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ABSTRACT

Graph Self-Supervised Learning (GSSL) provides a guarantee for harnessing
abundant unlabeled data and has attracted widespread attention. While making
some strides, GSSL still faces several crucial challenges that hinder it from fully
unleashing its potential, including inadequate exploration of graph information
and underlying collapse issues. To overcome these obstacles, we propose two
complementary components aimed at sufficiently mining valuable contents im-
plied within graphs and transforming them into informative and diverse represen-
tations through training an expressive neural model. As a cornerstone module, an
anchor-neighborhood alignment strategy, which utilizes graph diffusion to con-
struct the probability distribution of positive samples based on the structural con-
text of the anchor node, enables sufficient exploration of graph topology and en-
dows the neural model with stronger structure-aware ability. To enhance diversity
of node representations, a scheme of isotropic constraints is introduced to encour-
age representations to exhibit consistent distribution along any direction in space,
which compels data points to be scattered throughout the whole representation
space and naturally solves the notorious dimensional collapse in self-supervised
learning. Owing to no reliance on negative samples, mutual information estima-
tors, and additional projectors, our approach presents significant advantages in
computing and storage. Extensive comparative experiments and exhaustive abla-
tion studies demonstrate the effectiveness and efficiency of our method.

1 INTRODUCTION

Graph-structured data is ubiquitous in real-world scenarios due to its powerful capability to model
relational entities. Representative examples include citation networks (Sen et al., 2008), social net-
works (Yanardag & Vishwanathan, 2015), and knowledge graphs (Vivona & Hassani, 2019). As an
effective tool for processing graph data, Graph Neural Networks (GNNs) (Kipf & Welling, 2016a;
Veličković et al., 2017) have drawn widespread attention and made significant strides. Most GNN-
based models are established in a supervised mode, which typically necessitates plentiful labeled
data for training. Nevertheless, annotating graphs is a challenging mission, and task-related labels
would be extremely scarce. Hence, learning high-quality graph representations without manual an-
notations for various downstream tasks constitutes a pivotal subject within the domain of graph
machine learning. Among state-of-the-art unsupervised methods, multi-view graph Self-Supervised
Learning (SSL) has achieved promising performance and even surpasses their supervised counter-
parts. These methods typically follow the technical route of multi-view learning, aiming to produce
invariant representations across distinct augmented views (i.e., positive sample pairs) by maximizing
their agreement. Nevertheless, a solo pursuit of this objective will lead to a completely collapsed so-
lution where all node representations approximately shrink to a constant vector, as shown in Figure
1(a). The existing graph self-supervised learning methods usually prevent the training from falling
into this dilemma by pushing away the embedding vectors of negative sample pairs (Chen et al.,
2020; Zhu et al., 2020; 2021), employing an asymmetric architecture (Grill et al., 2020; Thakoor
et al., 2021), or decorrelating various representation channels (Zhang et al., 2021).
Despite the ascendance and commendable performance of the multi-view paradigm of graph SSL,
these methods still suffer some notable drawbacks, impeding further improvements in their perfor-
mance and efficiency. Without reliance on manual annotations, self-supervised learning excavates
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(a) Complete collapse. (b) Dimensional col-
lapse.

Projection 1

Projection 2

(c) Anisotropic appearance of dimensional-collapsed rep-
resentations.

Figure 1: Illustration of collapse issues and their distinct manifestations.

supervisory signals, extracts valuable knowledge, and trains expressive models via thoughtfully
crafted pretext tasks (Liu et al., 2023). Generally speaking, a more comprehensive information
retrieval from unlabeled data usually results in enhanced performance of self-supervised learning.
Especially, topological structure, which distinguishes graphs from regular grid data like images,
provides abundant structural priors and ample self-supervisory signals. However, current meth-
ods struggle to harness this rich topological information adequately. Typically, when constructing
positive samples, a crucial component of multi-view self-supervised learning, these methods often
straightforwardly consider various augmented versions of the same instance. This practice neglects
topological priors within graphs, inevitably leading to suboptimal performance. Although some pio-
neers (Peng et al., 2020; Mo et al., 2022) adopted neighbors of the anchor node as positive samples,
the sampled range is only limited to one-hop in most cases, and all sampled nodes are treated equally.
Besides, graph SSL acquires knowledge from a vast pool of unlabeled data, which inherently ne-
cessitates neural models with strong expressiveness to encapsulate extracted structural information
and semantic content effectively. Nevertheless, the knotty issues of mode collapse in SSL signif-
icantly hamper the expressive capacity of models and the diversity of representations. In addition
to the apparent complete collapse, another potential concern is dimensional collapse (Hua et al.,
2021) in Figure 1(b), where the representations converge into a subspace and various channels are
tightly coupled together. This issue leads to uninformative representations and inexpressive models.
Lastly, and by no means least, it is vital to underscore the significance of training efficiency and its
associated costs during self-supervised pre-training. For most preceding approaches, apart from fea-
ture extractors, additional designs and architectures are still required, such as projection heads (You
et al., 2020; Zhu et al., 2021; 2020) and parameterized mutual information estimators (Hassani &
Khasahmadi, 2020; Sun et al., 2020), which add extra storage and computing burden.
Motivated by the aforementioned analysis, this research strives to construct a comprehensive graph
self-supervised learning framework to thoroughly mine information from unlabeled data and en-
hance the diversity of representations in an efficient manner. Deviating from most pioneer works,
we refrain from directly pairing two augmented views of one instance (i.e., anchor node) as positive
samples. Apart from data augmentation, graph diffusion is employed to establish the distribution
of positive samples based on structural context of the anchor node, sufficiently capturing topo-
logical relationships within the graph. Subsequently, the positive samples with diffusion weights
are derived from the constructed distribution to realize weighted anchor-neighborhood alignment
in representation space to endow the model with stronger structure-aware ability. Furthermore, it
is imperative to eliminate collapse issues to enhance the expressiveness of models for accommo-
dating extracted knowledge. Beyond the prevalent notion of dimensional collapse, characterized
by high inter-channel correlations, another underlying phenomenon has not received explicit atten-
tion, where representations display divergent distributions along distinct directions (referred to as
anisotropy), as depicted in Figure 1(c). In light of our observations, we introduce an approach of
isotropic constraints to mitigate dimensional collapse, encouraging representations to exhibit a con-
sistent distribution across all spatial directions and achieve diversity. Our research advances the
study of dimensional collapse in SSL and provides a unified explanation for distinct self-supervised
methods from the standpoint of optimization objectives and final outcomes. Combining Anchor-
Neighborhood Alignment with Isotropic Constraints (ANA-IC), this paper builds a thorough graph
SSL framework with two complementary components. Due to no reliance on additional architectures
such as mutual information estimators and projection heads, the lightweight design dramatically en-
hances the efficiency of our model. To sum up, our contributions are as follows:
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• A strategy of anchor-neighborhood alignment is put forward to enhance the comprehensive explo-
ration of unlabeled graph data and reinforce topological awareness of neural models, whose core
is an ingenious positive sampling scheme based on structural context distribution.

• We reexamine another manifestation of dimension collapse, namely, anisotropic distributions.
Correspondingly, an innovative scheme of isotropic constraints is proposed to mitigate collapse
issues and enhance representation diversity, independent of existing methods such as negative
sampling, channel decorrelation, and asymmetric architectures.

• Extensive experiments and analysis demonstrate the effectiveness and efficiency of our approach
when juxtaposed with state-of-the-art baselines. Besides, exhaustive ablation studies and visual
analysis provide deeper insights into the underlying principles and advantages of our methodology.

2 RELATED WORK

2.1 MULTI-VIEW GRAPH SELF-SUPERVISED LEARNING

Recently, numerous research efforts have been devoted to graph self-supervised learning, and a
branch based on multi-view learning stands out due to its superior performance. The basic idea is to
make multiple views from the same instance under various graph transformations agree with each
other to optimize model parameters. Despite the similarity in principle, these methods are intri-
cately crafted and diverge in multiple aspects, such as network architecture, view design, and self-
supervised pretext tasks. Enlighted by the InfoMax principle (Linsker, 1988), Deep Graph Infomax
(DGI) (Veličković et al., 2018) and InfoGraph (Sun et al., 2020) focus on maximizing mutual infor-
mation between patch-level representations and a graph-level summary vector using a parameterized
Jenson-Shannon estimator (Nowozin et al., 2016) for graph representation learning. Incorporating
domain-specific priors, GraphCL (You et al., 2020) systematically investigates the impact of various
combinations of graph transformations for classification tasks. MVGRL (Hassani & Khasahmadi,
2020) employs graph diffusion (Klicpera et al., 2019) to construct augmented views and performs
cross-view contrastiveness between local and global representations. GGD (ZHENG et al., 2022)
revisits the underlying principles of DGI and MVGRL and puts forward an efficient group discrim-
ination method for graph contrastive learning. GRACE (Zhu et al., 2020) and GCA (Zhu et al.,
2021) utilize an improved InfoNCE (Gutmann & Hyvärinen, 2010) loss as their objective function,
where multiple views are generated by edge perturbation and attribute masking. As an enhance-
ment, GCA employs node centrality to perform adaptive augmentations. G-BT (Bielak et al., 2022)
generalizes the well-known Barlow Twins (Zbontar et al., 2021) in computer vision onto graph field.
CCA-SSG (Zhang et al., 2021) introduces canonical correlation analysis to graph self-supervised
learning, which discards negative samples and shifts towards inter-channel repulsion.

2.2 TACKLING COLLAPSE ISSUES IN SELF-SUPERVISED LEARNING

Preventing collapse is a fundamental concern in self-supervised learning, with the primary forms
of collapse encompassing complete collapse and dimensional collapse. Some methods, such as
MOCO (He et al., 2020), SimCLR (Chen et al., 2020), GRACE (Zhu et al., 2020), and GCA (Zhu
et al., 2021), utilize negative samples to push representations of different instances away from each
other, which is equivalent to realizing mutual information maximization. Another line of approaches
adopts asymmetric architecture and stop-gradient strategy to prevent all representations from shrink-
ing to the same point and avoid complete collapse. Representative examples include BYOL (Grill
et al., 2020), SimSiam (Chen & He, 2021), and BGRL (Thakoor et al., 2021). Moreover, several ad-
ditional methods, such as VICReg (Bardes et al., 2022), CCA-SSG (Zhang et al., 2021), and Barlow
Twins (Zbontar et al., 2021), utilize feature decorrelation to alleviate collapse issues by decoupling
various channels. Diverging from previous research, our approach enforces isotropic constraints on
representations, which provides a natural solution to address collapse issues.

3 METHODOLOGY
In this section, the method is expanded in a progressive manner: commencing with introducing
relevant notions and the basic framework, followed by the elucidation of the anchor-neighborhood
alignment strategy, and demonstrating the principle and implementation of isotropic constraints.

3.1 PRELIMINARIES AND BASIC FRAMEWORK

Notations. A graph with N nodes, denoted as G(A,X), is characterized by its node set V =
{v1, ..., vN} and edge set E . Each node vi ∈ V possesses a D-dimensional feature vector xi ∈ RD.
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Figure 2: The basic framework of the proposed ANA-IC. The “Neighborhood” covers structural
neighbors. Best viewed in colors.

Node feature matrix X = [x1, ...,xN ]⊤ ∈ RN×D covers attribute information for all nodes while
adjacency matrix A ∈ RN×N characterize topological connections within the graph. The objective
of graph self-supervised learning is to learn a continuous mapping fθ(A,X) : RN×N × RN×D →
RN×d with learnable parameters θ and representation dimension d through carefully constructed
pretext tasks, which can output generalized representations H̃ = [h̃1, ..., h̃N ]⊤ ∈ RN×d for various
downstream tasks. For any matrix M, Mij indicates the element in the i-th row and j-th column.

View Generation. An augmented version G′(A′,X′) can be generated through a transformation
τ ∈ T for G(A,X), where T represents the whole augmentation function space. Concretely, the
graph augmentation τ is jointly performed, considering both aspects of graph topology and feature,
in alignment with prior research (Zhu et al., 2020). To realize topology-level augmentation, edge
removal is employed, which randomly removes a certain ratio pe of edges within the original graph.
In the aspect of feature, for feature matrix X ∈ RN×D, node feature masking randomly zeroizes a
specific number D · pf of feature channels, where pf is the resetting ratio.

Basic Framework. As shown in Figure 2, our method follows the technical route of multi-view
self-supervised learning, where the two various views G′

A(A
′
A,X

′
A) = τA(G) and G′

B(A
′
B ,X

′
B) =

τB(G) are generated based on two graph augmentation functions τA and τB randomly sampled from
T . The two augmented views are respectively fed into the shared network fθ(·), which is imple-
mented via a graph neural network architecture, to acquire representations H̃A = [h̃A

1 , ..., h̃
A
N ]⊤

and H̃B = [h̃B
1 , ..., h̃

B
N ]⊤. For representation matrix H̃ = [h̃1, ..., h̃N ]⊤, each point h̃i is nor-

malized as hi = h̃i−µ(H̃)

σ(H̃)
, where µ(H̃) = 1

N

∑N
i=1 h̃i ∈ Rd denotes mean and σ(H̃) =√

1
N

∑N
i=1

(
h̃i − µ(H̃)

)2

∈ Rd represents standard deviation. The centrally normalized matri-

ces HA = [hA
1 , ...,h

A
N ]⊤ and HB = [hB

1 , ...,h
B
N ]⊤ can be obtained in this manner, respectively.

3.2 ANCHOR-NEIGHBORHOOD ALIGNMENT

One of the core components of multi-view self-supervised learning is to enhance cross-view con-
sistency, thereby learning essential and invariant representations across multiple views. Technically,
this consistency is achieved through the alignment of distinct augmented versions of the identical
instance (i.e., positive samples) in the representation space. Based on the notations in this paper, the
alignment item can be formulated as

Lalign =
1

|V|
∑
v∈V

∥hA
v − hB

v ∥22. (1)

However, in the context of graph self-supervised learning, naively treating two nodes from different
augmented views as a positive pair is suboptimal. On the one hand, the graph harbors a wealth of
structural information that characterizes the relationships between nodes, which can offer guidance
for modeling the distribution of positive samples. Disregarding the potential role of the topological
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structure in shaping self-supervised objectives and treating it solely as a regulator of message pass-
ing in GNNs lead to inadequate utilization of graph information. On the other hand, the positive
sample pair is only acquired from various augmented versions of the same node, which poses a chal-
lenge in determining the strength of augmentation. The related studies have shown that increasing
data augmentation can improve the quality of self-supervised representations, but overly strong aug-
mentations introducing excessive disturbances result in a decline in performance (Tian et al., 2020).
In other words, this strict alignment exhibits limited resilience to data augmentation.

Building upon the aforementioned considerations, we introduce a Topology-Guided Positive Sam-
pling (TGPS) strategy to harness the potential of graph structure in self-supervised learning. Specif-
ically, we establish a positive distribution centered around the anchor node based on graph structure
and align positive samples derived from it with the anchor node:

LTGPS =
1

|V|
∑
v∈V

Eu∼p(u|v)
[
∥hA

v − hB
u ∥22 + ∥hB

v − hA
u ∥22

]
, (2)

where the conditional probability p(u|v) describes the distribution of positive samples of anchor
node v. A good positive pair should contain two samples belonging to the same category, which
means that the instances with the same label as the anchor node v should be sampled from the
conditional distribution p(u|v). Graphs such as social networks are typically constructed under the
homophily assumption, which potentially indicates that the nodes within small topological distances
tend to share the same labels with a high probability. Therefore, using structural context of the
anchor node to model the conditional distribution is a decent option.

Specifically, graph diffusion is employed to characterize the structural context distribution, which
can well describe the affinity between two nodes. The affinity matrix S is formulated as follows:

S = r⊙ Ŝ, Ŝ =

K∑
k=0

e−tk(D̂−1Â)k, (3)

where D̂ is the diagonal degree matrix of Â = A + IN , K decides the hop number of utilized
neighbors, t is a damping coefficient, ⊙ denotes the broadcasted hadamard product, and r ∈ RN×1

in which ri1 = 1/(
∑N

j=1 Ŝij). The affinity matrix S based on graph diffusion describes the weighted
sum of landing probabilities of multiple random walking matrices under various steps . e−tk denotes
the weighted coefficient, where the smaller the value of t, the higher the affinity between two nodes
with large topological distance. Each row of S, presenting a context distribution, actually instantiates
a conditional probability distribution p(u|v). From the perspective of probabilistic modeling, the
value of K determines maximum sampling range, while t can influence probability mass. For node
vi, the probability distribution of its positive samples is

p(vj |vi) = Sij . (4)

The conditional probability p(u|v) in Eq. (2) can be instantiated by S, which eventually realize
weighted Anchor-Neighborhood Alignment (ANA) in representation space:

Lana =
1

N

N∑
i=1

∑
vj∈NK

i

Sij ·
[
∥hA

i − hB
j ∥22 + ∥hB

i − hA
j ∥22

]
, (5)

where NK
i indicates the set of neighbors of anchor node vi within K hops, including node vi itself.

Nevertheless, direct calculation of Eq. (5) will result in space complexity of O(N2d). To this end,
we turn to optimize an upper bound of Eq. (5):

LANA = − 2

N
· tr(H⊤

ASHB +H⊤
BSHA), (6)

where tr(·) denotes the matrix trace. Refer to Appendix B for the derivation from Eq. (5) to Eq. (6).

The matrix S can be calculated in advance of the formal training, which does not increase addi-
tional computational burden during training. Besides, the positive sampling process is converted to
straightforward matrix multiplication operation, which avoids explicit a sampling process and does
not need extra storage for positive samples. These advantages render our approach highly efficient
in terms of computation and storage.
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3.3 ISOTROPIC CONSTRAINTS

Our research focuses on fully unleashing the potential of graph self-supervised learning, which
inherently necessitates enhancing expressive capacity of the models and diversity of node repre-
sentations. Under-expressed representations fail to adequately span the entire representation space,
giving rise to the notorious issue of dimension collapse in the realm of self-supervised learning. In
existing literature, a prevailing viewpoint on dimensional collapse is that distinct dimensions man-
ifest significant correlations, which inevitably convey coupled and redundant information. Beyond
this prevalent opinion, as depicted in Figure 1(c), another potential manifestation of dimensional
collapse is that the representations exhibit certain distributional disparities along various directions.
Along the direction of a unit projection vector qA

j ∈ Rd, the projections of the N points in the
representation matrix HA ∈ RN×d can be described as

zAj = HAq
A
j ∈ RN . (7)

When the projections of representations along any arbitrary directions display consistent distribu-
tion, the dimensional collapse issue naturally dissipates, that is, node representations demonstrate
isotropic characteristics. Different perspectives determine distinct approaches. Therefore, a corre-
sponding strategy to mitigate dimension collapse is to impose Isotropic Constraints (IC) on the node
representations, compelling them to exhibit consistent distribution along distinct directions and fa-
cilitating diverse representations. One ensuing challenge is how to characterize the distribution of
representations along a specific direction.
Definition 1 (Central Moment). The m-th central moment of a one-dimensional random variable
X can be defined as

CMm(X) = E[(X − E[X])m], (8)
where E[·] is the expectation operator.
Different orders of moments can characterize the spread and shapes of a random variable from
distinct aspects (Grimmett & Stirzaker, 2020). Thus, an ideal strategy for isotropic constraints is
to make various moments of projections of representations along all spatial directions consistent
respectively. However, simultaneously traversing all directions within the entire space is infeasi-
ble. To this end, we employ a strategy of randomly sampling n unit vectors at each optimization
step, thereby reducing the distributional disparities of representations along these n directions. The
N projected points along each direction can be regarded as N empirical observations of a one-
dimensional variable. As a result, the following objective for isotropic constraints is constructed:

L∗
ic =

M∑
m=2

αm · var
(
{CMm(H∗q

∗
j )|j = 1, . . . , n}

)
, (9)

where ∗ ∈ {A,B}1, {q∗
j |j = 1, . . . , n} are n random unit projection vectors, {H∗q

∗
j |j = 1, . . . , n}

represent the corresponding collection of n groups of projected points, var(·) indicates the vari-
ance, αm denotes a weighted factor, and M is maximum order of central moments. In Eq. (9),
the inner CMm(·) characterizes the distribution of node representations along a specific direction;
the outer var(·) measures the distribution difference between projections along distinct directions,
minishing which contributes to achieving isotropic distribution. However, considering multiple
moments will result in a substantial computational burden. To further mitigate complexity, only
the 2-nd central moment (i.e., variance) is considered in practice, which transforms Eq. (9) into
L∗
ic = var({var(H∗q

∗
j )|j = 1, . . . , n}). Taking views A and B into consideration, the overall

objective function based on isotropic constraints can be formulated as
LIC = LA

ic + LB
ic. (10)

To expedite the convergence speed of the training process, an intuitive strategy is to maximize the
angular separation between the n projection vectors. A feasible approach is to ensure pairwise
orthogonality among the n vectors. To this end, the number n of projection vectors is set to d. For
each view, we can construct an orthogonal matrix Q∗ = [q∗

1, . . . ,q
∗
d] ∈ Rd×d to generate d unit

projection vectors, which actually performs a rotation transformation on the original representations
H∗. In practice, the d unit projection vectors can be obtained through the QR factorization (Gu
& Eisenstat, 1996) of a randomly generated matrix with a size of d × d. Besides, two groups
of projection vectors for views A and B are independently generated to traverse as many spatial
directions as possible at each training step.

1In the remainder of this paper, ∗ denotes either A or B.
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Relation with decorrelation-based methods. The decorrelation-based methods such as CCA-
SSG (Zhang et al., 2021) mitigate dimensional collapse issue by decoupling various representation
dimensions through a decorrelation loss LDEC = ∥ 1

NH⊤
AHA − I∥2F + ∥ 1

NH⊤
BHB − I∥2F . This class

of methods can be viewed as a specific case of our approach under particular settings.
Proposition 1. If only the 2-nd central moment is considered and the d projection vectors are
fixed to d eigenvectors of the covariance matrix Σ∗ = 1

NH⊤
∗ H∗ at each training step, optimiz-

ing the decorrelation loss will be equivalent to imposing isotropic constraints, that is, minimizing
∥ 1
NH⊤

∗ H∗ − I∥2F is equivalent to minishing var({var(H∗q
∗
j )|j = 1, . . . , d}).

Proof. Refer to Appendix C.

Relation with information entropy maximization. In deep learning, information entropy pro-
vides a description about information amount and redundancy within the representations.
Proposition 2. When representations conform to the same distribution along any spatial direction
(that is, achieving isotropy), its Gaussian entropy will be maximized.

Proof. Refer to Appendix D.

Relation with negative-sampling-based methods. An influential study (Wang & Isola, 2020)
decomposes the classical InfoNCE loss into alignment and uniformity terms and demonstrates that,
under the mutual exclusion effect of negative samples, representations tend to exhibit a uniform
distribution on the unit hypersphere. Obviously, under this condition, the representations will display
consistent distribution along any projection direction, that is, achieving isotropy.

3.4 OVERALL OBJECTIVE FUNCTION

ANA serves as a cornerstone module, endowing the neural model with the ability to learn
augmentation-invariant representations and capture structural information. IC can reinforce the ex-
pressive power of the model and improve the diversity of representations. The two terms comple-
ment each other, forming a comprehensive self-supervised objective:

L = LANA + λ · LIC, (11)

where λ denotes a balancing factor. The overall algorithm flow is presented in Algorithm 1.

4 EXPERIMENTS

In this section, we carry out extensive experiments to evaluate the effectiveness and efficiency of our
method and provide detailed ablation studies and visual analysis to gain a deeper understanding of
its underlying principles. The code is available at an anonymous repository: https://github.
com/AnonymousSubConf/ANAIC.

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. To evaluate the proposed approach, six widely recognized benchmark datasets are em-
ployed for empirical studies, covering three citation networks Cora, Citeseer, and Pubmed (Sen et al.,
2008), two co-purchase networks Amazon-Computers and Amazon-Photo (Shchur et al., 2019), and
one co-authorship network Coauthor-CS (Shchur et al., 2019).

Experimental Setup. The model is implemented by Graph Convolutional Network (GCN) (Kipf
& Welling, 2016a), whose parameters are initialized via Xavier initialization (Glorot & Bengio,
2010) and trained with Adam optimizer (Kingma & Ba, 2017). All experiments are performed on a
TITAN RTX GPU with 24 GB of memory. The representations are initially learned by our approach
in an unsupervised manner and subsequently evaluated using a simple linear classifier.

4.2 COMPARISON WITH STATE-OF-THE-ART BASELINES

In this subsection, we conduct a comparative analysis, pitting our method against state-of-the-art
baselines with regard to both effectiveness and efficiency.
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Table 1: Node classification accuracy with standard deviation in percentage across six experimental
datasets. The “Input” column represents the data utilized during the training phase, and Y denotes
labels. “OOM” means Out-Of-Memory.

Algorithm Input Cora Citeseer Pubmed Computers Photo Coauthor-CS
MLP X, Y 57.8 ± 0.2 54.2 ± 0.1 72.8 ± 0.2 79.81 ± 0.06 86.36 ± 0.08 91.32 ± 0.11
GCN X, A, Y 81.5 70.3 79.0 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31
GAT X, A, Y 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24

U
ns

up
er

vi
se

d

DeepWalk A 68.5 ± 0.5 49.8 ± 0.2 66.2 ± 0.7 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22
GAE X, A 72.1 ± 0.5 66.5 ± 0.4 71.8 ± 0.6 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71
GMI X, A 83.0 ± 0.3 72.4 ± 0.1 79.9 ± 0.2 82.21 ± 0.31 90.68 ± 0.17 OOM
GRACE X, A 81.9 ± 0.4 71.3 ± 0.3 80.1 ± 0.2 86.53 ± 0.28 92.24 ± 0.17 92.98 ± 0.05
GCA X, A 81.7 ± 0.3 71.1 ± 0.4 79.5 ± 0.5 87.85 ± 0.31 92.49 ± 0.09 93.10 ± 0.01
GraphMAE X, A 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 88.12 ± 0.30 92.97 ± 0.21 93.03 ± 0.16
CCA-SSG X, A 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4 88.74 ± 0.28 93.14 ± 0.14 93.31 ± 0.22
G-BT X, A 84.0 ± 0.4 73.0 ± 0.3 80.7 ± 0.4 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17
InfoGCL X, A 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 - - -
SUGRL X, A 83.4 ± 0.5 73.0 ± 0.4 81.9 ± 0.3 88.12 ± 0.21 92.94 ± 0.13 92.87 ± 0.14
MVGRL X, A 83.7 ± 0.6 73.6 ± 0.3 79.9 ± 0.2 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12
GGD X, A 83.5 ± 0.4 73.1 ± 0.5 80.7 ± 0.7 - - -
DGI X, A 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63

ANA-IC (ours) X, A 84.5 ± 0.6 73.6 ± 0.6 82.9 ± 0.4 88.82 ± 0.34 93.20 ± 0.17 94.54 ± 0.21

Performance Evaluation. Here, we assess the effectiveness of our approach by conducting a com-
parative analysis against state-of-the-art baselines in the context of node classification task under the
simple linear evaluation. The average classification accuracy with standard deviation over 20 ran-
dom initialization is reported for each dataset. We compare our approach with unsupervised methods
covering DeepWalk (Perozzi et al., 2014), GAE (Kipf & Welling, 2016b), DGI (Veličković et al.,
2018), GMI (Peng et al., 2020), GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), G-BT (Bielak
et al., 2022), InfoGCL (Xu et al., 2021), SUGRL (Mo et al., 2022), GraphMAE (Hou et al., 2022),
CCA-SSG (Zhang et al., 2021), GGD (ZHENG et al., 2022) and MVGRL (Hassani & Khasahmadi,
2020). Additionally, some supervised models, including multi-layer perceptron (MLP), GCN (Kipf
& Welling, 2016a), and GAT (Veličković et al., 2017), are also added as baselines. Following
the predecessors (Zhu et al., 2021; Zhang et al., 2021), we employ the publicly available splits on
Cora, Citeseer, and Pubmed and a 1:1:8 split for training/validation/testing on the remaining three
datasets. To ensure a fair comparison, in cases where other methods do not use the same dataset
splits as ours, we obtain pertinent results by referring to their officially released source code. Table
1 presents the classification results for the six datasets. It is evident that our method demonstrates
outstanding performance across all six datasets, consistently outperforming both the unsupervised
and fully supervised baselines by substantial margins. These high-performance results underscore
the effectiveness and superiority of our approach.

Efficiency Comparison. Please refer to Appendix E.1.

4.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

In this subsection, we conduct ablation studies on key components and sensitivity analysis for crucial
hyperparameters to gain deeper insights into our approach.

Table 2: Ablation studies on key components
of our method. “w/o” indicates “without”.

Variants Cora Pubmed CS

ANA-IC (baseline) 84.5 82.9 94.54

w/o LIC 79.3 74.1 92.74
w/o LANA 56.4 55.8 27.22
w/o Augmentation 78.6 81.8 93.36
w/o orthogonality 84.1 82.4 94.43

Effect of Anchor-Neighborhood Alignment,
Isotropic Constraints, Data Augmentation, and
Orthogonality Between Projection Vectors. As
summarized in Table 2, we sequentially eliminate
the critical components of our approach to analyze
their influence on node classification accuracy. The
exclusion of the IC term results in a noticeable de-
terioration in performance, which potentially gives
rise to dimensional collapse issue and constrains the
richness of node representations. As expected, opti-
mizing solely the IC term causes the model to learn representations that are diverse but ultimately
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Figure 4: The effects under various combinations of K and t.

devoid of meaningful content, resulting in poor performance. For ANA, the self-supervised model
can maintain its performance without requiring data augmentation, as it effectively acquires valuable
information from structural context. When imposing isotropic constraints on representations, the
performance remains highly significant even without orthogonalizing the projection vectors. This
result is attributed to the specific angular differences inherent among randomly generated projection
vectors and can greatly streamline our approach.

Influence of Balancing Factor. We investigate the variation of classification accuracy with respect
to the balancing coefficient λ in Eq. (11), as illustrated in Figure 3. We can observe that the perfor-
mance exhibits an initial upward trend followed by a subsequent decrease as λ increases. When λ
is minor, the IC term cannot effectively serve its function in enhancing diversity of representations.
Conversely, when λ is excessively large, there is an overemphasis on isotropic constraints, result-
ing in abundant yet meaningless representations. The performance of our method benefits from
an appropriate value of λ. Fortunately, the peak performance is achieved when λ falls within the
range of 50 to 200 across most experimental datasets, which significantly simplifies the process of
hyperparameter tuning when applying our method to a new dataset.

Impact of Neighborhood Size and Weight. We explore the influence of K and t in Eq. (3), which
determines the maximum sampling range and influences probability mass, respectively. Figure 4
shows the performance under various values of K and t on Coauthor-CS and Pubmed. When K is
equal to 0, the anchor-neighborhood alignment in Eq. (5) degenerates into strict alignment in Eq. (1),
which obtains the worst results on both datasets. For a particular value of K > 0, the performance
benefits from a proper value of t. When t is too small (e.g., −5 or −4), it overemphasizes the align-
ment between anchor node and neighborhood nodes, leading to suboptimal performance. When t is
too large (that is, e−tk → 0 for k > 0), it approximately degenerates into strict alignment in Eq. (1).
Besides, some hyperparameter combinations, such as K = 2 and t = 0, consistently perform well
in all datasets, facilitating hyperparameter tuning in real-world scenarios or new datasets. Over-
all, the experimental results demonstrate that constructing a positive sampling distribution based on
structural context helps improve performance.

The additional experiments are placed in Appendix E.

5 CONCLUSION

In this paper, we have introduced a comprehensive self-supervised learning framework comprised of
two complementary components. The objective is to train expressive neural models capable of effec-
tively harnessing a vast reservoir of unlabeled graph data. Firstly, a positive sampling strategy based
on structural context is designed to realize weighted alignment between anchor node and neighbor-
hood nodes, which enhances adequate exploration for graph information and endows the model with
stronger structure-ware ability. Secondly, we revisit the appearance of under-expressed representa-
tions and, correspondingly, propose a novel strategy of isotropic constraints to improve diversity of
representations and overcome tricky dimensional collapse. We believe that our research can propel
the study of dimension collapse forward, which is a crucial topic in multi-view self-supervised learn-
ing. Due to no reliance on mutual information estimator, additional projection heads, and negative
samples, our approach exhibits remarkable efficiency in terms of both training time and resource
consumption. Thorough experiments substantiate the effectiveness and efficiency of our approach.
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Table 3: Statistics of the experimental datasets.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

A STATISTICS OF THE EXPERIMENTAL DATASETS

The statistics of the experimental datasets are summarized in Table 3. The details of the datasets are
as follows:

• Cora, Citeseer, and Pubmed are citation networks where nodes represent documents and
edges signify citation connections. Each document is assigned a class label denoting its
subject category and is linked to a bag-of-words feature vector.

• Amazon-Computers and Amazon-Photo are two graphs derived from Amazon, capturing
co-purchase relationships. Nodes represent products, and edges connect nodes that are
frequently purchased in tandem. Each node is characterized by a sparse bag-of-words
feature extracted from product reviews, and its label designates the product category.

• Coauthor-CS is an academic network wherein nodes represent authors, and edges signify
co-authorship relationship. Authors are connected if they have collaborated on a research
paper together.

B DERIVATION FROM EQ. (5) TO EQ. (6) IN THE MAIN TEXT

In this section, we provide the detailed derivation from Eq. (5) to Eq. (6) in the main text. We first
introduce two lemmas required for derivation and then formally give the derivation.

B.1 TWO IMPORTANT LEMMAS

Lemma 1. For a random variable x, with variance D[x] and mean E[x], it is satisfied that

D[x] = E[x2]− (E[x])2. (12)

Proof. Let u = E[x], thus D[x] = E[(x− u)
2
] = E[x2 − 2ux + u2] = E[x2] − 2uE[x] + u2 =

E[x2]− (E[x])2.

Lemma 2. For matrix A ∈ RN×K and matrix B ∈ RN×K ,

tr(AB⊤) = tr(A⊤B). (13)
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Proof.
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B.2 DERIVATION FROM EQ. (5) TO EQ. (6) IN THE MAIN TEXT
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Ignoring the constant term, we accomplish the derivation of the first term. Symmetrically, we can
easily obtain the derivation of another term. Hence, we complete the overall derivation.

C PROOF OF PROPOSITION 1

To prove the Proposition 1, we require the following Property 1 as a fundamental prerequisite.
Property 1. For a covariance matrix Σ = 1

NH⊤H ∈ Rd×d derived from a centrally normalized
matrix H = [h1, . . . ,hN ]⊤ ∈ RN×d, which has d eigenvalues [λ1, λ2, . . . , λd] corresponding to d
eigenvectors [q1,q2, . . . ,qd], the variance (i.e., 2-nd central moment) of the data H along the k-th
principal direction (i.e., the direction defined by qk) amounts to λk.

Proof. The covariance matrix of a representation matrix H = [h1, . . . ,hN ]⊤ ∈ RN×d, having been
normalized to 0-mean and 1-variance along sample direction, is Σ = 1

NH⊤H. After eigendecom-
posing Σ, we can acquire d unit orthogonal eigenvectors [q1, . . . ,qd] corresponding to eigenvalues
[λ1, . . . , λd], respectively. Due to 1

NH⊤Hqk = λkqk, it can be known that
1

N
q⊤
k H

⊤Hqk = λkq
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Taking a principal direction qk as explanation, the projection point of a sample hi onto this direction
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k hi, and the mean of all projections is
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Furthermore, along the principal direction qk, the variance is
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(17)

The above equation illustrates that the variance of data H along the direction qk amounts to λk. The
proof is concluded.
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For convenience, we restate the Proposition 1:

Proposition 1. If only the 2-nd central moment is considered and the d projection vectors are
fixed to d eigenvectors of the covariance matrix Σ∗ = 1

NH⊤
∗ H∗ at each training step, optimiz-

ing the decorrelation loss will be equivalent to imposing isotropic constraints, that is, minimizing
∥ 1
NH⊤

∗ H∗ − I∥2F is equivalent to minishing var({var(H∗q
∗
j )|j = 1, . . . , d}).

Proof. For the covariance matrix Σ∗ with d eigenvalues [λ1, λ2, . . . , λd] corresponding to d eigen-
vectors [q1,q2, . . . ,qd], tr(Σ∗) =
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j=1 1 = d =
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As Σ∗ − I is a symmetric matrix, we can know that

∥ 1

N
H⊤

∗ H∗ − I∥2F
=∥Σ∗ − I∥2F
=tr((Σ∗ − I)⊤(Σ∗ − I))

=tr(Σ2
∗)− 2 · tr(Σ∗) + tr(I)

=tr(Σ2
∗)− d.

(19)

Compare the results of Eq. (18) and Eq. (19), we can observe that they differ by a constant of d.
Therefore, minimizing one is equivalent to the other. We conclude the proof.

D PROOF OF PROPOSITION 2

Proposition 2. When representations conform to the same distribution along any spatial direction
(that is, achieving isotropy), its Gaussian entropy will be maximized.

Proof. Under the Gaussian assumption, the information entropy (Ahmed & Gokhale, 1989) of rep-
resentations with the covariance matrix Σ∗ is

1

2
ln det(Σ∗) +

d

2
ln(2πe), (20)
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Table 4: Comparison of training time and memory assumption across various graph self-supervised
methods. For GRACE, the representation dimension is fixed to 256. MVGRL sets it to 256 on
Pubmed and Computers. For other cases, the representation dimension is set to 512. “w/o org.”
means that the orthogonality between projection vectors is not required.

Algorithm
Cora Citeseer Pubmed Computers

Time Memory Time Memory Time Memory Time Memory

DGI 6.8s 3.8GB 9.4s 7.8GB 44.9s 11.2GB 71.2s 11.3GB
GRACE 5.1s 1.2GB 7.4s 1.5GB 1,169s 12.2GB 362.8s 7.4GB
MVGRL 23.7s 3.8GB 48.4s 7.9GB 2,010s 9.1GB 78.8s 16.6GB
ANA-IC w/o org. 2.7s 2.5GB 2.0s 2.6GB 11.3s 4.8GB 5.3s 3.9GB
ANA-IC 3.8s 2.5GB 2.5s 2.6GB 12.3s 4.8GB 6.2s 3.9GB

where det(·) denotes the determinant of a matrix. Assuming {λj |j = 1, 2, . . . , d} are d eigenvalues
of Σ∗, det(Σ∗) =

∏d
j=1 λj holds. Besides,

∑d
j=1 λj = tr(Σ∗) = d. According to the AM-GM

inequality (Hirschhorn, 2007), we can know that

det(Σ∗)

=

d∏
i=1

λi

≤
(
λ1 + λ2 + · · ·λd

d

)d

=1.

(21)

det(Σ∗) achieves the upper bound of 1 when the eigenvalues {λ1, . . . , λd} of Σ∗ are all equal to 1,
that is, the Gaussian entropy in Eq. (20) reaches the maximum value. According to Property 1, when
the representations achieve isotropy, the eigenvalues of the covariance matrix will be equal, which
satisfies the condition for the equality to hold in Inequality (21). Thus, we conclude the proof.

E MORE EXPERIMENTS

E.1 EFFICIENCY COMPARISON

Efficiency Comparison. To demonstrate the efficiency of our approach, we conduct a compara-
tive analysis between it and other graph self-supervised learning methods, evaluating them based
on two key factors: the time required for the training and the associated memory assumption. As
depicted in Table 4, overall, our method demonstrates notable advantages, including shorter training
duration and diminished memory usage in most instances. Not relying on projection heads, param-
eterized mutual information estimators, and negative samples greatly reduces memory consumption
and computational burden. Besides, our method directly optimizes the representation space, allow-
ing for quick convergence and shorter training time. When pairwise orthogonality between projec-
tion vectors is demanded, which involves performing a QR decomposition on a random matrix, it
adds acceptable training time.

E.2 VISUAL STUDIES

Visualizations of t-SNE Embeddings. To gain a deeper insight into our method, we provide a set
of t-SNE (Van der Maaten & Hinton, 2008) plots depicting both the raw features and learned rep-
resentations under various configurations in Figure 5. As shown in Figure 5(a), the 2-dimensional
t-SNE embeddings of the raw features exhibit a high degree of overlap. The visualization in Figure
5(b), characterized by a messy elliptical shape, illustrates that the method without the ANA term
can only learn diverse yet meaningless information. Figure 5(c) indicates that the method without
the IC term can learn meaningful representations, as evidenced by discernible clustering in their
2-dimensional projections. However, it’s worth noting that the two dimensions of t-SNE embed-
dings exhibit linear correlation (this phenomenon becomes more apparent after excluding the blue
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(a) Raw features (b) w/o LANA (c) w/o LIC (d) ANA-IC

Figure 5: t-SNE embeddings of the raw features and learned representations under various configu-
rations on Cora dataset. ”w/o” stands for ”without”. Best viewed in colors.

(a) Cora: Raw features. (b) Cora: w/o IC. (c) Cora: ANA-IC.

(d) Pubmed: Raw fea-
tures.

(e) Pubmed: w/o IC. (f) Pubmed: ANA-IC.

Figure 6: Visualizations of the correlation matrices with absolute values of raw features and repre-
sentations under various configurations on Cora and Pubmed.

dots), which suggests that the dimensional collapse issue is potential. The visualization in Figure
5(d) demonstrates that our approach is capable of learning meaningful, diverse, and interpretable
representations, which are better clustered based on their actual categories.

Visualizations of Correlation Matrix. To verify the effectiveness of the IC term in preventing
dimensional collapse, we visualize correlation matrices of raw features, representations without IC
term, and representations with IC term on Cora and Pubmed datasets, as shown in Figure 6. Con-
cretely, for a matrix Z ∈ RN×D characterizing node features or representations, which has been
normalized to 0-mean and 1-standard-deviation, its correlation matrix is 1

NZ⊤Z, where each el-
ement represents the Pearson correlation coefficient between two channels. For the convenience
of visualization, we take the absolute value of each element in the correlation matrix. In Figure
6(a,d), the off-diagonal elements tend to be 0, which demonstrates that various dimensions of raw
features of Cora and Pubmed have been well decorrelated. Various channels of representation ma-
trix in Figure 6(b,e) are tightly coupled together with large off-diagonal elements, which suggests
that dimensional collapse exists. The visualizations in Figure 6(c,f) demonstrate that our method,
incorporating the IC term, is capable of effectively mitigating the dimensional collapse issue and
learning highly disentangled and diverse representations.

Toy Experiments for Isotropic Constraints. We conduct some toy experiments to show the ef-
fects of isotropic constraints in preventing dimensional collapse and learning diverse representations.
First, we build a simple neural network with three fully-connected layers. 4,000 data points are sam-
pled from a Gaussian distribution, which construct a data matrix x ∈ R4,000×2 as shown in Figure
7(a). The input data points represent a strong correlation between the two dimensions and exhibit
an anisotropic distribution. The outputs of the constructed simple model with randomly initialized
parameters are shown in Figure 7(b), which still displays a typical anisotropic distribution and shows
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(a) Inputs (b) Random Projection (c) Isotropic Constraints

Figure 7: Visualizations of inputs and outputs of neural networks under various settings. For the
convenience of visualization and comparison, the displayed points have been normalized to 0-mean
and 1-variance. Colors are utilized to reflect the relative positions of points. Best viewed in colors.
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Figure 8: The effects of representa-
tion dimension.
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Figure 9: The classification performance under various
numbers of projection vectors.

a strong dependency relationship between the two dimensions. In Figure 7(c), after being trained
with our isotropic constraints, the network can ultimately output decoupled representations, which
exhibit isotropic appearance. The toy experiments demonstrate the effectiveness of our approach in
mitigating dimensional collapse and enhancing representation diversity.

E.3 HYPERPARAMETER SENSITIVITY ANALYSIS

Effect of Representation Dimension. We modify the representation dimension to investigate its
impact on performance. Figure 8 presents the outcomes for different representation dimensions.
It can be observed that classification accuracy shows an upward trend with increasing dimensions.
Overall, the performance is not sensitive to dimension, which potentially demonstrates the robust-
ness of our approach.

Number of Augmented Views. Generally, our method operates within a two-view framework. It
is worth noting that our approach can readily be extended to a multi-view mode. Regarding the IC
term, it is simple and straightforward to impose isotropic constraints individually on each view. The
key challenge lies in how to achieve efficiently anchor-neighborhood alignment among multiple
views. Taking three views as an explanation, their representations are HA, HB , and HC . Since
each pair gives an upper bound in Eq. (6), we can get LANA = − 2

N · tr(H⊤
ASHB + H⊤

BSHA +

H⊤
ASHC +H⊤

CSHA+H⊤
BSHC +H⊤

CSHB) =− 2
N · tr(H⊤

AS(HB+HC)+H⊤
BS(HA+HC)+

H⊤
CS(HA +HB)). Formally, it results in aligning one view with the sum (or average) of the other

views. Assuming the number of views is M , the number of aligned pairs is M , not 2 · C2
M . In

other words, there is no need to enumerate each pair of augmented graphs. The relevant results are
summarized in Table 5. With the increase of augmented views, there is a slight improvement in
performance. However, the performance under two views is already quite substantial, which also
possesses an advantage in efficiency.
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Table 5: The node classification accuracy
under various numbers of views.
Number of views 2 3 4

Cora 84.5 84.7 84.6
Citeseer 73.6 73.7 73.8
Pubmed 82.9 83.1 83.1
Coauthor-CS 94.54 94.63 94.65

Table 6: The node classification accuracy under various
orders of central moments.
Maximum order of moments 2 3 4

Cora 84.5 84.6 84.6
Citeseer 73.6 73.6 73.6
Pubmed 82.9 83.0 83.1
Coauthor-CS 94.54 94.61 94.63

(a) Cora. (b) Citeseer. (c) Pubmed.

Figure 10: The classification performance under various combinations of feature masking ratio pf
and edge removal ratio pe.

Number of Projection Vectors. To enhance the diversity of node representations, we map rep-
resentation points onto multiple projection vectors and expect to achieve isotropic distribution by
reducing the distribution differences of projected points along distinct directions. Here, we investi-
gate the influence of the number of projection vectors on node classification performance. As shown
in Figure 9, the classification accuracy rigorously improves with the increase of the number of pro-
jection vectors. This result is unsurprising, as with an increasing number of projection vectors,
they can more thoroughly permeate the entire representation space to achieve a better realization
of isotropic distribution. It is worth noting that we do not emphasize the orthogonality between
projection vectors in the experiments of Figure 9.

Orders of Central Moment. When imposing isotropic constraints, we employ central moments
to describe the distribution of representations along a specific direction. Here, we investigate the
impact of the maximum order of utilized central moments on performance. As shown in Figure
6, our approach can achieve satisfactory performance with only the 2-nd central moment. Adding
higher orders of moments can further enhance performance. This is because adding orders of central
moments allows for a more comprehensive description of the distribution of projections.

Effect of Augmentation Intensity. We conduct sensitivity analysis for augmentation intensity by
examining the effects of various combinations of edge removal ratio pe and feature masking ratio pf
on Cora, Citeseer, and Pubmed datasets. Overall, within an appropriate range of pe and pf , our ap-
proach consistently achieves competitive results. Even when subjected to substantial augmentation,
such as pe = 0.6 and pf = 0.6, our method continues to deliver satisfactory performance, reflecting
the strong robustness of our approach.

E.4 PERFORMANCE AND EFFICIENCY EVALUATION ON OGBN-ARXIV

Here, we evaluate the performance and efficiency of our approach on a large-scale graph Ogbn-
Arxiv (Hu et al., 2020). The experimental results are summarized in Table 7, illustrating the effec-
tiveness of our method. Besides, Figure 11 concurrently depicts the test accuracy and training time,
which demonstrates that our approach can effectively reconcile both performance and efficiency
simultaneously.
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Table 7: Validation and test accuracy for Ogbn-
Arxiv dataset. “OOM” means out-of-memory on a
GPU with 24 GB of memory.

Validation Test

DGI 71.19 ± 0.24 70.28 ± 0.23
GRACE 71.82 ± 0.18 70.91 ± 0.21
GCA 71.63 ± 0.20 70.77 ± 0.22
GMI OOM OOM
MVGRL OOM OOM
BGRL 72.58 ± 0.14 71.52 ± 0.14

ANA-IC (ours) 72.53 ± 0.19 71.49 ± 0.17

0 1000 2000 3000 4000 5000 6000
seconds

70.2

70.4

70.6

70.8

71.0

71.2

71.4

71.6

71.8

Ac
cu

ra
cy

 (%
)

ANA-IC BGRL

DGI

GRACE
GCA

Figure 11: Test accuracy and training time on Ogbn-Arxiv.

E.5 NODE CLUSTERING TASK

In this subsection, we evaluate the learned representations on node clustering task, compared to
k-means, spectral clustering, DeepWalk (Perozzi et al., 2014), GAE (Kipf & Welling, 2016b),
DGI (Veličković et al., 2018), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu et al., 2020),
DNGR (Cao et al., 2016), RMSC (Xia et al., 2014), MGAE (Wang et al., 2017), and DAEGC (Wang
et al., 2019). For the approaches not specifying the clustering algorithm, such as DeepWalk and
ANA-IC, we apply the k-means algorithm on their learned representations. The clustering results
are evaluated through three metrics: Normalized Mutual Information (NMI), Adjusted Rand Index
(ARI), and F-score (F1). Because some baseline methods do not conduct clustering experiments or
report incomplete indicators, we first learn node representations based on their official codes and
then assess the learned representations under the same k-means algorithm for fair comparisons. For
DeepWalk, the number of random walks is 10, the path length of each walk is 20, the context size
is 10, and the number of embedding dimension is 256. For DNGR, the encoder is built with two
512-dim hidden layers and a 256-dim embedding layer. For RMSC, the trade-off parameter is set
to 0.005. For MGAE, we set the number of layers, corruption level p, and regularization coeffi-
cient λ to 3, 0.4, and 10−5 respectively. For DAEGC, the encoder is constructed with a 256-dim
hidden layer and a 16-dim embedding layer, and the clustering coefficient is set to 10. The number
of clusters is set to the number of ground-truth classes. Table 8 summarizes the experimental re-
sults. Our method showcases competitiveness across all datasets, suggesting the effectiveness of our
method. Besides, our approach achieves outstanding performance in both node classification and
node clustering tasks, demonstrating its strong generalization capability.
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Table 8: Clustering performance in NMI, ARI, and F1. The best results are highlighted in boldface.

Algorithm Input
Cora Citeseer Pubmed

NMI ARI F1 NMI ARI F1 NMI ARI F1

k-means X 0.377 0.149 0.415 0.241 0.154 0.399 0.263 0.237 0.542

Spectral A 0.265 0.158 0.314 0.082 0.075 0.236 0.136 0.091 0.455
DeepWalk A 0.401 0.254 0.541 0.238 0.085 0.372 0.251 0.203 0.605
DNGR A 0.318 0.142 0.340 0.180 0.043 0.300 0.153 0.059 0.445

RMSC X, A 0.320 0.203 0.347 0.308 0.266 0.404 0.273 0.247 0.521
GAE X, A 0.397 0.293 0.415 0.174 0.141 0.297 0.249 0.246 0.511
VGAE X, A 0.408 0.347 0.456 0.163 0.101 0.278 0.216 0.201 0.478
MGAE X, A 0.489 0.436 0.531 0.416 0.425 0.526 0.271 0.224 0.634
DAEGC X, A 0.528 0.496 0.682 0.397 0.410 0.636 0.266 0.278 0.659
GRACE X, A 0.556 0.518 0.672 0.377 0.369 0.561 0.251 0.230 0.646
DGI X, A 0.565 0.529 0.684 0.431 0.434 0.632 0.281 0.263 0.657
MVGRL X, A 0.571 0.542 0.694 0.442 0.458 0.641 0.298 0.281 0.672

ANA-IC (ours) X, A 0.582 0.531 0.701 0.447 0.462 0.647 0.332 0.331 0.693

Algorithm 1 Overall Workflow of ANA-IC
Input: A graph G(A,X) with N nodes, neural encoder fθ, balancing factor λ, augmentation func-
tion space T , training epochs T , neighborhood size K, damping coefficient t, representation dimen-
sion d.

1: Initialize the neural encoder fθ;
2: Calculate affinity matrix S according to Eq. (3);
3: repeat
4: Randomly sample two augmentation functions τA and τB from T ;
5: Generate two augmented views G′

A(A
′
A,X

′
A) = τA(G) and G′

B(A
′
B ,X

′
B) = τB(G);

6: Obtain node representations H̃A = fθ(A
′
A,X

′
A) and H̃B = fθ(A

′
B ,X

′
B);

7: Get normalized representations HA and HB ;
8: Generate two groups of d orthogonal projection vectors {qA

j |j = 1, . . . , d} and {qB
j |j =

1, . . . , d};
9: Calculate the loss LANA according to Eq. (6);

10: Calculate the loss LIC according to Eq. (10);
11: Obtain the overall objective L = LANA + λ · LIC;
12: Update parameters θ through back propagation;
13: until reaching maximum training steps T
14: Get H = fθ(A,X) for downstream tasks.

F PSEUDOCODE FOR OVERALL WORKFLOW

The overall workflow of ANA-IC is summarized in Algorithm 1. It is worth noting that the orthog-
onality between projection vectors is not enforced in the 8-th step, and the number of projection
vectors is not necessarily constrained to the representation dimension d. The PyTorch-style code for
isotropic constraints is presented in Algorithm 2.
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Algorithm 2 PyTorch-style code for Isotropic Constraints.
# H: centrally normalized representations, shape=[N,d]
# n: number of projection vectors

def loss_ic_org(H):
# Require orthogonality among projection vectors
d = H.shape[1]
random_mat = torch.randn(d, d)
Q, _ = torch.qr(random_mat)
H = H @ Q
cm_2 = torch.var(H, dim=0)
loss_ic = torch.var(cm_2)
return loss_ic

def loss_ic_no_org(H, n):
# Do not require orthogonality among projection vectors
d = H.shape[1]
random_mat = torch.randn(d, n)
Q = random_mat / torch.norm(random_mat, dim=0, keepdim=True)
H = H @ Q
cm_2 = torch.var(H, dim=0)
loss_ic = torch.var(cm_2)
return loss_ic
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