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Mobile-Agent-E Task Query: I want to buy a brand-new Nintendo Switch Joy-Con. Any color is fine. Please compare the prices | _ _
- \ & on Amazon, Walmart, and Best Buy. Find the cheapest option and stop at the screen where I can add it to the cart, o
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Figure 1: Introducing Mobile-Agent-E, a novel hierarchical agentic framework designed for complex real-world
mobile tasks. Mobile-Agent-E disentangles high-level planning from low-level actions, significantly outperforming
previous state-of-the-art approaches (Zhang et al., 2023; Wang et al., 2024b,a). Equipped with a novel self-evolution
module that learns general Tips and reusable Shortcuts from past experiences, Mobile-Agent-E further enhances
both performance and efficiency.

Abstract

Recent advancements in large multimodal
model (LMM)-based mobile agents have
demonstrated promising capabilities in acting
within mobile environments. However, cur-
rent approaches face significant limitations: (1)
they fall short in addressing real-world human
needs, which involve complex, open-ended,
and reasoning-intensive tasks; and (2) they lack
mechanisms to learn and improve from prior ex-
periences. To address these challenges, we in-
troduce Mobile-Agent-E, a hierarchical agen-
tic framework capable of self-evolution through
past experience. Mobile-Agent-E adopts a
multi-level communication protocol for reason-
ing, perception, and error recovery, explicitly
separating high-level planning from low-level
action decisions. It also introduces a novel self-
evolution module that maintains a persistent
long-term memory comprising 7ips and Short-
cuts, enabling continual refinement of task per-
formance and efficiency. To bridge the gap in
existing benchmarks for complex, open-ended
tasks, we further present a new benchmark—
Mobile-Eval-E—alongside a new evaluation
metric, the Satisfaction Score. Empirical re-

sults show that Mobile-Agent-E achieves a 22%
absolute improvement over previous state-of-
the-art approaches across three LMM back-
bones. We also provide a comprehensive anal-
ysis of the impact of the self-evolution mech-
anism and outline promising directions for fu-
ture work.

1 Introduction

Recent advancements in large multimodal models
(LMMs) (OpenAl, 2024; Anthropic, 2024; Team
et al., 2024) have led to the emergence of LMM-
based GUI agents (Wang et al., 2024c; Nguyen
et al., 2024) capable of acting in the Web, PC, and
mobile environments. Despite these initial suc-
cesses, current research on mobile agents (Wang
et al., 2024b; Zhang et al., 2023; Wang et al., 2024a;
Li et al., 2024) has yet to fully address the chal-
lenges of real-world mobile tasks. We identify two
key limitations below.

First, existing mobile agents and benchmarks
focus primarily on goal-oriented tasks, such as
“Create a new contact for {name}. Their number
is {number}” (Rawles et al., 2024). These tasks



typically follow a linear ground-truth trajectory and
have a single success state. However, we argue that
tasks more representative of real human needs are
significantly more complex. They often require: (1)
intensive reasoning to satisfy multiple constraints;
(2) long-horizon planning that spans across multi-
ple apps; and (3) open-ended exploration, where
vague instructions demand active information gath-
ering. For instance, as illustrated in Figurel, online
shopping often involves navigating across different
apps to compare prices and find the best deal.

Second, unlike humans who quickly adapt to
recurring tasks on new devices, current mobile
agents lack the ability to learn from prior expe-
riences. They treat every task as if it were their
first attempt, allocating the same computational
resources at each step and repeating the same mis-
takes. This inability to accumulate knowledge from
past experience significantly limits both their effec-
tiveness and efficiency on complex, long-horizon
tasks, where subroutines such as searching or cre-
ating notes are frequently reused across different
objectives.

To address these limitations, we propose Mobile-
Agent-E, a hierarchical agentic framework
capable of self-evolution through past experi-
ences. Mobile-Agent-E explicitly separates high-
level planning—such as decomposing tasks into
subgoals—from low-level action decisions like de-
termining specific actions and their parameters
(e.g., tap(x,y)), enabling multi-level reasoning,
perception, and error recovery. Figure 1 shows
a demo of Mobile-Agent-E on a challenging on-
line shopping task. Mobile-Agent-E also features
a novel self-evolution module, which includes a
persistent long-term memory containing two types
of critical knowledge: Tips and Shortcuts. This
design draws inspiration from human cognitive sci-
ence, where Tips are akin to the lessons encoded in
episodic memory (Tulving, 2002), which involves
recalling specific past experiences and using them
to inform future decisions, while Shortcuts resem-
ble procedural knowledge that facilitates the ef-
ficient and often subconscious execution of well-
practiced tasks (Squire and Zola, 1996; Anderson,
1982).

To address the limitation of existing mobile
benchmarks, which mainly include goal-oriented
tasks, we introduce Mobile-Eval-E, a new chal-
lenging benchmark focusing on complex, open-
ended, real-world tasks. Mobile-Eval-E features
more than twice the number of expected operations
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Figure 2: An overview of Mobile-Agent-E.

per task compared to previous benchmarks (Wang
etal., 2024b; Zhang et al., 2023; Wang et al., 2024a)
and incorporating a significantly higher proportion
of multi-app tasks. Accompanying the benchmark,
we introduce Satisfaction Score, a new metric to ad-
dress the challenge posed by real-world tasks that
often lack a binary success flag or a ground truth
trajectory. This evaluation offers a reliable mea-
sure of agent performance aligned with real-world
human needs.

To conclude, our contributions are threefold:
* Mobile-Eval-E Benchmark: A shift in focus
from goal-oriented tasks to complex, open-ended,
real-world mobile tasks.
* Mobile-Agent-E Framework: A hierarchical
agent architecture featuring multi-level reasoning
and error recovery, achieving a 22.1% absolute im-
provement over prior state-of-the-art approaches.
* Self-Evolution Module: The first work to ex-
plore self-evolution in mobile agents, yielding a
6.5% improvement in performance and a 12.9%
gain in efficiency. Comprehensive analysis pro-
vides further insights for future research.

2 Mobile-Agent-E

Figure 2 provides an overview of Mobile-Agent-E.
We detail the hierarchical agentic framework (§2.1)
and the self-evolution module (§2.2) below.

2.1 Hierachical Agentic Framework

Multi-Level Reasoning. The key idea behind im-
proving a model’s performance on complex tasks is
to disentangle high-level planning from low-level
actions. Specifically, we divide all reasoning agents
into two levels: the planning level, which con-
tains a Manager, and the action level, which con-
tains an Operator, an Action Reflector, and a
Notetaker. Figure 3 provides a detailed break-
down of the inputs and outputs for each agent. All
reasoning agents are instantiated from a frozen
large multimodal model (LMM), such as GPT-



User Instruction: | Overall Plan: W};l
1 want to buy a brand-new Nintendo
Switch Joy-Con ... compare the

prices on Amazon, Walmart, and Best

1. Open the Amazon Shopping
app ... 3. Open the Walmart
app and search for "Nintendo

Subgoal: W& ™!
Open the Walmart
app and search for
"Nintendo Switch

Important Notes: Wﬁ,’ !
The search for "Nintendo Switch

Progress Status: W5 !
The Walmart app is now

open. The next step is to

search for "Nintendo

Joy-Con" on Amazon has been
completed ... The price of the

Buy. Find the cheapest option ... Switch Joy-Con." ... Joy-Con". Switch Joy-Con." product on Amazon is $85.00.
\
Error Escalation
= Flag: W b1 == False —> Manager Ay
E Perceptor Ap ¢
g‘) Pre-op Perception: W‘I/ 1 Updated Overall Plan: WI', Updated Subgoal: Wé, Action History & Error Feedback: WA
'E [233, 326]; f‘”“: Search The current plan remains Search for "Nintendo . ... Action: {'name': 'Open_App', Wg
g (s, 25 o The s || vt 2. Openthe Watmart || Swic oy-Con it | W51 WA pumene s Wamat)
= ... as well as a magnifying app and search for "Nintendo | | Walmart app. | Description: This action will open the
glass symbol to its left ... Switch Joy-Con." ... Walmart app ... | Outcome: Successful
-Shorlcuts -Tips
_ —> Operator Ao Action Reflector Ar Notetaker Ay
o
g vai v v
—_
g Post-op W{, Updated Progress Status: 1V, (", U?daned Update Important Notes:
= Perception: The search for "Nintendo History .. - A sponsored product s displayed:
é [476, 160]; text: Switch Joy-Con" in the Walmart | | W4 + a¢ "Nintendo Switch ... 2013 OLED"
Nintendo app was successful. The next (w/ outcome) | *** priced at $349.00. - This product is not
Switch Joy ... step is to review the search If error: relevant to the user’s request for Joy-
results and identify the product Wg + Con controllers. Further review of the
Perceptor Ap for comparison. Jeedback search results is needed ...

Figure 3: A detailed breakdown of one inference step ¢ with Mobile-Agent-E, showing the inputs and outputs of

each agent. Omitted information indicates no change.

Notation Description

Environment

I Input task query

at Action at step ¢

st Phone state (screenshot)
Working Memory

Wi, Fine-grained visual perception
W}; Overall plan (subgoals)

Wi Current subgoal

2 Progress status

Wi Important notes

Wi r Error Escalation Flag

Wa Action history with outcome status
Wg Error history with feedback
Long-term Memory

Lg Shortcuts

Ly Tips

Table 1: Summary of notations for intermediate inputs
and outputs. Notations of agents are defined in §2.1.

40 (OpenAl, 2024). We formally define each agent
below, with notations given in Table 1.

The Manager (A)s) focuses on devising high-
level plans, i.e., identifying overall strategies and
the next immediate subgoals, to fulfill the user’s
request. Note that the Shortcuts Lg (detailed in
§2.2) are also provided to the Manager to guide
efficient high-level planning.

Wh, W& =Am(I,se, W', WE L WE WL Ls)

The Operator (Ap) decides which concrete ac-
tion to perform based on the high-level plans from

the Manager and the latest m-step history.” The
Operator also considers the Tips as guidance from
the long-term memory, which can be self-evolved
from past experiences. Unlike the Manager, the
action level agents take the fine-grained perception
results W‘t/—in addition to the screenshot s;—as
input. We detail the perception module later in this
section.

at = AO(I> St7W\€'>WItDaW§UW57WJtV7
WA[—m :],WE[—m :},Ls,LT)

The action space of a; is defined to contain not
only Afomic Operations but also Shortcuts, which
can evolve through tasks. The atomic opera-
tions include Open_App, Tap, Swipe, Type, Enter,
Switch_App, Back, Home, and Wait. The full de-
scriptions of the atomic operations can be found in
Table 9. We detail the definitions and examples of
Shortcuts and Tips in §2.2.

The Action Reflector (Ag) checks the screen-
shots before (s;) and after (s;+1) of an action (a;) to
verify if the previous action achieves the expected
outcome. We define three types of outcomes for
an action: A. Successful or partially successful:
the result of the last action meets the expectation;
B. Failed: the last action results in a wrong page;
and C. Failed: the last action produces no changes.
After identifying the outcome, if the outcome is
A, the Action Reflector updates the action history

“We empirically set m = 5 in our experiments.
"Some actions may need multiple repetitions to fulfill the

expectation, for example, swipe up to find reviews. Thus, we
include partially successful as meeting the expectation.



W [t] as well as the progress status W. If the
outcome is B or C, the Action Reflector addition-
ally provides a description of the error and suggests
potential reasons and solutions in Wg[t].

Walt], Wet], W& = ARr(I, 56, WV, ser1, Wi,
at, W§7Wé‘_l)

In complex mobile tasks, we often need to keep
track of important notes during exploration, such
as the price of a product or the phone number of
a restaurant. The Notetaker (Ay) is dedicated to
extracting and aggregating task-relevant informa-
tion W}, after each step.

W]t\f = AN(Iv St+1, W\t/Jrl? Wlt’v W§7W57W1t\/71)

Multi-Level Perception. The reasoning agents
at different levels require different granularities
of perception of the current phone state. At the
planning level, the Manager only needs a holistic
visual context of the screen to decide on high-level
plans; therefore, we provide only the screenshot
s¢ to the Manager. At the action level, however,
the agents need precise coordinates of interactive
elements to predict and verify actions. To address
this, we introduce the Perceptor (Ap), a purely
vision-based perception module that does not rely
on the underlying XML file, following (Wang et al.,
2024a). The Perceptor consists of three compo-
nents: an OCR model, an icon-grounding model,
and an icon-captioning model. Given a screen-
shot s;, the Perceptor produces a fine-grained list
of texts and icons along with their corresponding
coordinates W7,.

Multi-Level Error Recovery. The ability to re-
cover from errors is particularly important for ex-
ecuting complex, long-horizon tasks. In addition
to the two-level reasoning agents, we introduce a
two-level error-recovery mechanism that operates
at both the action and planning levels. When an
error first occurs (as reported by the Action Re-
flector), the Operator attempts to address it at the
action level, for example, by tapping a different lo-
cation. If the model becomes stuck in an error loop,
i.e., it observes k consecutive failed actions (e.g.,
k = 2), a special Error Escalation Flag, Wg}l, is
raised to the Manager. In this case, the Manager
receives additional information about the recent er-
rors, Wg[—F :], and is asked to determine how to
address the issue from a higher-level perspective,
such as refining the overall plan or adjusting the
current subgoal. A concrete example of how error
escalation aids recovery is shown in Figure 9.

2.2 Self-Evolution Module

Inspired by how humans quickly adapt to new
tasks, we maintain a long-term memory that per-
sists across tasks and leverage two dedicated agents
to reflect on past experiences. The long-term mem-
ory contains two important types of knowledge to
evolve upon, Tips and Shortcuts, aiming to im-
prove both the performance and efficiency of the
model.

Tips (Lr) are defined as general guidance on
effective interactions and lessons learned from pre-
vious trial-and-error experiences. Tips resemble
episodic memory (Tulving, 2002), which enables
humans to recall past experiences and apply in-
sights to future decisions.

Shortcuts (Lg) are defined as reusable, exe-
cutable functions composed of sequences of atomic
operations tailored for recurring subroutines. Short-
cuts are akin to procedural knowledge, which al-
lows humans to perform well-practiced tasks effi-
ciently and often subconsciously (Squire and Zola,
1996; Anderson, 1982). Due to the highly dynamic
nature of the mobile environment, a Shortcut may
only be applicable in certain states. For instance,
the “Tap_Type_and_Enter” Shortcut (Figure 1) is
usable only when the current screen has a text in-
put box. To address this, we explicitly include a
precondition in the definition of a Shortcut and
require the Operator to verify that the current state
satisfies the precondition before using the Short-
cut. The arguments of a Shortcut have a unique
one-to-one mapping to the arguments of its atomic
operations.

‘When the self-evolution module is enabled, we
leverage two Experience Reflectors, Agg and
AgT, to update the Tips and Shortcuts based on
the interaction history and optionally a list of fu-
ture tasks Tr. The Experience Reflectors are also
instantiated from frozen LMMs/LLMs. Figure 4
provides a detailed breakdown of one self-evolution
step. Figures 12 and 13 shows a full list of gener-
ated Shortcuts and Tips by Mobile-Agent-E.

3 Mobile-Eval-E Benchmark

3.1 Towards Complex, Open-Ended,
Real-World Tasks

Existing mobile benchmarks—based on either sim-
ulated environments (Rawles et al., 2024; Chen
et al., 2024) or dynamic actual devices (Wang et al.,
2024b; Zhang et al., 2023; Wang et al., 2024a)—
primarily focus on goal-oriented tasks. These tasks
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#Multi-App Avg # Total #
Benchmark #Tasks Tasks #Apps Steps  Steps
Mobile-Eval 33 3 10 5.55 183
Mobile-Eval-v2 44 4 10 5.57 245
AppAgent 45 0 9 6.31 284
Mobile-Eval-E 25 19 15 14.56 364

Table 2: Comparison with existing dynamic evaluation
benchmarks on real devices. Mobile-Eval-E emphasizes
complex tasks that require significantly more steps and
a wider variety of apps.

often have a ground-truth trajectory and a unique
end-state. In real-world scenarios, however, such
tasks are unrealistic and leave a gap between bench-
marking performance and practical applications.

To address this limitation, we propose Mobile-
Eval-E benchmark, which emphasizes complex,
open-ended, real-world tasks. Mobile-Eval-E is
designed for dynamic evaluation on actual de-
vices and comprises 25 manually crafted tasks
spanning five realistic scenarios: “Restaurant Rec-
ommendation,” “Information Searching,” “Online
Shopping,” “What’s Trending,” and “Travel Plan-
ning.” Mobile-Eval-E tasks are long-horizon and
reasoning-intensive, often admitting multiple satis-
factory trajectories and success states. As shown in
Table 2, Mobile-Eval-E significantly surpasses pre-
vious dynamic benchmarks in complexity, featur-
ing more than 2 X the number of expected steps per
task. Additionally, Mobile-Eval-E encompasses a
broader range of apps, with 76% of tasks requiring
interactions with multiple apps. In §4, we demon-
strate that this benchmark poses a substantial chal-
lenge for existing state-of-the-art models. The full
set of task queries can be found in Appendix Ta-
ble 8.

3.2 Fine-Grained Evaluation Metrics

Previous benchmarks typically employ a Binary
Success Rate (BS) or a completion rate against a
“ground-truth” trajectory to evaluate task complete-
ness. However, the complexity and open-endedness
of Mobile-Eval-E tasks pose unique challenges in
faithfully assessing model performance. For exam-
ple, many tasks, such as “Plan a one-day itinerary
for Palo Alto,” may involve exploration and in-
formation aggregation, where multiple reasonable
solutions might exist. Thus, we seek to measure
human satisfaction rather than exact matches to
ground-truth states.

For each task, we manually write a list of rubrics
(an example is shown in Figure 5(a)), containing
both milestone steps (e.g., “Opened Tripadvisor’)
and exploration criteria (e.g., “Viewed multiple at-
tractions”). We then introduce the Satisfaction
Score (SS) as the number of fulfilled rubrics di-
vided by the total number of rubrics, as judged by
a human evaluator. We also include Action Accu-
racy (AA) and Reflection Accuracy (RA) to evaluate
action-level performance, and a Termination Er-
ror (TE) rate to reflect the agent’s robustness and
error-recovery capability. Details about the ter-
mination modes can be found in Appendix B. To
keep the human evaluation workload reasonable for
this fine-grained analysis, we maintain a relatively
small number of tasks in Mobile-Eval-E.

4 Experiments

We consider two evaluation settings—without and
with evolution—to comprehensively assess both
the hierarchical agentic framework and the self-
evolution module. Our primary focus is on com-



Model Type

Binary Success
Rate (%) 1

Satisfaction ~ Action  Reflection Termination

Traditional Evaluation Without Evolution

AppAgent (Zhang et al., 2023)
Mobile-Agent-vl (Wang et al., 2024b)
Mobile-Agent-v2 (Wang et al., 2024a)
Mobile-Agent-E (ours)

Single-Agent
Single-Agent
Multi-Agent
Multi-Agent

Score (%) T Acc (%) 1T Acc(%)1 Error (%)
0.0 252 60.7 - 96.0
4.0 45.5 69.8 - 68.0
8.0 53.0 73.2 96.7 52.0
44.0 75.1 85.9 97.4 32.0

Evaluation With Cross-Task Evolution

Mobile-Agent-E + Evo (ours) Multi-Agent |

40.0 86.9 90.4 97.8 12.0

Table 3: Comparison with state-of-the-art models on complex open-ended tasks in Mobile-Eval-E. GPT-4o is used

as the LMM backbone for all methods.

Gemini-1.5-pro
Model SST AAT RAT

‘ BSt

TE| ‘ BST SST AAT RAT TE| ‘ BS?T

Claude-3.5-Sonnet GPT-40

SSt AAtT RAT TE|

Traditional Evaluation Without Evolution

Mobile-Agent-v2 (Wang et al., 2024a)
Mobile-Agent-E (ours)

40 50.8 634 839 64.0
20.0 709 743 913 48.0

120 709 764 969 32.0| 80 53.0 732 96.7 52.0
320 755 91.1 99.1 12.0|44.0 751 859 974 320

Evaluation With Cross-Task Evolution

Mobile-Agent-E + Evo (ours)

[20.0 712 774 89.6 48.0|40.0 83.0 91.4 99.7

120 40.0 869 904 978 12.0

Table 4: Results on different LMM backbones, including GPT-40, Gemini, and Claude. Metrics are defined in §3.2.

Success Rate

Model (Pass@1 %)
Traditional Evaluation Without Evolution
T3A + GPT-4-turbo (Rawles et al., 2024) 30.6
M3A + GPT-4-turbo (Rawles et al., 2024) 25.4
Ponder & Press + GPT-40 (Wang et al., 2024d) 34.5
Aria-UI + GPT-4o0 (Yang et al., 2024) 44.8
UGround + GPT-40 (Gou et al., 2025) 44.0
Mobile-Agent-E + GPT-40 (ours) 45.0

Table 5: Comparison with state-of-the-art models on
traditional goal-oriented tasks in Android World. We
compare with methods released before Feb 2025.

plex, reasoning-intensive tasks from Mobile-Eval-
E. We also evaluate on Android World (Rawles
et al., 2024), which comprises 116 goal-oriented
tasks across diverse apps. More details on base-
lines and model implementation can be found in
Appendix B.

Traditional evaluation without evolution. In
this setting, we evaluate each task individually
without any cross-task information sharing. For
Mobile-Eval-E, we perform dynamic, real-time
evaluation (Wang et al., 2024b; Zhang et al., 2023;
Wang et al., 2024a) on a physical device. Specif-
ically, we use the Android Debug Bridge (ADB)
to control an Android phone* and conduct human
evaluation on the recorded screenshots and action
histories. For Android World, we follow the official
setup in an Android emulator®, where evaluation
is automated by verifying the final state. We adopt

*We use Samsung Galaxy A15.
§ht'cps://github.com/google—r‘esearch/andr‘oid_
world

the same screen representation as M3A, including
screenshots and the accessibility (Ally) tree.

Evaluation with cross-task evolution. To our
knowledge, this is the first work to explore a cross-
task evolution evaluation. In this setting, an agent
is given a group of tasks and executes them sequen-
tially, while maintaining a persistent long-term
memory across tasks. Specifically, for Mobile-Eval-
E, we form five groups corresponding to the five
scenarios, each containing five tasks. We evalu-
ate Mobile-Agent-E with the self-evolution module
enabled (referred to as Mobile-Agent-E + Evo).
At the end of the k-th task, the Experience Reflec-
tors are prompted to update the long-term memory
based on the interaction history of the current task
as well as the queries for the remaining 5 — k tasks.
This controlled setting allows us to investigate what
is important for the agent to evolve from past ex-
perience (i.e., Tips and Shortcuts), and how this
accumulated knowledge will impact subsequent
tasks.

5 Results

Comparison with state-of-the-art. Tables 3
and 5 show that Mobile-Agent-E significantly out-
performs prior SOTA (22.1%) on complex open-
ended tasks, while also setting a new SOTA on tra-
ditional goal-oriented tasks in Android World. This
comparison particularly highlights the effective-
ness of the hierarchical agentic framework. Our ap-
proach also demonstrates superior robustness and
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Plan a one-day itinerary for Palo Alto, CA 100
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and dining recommer . but keep in
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« Opened Tripadvisor

« Searched for things to do in Palo Alto,
CA

« Viewed at least one attraction
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Figure 5: Satisfaction Score vs. Steps (SSS) curve for (a) a single task and (b) all tasks. In (a), we also present the human-written
rubrics for the task. In (b), we additionally include a linear regression line for each model. To enable visualization of trajectories
with different lengths on the same graph, we normalize the steps to the range [0, 1]. The y-axis of the rightmost point indicates
the final satisfaction score. A steeper and higher line indicates better efficiency and effectiveness.

error recovery capabilities, as indicated by a signif-
icantly lower Termination Error rate. Moreover, en-
abling self-evolution further enhances performance,
leading to an improvement of 6.5% against no evo-
lution. In §5.1, we provide further analysis of the
evolution module.

Varying reasoning backbones. Table 4 demon-
strates that Mobile-Agent-E can bring consistent
improvements on all recent LMMs, including GPT-
40, Claude-3.5-Sonnet, and Gemini-1.5-pro. More-
over, we observe that self-evolution yields greater
benefits when paired with stronger backbones.

Satisfaction Score v.s. Binary Success Rate.
As shown in Tables 3 and 4, the Binary Success
Rates (BS) are sparse and exhibit large jumps be-
tween different models. The Satisfaction Score
(SS), on the other hand, provides a smoother, more
faithful measure of the models’ performance.

Task completion efficiency. Evaluating the effi-
ciency of mobile agents on complex, open-ended
tasks is not straightforward. Merely counting the
number of steps is not optimal, as many tasks re-
quire exploration. A smaller number of steps re-
flects a quick exit but may result in insufficient
exploration. Intuitively, if an agent fulfills more
rubrics in a smaller number of steps, it is consid-
ered more efficient. Thus, we introduce the Satis-
faction Score vs Steps (SSS) curve to compare and
visualize the efficiency of different agents. To plot
the SSS curve, we manually examine the recorded
trajectories and track the satisfaction of rubrics af-
ter each step. As shown in Figure 5, we observe
that Mobile-Agent-E not only achieves better final
performance but also fulfills rubrics faster.

Progressive Impact of Self-Evolution

Mobile-Agent-E 40
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Figure 6: Later tasks in self-evolution show greater
improvements, reflecting the growing impact of iterative
evolution. The scores are averaged over five scenarios.

5.1 Further Analysis

Progressive impact of self-evolution over time.
The ideal behavior of self-evolution is to progres-
sively bring more benefits to the agent as knowl-
edge accumulates. To investigate this, we group the
results of the tasks by their ordering index in each
scenario and compare the performance with and
without evolution. In Figure 6, the x-axis reflects
the task index in the sequence it is performed. We
observe a generally increasing trend indicating that
the gain tends to be more significant in later tasks.

Shortcuts reduce computational overhead.
The hierarchical multi-agent architecture in Mobile-
Agent-E significantly improves performance on
complex tasks but inevitably increases computa-
tional complexity. However, we found that the use
of Shortcuts largely mitigates this overhead, en-
abling Mobile-Agent-E to achieve a speed compa-
rable to that of previous models. Note that when the
self-evolution module is disabled, Mobile-Agent-
E is provided with fixed initial Tips and a single
example Shortcut. In Table 6, we observe a posi-
tive correlation between using more Shortcuts and



Inference Speed (Seconds per operation) |

Reasoning Only
Gemini Claude GPT

Perception + Reasoning
Gemini Claude GPT

25.6 384 435
30.8 41.0  30.1
27.2 396 274

Model

9.8 214 123
16.5 255 174
12.9 248 149

Mobile-Agent-v2
Mobile-Agent-E
Mobile-Agent-E + Evo

Shortcut Usage Percentage (%)

Model | Gemini Claude GPT
Mobile-Agent-E 11.9 12.8 12.4
Mobile-Agent-E + Evo 14.8 13.2 14.4

Table 6: Analysis of computational overhead and Short-
cut usage. In the inference speed table, the reasoning
only section accounts for time spent solely on reasoning
agents, while perception + reasoning includes the run-
time of the Perceptor on CPU. Shortcut usage statistics
are calculated as the ratio of Shortcuts used to the total
number of actions performed by the Operator. The use
of Shortcuts effectively accelerates inference, achieving
comparable times to previous, simpler frameworks.

Gemini Claude GPT-40

Mobile-Agent-E 69.0 75.6 79.7
Mobile-Agent-E + evolved Tips  72.6 85.2 87.5

Table 7: Unique impact from the evolved Tips.

faster inference speed. This is because a Shortcut
enables the execution of multiple operations within
a single decision-making iteration.

Unique impact from Tips. While the impact
from Shortcuts is directly visible in the action his-
tory, it is less obvious whether the evolved Tips
bring distinctive benefits. To ablate on this, we fil-
ter out task instances where the same set of unique
Shortcuts is used or where only atomic actions are
employed, and compare the Satisfaction Score with
or without the evolved Tips. Table 7 shows that
Tips alone serve as an important aspect of self-
evolution.

Managing self-evolution in the long run. To ex-
plore how to efficiently manage a large number of
Tips and Shortcuts accumulated over the long term,
we further include a case study in Appendix A.
This case study introduces mechanisms to retrieve
only the most relevant information for a new task,
ensuring the agent remains effective even as its
experience base grows significantly.

6 Related Work

6.1 GUI Agents

The advancement of large multimodal models
(LMM) has driven research on LMM-based GUI
agents (Wang et al., 2024c¢), focusing on Al as-
sistants for GUI environments like Web (Deng
et al., 2023; Zheng et al., 2024; He et al., 2024;
Yoran et al., 2024; Reddy et al., 2024), PC (Hong

et al., 2023; Zhang et al., 2024; Liu et al., 2024b;
Xie et al., 2024; Tan et al., 2024), and mobile de-
vices (Wang et al., 2024b; Zhang et al., 2023; Li
et al., 2024; Wang et al., 2024a; Liu et al., 2024a).
For mobile, research has enhanced single-agent per-
ception and reasoning via tool usage (Wang et al.,
2024b) and exploration (Zhang et al., 2023; Li
et al., 2024). Recent multi-agent systems (Rawles
et al., 2024; Wang et al., 2024a) show promise but
still face challenges like short-sighted planning and
poor error recovery.

It is worth noting that the “planning” mod-
ule in Mobile-Agent-v2 (Wang et al., 2024a)
merely serves as a progress tracker and is fun-
damentally different from the proposed Man-
ager in Mobile-Agent-E. In Mobile-Agent-v2, the
“decision-making” module remains responsible for
both high-level planning (e.g., “what to do next”)
and low-level action execution (e.g., “where to
tap”), resulting in a flat and overloaded design. In
contrast, Mobile-Agent-E introduces a hierarchical
agentic structure that explicitly separates high-level
planning from low-level action decisions.

6.2 Self-Evolution in Foundation Models

Self-improvement in large language and multi-
modal models has been widely explored (Tao et al.,
2024), through techniques like iterative refine-
ment (Madaan et al., 2024), self-reflection (Shinn
et al., 2024), self-training (Huang et al., 2022), and
multi-persona collaboration (Wang et al., 2023).
Recent work also emphasizes tool learning and
creation (Cai et al., 2023; Qian et al., 2023; Yuan
et al., 2023). In GUI agents, self-evolution is less
explored. While Cradle (Tan et al., 2024) shows po-
tential in skill curation for PC environments, how
to do evolution in mobile settings remains unad-
dressed. In this work, we identify two important
types of knowledge for evolution, namely Tips and
Shortcuts.

7 Conclusion and Future Work

In this work, we make the first attempt to build mo-
bile agents for complex, real-world tasks, demon-
strating the effectiveness of hierarachical agentic
framework as well as self-evolution. Future work
will focus on developing improved strategies for
generating, invoking, and revising long-term mem-
ory, as well as automating the evaluation of com-
plex mobile tasks. Detailed discussions are in-
cluded in the Limitations section.



Limitations

Misuse of Shortcuts due to incorrect perception
of phone state. Although we explicitly require
the Operator to verify the current phone state to en-
sure it fulfills the precondition of a Shortcut before
calling it, there are still cases where the model in-
correctly perceives the state, resulting in the misuse
of Shortcuts in an invalid state. Figure 10 illustrates
an example of such error. A detailed description of
the example is provided in the caption. This type
of error could potentially be mitigated by employ-
ing a dedicated agent for verifying preconditions
or by enhancing the perception module to better
understand phone states.

Errors and imperfections in self-evolved short-
cuts. Although effective in most cases, we still
observe errors and imperfections in the agent-
generated Shortcuts during self-evolution. These
issues can lead to propagated errors when an erro-
neous Shortcut is used in subsequent tasks. Fig-
ure 11 illustrates an example of such erroneous and
imperfect Shortcuts. A detailed description of the
example is provided in the caption. This highlights
the need for future work on approaches to generate
higher-quality Shortcuts and equipping the agent
with the ability to reflect on and revise generated
Shortcuts in subsequent tasks.

Human evaluation is required for Mobile-Eval-
E. Due to the complexity and open-ended nature
of these real-world tasks, no current multimodal
model can replace human evaluation for providing
a reliable assessment. In the future, as multimodal
reasoning models advance, we believe it is possible
to develop an automatic rubric verifier that deter-
mines whether each criterion is met at a given step
based on the global action history. We leave this
promising direction to future work.

Broader Impacts

This paper aims to advance the field of LMM-based
agents by developing a hierarchical multi-agent
framework and benchmark to improve the usability
and efficiency of smartphones in complex, multi-
step tasks. While the primary goal is to enhance
human-device interaction, the proposed system has
the potential for broader societal benefits, partic-
ularly in improving accessibility for individuals
with disabilities or limited mobility. By enabling
more intuitive and automated task management on
mobile devices, this framework can assist users

with physical impairments, cognitive challenges,
or conditions that make precise interactions with
touchscreens difficult.

While the primary aim is to enhance mobile task
efficiency and user accessibility, the development
of mobile agents capable of autonomous decision-
making introduces potential risks. For example,
unauthorized or unintended actions by the agent,
such as the misuse of sensitive information includ-
ing credit card details or private data, could result
in serious consequences for users. These risks em-
phasize the critical need for robust safeguards, error
recovery mechanisms, and fail-safe systems to en-
sure that the agent’s actions consistently align with
user intentions.

We are actively pursuing future work that fo-
cuses on designing and integrating robust privacy
and safety mechanisms. These include explicit user
consent workflows for sensitive operations, encryp-
tion protocols to protect user data during process-
ing and storage, and automated systems to flag
potentially harmful or unauthorized actions. These
advancements will be crucial for maximizing the
societal benefits of these systems, minimizing po-
tential risks, and building user trust in autonomous
mobile agents.
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A Case Study: Towards A Closed-Loop
Self-Evolving Agent

In real-world mobile usage, after running the agent
on a large number of tasks in various scenarios, the
accumulated Tips and Shortcuts may grow to an
amount where it is no longer feasible to include
all of them in the decision-making context. Thus,
in this case study, we aim to explore closing the
self-evolution loop by introducing two additional
Experience Retriever agents for Tips Agrr and
Shortcuts Aggrs. We consider a new task in an
unknown scenario, as shown in Figure 7. First,
we provide all the updated Tips and Shortcuts—
after running Mobile-Agent-E on all 5 scenarios
(a total of 25 tasks) in Mobile-Eval-E—to the Ex-
perience Retrievers. With GPT-40 as the back-
bone, the updated long-term memory contains a
total of 7 unique Shortcuts and 59 Tips, among
which 6 Shortcuts and 55 Tips are newly proposed
by Mobile-Agent-E during experience reflection.
Then, the Experience Retrievers are prompted to
select only the relevant Tips and Shortcuts for the
current task. The qualitative example in Figure 7
shows that Mobile-Agent-E effectively retrieves
and leverages highly relevant Shortcuts and Tips
to successfully complete a challenging unseen task.
The full list of Tips and Shortcuts after evolution
can be found in Appendices I and H.

B Experimental Details

Baselines. For Mobile-Eval-E, we compare
against diverse open-sourced mobile agent frame-
works compatible with actual devices, including
AppAgent (Zhang et al., 2023), Mobile-Agent-
vl (Wang et al., 2024b), and Mobile-Agent-
v2 (Wang et al., 2024a). To maximize an apple-
to-apple comparison with Mobile-Agent-v2, which
is the previous state-of-the-art, we apply an identi-
cal atomic operation space, perception model, and
initial Tips to Mobile-Agent-v2 as Mobile-Agent-E.
AppAgent originally requires an additional explo-
ration phase, which does not fit our setting; thus,
we add the initial Tips as additional knowledge.
AppAgent-v2 (Li et al., 2024) is not included since
it is not open-sourced at the time of writing.

We also compare with a wider range of mod-
els with reported scores on Android World, such
as M3A (Rawles et al., 2024), Aria-Ul (Yang
et al., 2024) and UGround (Gou et al., 2025). We
further explore using different large multimodal
models (LMM) as backbones for the reasoning
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agents, including GPT-40 (OpenAl, 2024), Claude-
3.5-Sonnet (Anthropic, 2024), and Gemini-1.5-
pro (Team et al., 2024). Unless otherwise specified,
the default backbone for all models is GPT-4o.

Backbone versions. The detailed versions of
the large multimodal models are listed as fol-
lows: (1) GPT-40 version: gpt-40-2024-11-20; (2)
Claude-3.5 version: claude-3-5-sonnet-20241022;
(3) Gemini-1.5 version: gemini-1.5-pro-latest (Dec
2024)

Perceptor implementation details. We follow
Mobile-Agent-v2 (Wang et al., 2024a) to imple-
ment the Perceptor in Mobile-Agent-E with slight
modifications. We use DBNetl(Liao et al., 2020)
and ConvNextViT-document' from ModelScope
for OCR detection and recognition respectively.
We use GroundingDINO (Liu et al., 2023) for icon
grounding and Qwen-VL-Plus (Bai et al., 2023) for
generating captions for each cropped icon.

Agent termination modes. There are five ways
an agent can exit from performing a task: (1) self-
reported success: the agent decides to stop on its
own; (2) reaching the maximum number of itera-
tions: we set the maximum iteration count to 40 to
prevent infinite loops; (3) reaching the maximum
number of consecutive errors: if the agent has an
action reflector and it identifies 3 consecutive er-
rors, the agent is exited; (4) reaching the maximum
number of repeated actions: if the agent performs
the exact same action (excluding Swipe and Back)
more than 3 consecutive times; (5) any other errors,
such as errors when parsing the raw response into
a valid action. If a task exits in one of the ways de-
scribed in 2-5, it is marked as having a termination
error (TE). The TE rate is computed as the ratio of
tasks with termination errors to all tasks.

Note that we recognize self-reported success
may be inaccurate; however, in the TE metric we
treat it as a normal termination. Early termination is
already penalized via a low satisfaction score, while
the TE metric is designed to capture the model’s
robustness to truly abnormal terminations—such
as infinite loops, formatting errors, and so on.

Thttps://modelscope.cn/models/iic/cv_
resnet18_ocr-detection-db-1line-level_damo

"https ://modelscope.cn/models/iic/cv_
convnextTiny_ocr-recognition-document_damo


https://modelscope.cn/models/iic/cv_resnet18_ocr-detection-db-line-level_damo
https://modelscope.cn/models/iic/cv_resnet18_ocr-detection-db-line-level_damo
https://modelscope.cn/models/iic/cv_convnextTiny_ocr-recognition-document_damo
https://modelscope.cn/models/iic/cv_convnextTiny_ocr-recognition-document_damo

9{' Shortcuts x 7

@ Tips x 58
Full Long-term Memory
Experience Shorteut: >
Retrievers Aprs  Aprr Search_Location_in_Maps /&

9{' Selected Shortcuts: 3 /7

Name: Search_Location_in Maps IE
Precondition: The Google Maps app is open,
and the search bar is visible on the screen.

Name: Create_New_Note IE

Precondition: The Notes app is open, and the

'Add'button is visible on the screen. 1. Open Google Maps and search for a bouldering gym ...

—> 2. Find the opening hours and phone number ...

Task Query: Find a bouldering gym in Urbana, IL on Google Maps. Create a note in Notes about its opening hours and phone number.
And then search for some beginner bouldering tips on Google. Add those tips to the note you created earlier.

Shorteut:
YCreate_New_Note

—> 3. Open Notes and create a note with the gym's details —»

Switch_App

Name: Tap_Type_and_Enter

Precondition: There is a text input box on the
sereen with no previously entered content

@ Selected Tips: 15/58
=
- If a search query fails to execute, double-
check the tap location and ensure the search bar
is properly activated before typing. Retry the

action with slight adjustments if necessary. on the Chrome icon

but returned Home

- If an app fails to open or navigate correctly,
return to the home screen and retry the action.
This often resolves navigation issues.

Shortcut:

4. Use Google Search to find beginner bouldering tips

Tap_Type_and_Enter
————

——>  5.Add the beginner bouldering tips to the note created earlier.

Figure 7: Case study example where relevant Shortcuts and Tips are automatically retrieved from the previously
evolved long-term memory and subsequently leveraged to complete an unseen, challenging task. The action
trajectory also includes an example where the agent recovers from an error.

C Full Trajectory Comparison Example
with Previous SOTA

Figure 8 presents the full trajectory of the task
shown in Figure 1, comparing the previous state-
of-the-art, Mobile-Agent-v2 (Wang et al., 2024a),
and our proposed Mobile-Agent-E. Mobile-Agent-
v2 suffers from early termination after interacting
with two Apps, whereas Mobile-Agent-E fulfills
all rubrics and stops at the App offering the best
deal.

D Impact of Multi-level Error Recovery

Figure 9 illustrates how the error escalation mecha-
nism in Mobile-Agent-E enhances error recovery
ability. A detailed description of the example is
provided in the caption.

E Illustration of Remaining Limitations

Figure 10 illustrates an example of a misuse of
Shortcuts in an invalid state. Figure 11 illustrates
an example of erroneous and imperfect Shortcuts.

F All Tasks in Mobile-Eval-E Benchmark

Table 8 presents the input queries, involved App
types, and scenarios for all Mobile-Eval-E tasks.
The complete list of rubrics and human reference
operation sequences is provided in the supplemen-
tary material.
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G Atomic Operation Space

Table 9 presents all atomic operations considered
in Mobile-Agent-E.

H Full list of Self-Evolved Shortcuts

Figure 12 shows a full list of generated Shortcuts
by Mobile-Agent-E after self-evolution on all 25
tasks from Mobile-Eval-E benchmark.

I Full list of Self-Evolved Tips

Figure 13 shows a full list of generated Tips by
Mobile-Agent-E after self-evolution on all 25 tasks
from Mobile-Eval-E benchmark.



Task Query: I want to buy a brand-new Nintendo Switch Joy-Con. Any color is fine. Please comgare the prices
on Amazon, Walmart, and Best Buy. Find the cheapest option and stop at the screen where I can add it to the cart.

Rubrics

§ ¢ Opened Amazon Shopping

% * Searched for Nintendo Switch
Joy-Con on Amazon

¢ Found the correct product with
its price on Amazon

& ¢ Opened Walmart

e Searched for Nintendo Switch
Joy-Con on Walmart

¢ Found the correct product with
its price on Walmart

¥ * Opened Best Buy

X ¢ Searched for Nintendo Switch
Joy-Con on Best Buy

¥ ¢ Found the correct product with

X

its price on Best Buy
* Navigated to the correct App
[, m— I with the cheapest price
_____ Failed to open Best Buy X « Stopped at the screen where the

= ) Early Termination due cheapest option can be added to
Searching on Walmart (found price $78) to consecutive errors the cart
A J

Mobile-Agent-v2 Full Trajectory

Rubrics

¢ Opened Amazon Shopping

¢ Searched for Nintendo Switch
Joy-Con on Amazon

* Found the correct product with
its price on Amazon

* Opened Walmart

¢ Searched for Nintendo Switch
Joy-Con on Walmart

¢ Found the correct product with
its price on Walmart

¢ Opened Best Buy

¢ Searched for Nintendo Switch
Joy-Con on Best Buy

* Found the correct product with
its price on Best Buy

¢ Navigated to the correct App
with the cheapest price

¢ Stopped at the screen where the

cheapest option can be added to

the cart

¥ e

Additional exploration on Amazon
(found new price $77)

Mobile-Agent-E (Ours) Full Trajectory

Switch to Walmart ($71)

Figure 8: Full trajectory comparison between the previous state-of-the-art, Mobile-Agent-v2 (Wang et al., 2024a),
and Mobile-Agent-E.
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Task Query: Check if any of the following items are on sale at Walmart: ribeye steak, fresh oranges,
or toilet paper. If any are on sale, add a note in Notes with their prices.

Current Current Subgoal: M Update high-
Progress: Search for "fresh oranges" in the Walmart app and gugasi level plan
The search for check if they are on sale. Note the price if applicable. Escalation to manager
"ribeye steak" 4 l
was successful - _f .
Action Reflector —» . Action Reflector —>. (Thoughts: h
Error: Did not i - _ . Error The c}:ul-)ren! ist;uevi; tlhat‘;he
i - x stemoeerd search bar in the Walmart app
clear the previous d - 2 w persists is not being cleared properly

search request before entering the new search

term "fresh oranges." ...
Updated Subgoal:
Search for "fresh oranges" in

the Walmart app and check if

Operator Operator Operator they are on sale. Note the price
- -~ if applicable.
— — ##4 Next Steps ###

Tap_Type_Enter Tap_Type_Enter

1. Tap on the search bar to
activate it.

2. Clear the existing text
completely.

3. Type "fresh oranges" and
initiate the search.

4. Check if fresh oranges are
on sale and note the price if
applicable.

Action Reflector —> k Z

Action Reflector —>@ Action Reflector —>

;
Successfully
recovers
from error
Operator Operator
— — -
Tap i . Tap_Type_Enter

—
=

Q

Figure 9: Error recovery with escalation. The task requires the agent to search for three different items on Walmart
and note their sales information. At the step shown in the figure, the agent has already searched for ribeye steak and
intends to search for fresh oranges next. However, the Operator erroneously calls the Shortcut that inputs text into
the search bar and performs a search without clearing the previously entered text. Although the Action Reflector
raises an error, the subgoal remains unchanged, and the Operator fails to rectify the error on the second attempt.
After observing two consecutive errors, the error is escalated to the Manager, which correctly identifies the problem
and revises the subgoal with detailed, decomposed steps to address the error. This helps the Operator correctly
recover from the previous error by first tapping the “x” icon to clear the previous search query.
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Task Query: Check if any of the following items are on sale at Walmart: ribeye steak, fresh oranges,
or toilet paper. If any are on sale, add a note in Notes with their prices.

Progress; Current S‘,fbg"al’ " Error: Misuse of Shortcut
Done noting Search for "toilet paper" in the -

: aas 5 Current state does not meet the pre-condition
ribeye steak and Walmart app and check if it is on o i i S it (s T il Baten)
fresh orange ... sale. Note the price if applicable. & p_1ype_anc_ )

Operator

>

>
Tap_Type_and_Enter

Shortcut Name: Tap_Type and_Enter
Arguments: [Xx, y, text]
Description: Tap an input box at position (x,

y), Type the "text", and then perform the
Enter operation. Very useful for searching ...
Precondition: There is a text input box on the

-
N e e

screen with no previously entered content.

current state next state

Figure 10: Example of misuse of Shortcuts in an invalid state. At the current step, as shown in the figure, the agent
intended to switch back to Walmart to search for the final item requested by the user. While it correctly performs
the “Switch_App” operation, it then calls a Shortcut for searching without realizing that it is not yet in the App
where the search bar is available.

"name": "Search_Location_in_Maps",

"arguments": ["x","y","text"],

"description": "Tap the search bar in Google Maps at position (x, y), type the location text, and select the first search result to display the route options.",
"precondition": "The Google Maps app is open, and the search bar is visible on the screen.",

"atomic_action_sequence": [

"

{"name":"Tap","arguments_map": {"x":"x","y":"y"} },
{"name":"Type","arguments_map": {"text":"text"}},

"name":"Enter","arguments_map": {}},
"o

{"name":"Tap","arguments_map":{"x":"x","y":"y"}} «—— Redundant Tap action

"name": "Switch_App_And_Search",
"arguments"; ["app_name","x","y" "text"],
"description": "Switch to a specified app, tap on a search bar at position (x, y), type the given text, and press Enter to perform a search.",
"precondition": "The app to switch to is already open in the app switcher, and the search bar is visible on the screen after switching.",
"atomic_action_sequence": [
{"name":"Switch_App","arguments_map":{} }, _C Missing an additional Tap
{"name":"Tap","arguments_map": {"x":"x","y":"y"} }, action to get into the App

{"name":"Type","arguments_map": {"text":"text"} },
"name":"Enter","arguments_map":{} }
]
}
Figure 11: Example of imperfect (above) and erroneous (below) generated Shortcuts. The

“Search_Location_in_Maps” Shortcut includes an unnecessary Tap action in the operation sequence, while the
“Switch_App_And_Search” Shortcut omits a Tap action needed to first enter the desired App before performing the
search.
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Scenario Task ID APPs Input Query
1_late_night_korean_food Maps Find the best-rated late-night Korean restaurant in Champaign, IL that opens beyond 9pm on Google
Maps.
1_nearest_bakery Maps Get directions to the nearest Bakery that has a rating higher than 4.0 on Google Maps. Stop at the
screen showing the route.
Restaurant 1_thai_duck Maps, Notes Find the best-rated Thai restaurant in Urbana, IL that serves duck cuisine on Google Maps. Review
Recommendation customer comments and compile a summary of positive and negative feedback in Notes.
1_bakery_birthday_cake Maps, Notes Find me a Bakery that is within 10min drive near me and does birthday cakes on Google Maps. Find
the phone number and create a new note in Notes for that.
1_chinese_ohare Maps, X, Notes  Find me a popular Chinese restaurant near Chicago O’Hare airport on Google Maps. Check X for
recent posts about their signature dishes and write a summary in Notes. Then get directions to that
restaurant on Google Maps. Stop at the screen showing the route.
2_segment_anything_cited Chrome Find the most-cited paper that cites the paper *Segment Anything’” on Google Scholar. Stop at the
screen showing the paper abstract.
2_llm_agents_survey Chrome, Notes  Find at least three representative survey papers on LLM agents on Google Scholar, and add their
titles to the Notes.
Information 2_recipes_chinese Chrome, I have some onions, beef, and potatoes in my refrigerator. Can you find me a Chinese-style recipe
Researching YouTube that uses all three ingredients and can be prepared in under an hour? And find me a video tutorial on
YouTube for that. Stop at the screen displaying the video.
2_mcdonalds_deals McDonald’s, Can you check the McDonald’s APP to see if there are any Rewards or Deals including Spicy
Maps McCrispy. If so, help me add that to Mobile Order (Do not pay yet, I will do it myself). And then
check the pickup location and get directions on Google Maps. Stop at the screen showing the route.
2_headphones_reviews Amazon, Notes  Find three detailed user reviews of the Bose QC45 headphones from Amazon. Summarize the
general sentiment in the Notes.
3_oled_tv Best Buy Find the best deal on a 55-inch 4K OLED TV at Best Buy. Stop at the screen displaying the best
deal you find.
3_laptop_nvidia_gpu Amazon Shop- Find me a laptop on Amazon that is under $1000 with an Nvidia GPU and more than 8GB RAM.
ping
Online 3_ninja_air_fryer Amazon Shop- Compare the price of a Ninja air fryer 8 qt at Walmart and Amazon. Stop at the screen displaying
Shopping ping, Walmart  the best deal you find.
3_walmart_sale_items Walmart, Notes  Check if any of the following items are on sale at Walmart: ribeye steak, fresh oranges, or toilet
paper. If any are on sale, add a note in Notes with their prices.
3_nintendo_switch_joy_con Amazon Shop- I want to buy a brand-new Nintendo Switch Joy-Con. Any color is fine. Please compare the prices
ping, Best Buy, on Amazon, Walmart, and Best Buy. Find the cheapest option and stop at the screen where I can add
Walmart it to the cart.
4_x_black_myth_wukong X, Notes Find the top posts about the game 'Black Myth Wukong’ on X and summarize the key highlights in
Notes.
4_x_trending_news X, Notes Check the top 3 trending news on X. Read a few posts to figure out what’s happening. And create a
new Note to summarize your findings.
What’s 4_watercolor_painting_tutorial Lemon8, Notes I want to learn how to paint watercolor. Find me some content creators to follow on Lemon§ that
Trending has highly liked posts about watercolor painting tutorials. List their account names in Notes.
4_movie_trending Fandango, Check the top 5 trending movies on Fandango that are currently in theaters. Compare their ratings
Notes and create a note in Notes for the highest-rated one, including its name and showtimes.
4_horror_movie_reviews Fandango, Find me the latest horror movie currently in theaters on Fandango. Check some reviews on Lemon§8
Lemon8, Notes about the movie and create a note in Notes with the general sentiment.
5_cheap_flights_newyork Booking Find the cheapest round-trip flight from Chicago to New York City in the next month on Booking.
Stop at the screen showing the best deal.
5_things_to_do_la Tripadvisor, Suggest some interesting things to do in LA. Find the top 3 attractions on Tripadvisor. Save the list
Notes in Notes.
Travel 5_palo_alto_tour Tripadvisor, Plan a one-day itinerary for Palo Alto, CA using Tripadvisor. Choose the attractions and dining
Planning Notes recommendations, but keep in mind that I don’t like seafood and I love museums. Write the plan in
Notes.
5_local_food_chicago Tripadvisor, Find a highly recommended local restaurant in Chicago on Tripadvisor. Check the reviews about
Notes must-try dishes and summarize in Notes.

5_hotel_champaign

Booking, Maps

Help me find a hotel in Champaign, IL on Booking that is under $200 for a queen bed. Make sure
that the rating is higher than 7.0. Double-check on Google Maps to see if it is close to Green Street.
Show me your final choice on Booking.

Table 8: All task queries in Mobile-Eval-E.
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Operation Description

Open_App(app_name) If the current screen is Home or App screen, you can use this action to open the app named
“app_name” on the visible on the current screen.

Tap(x,y) Tap the position (x, y) in current screen.

Swipe(x1,y1, T2, Yy2) Swipe from position (x1,y1) to position (z2, y2). To swipe up or down to review more content,
you can adjust the y-coordinate offset based on the desired scroll distance. For example, setting
r1 = w2 = 0.5 x width, y1 = 0.5 * height, and y2 = 0.1 * height will swipe upwards to
review additional content below. To swipe left or right in the App switcher screen to choose
between open apps, set the x-coordinate offset to at least 0.5 * width.

Type(text) Type the "text" in an input box.

Enter() Press the Enter key after typing (useful for searching).
Switch_App() Show the App switcher for switching between opened apps.
Back() Return to the previous state.

Home() Return to home page.

Wait() Wait for 10 seconds to give more time for a page loading.

Table 9: Atomic operations space.

{ Inital Shortcuts (User Provided)
"name": "Tap_Type_and_Enter",
"arguments": ["x","y","text"],
"description": "Tap an input box at position (x, y), Type the \"text\", and then perform the Enter operation. Very useful for searching and sending messages!",
"precondition": "There is a text input box on the screen with no previously entered content.",
"atomic_action_sequence": [{"name":"Tap","arguments_map": {"x":"x","y":"y"} },{"name":"Type

}

"

arguments_map": {"text":"text"} },{"name":"Enter","arguments_map":{} }]

"o

{ Agent Generated Shortcuts

"name": "Create_New_Note",

"arguments": ["text"],

"description": "Create a new note in the Notes app and type the provided text into it.",

"precondition": "The Notes app is open, and the 'Add' button (orange icon with a pencil) is visible on the screen.",
"o "o

"atomic_action_sequence": [ {"name":"Tap","arguments_map": {"x":"929","y":"2053"} },{"name":"Type","arguments_map": {"text":"text"} } ]

}
{

"name": "Search_Location_in_Maps",
"arguments”: ["x","y","text"],
"description": "Tap the search bar in Google Maps at position (x, y), type the location text, and select the first search result to display the route options.",
"precondition": "The Google Maps app is open, and the search bar is visible on the screen.",
"o "o "o,

"atomic_action_sequence": [{"name":"Tap","arguments_map": {"x":"x","y":"y"} },{"name":"Type","arguments_map": {"text":"text"} },{"name":"Enter","arguments_map":{}},
{"name":"Tap","arguments_map": {"x":"x","y":"y"}} ]

"name": "Swipe_to_Reveal_Content",

"arguments": ["x1","y1","x2","y2"],

"description": "Swipe from position (x1, y1) to position (x2, y2) to reveal additional content below or above on the screen.",
"precondition": "The screen contains content that can be revealed by swiping.",

"atomic_action_sequence": [{"name":"Swipe","arguments_map": {"x1":"x1","y1":"y1","x2":"x2" "y2":"y2"} }]

}

{
"name": "Clear_Search_And_Type",
"arguments": ["x_clear","y_clear","text"],
"description": "Clear the current search term by tapping the 'X' icon and then type the new search term into the search bar.",
"precondition": "The search bar is active, and the 'X" icon to clear the current search term is visible on the screen.",

"o

'y_clear"}},{"name":"Type","arguments_map": {"text":"text"} }]

.

"atomic_action_sequence": [{"name":"Tap","arguments_map": {"x":"x_clear"

}

"o,

Sy

"name": "Save_Note_As_File",

"arguments": ["folder_x","folder_y","done_x","done_y","save x","save_ y"],

"description": "Save a note as a file in a specified folder by selecting the folder, confirming the selection, and tapping the save button.",

"precondition": "The 'Save note as' menu is open, and the desired folder, 'Done’ button, and 'Save' button are visible on the screen.",

"atomic_action_sequence": [{"name":"Tap","arguments_map": {"x":"folder_x","y":"folder_y"}},{"name":"Tap","arguments_map":{"x":"done_x","y":"done_y"}},
"

"name":"Tap","arguments_map": {"x":"save_x","y":"save_y"}}]

}

"name": "Switch_App_And_Search",

"arguments": ["app_name","x","y","text"]

"description": "Switch to a specified app, tap on a search bar at position (x, y), type the given text, and press Enter to perform a search.",

"precondition": "The app to switch to is already open in the app switcher, and the search bar is visible on the screen after switching.",

"atomicﬁac;i}onﬁsequence": [{"name":"SwitchﬁAp?","argumentsimap": {}},{"name":"Tap","arguments_map": {"x":"x","y":"y"}},{"name":"Type","arguments_map":
{"text":"text"}},{"name":"Enter","arguments_map":{}}]

Figure 12: Full list of Shortcuts generated by Mobile-Agent-E (with GPT-40) after self-evolution.
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** Initial Tips (User Provided) **

0. Do not add any payment information. If you are asked to sign in, ignore it or sign in as a guest if possible. Close any pop-up windows when opening an app. 1. By default, no apps are
opened in the background. 2. Screenshots may show partial text in text boxes from your previous input; this does not count as an error. 3. When creating new Notes, you do not need to
enter a title unless the user specifically requests it.

** Agent Generated Tips (Scenario 1) **

4. When searching for restaurants or businesses, ensure the query includes specific details like location, type of cuisine, and operational hours to narrow down results effectively. 5.
Always verify the operational hours of businesses to ensure they meet the user's requirements, especially for late-night or time-sensitive searches. 6. When filtering search results (e.g., by
rating or distance), ensure the filter criteria are applied correctly to avoid irrelevant results. 7. Double-check the selected location or business to ensure it matches the user's requirements
(e.g., rating, proximity, or specific services offered) before proceeding to the route screen. 8. If the task involves creating a route, confirm that the route is displayed correctly and matches
the intended destination before marking the subgoal as complete. 9. When navigating through menus or categories, use a systematic approach to ensure all relevant sections are explored
thoroughly. 10. If an action does not return to the expected screen, use alternative navigation methods (e.g., tapping "X" or returning to the home screen) to correct the workflow. 11.
‘When summarizing customer feedback, include both positive and negative aspects to provide a balanced overview. 12. When retrieving contact information, ensure the details (e.g.,
phone number or address) are accurate and match the selected business before saving them in Notes. 13. If a task involves multiple apps (e.g., Google Maps and Notes), ensure smooth
transitions between apps and verify that the required information is correctly transferred. 14. If an app fails to open or respond in the app switcher, return to the home screen and reopen
the app directly to avoid delays.

** Agent Generated Tips (Scenario 2) **

4. When identifying the most-cited paper or similar tasks, ensure to sort the results by citation count if the option is available. This minimizes manual scanning and reduces errors. 5. Ifa
search action fails, verify the input text and ensure the correct search bar is targeted before retrying. Adjust the tap location if necessary. 6. When recording information from search
results, ensure the details are accurate and clearly formatted to avoid confusion. 7. If a task involves multiple steps across different apps, always confirm the completion of one step
before proceeding to the next to avoid errors or omissions. 8. If a search query fails to execute, double-check the tap location and ensure the search bar is properly activated before typing.
Retry the action with slight adjustments if necessary. 9. When selecting a video or item from a list, ensure the title matches the intended choice to avoid selecting the wrong option. 10. If
a button or option does not respond to a tap, ensure it is fully visible on the screen. Use a swipe or scroll action to adjust the view if necessary before retrying. 11. When switching
between apps, ensure the correct app is selected from the app switcher to avoid unnecessary navigation errors. 12. Always stop at the final screen requested by the user, ensuring the task
is fully completed before ending the interaction.

** Agent Generated Tips (Scenario 3) **

4. When identifying the best deal, prioritize both price and features, and ensure any discounts or promotions are clearly noted. 5. Always confirm that the displayed product matches the
search criteria (e.g., size, specifications) to avoid selecting an incorrect item. 6. If the task requires stopping at a specific screen, ensure the screen is fully loaded and all relevant details
are visible before stopping. 7. If a filter does not apply correctly, try adjusting it again by swiping or tapping alternative areas of the screen to reveal hidden options. 8. When using
sliders for filters (e.g., price range), swiping is often more effective than tapping to adjust the values. 9. If a filter unexpectedly resets or removes itself, reapply it and verify the results
before proceeding. 10. Always double-check the final results to ensure all filters (e.g., price, specifications) have been applied correctly. 11. When comparing prices across platforms,
ensure that the product model and specifications (e.g., size, features) are identical to avoid inaccurate comparisons. 12. If swiping to reveal content, ensure the swipe is smooth and covers
enough distance to load all relevant details on the screen. 13. If an app fails to open or navigate correctly, return to the home screen and retry the action. This often resolves navigation
issues. 14. If a tap action does not work as expected, consider tapping alternative areas of the screen, such as associated buttons or options, to achieve the desired outcome. 15. When
switching between apps, ensure the correct app is reopened and verify the screen before prc ding to avoid unnecessary repetition.

** Agent Generated Tips (Scenario 4) **

4. When navigating apps, ensure that the correct icon is tapped by carefully identifying its position and function to avoid misalignment or unintended actions. 5. If a search filter is
applied unintentionally, clear it by tapping the "X" icon in the search bar before proceeding with a new search. 6. Always verify the context of the search results to ensure they align with
the intended query before summarizing or proceeding to the next step. 7. When recording information in Notes, ensure the formatting is clear and consistent for easy readability. 8.
Double-check the accuracy of the recorded information (e.g., account names, titles) before saving the note to avoid errors. 9. If redirected to an unintended page (e.g., "My Orders"),
navigate back to the main interface or intended section before proceeding. 10. When comparing multiple items (e.g., movie ratings), keep track of all relevant data to ensure accurate
comparisons and avoid revisiting the same pages unnecessarily. 11. If an app opens an unintended interface (e.g., camera instead of Notes), return to the home screen and retry opening
the correct app to avoid confusion. 12. When entering search terms, ensure the previous query is cleared completely to prevent appending incorrect text to the new query. 13. If a
misaligned tap opens an unintended menu (e.g., Filters), close it immediately and retry the intended action. 14. Use broader search terms if specific queries fail to yield results, and refine
the search gradually based on the context. 15. If an app fails to execute a search or action, consider switching to a browser or alternative app to complete the task.

** Agent Generated Tips (Scenario 5) **

4. Always confirm that the displayed results match the search criteria (e.g., correct cities, dates, and round-trip selection) before proceeding to the next step. 5. If multiple options are
displayed, ensure the cheapest or most relevant option is clearly identified and selected as per the task requirements. 6. If a "Back" button fails to function as expected, consider
alternative methods to save or exit, such as using a menu or additional options (e.g., "Save as file"). 7. When saving a note as a file, ensure the correct folder and file format are selected
before confirming the save. 8. Double-check that the task is fully completed (e.g., the note is saved in the correct location) before marking it as done. 9. If scrolling through content does
not reveal new information, consider alternative methods to locate the required details, such as using a search or filter function within the app. 10. If the end of a section is reached and
the required information is not found, reassess the search criteria or explore other sections of the app for relevant details. 11. When searching for specific items (e.g., dishes, amenities),
use keywords or filters to narrow down results and save time. 12. If repetitive actions (e.g., swiping) fail to yield results, pause and evaluate whether the task can be completed using a
different approach or if the information is unavailable. 13. When switching between apps, ensure that the context of the task is maintained, and verify that the information gathered in one
app aligns with the requirements in the other app. 14. Always confirm the proximity or location details (e.g., using Google Maps) before finalizing a selection, especially when location is
a key criterion.

Figure 13: Full list of Tips generated by Mobile-Agent-E (with GPT-40) after self-evolution.
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