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ABSTRACT

Medical image segmentation is inherently influenced by data uncertainty, arising
from ambiguous boundaries in medical scans and inter-observer variability in di-
agnosis. To address this challenge, previous works formulated the multi-rater med-
ical image segmentation task, where multiple experts provide separate annotations
for each image. However, existing models are typically constrained to either gen-
erate diverse segmentation that lacks expert specificity or to produce personalized
outputs that merely replicate individual annotators. We propose Probabilistic mod-
eling of multi-rater medical image Segmentation (ProSeg) that simultaneously
enables both diversification and personalization. Specifically, we introduce two
latent variables to model expert annotation preferences and image boundary am-
biguity. Their conditional probabilistic distributions are then obtained through
variational inference, allowing segmentation outputs to be generated by sampling
from these distributions. Extensive experiments on both the nasopharyngeal car-
cinoma dataset (NPC) and the lung nodule dataset (LIDC-IDRI) demonstrate that
our ProSeg achieves a new state-of-the-art performance, providing segmentation
results that are both diverse and expert-personalized.

1 INTRODUCTION

Figure 1: Distance distribution between
two random experts. A greater distance
indicates higher diversity and a more sim-
ilar distribution with the Gold standard in-
dicates better personalization.

Medical image segmentation is of great importance for
automatic diagnosis and treatment planning in clinical
practice Isensee et al. (2021). However, the task is chal-
lenging due to the inherent uncertainty of data, such
as medical scans, ambiguous boundaries Carass et al.
(2017); Wu et al. (2023) and irregular shapes of medical
targets Marin et al. (2022); Luo et al. (2023); Li et al.
(2017); Fu et al. (2020), as well as the inter-observer
variability in diagnosis Menze et al. (2014). To tackle
this issue, the multi-rater medical image segmentation
task was proposed to take the data uncertainty into ac-
count by collecting annotations from different experts
for each image independently Rahman et al. (2023).

Existing approaches for multi-rater medical image seg-
mentation are limited to either generating diverse seg-
mentation that cannot resemble realistic expert vari-
ability (Kohl et al., 2018; Rahman et al., 2023) or
individual-specific outputs simply mirroring annotators
(Liao et al., 2023; Schmidt et al., 2023). We calculated the distance between two random experts
of different methods in Fig. 1, where the greater distance indicates higher segmentation diversity,
while similarity to the gold standard suggests increased personalization. Specifically, Generation
methods, like Probabilistic U-Net (Kohl et al., 2018), produce diverse and reliable segmentation
results, yet fail to capture expert personalization (Rahman et al., 2023). personalization methods,
like TAB (Liao et al., 2023), Pionono (Marin et al., 2022), CM global (Tanno et al., 2019), and
CM Pixel (Zhang et al., 2020), which can replicate individual expert annotations, yet show lim-
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ited diversity. Crowdsourcing approaches aggregate multiple annotations into a meta-segmentation,
which is restricted by the assumption of one single meta-segmentation (Warfield et al., 2004). To
bridge the gap between diversity and personalization, Wu et al. (2024) employed a two-stage DPer-
sona to produce diverse segmentation initially and personalized ones subsequently, yet its efficacy
is constrained by lacking probabilistic modeling. Thus, a unified probabilistic approach capable of
simultaneously generating both diverse and personalized segmentation remains an open challenge.

To address the challenge of modeling multi-rater medical image segmentation considering both
diversity and personalization, we propose ProSeg, a Probability graph model for multi-rater
Segmentation. Specifically, we introduce two latent variables τ and Z to model the inter-observer
variability in diagnosis and the ambiguity in medical scans, respectively, as shown in Fig. 2(d),
where τ and Z are inferred from the observed data and annotations. By sampling from the latent
space, we can generate diverse segmentation results, while specifying a particular expert allows us to
produce personalized segmentation outputs that align with individual expert annotations. The model
is trained by maximizing the evidence lower bound (ELBO), which consists of the log-likelihood
of the observed data and annotations, as well as the regularization term ensuring similarity between
prior and posterior distribution of τ and Z.

To demonstrate the effectiveness of ProSeg, we conducted extensive experiments on two benchmark
datasets: the nasopharyngeal carcinoma (NPC) dataset and the lung nodule dataset (LIDC-IDRI).
The empirical results indicate that ProSeg consistently outperforms previous methods, producing
both diverse and expert-personalized segmentation, achieving state-of-the-art performance in multi-
rater medical image segmentation. Furthermore, ProSeg serves as a generalizable framework that
can be readily extended to other medical image segmentation tasks, highlighting its versatility and
broad applicability.

To the best of our knowledge, ProSeg is the first probabilistic modeling framework that can si-
multaneously generate diverse and personalized segmentation results for multi-rater medical image
segmentation. The main contributions of our work can be summarized as follows:

• We propose a unified probabilistic modeling framework, ProSeg, for multi-rater medical
image segmentation, which generates both diverse and personalized segmentation results.

• We introduce two latent variables, τ and Z, via variational inference, to model the inter-
observer variability in diagnosis and the ambiguity in medical scans, respectively.

• We conduct extensive experiments, demonstrating that ProSeg achieves a new state-of-the-
art performance in multi-rater medical image segmentation.

2 RELATED WORKS

2.1 MULTI-RATER MEDICAL IMAGE SEGMENTATION

Multi-rater medical image segmentation aims to take the data uncertainty, including the inter-
observer variability in diagnosis and the ambiguity in medical scans, into consideration. Existing
methods can be broadly categorized into three groups: crowdsourcing methods combine multi-
ple annotations to approach a meta-segment Warfield et al. (2004); generation methods learns a
latent distribution to generate diverse segmentation Kohl et al. (2018); Rahman et al. (2023); and
personalization methods produce personalized segmentation that aligns with individual expert an-
notations Zhang et al. (2020); Liao et al. (2023); Schmidt et al. (2023). Diversity and personalization
are essential aspects of this task, ensuring that segmentation results capture variations across experts
while aligning with individual annotations. However, these methods are generally limited to generat-
ing diverse segmentations that lack expert specificity or producing personalized outputs that merely
replicate individual annotators.

To bridge this gap, Wu et al. (2024) attempted to train a two-stage model to generate diverse segmen-
tation results in the first stage and personalized results in the second stage. However, its effectiveness
is limited by the absence of a probabilistic modeling framework. To address these challenges, we
introduce ProSeg, a probabilistic modeling framework capable of simultaneously generating both
diverse and personalized segmentation results, offering a unified solution for multi-rater medical
image segmentation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

X X

Z

Y

X X

Z 

(a) Crowdsourcing Model (b) Generated Model (c) Personalized Model (d) Our Probability Model

Forward function

Inverse function

YX , Variables

Experts set 

Gaussian prior

Dirichlet prior

r

r

r

ry

r

r r

r
ry

~ (0,1)Z

~ Dir( ) 

ry

y

( )ry y=

Figure 2: Probability graph model (PGM) of methods for multi-rater segmentation. X , R, and Y
denote the images, expert annotators, and annotations respectively. The latent variable Z denotes the
ambiguity in medical scans. In our probability model, a latent variable τ is formulated to model the
subjective variants among expert annotators. The green rectangular box represents a set of variables.

2.2 PROBABILISTIC MODELING

Probabilistic modeling has been extensively applied across various machine learning domains, in-
cluding generative modeling (Kingma, 2013; Rezende et al., 2014), computer vision (Gao & Zhuang,
2022), and Bayesian optimization (Shahriari et al., 2015). By explicitly modeling uncertainty, prob-
abilistic approaches provide robust predictions and facilitate better generalization, particularly in
tasks where data is noisy or ambiguous. Existing probabilistic methods for medical image segmen-
tation focus mainly on modeling uncertainty in medical scans, leading to improvements in model
robustness and interpretability (Hatamizadeh et al., 2022; Wu et al., 2022; Gao et al., 2023). For
example, Bayesian deep learning (Gal & Ghahramani, 2016) and Monte Carlo sampling (Kohl et al.,
2018) have been used to estimate segmentation uncertainty. However, they do not address the com-
bined challenges of diversity and personalization in multi-rater medical image segmentation. To our
knowledge, no existing work has leveraged probabilistic modeling to simultaneously generate both
diverse and personalized segmentation results for multi-rater medical image segmentation.

3 PRELIMINARIES AND NOTATION

3.1 THE MULTI-RATER MEDICAL IMAGE SEGMENTATION TASK

In the setting of multi-rater medical image segmentation, each medical image x ∈ Rd is anno-
tated by a group of expert annotators R = {r1, r2, . . . , rN} ∈ RN , providing independent an-
notations {yr}r∈R, where, yr ∈ RdK denotes the annotation provided by the expert annotator r,
and d and K denote the image size and the number of segmentation classes, respectively. For
simplicity, we define d as the product of the image height and width, representing the image size
in our notation. Therefore, for each image x, we have the ensemble of its annotations, Y , where
Y = (yr1 , yr2 , . . . , yrN ) ∈ RdK×N denotes N annotations from R respectively. We denote the
dataset as D = {R(i), Y (i), x(i)}|D|

i=1, where |D| denotes the number of samples in the dataset. Thus,
the multi-rater medical image segmentation aims to learn a mapping from the inputs x and R to the
output segmentation Y . We can define the multi-rater medical image segmentation task as follows:

Definition 3.1 (Multi-rater medical image segmentation). Given a dataset D = {R(i), Y (i), x(i)}|D|
i=1

of expert annotations and medical images, the multi-rater medical image segmentation task aims to
learn the mapping from the input image x(i) and R(i) to the ensemble of multiple segmentation Y (i),
i.e., Y (i) = f(x(i),R(i)).

Previous works including crowdsourcing methods Warfield et al. (2004), generation methods Kohl
et al. (2018); Rahman et al. (2023), and personalization methods Zhang et al. (2020); Liao et al.
(2023) have been proposed to address the multi-rater medical image segmentation task. Crowdsourc-
ing methods assume that a single meta-segmentation exists, which can be obtained by combining
multiple annotations. They aggregate the annotations from different experts Y (i) ∈ RdK×N into one
meta-segment y(i) ∈ RdK with various methods y(i) = ϕ(Y (i)), like majority voting or STAPLE
Warfield et al. (2004) as shown in Fig. 2 (a). We can remark crowdsourcing methods as:
Remark 3.2 (Crowdsourcing method). The crowdsourcing method aggregates the annotations from
different experts into one meta-segment with various methods y(i) = ϕ(Y (i)). Then the meta-
segment y(i) is used as the ground truth for training a single segmentation model, i.e., y(i) = f(x(i)).
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Since the expert annotators are not included in the training process, the crowdsourcing method is
unable to generate either diverse or personalized segmentation results.

Generation methods aim to generate diverse segmentation results (Kohl et al., 2018). They simul-
taneously learn a latent space z = ψ(x) to make the conditional distributions p(z|x) and p(z|x, Y )
identical as well as the mapping from the latent representation z and the image x to the segmentation
results as shown in Fig. 2(b). Then diversified segmentation results are generated by sampling from
the latent space z. We can remark generation methods as:
Remark 3.3 (Generation method). Generation method learns a latent representation z as well as the
mapping from the image x and latent representation z to segmentation results, i.e., Y = f(x, z).

Since generation methods do not consider the expert annotators, they are struggling to generate
personalized segmentation results.

Personalization methods aim to generate personalized segmentation results mimicking the corre-
sponding expert annotators. They learn a conditional segmentation by incorporating the expert an-
notators into the training process as shown in Fig. 2(c). We can remark the personalization method
as:
Remark 3.4 (Personalization method). Personalization method learns a conditional segmentation by
incorporating the expert annotators into the training process, i.e., yr = fr(x), r ∈ R.

However, personalization methods typically hard-code expert annotators, restricting them to gen-
erating personalized segmentation results that merely replicate individual annotations, without pro-
ducing diverse segmentation. Moreover, these methods aim to learn a one-to-one correspondence
between the input image x and the expert annotation yr, ignoring variations in the annotator’s per-
sonal preferences.

Due to the limitations of existing methods either generating diverse segmentation that lacks expert
specificity or producing personalized outputs that merely replicate individual annotators. We take the
variability of expert annotators and the uncertainty of ambiguous boundaries into account as shown
in Fig. 2(d). We reformulate multi-rater medical image segmentation as a probabilistic modeling
problem that captures the joint distributions of experts, annotations, and medical images as follows:
Definition 3.5 (Probabilistic modeling of multi-rater medical image segmentation). Probabilistic
modeling of multi-rater medical image segmentation aims to model the joint distribution of experts,
annotations, and medical images, i.e., p(Y, x,R).

Then the diversity and personalization can be defined as follows:
Definition 3.6 (Diversity). Diversity in multi-rater medical image segmentation refers to the dissim-
ilarity among samples from the distribution of segmentation given the image, i.e., p(Ŷ |x), where Ŷ
indicates the generated segmentation.
Definition 3.7 (Personalization). Personalization in multi-rater medical image segmentation refers
to the consistency between the ground truth p(yr|X, r) and predicted segmentation p(ŷr|X, r) given
the image and the specific annotation from the expert r.

4 METHODOLOGY

To model the joint distribution of experts, annotations, and medical images p(Y, x,R), we propose a
probabilistic modeling framework, ProSeg, that can generate both diverse and personalized segmen-
tation results for multi-rater medical image segmentation. Generally, ProSeg introduces two latent
variables, τ = (τ1, τ2, . . . , τN ) and Z = (z1, z2, . . . , zN ), to model the subjective variations among
expert annotators and the ambiguity in medical scans, respectively. The conditional probabilistic
distributions of both variables are obtained through variational inference.

4.1 PROBABILISTIC MODELING OF MULTI-RATER MEDICAL IMAGE SEGMENTATION

We model the joint distribution of experts, annotations, and medical images p(Y, x,R) as a proba-
bilistic graphical model (PGM) as shown in Fig. 2(d). The PGM consists of two parts: the observed
expert annotators R, annotations Y , and medical images X , as well as the latent variables τ and
Z. Since one image corresponds to multiple expert annotations, we introduce the latent variable τ
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Figure 3: Model architecture of deep variational inference for multi-rater segmentation. ProSeg con-
sists of image decoders p(x|zi), image encoders p(zi|x), class embedding q(τ |R), classifier p(R|τ),
and the segmentation predictor p(yri |τi, zi).

to model the subjective variations among expert annotators, which is only related to the annotations
Y and the expert annotators R. We also introduce the latent variable Z to model the ambiguity
in medical scans, which is only related to the medical images x and the annotations Y . The joint
distribution p(Y, x,R, τ, Z) can be denoted as follows:

p(Y, x,R, τ, Z) = p(Y, x,R|τ, Z)p(τ, Z). (1)

The joint distribution p(Y, x,R) can be derived as the marginalization over the two latent variables,
τ and Z, as follows:

p(Y, x,R) =

∫∫
p(Y, x,R|τ, Z)p(τ, Z)dτdZ. (2)

According to the chain rule of probability, we can factorize the conditional distribution
p(Y, x,R|τ, Z) into two parts as follows:

p(Y, x,R|τ, Z) = p(Y |x,R, τ, Z)p(x,R|τ, Z). (3)

For the first part p(Y |x,R, τ, Z), since the annotations Y are only related to the latent variables τ and
Z in our modeling, we can simplify the conditional distribution p(Y |x,R, τ, Z) as p(Y |τ, Z). Given
the annotators R are independently annotated images, we can denote the conditional distribution
p(Y |τ, Z) as the product of p(yri |τi, zi) as follows:

p(Y |τ, Z) =
N∏
i=1

p(yri |τi, zi). (4)

More details can be found in the Appendix. B.2.

For the second part, p(x,R|τ, Z), we can further factorize the conditional distribution according to
the chain rule of probability as follows:

p(x,R|τ, Z) = p(x|R, τ, Z)p(R|τ, Z). (5)

Since the medical image x is only related to the latent variables Z in our modeling, we can simplify
the conditional distribution p(x|R, τ, Z) as p(x|Z). We further express p(x|Z) as the product of the
conditional distributions, p(x|zi), since one image corresponds to multiple understandings of experts
and thus multiple independent annotations. Similarly, we can simplify the conditional distribution
p(R|τ, Z) as p(R|τ), since the expert annotators R are only related to the latent variable τ in our
modeling. Due to the independency nature of expert annotators, we can express p(R|τ) as the
product of the conditional distributions, p(ri|τi). Then the conditional distribution p(x,R|τ, Z) can
be converted to:

p(x,R|τ, Z) =
N∏
i=1

p(x|zi)p(ri|τi). (6)

We have unfolded the generation process as defined in Eq. 3 by incorporating the generative distri-
butions p(x|zi), p(yri |zi), and p(ri|τi). Inversely, we model the variational distribution of zi given
x, denoted as q(zi|x) , and the variational distribution of τ given R, denoted as q(τ |R), to approx-
imate the posterior distributions of zi given x and τ given R, respectively. Since the variational
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distributions q(zi|x) and q(τ |R) are unknown, we can estimate them by the variational inference.
To achieve that, we introduce a Gaussian prior for Z, i.e., p(Z) =

∏N
i=1 p(zi) =

∏N
i=1 N (0, I),

and a Dirichlet prior for τ , i.e., p(τ) =
∏N

i=1 p(τi) =
∏N

i=1 Dir(α0), where α0 = 1 ∈ RN is the
concentration hyperparameter with each element to be one.

Finally, to learn the joint distribution p(Y, x,R), we can maximize the ELBO of the evidence,
ln p(Y, x,R), which is equivalent to minimizing the negative observation log-likelihood as well
as the KL divergence between the prior and posterior distributions of Z and τ as follows:

−Eq(Z|x),q(τ |R) [ln p(Y, x,R|Z, τ)] + KL (q(Z|x)||p(Z)) + KL (q(τ |R)||p(τ)) . (7)

4.2 MODEL ARCHITECTURE

With the probabilistic modeling of multi-rater medical image segmentation above, we refactor
the problem of learning the joint distribution p(Y, x,R) into learning the distribution of p(x|zi),
p(yri |τi, zi), p(R|τ), q(zi|x), and q(τ |R). We model these probabilities with neural networks as
shown in Fig. 3. The model consists of five modules, including the image encoder, image decoder,
class embedding, classifier, and segmentation predictor. We infer the distributions p(x|zi) and q(zi|x)
with the image decoders pθi(x|zi) and image encoders qϕi

(zi|x). The distributions p(R|τ) and
q(τ |R) are learned with the class embedding qϕτ

(τ |R) and classifier pθτ (R|τ). The distribution
p(yri |τi, zi) is estimated with the segmentation predictor pθY (yri |τi, zi). It is worth noting that we
use a single segmentation predictor instead of multiple ones.

To train the neural networks, we minimize the loss in equation 7. For the negative log-likelihood
(NLE), we can denote the loss as the reconstruction loss of image, the classification of expert anno-
tators, and the segmentation loss as follows:

LNLE(Φ,Θ;Y, x,R) = Lrecon + Lclass + Lseg = E [d(x̂, x)] + E
[
R log R̂

]
+ E

[
Y log Ŷ

]
, (8)

where, Φ = {ϕ1, . . . , ϕN , ϕτ}, Θ = {θ1, . . . , θN , θτ , θY }, x̂, R̂, and Ŷ are the prediction of im-
ages, expert annotators, and annotations, respectively, and the expectations are over the variational
distributions qϕi(zi|x) and qϕτ (τ |R). In the reconstruction loss Lrecon, d(·, ·) denotes the mean
squared error between the predicted image and the ground truth image. The classification loss Lclass
is the cross-entropy loss between the predicted expert annotators and the ground truth expert annota-
tors. The segmentation loss Lseg is the cross-entropy loss between the predicted annotations and the
ground truth annotations. More details can be found in the Appendix. B.3.

For the distance between the prior and posterior distributions of Z and τ , we can denote the loss as
the following Kullback-Leibler divergence:

LKL(Φ; x,R) = KL (qΦ(Z|x)||p(Z)) + KL (qϕτ
(τ |R)||p(τ))

Finally, we train our model by minimizing the empirical loss on the training dataset D as follows:

L(Φ,Θ;D) =
1

|D|

|D|∑
i=1

[
LNLE(Φ,Θ;Y (i), x(i),R(i)) + LKL(Φ; x(i),R(i))

]
. (9)

4.3 GENERATION

To generate the segmentation results Ŷ , we can sample from the latent variables Z and τ as follows:
p(ŷri |x, ri) = pθY (ŷri |τi, zi)qϕτ (τi|ri)qϕi(zi|x). (10)

For personalized segmentation results, we can specify the expert annotator r ∈ R to generate the
corresponding segmentation results while the segmentation diversity is maintained by sampling from
the latent representation qϕi

(zi|x), which indicates the ambiguous boundaries of medical images.

For more diverse segmentation results, we can sample from the prior distribution of τ∗, i.e., p(τ∗) =
Dir(α∗), to generate the segmentation results ŷ, which indicates the subjective variations among
expert annotators as follows:

p(ŷ∗|x) = pθY (ŷ∗|τ∗, zi)p(τ∗)qϕi(zi|x), (11)
where i denotes the class of a sample τ∗ and is identified with the classifier pθr (R|τ∗). Note that,
being different from the τi in equation 10 which is personalized by the expert ri, the class of τ∗ is
uncertain, resulting in random expert annotators and thus more diverse segmentations.
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5 EXPERIMENTS

5.1 SETUP

Dataset. We evaluate our ProSeg on two medical image segmentation datasets: the nasopharyn-
geal carcinoma (NPC) (Wu et al., 2024) dataset and the lung nodule dataset (LIDC-IDRI) (Ar-
mato III et al., 2011). LIDC-IDRI dataset (Armato III et al., 2011) contains 1609 Computed To-
mography (CT) images of 214 subjects with lung nodules, each image is provided with four expert
annotations. Although twelve expert annotators are involved in the annotation, we rank the four
given annotations by their segmentation area and assign them to four virtual annotators to simulate
the consistent preference of the annotators following previous works (Wu et al., 2024; Zhang et al.,
2020). Then the four virtual annotators are used as the expert annotators in the experiments and
their preferencea are more consistent for all the images. Finally, following Wu et al. (2024), four-
fold cross-validation is conducted on the dataset, where we split the data based on the patient ID
to reduce bias in results arising from the similarity between adjacent lung nodule slices. NPC (Wu
et al., 2024) is a more challenging dataset, where the expert annotators are not assigned according
to the ranking but four real radiologists, i.e., the preference of the annotators is more diverse and
varies. NPC contains Magnetic Resonance Imaging (MRI) images of 120 subjects with nasopharyn-
geal carcinoma, where each image is annotated by four different expert annotators. Since one MRI
image consists of multiple slices, we split the dataset according to subjects into 80 for training, 20
for validation and 20 for testing, which results in 5817 training slices, 1398 validation slices, and
1126 testing slices. More details for data preprocessing can be found in Appendix. C.1.1

Evaluation metrics. We employ four metrics to evaluate the performance of our ProSeg, including
Generalized Energy Distance (GED) and soft Dice score Dsoft for diversity, as well as match
Dice score Dmatch and maximum Dice score Dmax for personalization. GED (Bellemare et al.,
2017; Kohl et al., 2018) measures the diversity of the generated segmentation, which contains three
parts: the difference between generated segments dpp, the difference between generation and ground
truth dpa, and the difference between ground truths daa, i.e., GED = 2dpa − dpp − daa. The lower
GED score indicates the higher diversity of the generated segmentation. Soft Dice score Dsoft

(Wang et al., 2023; Ji et al., 2021) measures the consistency between the annotations and generated
segmentation, which is the mean Dice score between the average annotations and average predictions
over a set of thresholds. Maximum Dice score Dmax measures the maximum overlap between the
predicted and ground truth segmentation. In contrast, Match Dice score Dmatch calculates the
overlap between the predicted and ground truth segmentation with a constraint of one-to-one match
(Wu et al., 2024). More details can be found in Appendix. C.1.2.

Compared approaches. We mainly compare our ProSeg with generation methods (Probabilis-
tic U-Net (Kohl et al., 2018), D-persona (stage I) (Wu et al., 2024)) and personalized methods
(CM-Global (Tanno et al., 2019), CM-Pixel (Zhang et al., 2020), TAB (Liao et al., 2023), Pionono
(Schmidt et al., 2023), and D-persona (stage II) (Wu et al., 2024)). Besides, we also provide the
results of U-Net trained on each expert annotator’s annotations as the baseline.

5.2 EXPERIMENTAL RESULTS

First, we demonstrate the effectiveness of our ProSeg on the LIDC-IDRI dataset for both diversified
and personalized medical image segmentation. Then, we conduct experiments on the more chal-
lenging NPC dataset, where the preference of the expert annotators varies more, to demonstrate the
effectiveness of our ProSeg in a more practical setting.

5.2.1 EVALUATION ON LIDC-IDRI

Table. 1 reports the performance of the different methods in terms of diversity, personalization,
and personalized segmentation. Compared to generative methods, our ProSeg consistently achieves
the best diversity performance with the lowest GED (0.1152) and the highest soft Dice score Dsoft

(91.53%), which demonstrates its ability to generate a wide range of meaningful segmentation varia-
tions that can significantly improve diversity while maintaining high-quality segmentation. In terms
of personalization performance, the Dmax of ProSeg reaches 91.03%, as it is able to effectively cap-
ture expert-specific segmentation patterns in the latent space. In terms of personalized segmentation
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Table 1: Diversity and personalization on LIDC-IDRI dataset of individually trained U-Nets (Top),
generation-based models (Middle), and personalized segmentation models (Bottom). The best re-
sults are highlighted in bold. #50 denotes the number of samples. I and II denote the stage.

Method Diversity Performance Personalization (%) Personalized Segmentation Performance (%)
GED ↓ Dsoft ↑ (%) Dmax ↑ Dmatch ↑ DA1 ↑ DA2 ↑ DA3 ↑ DA4 ↑ Dmean ↑

U-Net (A1) 0.3062 86.59

N/A

87.80 87.47 85.49 80.67 85.36
U-Net (A2) 0.2459 88.43 87.16 89.08 88.59 85.15 87.50
U-Net (A3) 0.2436 88.20 85.29 88.48 89.40 87.20 87.59
U-Net (A4) 0.2962 85.83 80.80 85.48 88.22 88.90 85.85

Prob. U-Net (#50) 0.2168 88.80 88.87 88.81
N/AD-Persona (I, #50) 0.1358 90.45 91.37 91.33

ProSeg (prior #50) 0.1077 91.62 91.46 91.43
CM-Global 0.2432 88.53 87.51 87.51 86.13 88.76 88.99 86.18 87.51
CM-Pixel 0.2407 88.64 87.72 87.72 85.99 88.81 89.31 86.77 87.72

TAB 0.2322 86.35 87.11 86.08 85.00 86.35 86.77 85.77 85.97
Pionono 0.1502 90.00 90.10 88.97 87.94 89.11 89.55 88.76 88.84

D-Persona (II) 0.1444 90.31 90.38 89.17 88.54 89.50 90.03 88.60 89.17
ProSeg 0.1152 91.53 91.03 90.25 89.49 90.27 91.01 90.23 90.25

accuracy, ProSeg achieves state-of-the-art (SOTA) performance with the highest average dice sim-
ilarity (Dmean = 90.25%) and consistently strong performance across annotators (DA1 = 89.49%,
DA2 = 90.27%, DA3 = 91.01%, DA4 = 90.23%). Besides, by sampling the prior distribution of
q(τ), our ProSeg (prior) achieves a better GED score, since more expert preferences are sampled. In
summary, ProSeg achieves a better balance between diversity and personalization, ensuring that the
generated segments are both aligned with experts and diverse.

5.2.2 EVALUATION ON NPC

We evaluated ProSeg’s performance on the NPC dataset, where expert annotators’ preferences vary
more and segmentation is more challenging. As shown in Table. 3, ProSeg achieves superior perfor-
mance in both diversity and personalization compared to existing methods. Specifically, as the diver-
sity performance shown in columns 2-3, ProSeg achieves the lowestGED and highestDsoft scores
among personalization methods, with an average improvement of 20.71% and 1.79% over previous
SOTA methods, respectively. For personalization performance in columns 4-5, ProSeg achieves the
highest Dmax (83.24%) and Dmatch (82.13%) scores, outperforming all other baselines.

Although the performance of ProSeg on GED scores is similar to that of previous SOTA generation
methods, ProSeg is a better model that generates reliable and diverse segmentations for practical use,
as we give the following explanations. First, ProSeg achieves the highest Dsoft score, indicating
that ProSeg generates segmentations that are consistent with the average annotations. Then, to
better understand the GED score, we further analyze the dpp, dpa, and daa scores of ProSeg and D-
Persona. We find that ProSeg outperforms D-Persona on dpa (0.3482 V.S. 0.3648), which indicates
that the segments generated by ProSeg match the ground truth better than D-Persona. Although
ProSeg performs worse than D-Persona on dpp (0.2212 V.S. 0.1830), which indicates that ProSeg
generates less diverse segmentations than D-Persona. The better performance of ProSeg on dpa and
Dsoft indicates that ProSeg generates reliable segmentations that closely match the ground truth.
More visual results can be found at Appendix. D.3.

5.3 ABLATION STUDY
Method Diversity Personalization (%)
τ Z GED ↓ Dsoft ↑(%) Dmax ↑ Dmatch ↑

0.3639 80.58 79.77 79.69
✓ 0.3091 82.10 81.19 80.98

✓ 0.2566 83.33 81.92 81.51
✓ ✓ 0.2272 84.24 82.36 82.07

Table 2: Ablation study on two latent spaces.

We perform an ablation study to analyze the
contributions of the two latent space compo-
nents in ProSeg. Both the latent variables τ and
Z are crucial for achieving high performance in
multi-rater medical image segmentation tasks
as shown in Table. 2. Without the latent space
τ , the performance of ProSeg drops since the
subjective variations among expert annotators are not modeled. Similarly, without the latent space
Z, the performance of ProSeg also drops since the ambiguity in medical scans is not captured.
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Table 3: Diversity and personalization performance on NPC dataset of individually trained U-Nets
(Top), generation-based models (Middle), and personalized segmentation models (Bottom). The
best results are highlighted in bold. #50 denotes the number of samples. I and II denote the stage.

Method Diversity Performance Personalization (%) Personalized Segmentation Performance (%)
GED ↓ Dsoft ↑ (%) Dmax ↑ Dmatch ↑ DA1 ↑ DA2 ↑ DA3 ↑ DA4 ↑ Dmean ↑

U-Net (A1) 0.4531 76.48

N/A

85.93 72.09 72.11 75.79 76.48
U-Net (A2) 0.4636 77.10 79.51 77.10 74.10 74.13 76.21
U-Net (A3) 0.5057 75.40 76.13 75.91 77.38 74.47 75.97
U-Net (A4) 0.5606 71.17 78.79 71.05 70.80 74.33 73.74

Prob. U-Net (#50) 0.3614 80.94 82.42 79.95
N/AD-Persona (I, #50) 0.2133 83.24 81.52 80.25

ProSeg (prior #50) 0.2182 84.36 83.28 82.43
CM-Global 0.3755 80.69 79.62 79.62 85.53 77.34 77.04 79.58 79.62
CM-Pixel 0.3678 80.92 79.86 79.86 85.09 77.08 77.37 79.91 79.86

TAB 0.3159 81.84 80.88 80.64 85.63 77.76 78.80 80.36 80.64
Pionono 0.3309 81.65 80.59 80.42 85.44 77.84 77.62 80.77 80.42

D-Persona (II) 0.2866 82.45 81.37 80.96 85.92 78.23 79.45 80.23 80.96
ProSeg 0.2272 84.24 82.36 82.07 87.48 79.39 80.66 80.77 82.07

6 DISCUSSION

Why does ProSeg perform better? Compared to Generation-Based Methods. Existing
generation-based segmentation methods aim to generate diverse segmentation results by learning
a latent space. However, they fail to capture expert-specific characteristics, leading to uncontrolled
diversity that does not align with individual annotators. In contrast, ProSeg explicitly models ex-
pert variations using the latent variable τ , allowing it to generate diverse yet expert-specific seg-
mentation results. Compared to Personalization Methods. Personalization methods can produce
expert-specific segmentation results but lack diversity. These methods typically overfit individual
annotations, making it difficult to capture the inherent uncertainty in medical images. ProSeg over-
comes this limitation by introducing the latent variable Z, ensuring that segmentation results are
both expert-aligned and diverse. Compared to Two-Stage Methods. Recent two-stage methods at-
tempt to balance diversity and personalization by separating these objectives into two distinct phases.
However, this approach lacks a cohesive probabilistic framework, leading to potential inconsisten-
cies. ProSeg unifies both objectives within a single probabilistic model, achieving better synergy
between diversity and personalization.

Performance gap between two datasets The performance gap is primarily caused by the variation
in the personal preferences of the experts. The variation within each expert is greater on the NPC
dataset than on the LIDC dataset, as evidenced by dataset statistics, which makes it hard to train
a U-Net. The ProSeg improvement relative to U-Net trained individually is more pronounced on
the NPC dataset than on the LIDC-IDRI dataset (3.39% V.S. 1.45%). This indicates that ProSeg is
more effective in capturing expert-specific characteristics on the NPC dataset, where the personal
preferences of the experts are more diverse.

7 CONCLUSION

To tackle the problem of multi-rater medical image segmentation, we propose a probabilistic model-
ing framework, ProSeg, that generates both diverse and personalized segmentation results. ProSeg
models the joint distribution of experts, annotations, and medical images using two latent variables,
τ and Z, to capture expert-specific characteristics and image ambiguity. Our experiments on the
LIDC-IDRI and NPC datasets demonstrate that ProSeg outperforms existing methods in terms of
diversity and personalization, achieving state-of-the-art performance in multi-rater medical image
segmentation. Our ablation study further confirms the importance of the latent variables τ and Z
in achieving high performance. Applying ProSeg to other medical image segmentation tasks and
exploring the potential of our probabilistic modeling framework in other domains are promising di-
rections for future research. For the limitation, although this work can be extended to other tasks
beyond medical image segmentation, this paper only focuses on medical images.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Detailed dataset de-
scriptions are provided in App. C.1.1, training configurations and hyperparameters are reported in
App. C.2, and method details in App. B. Upon acceptance, we will release our models, together
withtraining and inference code, to facilitate replication and further research.
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A APPENDIX

B METHOD DETAILS

B.1 NOTATIONS

Table 4: Summary of mathematical notions and corresponding notations.

Notation Notion
Lowercase letter Scalar (e.g., a)
Bold lowercase letter Vector (e.g., a)
Capital letter Matrix (e.g., A)
x, x̂ ∈ Rh×w Image, Generated Image
yr, ŷr ∈ Rd×K Expert-specific ground-truth annotation; predicted annotation
Y, Ŷ ∈ Rd×K×N Multi-rater ensemble annotations; Generated annotations
τ ∈ RB×N×1×1 Latent variable for modeling subjective variants among experts
z ∈ RB×C×d Latent variable for ambiguity of medical images
L(·);LNLE(·);LKL(·) Expected loss; negative log-likelihood loss; KL loss
p(·|·), pθ(·|·) Posterior distribution, parameterized by θ
q(·|·), qϕ(·|·) Variational distribution, parameterized by ϕ
p(x|zi); q(zi|x) Distributions w.r.t. Images decoders;encoders
p(R|τ); q(τ |R) Distributions w.r.t. class embedding; classifier
p(yri |τi, zi) Distributions w.r.t. segmentation predictor
N (0, I);Dir(α0) Gaussian Distribution; Dirichlet distribution parameterized by α0

D; |D| Dataset, the size of a dataset
Φ;Θ The sets of DNN parameters
h× w → d; r Image size; expert variable

We also provide a notation table for a more clear understanding of our methods as shown in Table. 4.

B.2 DERIVATION OF EQ. 4

The Eq. 4 in the main text as follows is derived based on: (1) The chain rule of probability. (2)
Conditional independence: Yi depends only on Zi and τi. (3) Mixture model structure, where τi
acts as a latent selection variable.

p(Y |x,R, τ, Z) =
N∏
i=1

p(yri |τi, zi).

1. The chain rule of probability: from the chain rule, we can write the joint conditional prob-
ability of Y given τ and Z as Eq. 12. Since each yri is conditionally independent given zi
and τi, we can factorize the joint distribution as Eq. 13.

p(Y |τ, Z) = p(yr1 , yr2 , . . . , yrN |τ, Z) (12)

p(Y |τ, Z) =
N∏
i=1

p(yri |Z, τ) (13)

2. Local Markov Assumption: To further simplify the factorization, we assume that each yi
only depends on its local variables zi and τi as Eq. 14. This is a common assumption in
mixture models, where each data point is generated from a single component of the mixture.
Thus, applying this to the previous equation, we get Eq. 15.

p(yi|Z, τ) = p(yi|zi, τi) (14)
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p(Y |τ, Z) =
N∏
i=1

p(yri |zi, τi) (15)

B.3 NEGATIVE LOG-LIKELIHOOD

The negative log-likelihood (NLL) is defined as the sum of the reconstruction loss of the image, the
classification of the expert annotators, and the segmentation loss as follows:

LNLE(Φ,Θ;Y, x,R) = Lrecon + Lclass + Lseg = E [d(x̂, x)] + E
[
R log R̂

]
+ E

[
Y log Ŷ

]
, (16)

where, Φ = {ϕ1, . . . , ϕN , ϕτ}, Θ = {θ1, . . . , θN , θτ , θY }, x̂, R̂, and Ŷ are the prediction of im-
ages, expert annotators, and annotations, respectively, and the expectations are over the variational
distributions qϕi

(zi|x) and qϕτ
(τ |R). In the reconstruction loss Lrecon, d(·, ·) denotes the mean

squared error between the predicted image and the ground truth image. The classification loss Lclass
is the cross-entropy loss between the predicted expert annotators and the ground truth expert annota-
tors. The segmentation loss Lseg is the cross-entropy loss between the predicted annotations and the
ground truth annotations.

Here we give a detailed explanation of the NLE loss in Eq. 8. The p(Y, x,R|Z, τ) is the joint
distribution of the annotations, images, and expert annotators given the latent variables Z and τ . We
can factorize the joint distribution as follows:

p(Y, x,R|Z, τ) = p(Y |Z, τ)p(x|Z)p(R|τ) (17)

=

N∏
i=1

p(yri |τi, zi)
N∏
i=1

p(x|zi)p(ri|τi) (18)

Taking the logarithm and negating it, we have:

− ln p(Y, x,R|Z, τ) = −
N∑
i=1

ln p(yri |τi, zi)−
N∑
i=1

ln p(x|zi)−
N∑
i=1

ln p(ri|τi). (19)

where p(x|zi) corresponds to the reconstruction loss Lrecon, which measures the error between the
predicted image x̂ and the real image x. p(yri |τi, zi) Corresponds to segmentation loss Lseg, which
measures the error between the predicted segmentation Ŷ and the real segmentation Y. p(ri|τi)
corresponds to the classification loss Lclass, which measures the error between the predicted expert
labeling R̂ and the real expert labeling R. Finally, we have the NLE loss as Eq. 8.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

C.1.1 DATASET

The input images from both the NPC and LIDC-IDRI datasets are center-cropped to a fixed size of
128 × 128. For NPC, we apply normalization to achieve zero mean and unit variance. To enhance
training diversity, random flips, rotations, and noise perturbations are introduced as augmentation
techniques. For LIDC-IDRI, we adopt the preprocessing strategy proposed by Wang et al. (2023)
and employ standard flip and rotation operations for data augmentation.

The distribution of the rank of the annotations in the NPC datasets is shown in Fig. 4. The rank dis-
tribution of the NPC dataset is more diverse than that of the LIDC-IDRI dataset, which indicates that
the NPC dataset is more challenging due to the diverse preferences of expert annotators, especially
in the test dataset. For the LIDC-IDRI dataset, the rank distribution is consistent since we assign
four virtual annotators according to the annotation area rank.

We also calculated the similarity of the annotations in the NPC test dataset between the expert
annotators as shown in Table. 5. The distance is calculated by averaging the (1-IoU) over all slices.
The distance matrix shows that the expert annotators have diverse preferences, which is consistent
with the rank distribution in Fig. 4.
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Table 5: Distance matrix of expert annotations in the NPC test dataset.

Expert 1 Expert 2 Expert 3 Expert 4
Expert 1 0.0000 0.6686 0.6696 0.6388
Expert 2 0.6686 0.0000 0.6449 0.6650
Expert 3 0.6696 0.6449 0.0000 0.6663
Expert 4 0.6388 0.6650 0.6663 0.0000

Figure 4: Expert annotator rank distribution of test (second row) and train (first row) datasets, where
rank is obtained according to their annotation area.

C.1.2 METRICS

Experimental Metrics The four metrics used in the experiments are defined as follows:

• Generalized Energy Distance (GED) Bellemare et al. (2017); Kohl et al. (2018) as Eq. 20:
GED is used to measure the prediction diversity. A lower GED indicates greater disper-
sion and variability in the segmentation results.

GED =
2

|Y ||Ŷ |

∑
y∈Y

∑
ŷ∈Ŷ

[d(y, ŷ)]− 1

|Ŷ ||Ŷ |

∑
ŷ∈Ŷ

∑
ŷ′∈Ŷ

[d(ŷ, ŷ′)]− 1

|Y ||Y |
∑
y∈Y

∑
y′∈Y

[d(y, y′)]

(20)
where Y and Ŷ are the annotations and predicted segments, respectively. d denotes the
distance function d(a, b) = 1− IoU(a, b). ||̇ indicates the number of elements in the set.

• Soft Dice Score (Dsoft) Wang et al. (2023); Ji et al. (2021): Dsoft is used to evaluate the
differences between the soft predictions and soft annotations. It is calculated by averaging
the Dice scores over multiple thresholds as Eq. 21:

Dsoft =
1

|Γ|
∑
γ∈Γ

Dice([ysoft > γi], [ŷsoft > γi]), (21)

where γ is a threshold selected from the set {0.1, 0.3, 0.5, 0.7, 0.9} with T = 5, ysoft =
1

|Yi|
∑

y∈Yi
y, and ŷsoft =

1
|Ŷi|

∑
ŷ∈Ŷi

ŷ

• Following Wu et al. (2024), Dice Max (Dmax) and Dice Match (Dmatch): Dmax quantifies
the optimal overlap between Y and Ŷ , while Dmatch further takes the one-to-one match
from prediction to the expert annotator into account. Here, we give an example from Wu
et al. (2024) to explain the two metrics. As shown in Fig. 5, Dmax averages the maximum
scores of individual columns, while Dmatch further constrains a one-to-one matching be-
tween the prediction and annotation sets. Here, Dmax = {0.832, 0.842, 0.861, 0.863} and
Dmatch = {0.832, 0.842, 0.841, 0.863}.
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Annotations

0.811 0.801 0.841 0.831

0.821 0.823 0.801 0.811

0.832 0.836 0.861 0.841

0.826 0.822 0.819 0.863

0.828 0.842 0.812 0.810
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ed
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ns

𝑟! 𝑟" 𝑟# 𝑟$

Figure 5: Example of Dmax and Dmatch calculation in a given 4× 5 Dice matrix.

Random distance to two experts We define the distance between experts as the IoU distance as
follows:

dIoU (S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

(22)

where |S1 ∩ S2| is the area of the intersection of S1 and S2, and |S1 ∪ S2| is the area of the union of
S1 and S2. In Figure 1, we calculated the distance to two random experts for each slice in the NPC
test dataset. The distance is calculated by averaging the (1-IoU) over all slices. For personalization
methods, we take the four predictions from each expert. For the generation methods, we randomly
take four experts as the determined experts. In one generation, we randomly select two experts and
calculate the distance to them.

C.2 MODEL DETAILS

We implement our ProSeg using PyTorch and all our experiments are conducted on a computing
cluster with 8 GPUs of NVIDIA GeForce RTX 4090 24GB and CPUs of AMD EPYC 7763 64-
Core of 3.52GHz. All the inferences are conducted on a single GPU of NVIDIA GeForce RTX
4090 24GB. The image encoder and decoder are implemented with a U-Net architecture, while
the class embedding and classifier are implemented with a fully connected neural network. The
segmentation predictor is implemented with a convolutional neural network. The model is trained
with the Adam optimizer with a learning rate of 1e− 4 and a batch size of 12. The model is trained
for 100 epochs with early stopping based on the validation loss. The latent space Z and τ are set to
128 ∗ 128 and 8, respectively. The concentration parameter α is set to 1.0. The model is trained with
the negative log-likelihood loss and the Kullback-Leibler divergence loss. The model is evaluated
on the test dataset with the metrics described in the previous section.

C.3 RESOURCE REQUIREMENTS

We have included a detailed comparison of computational complexity and training efficiency in the
table below. As shown, ProSeg achieves a good balance in memory usage and inference/training
time compared to other methods. This demonstrates its practicality for deployment in real-world
scenarios.

Method Train Memory (MB) Train Time (s) Infer Memory (MB) Infer Time (s)
CM-Global 402.06 10.39 201.41 0.23
CM-Pixel 404.16 15.52 201.74 0.26
Pionono 410.71 25.11 202.42 1.07
D-Persona (I) 471.22 22.75 916.54 2.57
D-Persona (II) 407.29 19.95 241.91 0.99
ProSeg 411.32 17.51 202.42 1.05

Table 6: Comparison of training and inference efficiency across different methods.
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D ADDITIONAL RESULTS

We provide more quantitative and visual results here for a better explanation of the performance
comparison.

Table 7: Performance of U-Net models on the NPC test dataset.

Model DA1 ↑ DA2 ↑ DA3 ↑ DA4 ↑ Dmean ↑
U-Net (A1) 85.93 72.09 72.11 75.79 76.48
U-Net (A2) 79.51 77.10 74.10 74.13 76.21
U-Net (A3) 76.13 75.91 77.38 74.47 75.97
U-Net (A4) 78.79 71.05 70.80 74.33 73.74

Table 8: Distance of experts in the NPC test dataset.

A1 A2 A3 A4

A1 0.0000 0.6686 0.6696 0.6388
A2 0.6686 0.0000 0.6449 0.6650
A3 0.6696 0.6449 0.0000 0.6663
A4 0.6388 0.6650 0.6663 0.0000

D.1 RESULTS DETAILS

Performance of U-Net trained on each expert annotator’s annotations. We provide the per-
formance of U-Net trained on each expert annotator’s annotations as the baseline. The results are
shown in Table. 3. Here, we give an explanation for their performance variations. We have two
findings by comparing their performance and distance as shown in Table. 8:

1. The distance between expert annotations is consistent with the learned U-Net (each col-
umn). When the distance between the annotations of two experts is closer, their perfor-
mance is more similar on one test set. For the test set of expert A3, A4 is more different
with A3 than A2 (0.6663(A4) V.S. 0.6449(A2)). Therefore, the U-Net trained on A2 per-
forms better than that trained on A4 on the test set of A3 (70.80(A4) V.S. 74.10(A2)).

2. Training a U-Net to segment small target is harder than big targets. As shown in Table. 4,
the segmentation area of A4 is smaller than the others, thus it performs much worse than
the others.

Table 9: Decomposed GED, including dpp, dpa, and daa.

Method GED ↓ dpp ↑ dpa ↓ daa(Constant)

Prob. U-Net 0.3614 0.0075 0.3320 0.2951
D-Persona (I) 0.2133 0.2212 0.3648 0.2951
ProSeg (prior) 0.2182 0.1865 0.3499 0.2951

CM-Global 0.3755 0.0000 0.3353 0.2951
CM-Pixel 0.3678 0.0000 0.3314 0.2951

TAB 0.3159 0.0578 0.3344 0.2951
Pionono 0.3309 0.0317 0.3289 0.2951

D-Persona (II) 0.2866 0.0913 0.3365 0.2951
ProSeg 0.2272 0.1739 0.3482 0.2951

D.2 QUANTITATIVE RESULTS

GED score comparison. For a better understanding of the GED score of all methods, we provide
the decomposed GED score of all methods in Table. 3. The GED score is decomposed into dpp,
dpa, and daa, which indicates the diversity of the generated segmentations, the difference between
the generated segmentations and the ground truth, and the difference between the ground truths,
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respectively. As shown in Table 9. GED balances the diversity of the generated segmentations and
the consistency with the ground truth. ProSeg achieves the highest dpp score among personalization
methods, which indicates that ProSeg generates diverse segmentations. Although ProSeg performs
worse than previous personalization methods on dpa, there is only a small difference. Both the
high dpp score and relatively low dpa scores indicate that ProSeg generates both diverse and reliable
segmentations.

statistical significance testing Compared to D-Persona(II) on NPC dataset, ProSeg obtained bet-
ter performance on all the metrics, especially significantly better onGED (p=1e-6),Dsoft (p=1e-5),
Dmax (p=0.026), Dmatch (p=0.006), DA1 (p=0.044), and Dmean (p=0.006) with p < 0.05. On the
LIDC-IDRI dataset, ProSeg also obtained better performance on all the metrics, especially signifi-
cantly better on GED (p=5e-6), Dsoft (p=0.036), Dmatch (p=0.046), and DA4 (p=0.021) with p
< 0.05. Compared to the other methods, i.e., Pionono, TAB, CM-Pixel, and CM-Global, ProSeg
achieved better performance on all the metrics (p < 0.05).

D.3 VISUAL RESULTS

(a) ProSeg class embedding on LIDC dataset. (b) ProSeg class embedding on NPC dataset.

Figure 6: Class embedding distribution

Dirichlet distribution of Expert. We randomly sample 300 samples from the posterior distribu-
tion of p(τ |r) for each expert. Then we use tsne (Van der Maaten & Hinton, 2008) to project the
8-dimension sample into 2-dimension for visualization as shown in Fig. 6. The class embedding of
ProSeg trained on both datasets can be identified clearly, which indicates that the experts are dif-
ferent with respect to their preferences. Since some of the preferences of these experts are similar,
some of the embeddings are mixed. By comparing Fig 6a with Fig. 6b. We have the following find-
ings: (1) The width of distribution on the LIDC dataset is larger than that on the NPC dataset, which
indicates that the ProSeg trained on the LIDC dataset can generate more diverse segmentation. (2)
The diversity is also demonstrated in Table. 1 and Table. 3, where the GED score for ProSeg trained
on LIDC dataset is 0.1152, while on NPC dataset is 0.2272. (3) the distribution of each class for
NPC is more centralized. This is because the expert annotator in the NPC dataset is the real expert,
while the expert annotators in the LIDC dataset are virtual experts, which is obtained by assigning
12 real experts to 4 virtual experts by their segmentation area ranking for each image. In addition,
the four categories in the NPC dataset are relatively closer because their preferences overlap.

Distance to two random experts. For a clearer understanding of the distance between two random
experts, we provide more visual results as shown in Fig. 7. The results are (a) the average distance
to two random experts for each objective in the NPC test dataset of all methods (b) the distance to
two random experts for each objective in the NPC test dataset of generation methods, and (c) the
distance to two random experts for each objective in the NPC test dataset of personalization method.
Fig. 7(a) shows that our ProSeg is best in diversity and personalization. Fig. 7(b) shows that the prior
sampling of our ProSeg is better than other generation methods. Fig. 7(c) shows that ProSeg is better
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than other personalization methods. All these results indicate that ProSeg is the closest method to
the gold standard.

(a) All methods (b) Generation method (c) Personalization method

Figure 7: Performance on multi-rater medical image segmentation

Distance between two experts. For each pair of experts, we also calculate their distance. The
distribution is shown in Fig. 8. The distance distribution of the Gold standard and our ProSeg are
the most similar. By sampling the prior distribution of p(τ), i.e., ProSeg (prior), the width of the
distance distribution is greater than ProSeg. Compared with other methods, the distance distribution
of our ProSeg is most similar to the Gold standard.

Figure 8: Distribution of pair distance between two experts.

Visual comparison of segmentation results. We provide visual comparisons of the segmentation
results of all methods on the NPC dataset in Fig. 9 and Fig. 10, where different colors indicate the
segmentation is obtained by different expert annotators. The segmentation results of ProSeg are
more diverse and personalized than those of other methods. The segmentation results of ProSeg are
more consistent with the ground truth while maintaining diversity among the generated segmenta-
tions. The results demonstrate that ProSeg effectively captures expert-specific characteristics and
generates diverse segmentation results. For some methods, the segmentation from all the experts
is the same, which means the diversity is poor. In Fig. 6b, the second row shows the segmenta-
tion from our ProSeg, the third row shows the segmentation from the DPersona (stage 1) and the
fourth row shows the segmentation from the DPersona (stage 2). For the second image, in the gold
standard, three experts give segmentation containing two separate parts. Our ProSeg captures the
character, while other models can hardly capture this difference, and generation methods can not tell
which expert gives the two-part segmentation as shown in the figure that the color of the two-part
segmentation is different from the Gold standard.
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Figure 9: Visual results of segmentation on NPC dataset. Each row from the top to bottom indicates
the Gold standard, ProSeg, DPersona (stage 1), DPersona (stage 2), and CM global.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs (GPT-5.0 and Gemini 2.5 pro) to polish our writing and check our grammar only.
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Figure 10: Visual results of segmentation on NPC dataset. Each row from the top to bottom indicates
the Gold standard, CM pixel, Pionono, Probabilistic U-Net, and TAB.
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Figure 11: Visual results of segmentation on LIDC-IDRI dataset. Each row from the top to bottom
indicates the Gold standard, ProSeg, ProSeg (prior), CM global, and CM pixel.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 12: Visual results of segmentation on LIDC-IDRI dataset. Each row from the top to bottom
indicates the Gold standard, ProSeg, Prob. U-Net, DPersona (stage 1), and DPersona (stage 2).
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