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Abstract001

As large language models (LLMs) process in-002
creasing context windows, the memory usage003
of KV cache has become a critical bottleneck004
during inference. The mainstream KV compres-005
sion methods, including KV pruning and KV006
quantization, primarily focus on either token or007
precision dimension separately. However, these008
works leaving the trade-off between these two009
orthogonal dimensions largely under-explored.010
In this paper, we comprehensively investigate011
the token-precision trade-off in KV cache com-012
pression. Experiments demonstrate that stor-013
ing more tokens in the KV cache with lower014
precision, a strategy we term quantized prun-015
ing, can significantly enhance the long-context016
performance of LLMs. In-depth analysis of017
the token-precision trade-off across key aspects018
demonstrates that, quantized pruning achieves019
substantial improvements in retrieval-related020
tasks and consistently performs well across021
varying input lengths. Furthermore, quantized022
pruning demonstrates notable stability and ef-023
fectiveness across different KV pruning meth-024
ods, quantization strategies, and model scales.025
These findings offer valuable insights into op-026
timizing KV cache compression through bal-027
anced token-precision trade-off strategies. We028
plan to release our code soon.029

1 Introduction030

Current long-context Large Language Models031

(LLMs) heavily depend on the Key-Value (KV)032

cache mechanism, which stores intermediate keys033

and values during text generation to avoid redun-034

dant computations (Waddington et al., 2013). As035

the input sequence length increases, the KV cache036

size expands proportionally, leading to substantial037

memory overhead (Achiam et al., 2023; Reid et al.,038

2024). Take Llama3-8B (Dubey et al., 2024) as an039

example, storing the KV cache of a single sequence040

with 100k tokens necessitates a substantial memory041

overhead of 20GB — exceeding the model’s param-042

eter memory of approximately 14GB. Moreover,043

since the decoding process is highly dependent 044

on GPU memory bandwidth, the large KV cache 045

also results in a significant increase in decoding 046

time (Fu, 2024). As a result, efficiently compress- 047

ing the KV cache has become a critical challenge in 048

advancing LLM development (Pope et al., 2023). 049

To optimize KV cache memory usage, two pri- 050

mary approaches, focusing on token and precision 051

dimensions, are widely adopted: KV pruning and 052

KV quantization. For the token dimension, KV 053

pruning methods reduce the KV cache footprint by 054

discarding less salient tokens, thereby maintaining 055

a fixed cache size (Xiao et al., 2023; Zhang et al., 056

2024b; Ren and Zhu, 2024; Li et al., 2024). For 057

the precision dimension, KV quantization meth- 058

ods reduce memory usage by approximating KV 059

cache with lower precisions, like 4-bit or even 060

lower (Sheng et al., 2023; Liu et al., 2024c; Hooper 061

et al., 2024; Yang et al., 2024b). Given the orthogo- 062

nal nature of token and precision dimensions in KV 063

cache, it is natural to consider integrating KV prun- 064

ing and KV quantization to balance the number of 065

tokens and their precision for better performance. 066

For a fixed cache budget, lower precision in KV 067

quantization would allow for the retention of more 068

tokens in KV pruning. This raises the important 069

questions: Is such an integration effective? How 070

can we achieve an optimal trade-off between prun- 071

ing and quantization? To the best of our knowledge, 072

prior research has not explored this interplay. 073

To address the aforementioned questions, in 074

this paper, we comprehensively explore the token- 075

precision trade-off in KV cache compression. 076

Through meticulous experimentation, we for the 077

first time present the feasibility of integrating KV 078

pruning and KV quantization. Specifically, we 079

uncovered an intriguing finding: storing more to- 080

kens in the KV cache with lower precision, a strat- 081

egy we term quantized pruning, can significantly 082

enhance the long-context performance of LLMs. 083

For instance, storing 4× tokens in 4-bit precision 084
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outperforms storing 1× tokens in 16-bit precision085

across various KV cache budget. Notably, in ex-086

tremely low-resource scenarios, quantized pruning087

effectively preserves performance, whereas rely-088

ing solely on KV pruning or quantization often089

leads to a significant performance collapse. Further-090

more, we conduct in-depth analysis of the token-091

precision trade-off across critical aspects, includ-092

ing task type, input length, model scaling, quan-093

tization strategies, and layer-wise configurations.094

Extensive experiments reveal that quantized prun-095

ing achieves considerable gains in retrieval tasks096

and maintains robust performance across varying097

input lengths. Moreover, quantized pruning demon-098

strates strong stability across different KV pruning099

methods, quantization strategies, and model scales.100

In summary, our contributions are as follows:101

• We are the first to comprehensively explore the102

integration of KV pruning and quantization and103

propose the novel strategy of quantized prun-104

ing to enhance the long-context capabilities of105

LLMs.106

• An important finding is revealed: storing more107

tokens with lower precision significantly outper-108

forms standalone KV pruning or KV quantization109

methods under various KV cache budgets, high-110

lighting the importance of balancing token count111

and precision in KV cache compression.112

• Extensive experiments have been conducted on113

exploring token-precision trade-off across vari-114

ous critical aspects, including task types, input115

lengths, model scales, and quantization strategies,116

providing valuable insights for optimizing KV117

cache compression.118

2 Related Work119

KV Pruning KV pruning compresses the KV120

cache along the token dimension by selectively121

discarding less salient tokens to reduce memory us-122

age. Mainstream methods typically identify salient123

tokens based on attention scores, as seen in (Liu124

et al., 2024b; Zhang et al., 2024b; Oren et al., 2024;125

Li et al., 2024). Other methods use alternative126

factors such as initial tokens (Xiao et al., 2023),127

variance (Ren and Zhu, 2024), special tokens (Ge128

et al., 2024) or the L2 norm (Devoto et al., 2024) to129

determine token importance. Recent studies delve130

deeper into optimizing the allocation of KV cache131

memory budgets. Some explore KV cache budget132

allocation strategies across layers (Cai et al., 2024;133

Yang et al., 2024a), while other studies explore134

head-level KV cache budget allocation (Feng et al., 135

2024; Tang et al., 2024; Fu et al., 2024; Xiao et al., 136

2024). 137

KV Quantization KV quantization compress 138

KV cache from the precision dimension by stor- 139

ing KV cache using a reduced number of bits. 140

FlexGen (Sheng et al., 2023) utilizes group-wise 141

4-bit quantization for both key and value cache. 142

KIVI (Liu et al., 2024c) applies per-channel quan- 143

tization on key cache and per-token quantization 144

on value cache. KVQuant (Hooper et al., 2024) 145

and CQ (Zhang et al., 2024a) use RoPE-related 146

quantization, while KVQuant also preverses out- 147

liers without quantization. Atom (Zhao et al., 2024) 148

and SKVQ (Duanmu et al., 2024) reorders the out- 149

lier channels for fine-grained group quantization 150

with mixed-precision. QAQ (Dong et al., 2024) and 151

MiKV (Yang et al., 2024b), inspired by KV pruning 152

methods, store discarded tokens from KV pruning 153

methods using lower bit precision while retaining 154

salient tokens in full precision. However, their 155

memory usage scales proportionally with context 156

length. In contrast, quantized pruning, fundamen- 157

tally based on KV pruning, theoretically enables 158

compression to a pre-defined memory budget. 159

Other KV Compression Methods Compressing 160

KV cache from other dimensions typically requires 161

modifying the model architecture, which usually 162

necessitates additional training for adaptation. For 163

the layer dimension, LCKV (Wu and Tu, 2024), 164

CLA (Brandon et al., 2024) and MLKV (Zuhri 165

et al., 2024) reduce memory usage by sharing the 166

KV cache across adjacent layers. ShortGPT (Men 167

et al., 2024) and DynamicSlicing (Dumitru et al., 168

2024) achieve compression by eliminating redun- 169

dant layers. YOCO (Sun et al., 2024) changes 170

the model structure and shares a single global 171

KV cache across layers. For the head dimen- 172

sion, MQA (Shazeer, 2019) and GQA (Ainslie 173

et al., 2023) share the KV cache within each head 174

groups. DeepSeek-v2 (Liu et al., 2024a) employs 175

dimension-reduction techniques to compress all 176

heads into a single low-rank vector. These lines of 177

work are orthogonal to ours, and theoretically, they 178

could be combined with our method. However, it 179

is important to note that these methods typically 180

necessitate adjustments at the model architecture 181

or require additional fine-tuning, while quantized 182

pruning can be directly employed without any fine- 183

tuning. 184
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3 Methods185

The decoder-only transformer model consists of a186

stack of transformer decoder blocks, each compris-187

ing two main components: self-attention module188

and the feed-forward network (FFN) module. Dur-189

ing inference, KV cache is implemented within the190

self-attention module and operates in two distinct191

phases: i) the prefill phase, where the input prompt192

is used to generate KV cache for each transformer193

layer of LLMs; and ii) the decoding phase, where194

the model uses KV cache to generate the next token,195

and updates the KV cache with the new token.196

Prefill Phase. Let X ∈ Rb×lprompt×d be the input197

tensor, where b is the batch size, lprompt is the198

length of the input prompt, and d is the model199

hidden size. For clarity, we omit the layer index200

here. The key and value tensors can be computed201

by:202

XK = XWK ,XV = XWV (1)203

where WK ,WV ∈ Rd×d are the key and value204

layer weight. XK ,XV are cached in the memory205

for utilization in the subsequent decoding phase.206

Decoding Phase. Let h ∈ Rb×1×d be hidden207

state of current input token. hK = hWK and208

hV = hWV are the current key and value states.209

hK and hV are first employed to update the KV210

cache:211

XK ←− Concat(XK , hK),212

XV ←− Concat(XV , hV ) (2)213

then attention output hO is calculated by:214

hO = Softmax(hQXT
k )XV (3)215

where hQ = hWQ is the output of the query layer.216

For ease of illustration, we ignore the FFN module217

and other parts of the inference workflow that are218

not addressed in our approach.219

KV Quantization The B-bit KV quantization220

process during the prefill phase can be expressed221

as follows: First, determine the minimum number222

zi and the maximum number mi in Gi, where Gi223

is a group of number in XK or XV . Using these224

numbers, compute the quantized result Q(Gi) for225

each group according to the formula:226

Q(Gi) =

⌊
Gi − zi

si

⌉
, si =

mi − zi
2B − 1

(4)227

The notation ⌊·⌉ represents rounding to the nearest 228

integer. The results from all groups are aggregated 229

to obtain Q(XK) and Q(XV ). During the decoding 230

phase, the quantized Q(XK) and Q(XV ) and the 231

stored quantization parameters zi and si are used 232

to recover the original values. In the decoding 233

phase, the dequantized result X′
K ,X′

V are used 234

to calculate the attention output. X′
K ,X′

V are 235

obtained through aggregated G′
i for each Gi. G′

i 236

can be computed using: 237

G′
i = Q(Gi) · sx + zx (5) 238

KV Pruning The goal of KV pruning is to find 239

two submatrices Xe
K ,Xe

V ∈ Rb×s×d from the full 240

matrices XK and XV during the prefill phase, 241

given a cache budget s < n, while maximizing 242

performance preservation. During the decoding 243

phase, LLMs with KV pruning only use Xe
K and 244

Xe
V to update KV cache and generate new tokens. 245

Xe
K ←− Concat(Xe

K , hK), 246

Xe
V ←− Concat(Xe

V , hV ) (6) 247

Quantized Pruning Quantized pruning uses KV 248

pruning methods to obtain Xe
K and Xe

V first, and 249

then quantizes the preserved KV states Xe
K and 250

Xe
V to Q(Xe

K) and Q(Xe
V ) using KV quantization 251

methods in the prefill phase. In the decoding phase, 252

the dequantized results from Q(Xe
K) and Q(Xe

V ) 253

are used to generate new tokens. 254

4 Experimental Setup 255

Benchmarks We evaluate the performance of 256

quantized pruning using the LongBench bench- 257

mark (Bai et al., 2024) and Needle-in-a-Haystack 258

test (Kamradt, 2023). To better distinguish the per- 259

formance impacts related to input lengths and layer- 260

wise configurations (Sections 6.1 and 6.4), we fur- 261

ther utilize RULER (Hsieh et al., 2024), a dataset 262

with different input length and diverse types of nee- 263

dles across 4 task categories. Detailed information 264

on these datasets can be found in Appendix A. 265

LLMs In our primary evaluations, We employ 266

state-of-the-art open-weight LLMs, specifically 267

Llama-3-8B-Instruct (Dubey et al., 2024) and 268

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023). For 269

scaling experiments in Section 6.2, we addition- 270

ally assess the performance of Llama-3.2-1B, 271

Llama-3.2-3B (Dubey et al., 2024) and Llama-3- 272

70B (Dubey et al., 2024). 273
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Pruning Method
LongBench

Token=128 Token=512 Token=2048

16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit

StreamingLLM 32.1 32.2 31.7 19.1 34.6 34.5 33.9 20.7 38.1 38.2 37.8 23.8
H2O 35.6 35.6 34.7 15.8 37.5 37.4 36.7 17.7 39.8 39.7 39.0 21.1

SnapKV 35.7 35.7 35.1 16.6 40.3 40.4 39.7 20.2 41.7 41.7 41.0 22.9
PyramidKV 37.4 37.3 36.4 17.5 40.3 40.3 39.6 20.9 41.8 41.8 41.3 23.6

Ada-KV 39.3 39.2 37.4 11.9 40.9 40.8 39.0 12.5 41.7 41.7 40.0 13.7
HeadKV 40.9 40.9 39.5 11.6 41.9 41.9 40.3 12.1 42.4 42.4 41.0 13.4

Pruning Method
Needle-in-a-Haystack

Token=128 Token=512 Token=2048

16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit 16-bit 8-bit 4-bit 2-bit

StreamingLLM 27.7 27.7 27.5 30.9 35.3 35.3 35.5 37.3 66.4 66.5 66.4 61.8
H2O 46.9 46.6 46.8 36.4 91.2 91.1 91.0 54.8 100 100 100 74.1

SnapKV 83.7 83.7 82.5 55.9 97.4 97.4 97.2 66.3 100 100 100 78.1
PyramidKV 98.9 98.9 98.8 67.5 100 100 100 78.6 100 100 100 79.6

Ada-KV 87.7 88.2 81.0 11.1 98.6 98.6 97.4 11.9 100 100 100 27.3
HeadKV 98.6 98.5 98.4 9.1 100 99.9 99.7 11.5 100 100 100 27.6

Table 1: Feasibility of quantized pruned tokens on LongBench and Needle-in-a-Haystack with Llama-3-8B-Instruct
as backbone model. We use six different KV pruning methods to retain 128, 512 and 2048 tokens, and report the
results of further quantization. KIVI is used as the default quantization method, except for Ada-KV and HeadKV,
which adopt FlexGen. As they retain different tokens per head, making them difficult to be compatible with KIVI.
The best results for each token-precision setting are in bold, the second best results are underlined.

Setup Our experiments are designed to compre-274

hensively investigate the token-precision trade-off275

in KV cache compression. We quantify memory276

budget by reporting the compression ratio of the277

KV cache relative to the full, uncompressed KV278

cache. For KV pruning, we utilize PyramidKV (Cai279

et al., 2024) and SnapKV (Li et al., 2024) as rep-280

resentative state-of-the-art methods. To assess the281

feasibility of quantized pruning (Section 5), we282

also include StreamingLLM (Xiao et al., 2023),283

H2O (Zhang et al., 2024b), Ada-KV (Feng et al.,284

2024), and HeadKV (Fu et al., 2024). For KV quan-285

tization, we adopt KIVI (Liu et al., 2024c) as our286

primary method due to its stability and broad com-287

patibility. Furthermore, in Section 6.3, we evaluate288

quantization strategies from FlexGen (Sheng et al.,289

2023) and KVQuant (Hooper et al., 2024) for a290

comprehensive comparative analysis. Additional291

setup details are provided in Appendix B.292

5 Optimal Token-Precision Trade-Off293

In this section, we aim to find the optimal token-294

precision trade-off in KV cache compression. We295

first examine the feasibility of integrating KV prun-296

ing and quantization(Q1). Subsequently, we ex-297

plore the best optimal allocation strategy between298

precision and token under varying memory bud- 299

gets(Q2). 300

Q1. Is it feasible to integrate KV pruning
and quantization for a lower compression
rate?

We first evaluate the feasibility of integrating 301

KV pruning and quantization as a prerequisite for 302

exploring the token-precision trade-off. We employ 303

Llama-3-8B-Instruct and evaluate a range of KV 304

pruning methods on the LongBench and NIAH. 305

We report the results of quantizing the remaining 306

tokens to different precision levels after applying 307

KV pruning. 308

From Table 1, we observe that it is feasible to 309

quantize pruned KV cache for a lower compression 310

rate. For most KV pruning methods we evaluate, 311

further quantizing the preserved tokens to as low 312

as 4-bit precision results in minimal performance 313

degradation, while quantizing to 8-bit precision 314

shows negligible impact. However, reducing preci- 315

sion to 2-bit leads to a drastic performance decline 316

across most KV pruning methods. This observa- 317

tion holds consistently across different KV pruning 318

methods and varying numbers of preserved tokens. 319
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Figure 1: The token-precision trade-off under varying memory budgets on LongBench and NIAH. We report the
results of SnapKV-based and PyramidKV-based quantized pruning on Llama-3 and Mistral-v0.2. We compare
three configurations with approximately equivalent memory usage: 1) Using standalone KV pruning to retain 1×
tokens in 16-bit precision. 2) Quantized pruning by retaining 2× tokens in 8-bit precision. 3) Quantized pruning
by retaining 4× tokens in 4-bit precision. Quantized pruning, which preserves more tokens at a lower precision,
consistently outperforms standalone KV pruning methods across various budgets.

Notably, head-level KV allocation methods such320

as Ada-KV and HeadKV, which are incompatible321

with KIVI, perform well under high precision and322

a low number of preserved tokens. However, when323

precision is reduced to as low as 2-bit, these meth-324

ods experience a more pronounced performance325

degradation compared to KV pruning methods326

compatible with KIVI, such as SnapKV and Pyra-327

midKV. This observation underscores the critical328

importance of considering compatibility with KV329

quantization techniques in the development of fu-330

ture KV pruning strategies.331

Compared with precision, reducing the number332

of preserved tokens leads to more significant perfor-333

mance degradation. Specifically, when the number334

of preserved tokens is reduced to 1/4 (from 2048335

to 512), all KV pruning methods experience a no-336

ticeable performance drop. In contrast, when the337

precision is reduced to 1/4 (from 16-bit to 4-bit),338

which has the same memory budget as token di-339

mension, the performance degradation is relatively340

mild. This suggests that, under the same mem-341

ory budget, tokens might have a more significant342

impact on the results compared to precision.343

To conclude, KV pruning can be effectively inte-344

grated with KV quantization at a precision level of345

4-bit without substantial performance degradation. 346

Q2. What is the optimal allocation strategy
between precision and token under varying
memory budgets?

Observing that KV pruning and KV quantization 347

can be effectively integrated, we further investigate 348

that, given a fixed memory budget, how to balance 349

the trade-off between number of preserved tokens 350

and precision to achieve optimal performance. To 351

this end, we evaluate the performance of quantized 352

pruning using two leading KV pruning methods, 353

SnapKV and PyramidKV, across different memory 354

budgets on LongBench and NIAH. 355

As shown in Figure 1, we observe that quantized 356

pruning, which preserves more tokens at a lower 357

precision, consistently outperforms standalone KV 358

pruning methods across various budgets. For the 359

NIAH task, the improvements from quantized prun- 360

ing are particularly pronounced. This may be at- 361

tributed to that quantized pruning can cover more 362

tokens for retrieval under the same memory budget 363

compared to standalone KV pruning. 364

In high-budget scenarios, the 8-bit strategy tends 365

to deliver slightly better performance, which may 366
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due to the number of tokens at this budget is al-367

ready quite large. In low-budget scenarios, such368

as 1/128 KV cache budget, storing more tokens at369

4-bit precision yields superior results, highlighting370

the importance of token coverage when resources371

are constrained. Overall, using lower precision to372

preserve more tokens under a limited budget re-373

sults in notable performance gains, compared to374

standalone KV pruning methods that use full preci-375

sion to store fewer tokens.376

Summary We demonstrate that storing more to-377

kens in the KV cache with lower precision can sig-378

nificantly enhance the long-context performance of379

LLMs under fixed KV cache memory budget.380

6 Further Analysis381

In this section, we further investigate series of key382

aspects regarding token-precision trade-off, includ-383

ing the impact of quantized pruning on various384

downstream task types and input lengths, model385

scaling effect, ablation on quantization strategies386

and fine-grained exploration of layer-wise quan-387

tized pruning.388

6.1 Impact on Task Types and Input Lengths389

Task Types To further investigate the token-390

precision trade-off in different task types, we eval-391

uate PyramidKV-based quantized pruning on six392

task types from LongBench and the 8K subset of393

the RULER dataset. We use 1/16 KV cache bud-394

get, and explore the token-precision trade-off under395

this fixed memory budget, as this setting exhibits396

minimal performance differences across three set-397

tings, facilitating a more direct comparison of per-398

formance across task types.399

As illustrated in Table 2, we observe that the400

performance of quantized pruning is remarkably401

consistent across different task types. Specifically,402

lower precision, which retains more tokens in KV403

cache, leads to substantial performance improve-404

ments in the RULER task, which heavily relies405

on retrieving contents from the input. Tasks with406

high retrieval demands, such as Summarization and407

Single-Doc QA, also show noticeable gains with408

quantized pruning, particularly when 4× tokens409

are preserved at 4-bit precision.410

For tasks requiring more reasoning rather than411

intensive retrieval, such as Code Completion, Syn-412

thetic and Multi-Doc QA, the benefits of trading413

precision for more tokens are less pronounced. In414

these cases, storing fewer tokens with higher preci-415
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Figure 2: The token-precision trade-off in different input
lengths. We report the results of LongBench and three
subsets of RULER. We use PyramidKV-based quantized
pruning.

sion generally performs better. For example, using 416

1024 tokens in 8-bit precision achieves the hightest 417

score of 58 in Code task. 418

Input Lengths To evaluate the token-precision 419

trade-off across various input lengths, we conduct 420

experiments on subsets with different input length 421

of the RULER dataset. Additionally, we analyze 422

LongBench by grouping its data based on input 423

length, more detailed information can be found in 424

Appendix A. The results are shown in Figure 2. 425

Our observations are as follows: quantized prun- 426

ing consistently outperforms standalone KV evic- 427

tion methods across various input lengths, regard- 428

less of the models and task types. Within the same 429

dataset, scores decrease as input length increases; 430

however, the relative differences among different 431

compression methods remain similar across vary- 432

ing input lengths. Moreover, quantized pruning 433

achieves significant performance improvements 434

across all input lengths for retrieval demanded tasks 435

like RULER. 436

6.2 Scaling Effect on Quantized Pruning 437

To investigate the impact of model scaling on 438

quantized pruning, we conducted experiments on 439

four models from the Llama series: Llama3-70B, 440

Llama3-8B, Llama3.2-3B and Llama3.2-1B. Since 441
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Models Token Bit
Task Types

SQA MQA SUMM Fewshot Syn. Code RULER-8k

Llama-3-8B-Instruct
512 16 28.2 31.9 23.5 67.6 37.7 57.6 67.5
1024 8 29.6 33.1 24.3 67.9 37.4 58.0 74.9
2048 4 30.7 32.5 25.3 68.8 37.2 57.6 82.2

Mistral-7B-Instruct-v0.2
512 16 33.7 27.3 24.3 65.6 41.75 54.0 53.1
1024 8 34.2 29.0 25.6 66.4 43.73 54.8 62.1
2048 4 35.2 28.14 26.6 66.9 43.08 55.4 73.6

Table 2: The token-precision trade-off in different task types. We report the results of 6 task types in LongBench and
8k subset of RULER. We use PyramidKV-based quantized pruning. The best results for each task type are in bold.
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Figure 3: Scaling effect on Llama family models, with
PyramidKV-based quantized pruning. All models are
under 1/64 KV cache budget.

the Llama3 series does not include 1B and 3B ver-442

sions, we used the Llama3.2 series as substitutes.443

However, it is important to note that the perfor-444

mance of Llama3.2-3B-Base is quite similar to445

Llama3-8B-Base. For both the Base models and446

Instruct models, we evaluated their performance on447

LongBench under 1/64 KV cache budgets. To fur-448

ther validate the conclusion, we also experimented449

with a 1/16 KV cache budget, and the results are450

presented in the Appendix C.451

As shown in Figure 3, we observe that quantized452

pruning consistently achieves better performance453

across all scaling levels. Notably, the performance454

gap between quantized pruning and standalone KV455

pruning methods remains relatively stable across456

different model scales. Interestingly, as the model457

scale increases, the performance gap between 2×458

tokens with 8-bit precision and 4× tokens with 4-bit459

precision becomes smaller. This may be because460

deeper models encode more redundant information461

within each token, allowing a relatively smaller462

number of tokens to retain sufficient information.463

For Base models, although the performance im-464

provement from scaling is smaller compared to465

Instruct models, quantized pruning still provides a 466

noticeable performance boost. 467

These findings highlighting the robustness and 468

effectiveness of quantized pruning across model 469

scaling. 470

6.3 Ablation on Quantization Strategies 471

While there has been extensive research on strate- 472

gies for KV quantization, it remains unclear 473

whether existing quantization strategies remain ef- 474

fective when integrated with KV pruning methods. 475

In this section, we aim to investigate the impact of 476

KV quantization strategies on quantized pruning. 477

We also conducted an analysis of the effect of quan- 478

tization group size on the quantized pruning, with 479

further results available in Appendix C. 480

Quantization methods We explore the methods 481

in FlexGen (Sheng et al., 2023), KIVI (Liu et al., 482

2024c), and KVQuant (Hooper et al., 2024). To 483

elaborate, for the FlexGen methods, KV quantiza- 484

tion is applied to both the key and value caches 485

along the token dimension, grouping every 64 ele- 486

ments without filtering outlier numbers. We modify 487

the FlexGen by (1) filtering 1% of outlier numbers 488

in both the key and value cache, as mentioned in 489

KVQuant (2) quantizing the key along the channel 490

dimension, as in KIVI and (3) combining (1) and 491

(2). These correspond to the results labeled as Flex- 492

Gen+Outlier 1%, KIVI, and KIVI+Outlier 1% in 493

the Figure 4. 494

We can observe that none of the quantization 495

strategies show significant performance degrada- 496

tion when combined with KV pruning methods, 497

demonstrating the relative stability of quantized 498

pruning. The KIVI method consistently outper- 499

forms FlexGen across various models and KV prun- 500

ing methods. The improvement is particularly pro- 501

nounced for PyramidKV on the Mistral model, un- 502

derscoring the significance of quantizing key states 503

7
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Figure 4: Ablation of quantization strategies on quan-
tized pruning, remaining 512 KV tokens in 4-bit.

along the channel dimension. Filtering 1% of out-504

lier numbers proves effective for the FlexGen strat-505

egy but yields limited improvements for KIVI. It506

shows some benefit on Llama models but results in507

negligible gains on the Mistral models.508

Overall, KIVI demonstrates strong performance509

when integrated with KV pruning methods, while510

other KV quantization strategies also maintain511

good results, highlighting the stability of quantized512

pruning.513

6.4 Exploration on Layer-Wise Quantized514

Pruning515

Inspired by the observation that different layers516

may have varying requirements for the number of517

tokens in PyramidKV (Cai et al., 2024) and Pyra-518

midInfer (Yang et al., 2024a), we further investigate519

whether the demands for precision and preserved520

tokens are consistent across layers. To explore this,521

we use the best-performing configuration from pre-522

vious experiments, 4-bit precision with 4× tokens,523

as the baseline and compare it against layer-wise524

configurations adopting 8-bit precision with 2× to-525

kens and 16-bit precision with 1× tokens. Using526

SnapKV as the KV pruning method, we present the527

results for Llama-3 under 1/64 KV cache budget528

in the Figure 5. The x-axis shows the modified529

layers range, while the y-axis shows the relative530

change to the baseline (4-bit precision with 4× to-531

kens) on LongBench and RULER-4k. Furthermore,532

we present the results for Llama-3 evaluated with533

a 1/16 KV cache budget and Mistral-v0.2 evalu-534

ated with 1/64 and 1/16 KV cache budgets. These535

detailed results are available in the Appendix C.536

It is evident that for most layers, transitioning537

from 4× tokens with 4-bit precision to higher pre-538

cision and fewer tokens results in a performance de-539

cline under constrained KV cache budgets. Specif-540

ically, the shift to 8-bit shows a relatively minor541

performance drop, whereas moving to 16-bit with542

fewer preserved tokens leads to a more significant543

Layer1-4 Layer5-12 Layer13-20 Layer21-28 Layer29-32

-15%

-10%

-5%

0%

5%

R
el

at
iv

e 
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ha
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LB-Avg of 2×tokens,8-bit
RULER4k of 2×tokens,8-bit
Baseline of 4×tokens,4-bit

LB-Avg of 1×tokens,16-bit
RULER4k of 1×tokens,16-bit

Figure 5: The results of layer-wise quantized pruning on
Llama-3-8B-Instruct, with SnapKV as pruning method.
We use 4× KV token 4-bit as baseline and report the
relative change. Configurations are modified every 4
layers for the initial and final layers, while intermediate
layers are reconfigured every 8 layers.

decrease. These layers-wise trade-off conclusions 544

are consistent with our experiments before. 545

Notably, modifying intermediate layers causes 546

a drastic performance decline, while adjustments 547

made at the initial and final layers result in compar- 548

atively smaller performance reductions. This effect 549

is especially pronounced in retrieval-related tasks 550

such as RULER-4k, where significant performance 551

differences are observed. On LongBench, changes 552

are less significant, with a notable performance 553

drop only observed at 16-bit precision. These find- 554

ings highlight that, under the same memory budget, 555

preserving more tokens with lower precision in in- 556

termediate layers is crucial for the performance, 557

while the token-precision trade-off in the initial and 558

final layers exerts a more balanced influence. 559

7 Conclusion 560

We investigate a series of critical yet unexplored 561

questions regarding the effectiveness and feasibil- 562

ity of token-precision trade-off in KV cache com- 563

pression. Through comprehensive experiments, we 564

demonstrate that storing more tokens in the KV 565

cache with lower precision can significantly en- 566

hance the long-context performance of LLMs, and 567

demonstrating robust performance across diverse 568

input lengths, downstream tasks, with particularly 569

significant gains in retrieval tasks. Moreover, we 570

show that quantized pruning demonstrates strong 571

feasibility across different KV pruning methods, 572

quantization strategies, and model scales. Our anal- 573

ysis sheds light on the token-precision trade-off of 574

KV cache memory optimization, offering valuable 575

insights into designing more efficient compression 576

strategies. We hope this work deepens the under- 577

standing of KV cache compression and inspires 578

future research. 579
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Limitations580

While our work demonstrates the effectiveness of581

KV compression through trade-offs between token582

and precision dimensions, other potential dimen-583

sions, such as head and layer, remain unexplored.584

Investigating the feasibility of combining these di-585

mensions with token and precision for a more sub-586

stantial compression potential represents an avenue587

for future research. Additionally, the current im-588

plementation of quantized pruning suffers from589

inefficiencies in dequantizing the KV cache, hin-590

dering the full realization of speedup benefits from591

the memory savings. In future work, we aim to ad-592

dress this issue by optimizing the implementation,593

such as integrating fusion operators to combine594

dequantization with matrix multiplication.595
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A Datasets 858

LongBench LongBench (Bai et al., 2024) in- 859

cludes 17 datasets covering 6 categories of 860

tasks, which can be divided into single-document 861

QA (Dasigi et al., 2021; Kočiskỳ et al., 2018), 862

multi-document QA (Yang et al., 2018; Ho et al., 863

2020), summarization (Huang et al., 2021; Fab- 864

bri et al., 2019; Zhong et al., 2021), few-shot 865

learning (Gliwa et al., 2019; Joshi et al., 2017; 866

Li and Roth, 2002), synthetic, and code genera- 867

tion (Guo et al., 2023; Liu et al., 2023). Long- 868

Bench features an average input length ranging 869

from 1,235 to 18,409 tokens. For inputs exceeding 870

the model’s context window length(8k for Llama-3- 871

8B-Instruct (Dubey et al., 2024), we split the data 872

and only take the beginning and end segments of 873

the input to fill the context window length. Ad- 874

ditionally, we reserve sufficient space for newly 875

generated tokens based on the specific type of sub- 876

dataset. For evaluate the impact of input lengths, 877

we select datasets with sufficient data to cover 878

three input length ranges: (<4k, 4k 8k, and >8k). 879

These datasets include MultiFieldQA-en, 2Wiki- 880

MultihopQA, GovReport, TREC, TriviaQA, SAM- 881

Sum, and RepoBench-P, representing a variety of 882

task types. We refer to the three subsets as LB-4k, 883

LB-8k, and LB-16k, respectively. 884

NIAH Needle-in-a-Haystack(NIAH) (Kamradt, 885

2023) is a challenging pressure test designed to 886

assess the ability of models to accurate identify and 887

retrieve relevant information from lengthy context. 888

NIAH randomly inserts key information into an 889

arbitrary position within a long essay. In our setup, 890

we use PaulGrahamEssays as the haystack and the 891

sentence "The best thing to do in San Francisco is 892

eat a sandwich and sit in Dolores Park on a sunny 893

day." as the needle, which is the default setting 894

of NIAH. We vary the essay length from 1,000 895

tokens up to the models’ context window limits, 896

increasing by 100 tokens per step for Llama-series 897

models and 400 tokens per step for Mistral. The 898

results are reported as the average score across all 899

tests. 900

RULER RULER (Hsieh et al., 2024) generates 901

synthetic examples to evaluate long-context lan- 902

guage models with configurable sequence lengths 903
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Figure 6: Scaling effect on Llama family models, with
PyramidKV-based quantized pruning. All models are
under 1/16 KV cache budget.

and varying task complexities. It includes four904

task categories: Retrieval, Multi-hop Tracing, Ag-905

gregation, and Question Answering. The dataset906

comprises six subsets with input lengths of 4K, 8K,907

16K, 32K, 64K and 128K tokens. In our experi-908

ments, we use the 4K, 8K and 16K subsets to test909

the models within their context window limits.910

B Experiment Setup911

Memory Budgets We report the ratio of com-912

pressed KV cache and the full KV cache for mem-913

ory budge. The full KV cache for Llama-3 is 8k914

KV tokens in 16-bit on both LongBench and NIAH,915

while for Mistral-v0.2 is 16k KV tokens on Long-916

Bench and 32k KV tokens on NIAH in 16-bit.917

KV eviction methods We retain the last 32918

tokens for StreamingLLM (Xiao et al., 2023),919

H2O (Zhang et al., 2024b), and SnapKV (Li et al.,920

2024), while keeping 8 tokens for PyramidKV (Cai921

et al., 2024), Ada-KV (Feng et al., 2024) and922

HeadKV (Fu et al., 2024), as recommended in the923

corresponding paper (Cai et al., 2024; Fu et al.,924

2024). For other settings, we adopt the default925

configurations from their papers.926

KV quantization We utilize HQQQuantized-927

Cache from Huggingface and adjust the group di-928

mensions of keys and values to implement grouped929

quantization strategies from FlexGen (Sheng et al.,930

2023) and KIVI (Liu et al., 2024c). We use 64931

as the default group size which is suggested in932

FlexGen (Sheng et al., 2023). In the experiments933

involving outlier filtering, we exclude numbers in934

the KV cache with a absolute value exceeding 6935

from quantization, which roughly corresponds to936

the top 1% of outliers based on our validation set937

analysis.938

Model Method
Group Size

32 64 128

Llama-3
SnapKV 40.4 39.6 38.9

PyramidKV 40.3 39.6 38.9

Mistral-v0.2
SnapKV 40.4 40.3 40.1

PyramidKV 40.3 40.5 40.0

Table 3: The impact of group size for quantized pruning
on LongBench.
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Figure 7: The results of Layer-Wise Quantized Prun-
ing on Llama-3-8B-Instruct, with SnapKV as pruning
method. KV cache budget=1/16.

C More results in Experiments 939

Group Size We analyze the impact of group size 940

during KV quantization. We employ SnapKV and 941

PyramidKV to retain 512 tokens with 4-bit KIVI 942

quantization and report the performance variations 943

when the group sizes were set to 32, 64 and 128. 944

As shown in Table 3, smaller group sizes lead to 945

performance improvements at the cost of higher 946

memory usage. Reducing the group size from 128 947

to 64 resulted in a notable improvement, but fur- 948

ther decreasing it from 64 to 32 yielded minimal 949

gains for the Mistral model. Therefore, we set the 950

default quantization group size to 64 to balance per- 951

formance and memory usage in our experiments. 952

953

Scaling Effect on Quantized Pruning We val- 954

idate our findings by measuring performance at a 955

budget of 1/16, with the results shown in Figure 6. 956

This corroborates the conclusion reported in the 957

main text using a budget of 1/64. When the KV 958

cache budget is relative small to 1/64 , the perfor- 959

mance improvement brought by quantized pruning 960

is higher compared to 1/16 KV cache budget, which 961

aligns with the conclusions we observed earlier in 962

Q2. 963

Layer-Wise Quantized Pruning We further val- 964

idated our findings by measuring performance of 965

12
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Figure 8: The results of Layer-Wise Quantized Pruning
on Mistral-7B-v0.2-Instruct, with SnapKV as pruning
method. KV cache budget=1/64.
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Figure 9: The results of Layer-Wise Quantized Pruning
on Mistral-7B-v0.2-Instruct, with SnapKV as pruning
method. KV cache budget=1/16.

Llama-3 at a budget of 1/16, with the results shown966

in Figure 7. We alse report the results for Mistral-967

v0.2 in Figure 8 and Figure 9, we can see the layer-968

wise results are similiar to Llama-3.969
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