The enhanced feed-
back from experimental results and inter-agent
panel discussions has propelled us to achieve state-
of-the-art performance.



GPT4 ANPL MetaGPT AgentVerse Reflextion LATS S-Agent
code execution X v v v v v v
reflection X X v v v v v
panel discussion X X X v X X v
experiment design X X X X X X v
Pass@1 (GPT3.5-base) | - 76.2% - 75% - 83.8% 84%
(GPT4-base) | 67%  86.6% 87.7% 89% 91% 94.4% 96.3%

Table 1: Pass@1 result of related works on programming. We refer code execution as the use of python execution
environment, reflection as the use of LLM-generated feedback, panel discussion as agents sharing and discuss each
others work, experiment design as actively design experiment according to proposed idea and previous feedback.
Our S-Agent system stands out from previous works and achieved best pass@ 1 score, mainly because of involving

actively designing experiments.

Previous systems Our system

interpreter input

+ completed_code.py
+ fixed_test_case.py

interpreter input

+ completed_code.py
* iteratively_updated_test_case.py

analysis_1 =",
print(fget_max_triples{5}=!, get_max_triples(s))
assert get_max_triples(s) == 1, analysis_1

e o DR ... .. E—

* Standard out * standard out: detailed wrong answer

assert get_max_triples(s) == 1

get_max_triples(5)= 0
+  error message: Simply True/False
*  error message: AssertionError and

print messages of intermediate steps

which gives the analysis

Traceback ...

AssertionError:

the input is : n=5

the output is : 1

my analysis of this case : Since ..., it can be used

as a valid test case.

Traceback (most recent call last):
File *...", line 21, in execute_code
exec(code, )
File "<string>", line 50, in <module>
AssertionError:

Figure 3: This figure demonstrates the differences in
input and output between our system and the previous
systems. Because of incorporating specially designed
experiments during the python execution step, instead
of just providing a binary assessment of code function-
ality, our system also generate intermediate results and
other results based on the experiment requirement, as
highlighted in the image.

4.1.3 Ablation Study

We conduct experiments on the HumanEval and
EvalPlus datasets to investigate the effectiveness of
mechanisms within the S-Agent framework.

Table 2 shows the results of the experimental
results of three S-Agent variants including the orig-
inal framework (Original), S-Agent without Panel
discussion mechanism (w/o Panel), S-Agent with-
out Panel discussion and Experiment conduction
mechanism (w/o Exp&Panel), S-Agent without the
Idea generation, Experiment conduction, and Panel
discussion mechanisms (w/o Idea&Exp&Panel).
The findings indicate that all three fundamental
mechanisms play a beneficial role in enhancing the
precision of the S-Agent framework.

We also investigate how the number of Idea gen-

S-Agent Variants HumanEval EvalPlus
Original 96.3% 89.0%
w/o Panel 92.1% 86.6%
w/o Exp&Panel 84.8% 79.9%
w/o Idea&Exp&Panel 68.3% 65.2%

Table 2: Pass@1 on HumanEval and EvalPlus using
GPT-4 under different S-Agent Variants. The experi-
ment employs a single agent for idea generation, another
for experiment conduction, and a third for panel discus-
sion.

eration and Experiment conduction agents impact
the results of the S-Agent framework. As depicted
in Table 3, with an increase in the number of agents,
there is a clear improvement in the average pass@1
value, accompanied by a reduction in the standard
deviation. This indicates that, solely from a perfor-
mance perspective, increased discussion can sub-
stantially enhance both the accuracy and stability
of the entire system. This conclusion also aligned
with (Du et al., 2023; Yang et al., 2018). This also
aligned with our result in GPT-4 based experiments,
the pass@1 increase from 92.1% to 96.3% when
increasing the number of agents to 3.

Number of HumanEval EvalPlus

Agents Pass@1 (%) Pass@1 (%)
1 805+ 1.8 720+ 1.8

3 83.5+137 744 +1.37
5 84.1+£056 75.6 £0.56

Table 3: Pass@1 performance on HumanEval and
EvalPlus using GPT-3.5 under different numbers of Idea
generation and Experiment conduction agents.



4.2 HotpotQA

The HotpotQA(Yang et al., 2018) dataset, is a cru-
cial benchmark in Natural Language Processing
(NLP) and Question Answering (QA). It is specif-
ically designed for models that handle complex,
multi-hop question-answering tasks, requiring syn-
thesis of information across multiple text sources
from wiki. The HotpotQA dataset is distributed
under the CC BY-SA 4.0 license. The code is dis-
tributed under the Apache 2.0 license.

We randomly sampled a subset of 50 QA pairs
from the original dataset and conducted tests with-
out panel discussion settings. Compared to Re-
Act(Yao et al., 2023b), our approach improved
results by 7.4%. The S-Agent outperforms Re-
Act(Yao et al., 2023b) by providing more precise
and effective feedback.

In our experiment demonstrating how LLM’s
approach can reduce hallucinations, we examined
a query asking "Which show was hosted by Jessica
Drake’s former spouse?". Both our approach
and previous methods use the current result to
generate subsequent queries based on Wikipedia.
The key difference lies in how queries are gener-
ated: previous methods employ next_query =
LLM (task, current_knowledge,
review_of_lastquery), whereas our
approach utilizes next_query =
LLM (task, current_knowledge,
expaxted_of_last_query,last_query_result)

In this scenario, both systems first query infor-
mation about Jessica Drake’s ex-husbands, identi-
fying Brad Armstrong and Evan Stone. The React
system, lacking explicit expectation management,
falls into a loop when querying Brad Armstrong. It
assumes the direction is correct solely based on his
association with the movie industry, perpetuating
the query without finding the answer. In contrast,
our framework treats each query as an experiment
with predefined expectations. By comparing the ac-
tual result with these expectations, LLM identifies
incorrect paths and intervenes with feedback such
as "The provided text does not mention any show
hosted by Brad Armstrong". This feedback redi-
rects attention to Evan Stone, leading to successful
resolution of the task.

The precise and efficient feedback mechanism
in our framework plays a crucial role in prevent-
ing LLM from persisting in incorrect directions,
thereby mitigating the risk of endlessly generat-
ing inaccurate information. For detailed prompts,

please refer to the appendix.

5 Conclusion

In this paper, we introduce the S-Agent, an inno-
vative multi-agent framework in which agents en-
gage in dialogues and collaborations inspired by
the scientific methodology. The framework incor-
porates the essential processes of hypothesis devel-
opment, experimentation, and refinement. These
processes embody the collective knowledge accu-
mulated over centuries of scientific inquiry and
are poised to enhance the credibility and precision
of LLM agents. The S-Agent integrates an auto-
mated workflow planner and a parallel agent task
management unit, providing flexible support for de-
veloping agents for complex and high-stakes tasks,
facilitating concurrent operation at the agent level.
Extensive experiments confirm the efficacy and ef-
ficiency of our methodology. Notably, the S-Agent
achieves a new state-of-the-art 96.3% pass@1 ac-
curacy on the HumanEval coding benchmark with
GPT-4.

6 Limitations and Future Work

The primary objective of this paper is to elucidate
the concept of scientific methodology. While our
general framework may not exhibit the same level
of sophistication as pioneering works like AutoA-
gents(Chen et al., 2023a) which autonomously gen-
erate requisite agents, our framework still requires
the manual implementation of specific agents tai-
lored for specialized tasks. In future developments,
a key direction of research involves exploring meth-
ods to automatically generate agents with finely
crafted prompts, presenting an important avenue
for further exploration.

Currently, following the generation of the Di-
rected Acyclic Graph (DAG) plan, the plan remains
static. However, it is imperative to establish dy-
namic refinement for this plan. Recent advance-
ments, exemplified by works such as ReAct(Yao
et al., 2023b), BabyAGI, and XAgent, have endeav-
ored to enhance plans based on feedback received
at each step. While these approaches typically in-
volve linearly designed steps, there is a research
gap in developing methods to dynamically refine a
DAG-formatted plan with the capability for parallel
execution.
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A Additional Details

A.1 Automated Workflow Planner

Given a user query, the planner will create a plan
to solve the user query with the most parallelizabil-
ity. The prompt of the planner agent contains the
profiles of every agent and the tools it equips. Each
task in the plan must have a unique ID, which is
strictly increasing. Inputs for each task can either
be constants or outputs from preceding actions. If
the outputs from preceding actions are needed, we
use the format $id to denote the ID of the previous
agent task whose output will be replaced with the
input. Upon the completion of all agent tasks, we
always call join as the last task in the plan to collect
all the previous task outputs and formulate a final
output. We use the HumanEval coding question
get_max_triplets to demonstrate the functional-
ity of our LLM planner agents. Figure 6 shows
the plan that the planner creates after receiving the
coding question as the user query. In this case, user
queries are fed into three Coders and the Tester.
Afterward, the output from the Coders should be
considered as the input to the Expereimnters with
the output from the Tester respectively. Then the
gathered outputs from these Experiments should
be the input of the Discussion Hoster. In the end,
we collect all the results and finish this plan.
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A.2 Agent Task Management Unit

Figure 7 shows how the management unit han-
dles the agent tasks. Agents are equipped with the
tools that the user provides and tasks are delegated
to the associate tool. The management unit syn-
chronously listens to the task queue and schedules
tasks as they arrive in the queue based on their de-
pendencies. More specially, in this case, the three
coders and the Tester agents execute in parallel at
the same time due to empty dependencies. While
the Experiment agents cannot execute in parallel
until the completion of all Coder agents and Tester
Agents. Meanwhile, we shall replace dependency
placeholders, i.e. $i, in the args of the agent task
with the actual output.

B Additional Results
B.1 Case study for HumanEval

prompt for
experiment generation agent

output format

““python
# there are x cases in total. Here is my
analysis one by one:

#The 1st case can be used

analysis_1 = “"".."""

# Based on the analysis, here is the test
function

assert ... == ...

there is the original file to complete:

The feedback from discussion:
““\n{THE FEEDBACK}\n™™

You should reply with:
““\n{THE OUTPUT FORMAT\n""

Figure 4: Prompt for experiments generation agent and
the output template. FEEDBACK is all the previous
experiments reports.

output format of
experiment execution agent

#report
## analysis

1. Clarify the main objective of the user query ...
2. Inspect the provided code and error messages ...
3. Diagnose and propose logical correctness to either codes or test cases ...

## modified code completion:
““\n{MODIFIED CODE}\n""" if the provided code is wrong

## modified test case:
““\n{MODIFIED TESTCASE}\n""" if the provided test cases are wrong

Figure 5: Output format of the experiment execution
agent, where detailed analysis and modification of either
codes or test cases are produced.

To get a closer look at a specific task, we chose
No.147 as a demo because this task is only solved
by our system, and it cost 5 rounds of modifica-
tion to get the final answer. For the task and idea
generation agent, refer figure 8, for the experiment
generation agent refer figure 9, for the experiment
execution agent and the exact augment feedback
from python, refer figure 10
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1. Coder_1(def get_max_triples(n):
length n.
where i <j<Kk,
a=1[1,3,7 13, 21]
Coder_2(def get_max_triples(n):
length n.
wherei<j<k,
a=[1,3,7,13,21]
. Coder_3(def get_max_triples(n):
length n.
wherei<j<k,
a=[1,3,7 13, 21]
Tester(def get_max_triples(n):
length n.
wherei<j<k,
a=[1,3,7,13,621]
Experimenter($1+++$4)
Experimenter($2+++$4)
Experimenter($3+++$4)
DiscussionHoster($5+++$6+++57)
join()

WKE~NU

N

Planner

You are given a positive integer n. You have to create an integer array a of
Foreachi(l1<i<n), thevalueofali]=i*i-i+1.
and a[i] + a[j] + a[k] is a multiple of 3.
The only valid triple is (1, 7, 13).
You are given a positive integer n. You have to create an integer array a of
Foreachi(l1<i<n), thevalueofali]=i*i-i+1.
and a[i] + a[j] + a[k] is a multiple of 3.
The only valid triple is (1, 7, 13).
You are given a positive integer n. You have to create an integer array a of
Foreachi(l<i<n), thevalueofali]=i*i-i+1.
and a[i] + a[j] + a[k] is a multiple of 3.
The only valid triple is (1, 7, 13).
You are given a positive integer n. You have to create an integer array a of
Foreachi(l<i<n), thevalueofali]=i*i-i+1.
and a[i] + a[j] + a[k] is a multiple of 3.
The only valid triple is (1, 7, 13).

Return the number of triples (ali], a[j], a[k]) of a
Example : Input: n=5 Output: 1 Explanation:

")

Return the number of triples (al[i], a[j], a[k]) of a
Example : Input: n=5 Output: 1 Explanation:

")

Return the number of triples (a[i], a[j], a[k]) of a
Example : Input: n=5 Output: 1 Explanation:

")

Return the number of triples (ali], a[j], a[k]) of a
Example : Input: n=5 Output: 1 Explanation:

")

J

Figure 6: Given a coding task: "def get_max_triplets: You are given a positive integer n. You have to create an
integer array a of length n. For each i (1 < i < n), the value of a[i| = ¢ X i — ¢ + 1. Return the number of triples
(ald], a[j], a[k]) of a where i < j < k, and a[i] 4+ a[j] + a[k] is a multiple of 3. Example: Input: n = 5, Output: 1,
Explanation: a = [1, 3,7, 13, 21], The only valid triple is (1,7, 13)", the planner agent shall automatically make the
detailed plan of the agents’ workflow and their dependencies.

Based on such augmented feedback, these agents
can get more specific reviews about current code ,
just like scientists can draw more specific conclu-
sions based on specific experiment results. Here
they find out that the problem didn’t handle re-
minder 1 and 2 properly .

Based on this feedback, they will repeat the work
procedure. By observing the correct final answer,
we would find that the issue at the first draft is that
it did not consider three 1s or three 2s can also lead
to reminding O, just like three Os.

B.2 HotpotQA
B.2.1 dataset

The HotpotQA(Yang et al., 2018) dataset stands as
a pivotal benchmark within the realm of Natural
Language Processing (NLP) and Question Answer-
ing (QA). This dataset serves a distinctive purpose,
tailored for assessing models tasked with intricate,
multi-hop question-answering assignments that ne-
cessitate the synthesis of information from various
textual sources. Consequently, the inclusion of
HotpotQA in evaluations requires models to show-
case sophisticated reasoning and comprehension
abilities.

HotpotQA offers two evaluation settings, Full-
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wiki and Distractor. In the Fullwiki Setting, the
dataset provides only questions, and users must re-
trieve related information from the entire Wikipedia
dataset using their Information Retrieval (IR) sys-
tem. The effectiveness of the search strategy in this
setting is crucial, as the content found can signif-
icantly influence the results. Users then use their
models to answer the question based on this in-
formation. In the Distractor Setting, the dataset
provides questions along with context from the
Wikipedia dataset, which includes both related and
unrelated paragraphs. In this case, the user’s model
must be able to sift through the shuffled context to
find the relevant information and answer the ques-
tion correctly. In both settings, models are tasked
with predicting the answer and identifying the sup-
porting paragraphs in the context. When evaluating
performance, we use Exact Match (EM), which
measures whether the model’s answer precisely
matches the ground truth answer.

B.2.2 implementation

In this particular dataset, we empower idea gener-
ation agents to create the entire search plan. This
includes formulating a set of queries for interac-
tion with Wikipedia and specifying the desired



N

Agent Task Management Unit

1. Task(idx=1, name="'Coder_1', tool=<function writecode_1 at 0x11c11b370>, args=("\ndef get_max_triples(n):\n """\n You are
given a positive integer n. You have to ..."""\n',), dependencies=[], stringify_rule=<function <lambda> at 0x11c11b2e0>,
thought=", observation=None, is_join=False)

2. Task(idx=2, name='Coder_2', tool=<function writecode_2 at 0x11c11b520>, args=('\ndef get_max_triples(n):\n """\n You are
given a positive integer n. You have to ..."""\n',), dependencies=[], stringify_rule=<function <lambda> at 0x11c11b6d0>,
thought=", observation=None, is_join=False)

3. Task(idx=3, name='Coder_3', tool=<function writecode_3 at 0x11c11b760>, args=('\ndef get_max_triples(n):\n """\n You are
given a positive integer n. You have to ..."""\n',), dependencies=[], stringify_rule=<function <lambda> at 0x11c11b9a0>,
thought=", observation=None, is_join=False)

4. Task(idx=4, name='Tester', tool=<function create_unit_tests at 0x11c11bd00>, args=('\ndef get_max_triples(n):\n """\n You
are given a positive integer n. You have to ..."""\n',), dependencies=[], stringify_rule=<function <lambda> at O0x11c13c0d0>,
thought=", observation=None, is_join=False)

5. Task(idx=5, name='Experimenter', tool=<function experiment at Ox11c13fe20>, args=('$S1+++$4',), dependencies=[1, 4],
stringify_rule=<function <lambda> at Ox11c13ff40>, thought=", observation=None, is_join=False)

6. Task(idx=6, name='Experimenter', tool=<function experiment at Ox11c13fe20>, args=('$2+++54',), dependencies=[2, 4],
stringify_rule=<function <lambda> at 0x11c13ff40>, thought=", observation=None, is_join=False)

7. Task(idx=7, name='Experimenter’, tool=<function experiment at Ox11c13fe20>, args=('$3+++$4',), dependencies=[3, 4],
stringify_rule=<function <lambda> at Ox11c13ff40>, thought=", observation=None, is_join=False)

8. Task(idx=8, name='DiscussionHoster', tool=<function discuss at 0x11c13c1f0>, args=('$5+++$6+++$7',), dependencies=[5, 6, 7],
stringify_rule=<function <lambda> at Ox11c13c4c0>, thought=", observation=None, is_join=False)

9. Task(idx=9, name='join’, tool=<function instantiate_task.<locals>.<lambda> at 0x11c35add0>, args=('<END_OF_PLAN>',),
dependencies=[1, 2, 3, 4, 5, 6, 7, 8], stringify_rule=None, thought=(",), observation=None, is_join=True)

~

J

Figure 7: Here is an example of how the agent task management unit works for the coding task: def
get_maz_triplets, where tasks with no dependencies execute parallelly.

knowledge to be retrieved through these queries.
Simultaneously generating pairs of queries and tar-
geted knowledge streamlines the experimental pro-
cess, especially when assessing the efficiency of
the queries. This approach aligns with the scientific
method, emphasizing the importance of providing
falsifiable ideas.

In this context, the experiment is to evaluate
whether the query can retrieve the targeted knowl-
edge, therefore, a rule-based experiment generation
agent is employed.

The experiment execution agent in this scenario
is more intricate due to the complexity of com-
municating with the Wikipedia API. During the
implementation of this specific experiment execu-
tion agent,we let llm automatically choose from
several actions. If a Wikipedia page is success-
fully retrieved by a query, the agent systematically
analyzes the information, starting from the first
paragraph and summary information box, followed
by the table of contents (TOC) of the Wikipedia
page.If the answer can be directly generated from
this initial information, it is returned promptly. If
no answer is found, but certain paragraphs poten-
tially contain details relevant to answering the ques-
tion, the agent continues to read these paragraphs.
The answer is returned if discovered in this pro-
cess; otherwise, a summary and analysis detailing
the reasons for the failure to find an answer are
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provided.

In situations where a Wikipedia page cannot be
located with the given query, the agent generates a
summary of similar pages returned by the APL



input to idea generation agent output from idea generation agent ~
# reply

there is the original file to complete: ## analysis
““python The implementation of the "get_max_triples’ function appears to be conceptually incorrect, as
def get_max_triples(n): it only checks for a triple made up of one element from each of the three possible residue
“““You are given a positive integer n. classes modulo 3. This strategy does not cover all possible valid triples. The example requires

You have to create an integer array a of finding all triples “(a[i], a[j], a[k])* where i <j < k" and "a[i] + a[j] + a[k]" is a multiple of 3. Thus,
length n. For each i (1 <i < n), the value the correct logic needs to account not only for one from each category but also for other
of a[i] =i * i-i+ 1. Return the number of combinations such as three zeros modulo 3. The current function fails to do this, which is likely
triples (alil, alj], a[k]) of a where i <j <k, why the test assertion fails.
and a[i] + a[j] + a[k] is a multiple of 3. ## modified code completion
Example : “python

Input:n=5 def get_max_triples(n):

Output: 1 # Generate the array where a[i] =i *i-i+1

Explanation:a = [1, 3, 7, 13, 21]The a=[i*i-i+1foriinrange(l,n+1)]
only valid triple is (1, 7, 13). """ # Count the occurrences of each number mod 3 in the array
counts = [0, 0, 0]
The feedback from discussion: for number in a:
counts[number % 3] +=1
{THE FEEDBACK} # Calculate the number of triples
# We can form triples in the following ways:
You should reply with: # 1. Three numbers whose remainders mod 3 are all zero (counts[0] choose 3)
# 2. One number from each remainder category (counts[0] * counts[1] * counts[2])
{THE OUTPUT FORMAT} triples = (counts[0] * (counts[0] - 1) * (counts[0] - 2) // 6) + (counts[1] * counts[2] *
counts[0])

return triples
N AN J

Figure 8: The original task is "You are given a positive integer n. You have to create an integer array a of length
n. For each i (1 < ¢ < n), the value of a[i] = i X i — i + 1. Return the number of triples (a[i], a[j], a[k]) of
a where i < j < k, and a[i] + a[j] + alk] is a multiple of 3. Example: Input: n = 5, Output: 1, Explanation:
a = [1,3,7,13,21], The only valid triple is (1,7,13)."

At first, one of the idea agents gives a draft saying that for all numbers in a; , there is only 3 possible reminders
when divided by 3 : 0,1,and 2. so it suggest first counts how many numbers reminds 0 ,1,and 2 . than there should
be 2 senarieo that the 3 selected 3 numbers from the list satisfy the requirement : all the reminder is 0 or reminder is
0,1,2 .these two can be calculated by the 3 counts .

input to experiment generation agent output from experiment generation agent

there is the original file to complete:

““python python

def get_max_triples(n): # there are 1 cases in total Here is my analysis one

“““You are given a positive integer n. You have to by one:

create an integer array a of length n. For each i (1 <i < #The 1st case can be used )

n), the value of a[i] =i * i - i + 1. Return the number of analysis_1 ="""the input is : n=Sthe output is : 1my

triples (a[il, alj], alk]) of a where i<j<k, and a[i] + analysis of this case : Since the example provided

a[j] + a[k] is a multiple of 3. Example : gives a direct output after calculation for n=5,and
Input:n=5 follows the definition of the function properly as
Output: 1 per the problem statement, it can be used as a
Explanation:a = [1, 3, 7, 13, 21]The only valid valid test case.”""

triple is (1, 7, 13). """ # Based on the analysis, here is the test function

(only contain the testcase that can be used):

The feedback from discussion: print(f'get_max_triples(5)=', get_max_triples(5))

““\n{THE FEEDBACK}\n""* assert get_max_triples(5) == 1, analysis_1

You should reply with: print(‘all passed’)

U \n{THE OUTPUT FORMAT}\n PAR )

Figure 9: then , one of the experiments agents , design its experiment about the task , first print the result if n=5 ,
then if the code draft showed that the result is not 5 , raise an error message contains the analysis about why when n
=5 it should be the result .
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execution agent
there is the original file to complete:
“python
def get_max_triples(n):
“““’You are given a positive integer
n.You... """

The code from idea generation agent:
““python
def get_max_triples(n):

# Ge...

return triples

The code from experiment generation
agent:

““python

#there are 1 cases ...

print(‘all passed’)

N

direct feedback
from python
the stdout is:
get_max_triples(5)= 0

the error message:

Traceback (most recent call last):
File “...", line 21, in execute_code
exec(code,{})
File "<string>", line 57, in
<module>
AssertionError:
the input is : n=5 the output is :
1my analysis of this case : Since
the example provided gives a
direct output after calculation for
n=5, and follows the definition of
the function properly as per the
problem statement, it can be used
as a valid test case.

execution agent
#report
## analysis
The task is to write a function that, given a
positive integer ‘n’, will generate an array
following a specific formula and then find
the number of valid triples ... However, the
draft code incorrectly calculates the
possible combinations for triples that sum
to a multiple of 3 ... To correct the logic,
you should use the following steps:
- Calculate the combinations of three ...
- Calculate the combinations of choosing ...

## modified code completion:
“python
def get_max_triples(n):
#Co..
return count

## modified test case:
“python

L%

Figure 10: then the experiment excuted in a python interpreter , and give stdout , error message , the high light part
of the error message is added by the experiment agent . this part is augmented feedback of current code draft .

{"queries’: ['Full Name
biography', 'Full Name', "Full
Name career', 'Public Opinion
show host'],
'tasks_for_each_query":
['Search for the biography
page of the host to determine
their nationality', 'Look for a
Wikipedia page about the host
to find information about
their nationality’, "Find details
about the host's career which
might include their
nationality", "Search forthe
host of 'Public Opinion' to
ascertain their nationality"]}

input to experiment
execution agent

the condition query
didn’t find a pa
this query doesn't find a exact match , because you

e

can find a page only if the heading of the page is exact
match the query , because heading is always a noun , i
suggest query aword.
though there is not exect match , some other page
may contain relative infor mation , if you want to
know more details, you can query with their heading ,
they are :
" python
[

{

"heading": "RoomFullof Mirrors",

"relative chunked text in that page™: "RoomFullof
Mirrors: ABiographyof Jimi Hendrix is a
2005biographyof the influential rock guitarist, singer,
and songwriter Jimi Hendrix. It was written...",

"metadata of that page™: "3 KB (298 words) -
05:29, 4 February 2024"

b

N /

the condition query
found a wiki page

no.lanswer

N

It is possible to find
information about the
nationality of the host by
referring to a specific chapter
on the Wikipedia page about
them.

(if there is a answer)

It is impossible to find
information ...

(if information on this page
can not answer)

Figure 11: Input output example for experiment execution agents in HotpotQA
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input to idea generation agent output from idea generation agent

you need to help me check wikipedia, to collect

) ) _ {
information to answer: ! s
P o queries’: |
{question} . . . . 'Forestville Commonwealth’,
| already checked wikipedia with {n} queries, 'History of Forestville Commonwealth’,
which you can refer:
{experiences} 1
is the current information enough to get "tasks_for_each_guery”: [
answer? | will check wikipidia if you still have Determine what Forestville Commonwealth is

and its connection to socialist philosophy.,

'Explore the historical background and
establishment timeline of Forestville
Commonwealth.', 'Investigate possible connections

something not sure, please give me a list
questiones you need me check, and the list of
queries which could help checking these from

wikipidia, attention, wiki page's title is often a between the founder(s) of Forestville
noun, only exact match can successfully get the Commonwealth and socialist theories or
page. movements.'
if you can already answering the guestion based
on current information, please tell me your final ]
answer. !
.\Reply with the format:{format} JAN Y,

Figure 12: Input output example for idea generation agents in HotpotQA
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