

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROBABILISTIC MODELING OF MULTI-RATER MEDICAL IMAGE SEGMENTATION FOR DIVERSITY AND PERSONALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Medical image segmentation is inherently influenced by data uncertainty, arising from ambiguous boundaries in medical scans and inter-observer variability in diagnosis. To address this challenge, previous works formulated the multi-rater medical image segmentation task, where multiple experts provide separate annotations for each image. However, existing models are typically constrained to either generate diverse segmentation that lacks expert specificity or to produce personalized outputs that merely replicate individual annotators. We propose **Probabilistic modeling of multi-rater medical image Segmentation (ProSeg)** that simultaneously enables both diversification and personalization. Specifically, we introduce two latent variables to model expert annotation preferences and image boundary ambiguity. Their conditional probabilistic distributions are then obtained through variational inference, allowing segmentation outputs to be generated by sampling from these distributions. Extensive experiments on both the nasopharyngeal carcinoma dataset (NPC) and the lung nodule dataset (LIDC-IDRI) demonstrate that our ProSeg achieves a new state-of-the-art performance, providing segmentation results that are both diverse and expert-personalized.

1 INTRODUCTION

Medical image segmentation is of great importance for automatic diagnosis and treatment planning in clinical practice Isensee et al. (2021). However, the task is challenging due to the inherent uncertainty of data, such as medical scans, ambiguous boundaries Carass et al. (2017); Wu et al. (2023) and irregular shapes of medical targets Marin et al. (2022); Luo et al. (2023); Li et al. (2017); Fu et al. (2020), as well as the inter-observer variability in diagnosis Menze et al. (2014). To tackle this issue, the multi-rater medical image segmentation task was proposed to take the data uncertainty into account by collecting annotations from different experts for each image independently Rahman et al. (2023).

Existing approaches for multi-rater medical image segmentation are limited to either generating diverse segmentation that cannot resemble realistic expert variability (Kohl et al., 2018; Rahman et al., 2023) or individual-specific outputs simply mirroring annotators (Liao et al., 2023; Schmidt et al., 2023). We calculated the distance between two random experts of different methods in **Fig. 1**, where the greater distance indicates higher segmentation diversity, while similarity to the gold standard suggests increased personalization. Specifically, *Generation methods*, like Probabilistic U-Net (Kohl et al., 2018), produce diverse and reliable segmentation results, yet fail to capture expert personalization (Rahman et al., 2023). *personalization methods*, like TAB (Liao et al., 2023), Pionono (Marin et al., 2022), CM global (Tanno et al., 2019), and CM Pixel (Zhang et al., 2020), which can replicate individual expert annotations, yet show lim-

Figure 1: Distance distribution between two random experts. A greater distance indicates higher diversity and a more similar distribution with the Gold standard indicates better personalization.

ited diversity. *Crowdsourcing approaches* aggregate multiple annotations into a meta-segmentation, which is restricted by the assumption of one single meta-segmentation (Warfield et al., 2004). To bridge the gap between diversity and personalization, Wu et al. (2024) employed a two-stage DPersona to produce diverse segmentation initially and personalized ones subsequently, yet its efficacy is constrained by lacking probabilistic modeling. Thus, a unified probabilistic approach capable of simultaneously generating both diverse and personalized segmentation remains an open challenge.

To address the challenge of modeling multi-rater medical image segmentation considering both diversity and personalization, we propose **ProSeg**, a **Probability graph model** for multi-rater **Segmentation**. Specifically, we introduce two latent variables τ and Z to model the inter-observer variability in diagnosis and the ambiguity in medical scans, respectively, as shown in **Fig. 2(d)**, where τ and Z are inferred from the observed data and annotations. By sampling from the latent space, we can generate diverse segmentation results, while specifying a particular expert allows us to produce personalized segmentation outputs that align with individual expert annotations. The model is trained by maximizing the evidence lower bound (ELBO), which consists of the log-likelihood of the observed data and annotations, as well as the regularization term ensuring similarity between prior and posterior distribution of τ and Z .

To demonstrate the effectiveness of ProSeg, we conducted extensive experiments on two benchmark datasets: the nasopharyngeal carcinoma (NPC) dataset and the lung nodule dataset (LIDC-IDRI). The empirical results indicate that ProSeg consistently outperforms previous methods, producing both diverse and expert-personalized segmentation, achieving state-of-the-art performance in multi-rater medical image segmentation. Furthermore, ProSeg serves as a generalizable framework that can be readily extended to other medical image segmentation tasks, highlighting its versatility and broad applicability.

To the best of our knowledge, ProSeg is the first probabilistic modeling framework that can simultaneously generate diverse and personalized segmentation results for multi-rater medical image segmentation. The main contributions of our work can be summarized as follows:

- We propose a unified probabilistic modeling framework, ProSeg, for multi-rater medical image segmentation, which generates both diverse and personalized segmentation results.
- We introduce two latent variables, τ and Z , via variational inference, to model the inter-observer variability in diagnosis and the ambiguity in medical scans, respectively.
- We conduct extensive experiments, demonstrating that ProSeg achieves a new state-of-the-art performance in multi-rater medical image segmentation.

2 RELATED WORKS

2.1 MULTI-RATER MEDICAL IMAGE SEGMENTATION

Multi-rater medical image segmentation aims to take the data uncertainty, including the inter-observer variability in diagnosis and the ambiguity in medical scans, into consideration. Existing methods can be broadly categorized into three groups: **crowdsourcing methods** combine multiple annotations to approach a meta-segment Warfield et al. (2004); **generation methods** learns a latent distribution to generate diverse segmentation Kohl et al. (2018); Rahman et al. (2023); and **personalization methods** produce personalized segmentation that aligns with individual expert annotations Zhang et al. (2020); Liao et al. (2023); Schmidt et al. (2023). Diversity and personalization are essential aspects of this task, ensuring that segmentation results capture variations across experts while aligning with individual annotations. However, these methods are generally limited to generating diverse segmentations that lack expert specificity or producing personalized outputs that merely replicate individual annotators.

To bridge this gap, Wu et al. (2024) attempted to train a two-stage model to generate diverse segmentation results in the first stage and personalized results in the second stage. However, its effectiveness is limited by the absence of a probabilistic modeling framework. To address these challenges, we introduce ProSeg, a probabilistic modeling framework capable of simultaneously generating both diverse and personalized segmentation results, offering a unified solution for multi-rater medical image segmentation.

Figure 2: Probability graph model (PGM) of methods for multi-rater segmentation. X , \mathcal{R} , and Y denote the images, expert annotators, and annotations respectively. The latent variable Z denotes the ambiguity in medical scans. In our probability model, a latent variable τ is formulated to model the subjective variants among expert annotators. The green rectangular box represents a set of variables.

2.2 PROBABILISTIC MODELING

Probabilistic modeling has been extensively applied across various machine learning domains, including generative modeling (Kingma, 2013; Rezende et al., 2014), computer vision (Gao & Zhuang, 2022), and Bayesian optimization (Shahriari et al., 2015). By explicitly modeling uncertainty, probabilistic approaches provide robust predictions and facilitate better generalization, particularly in tasks where data is noisy or ambiguous. Existing probabilistic methods for medical image segmentation focus mainly on modeling uncertainty in medical scans, leading to improvements in model robustness and interpretability (Hatamizadeh et al., 2022; Wu et al., 2022; Gao et al., 2023). For example, Bayesian deep learning (Gal & Ghahramani, 2016) and Monte Carlo sampling (Kohl et al., 2018) have been used to estimate segmentation uncertainty. However, they do not address the combined challenges of diversity and personalization in multi-rater medical image segmentation. To our knowledge, no existing work has leveraged probabilistic modeling to simultaneously generate both diverse and personalized segmentation results for multi-rater medical image segmentation.

3 PRELIMINARIES AND NOTATION

3.1 THE MULTI-RATER MEDICAL IMAGE SEGMENTATION TASK

In the setting of multi-rater medical image segmentation, each medical image $\mathbf{x} \in \mathbb{R}^d$ is annotated by a group of expert annotators $\mathcal{R} = \{r_1, r_2, \dots, r_N\} \in \mathbb{R}^N$, providing independent annotations $\{\mathbf{y}_r\}_{r \in \mathcal{R}}$, where, $\mathbf{y}_r \in \mathbb{R}^{dK}$ denotes the annotation provided by the expert annotator r , and d and K denote the image size and the number of segmentation classes, respectively. For simplicity, we define d as the product of the image height and width, representing the image size in our notation. Therefore, for each image \mathbf{x} , we have the ensemble of its annotations, Y , where $Y = (\mathbf{y}_{r_1}, \mathbf{y}_{r_2}, \dots, \mathbf{y}_{r_N}) \in \mathbb{R}^{dK \times N}$ denotes N annotations from \mathcal{R} respectively. We denote the dataset as $\mathcal{D} = \{\mathcal{R}^{(i)}, Y^{(i)}, \mathbf{x}^{(i)}\}_{i=1}^{|\mathcal{D}|}$, where $|\mathcal{D}|$ denotes the number of samples in the dataset. Thus, the multi-rater medical image segmentation aims to learn a mapping from the inputs \mathbf{x} and \mathcal{R} to the output segmentation Y . We can define the multi-rater medical image segmentation task as follows:

Definition 3.1 (Multi-rater medical image segmentation). Given a dataset $\mathcal{D} = \{\mathcal{R}^{(i)}, Y^{(i)}, \mathbf{x}^{(i)}\}_{i=1}^{|\mathcal{D}|}$ of expert annotations and medical images, the multi-rater medical image segmentation task aims to learn the mapping from the input image $\mathbf{x}^{(i)}$ and $\mathcal{R}^{(i)}$ to the ensemble of multiple segmentation $Y^{(i)}$, i.e., $Y^{(i)} = f(\mathbf{x}^{(i)}, \mathcal{R}^{(i)})$.

Previous works including crowdsourcing methods Warfield et al. (2004), generation methods Kohl et al. (2018); Rahman et al. (2023), and personalization methods Zhang et al. (2020); Liao et al. (2023) have been proposed to address the multi-rater medical image segmentation task. Crowdsourcing methods assume that a single meta-segmentation exists, which can be obtained by combining multiple annotations. They aggregate the annotations from different experts $Y^{(i)} \in \mathbb{R}^{dK \times N}$ into one meta-segment $\bar{Y}^{(i)} \in \mathbb{R}^{dK}$ with various methods $\bar{Y}^{(i)} = \phi(Y^{(i)})$, like majority voting or STAPLE Warfield et al. (2004) as shown in **Fig. 2 (a)**. We can remark crowdsourcing methods as:

Remark 3.2 (Crowdsourcing method). The crowdsourcing method aggregates the annotations from different experts into one meta-segment with various methods $\bar{Y}^{(i)} = \phi(Y^{(i)})$. Then the meta-segment $\bar{Y}^{(i)}$ is used as the ground truth for training a single segmentation model, i.e., $\bar{Y}^{(i)} = f(\mathbf{x}^{(i)})$.

162 Since the expert annotators are not included in the training process, the crowdsourcing method is
 163 unable to generate either diverse or personalized segmentation results.

164 Generation methods aim to generate diverse segmentation results (Kohl et al., 2018). They simultaneously learn a latent space $z = \psi(\mathbf{x})$ to make the conditional distributions $p(z|\mathbf{x})$ and $p(z|\mathbf{x}, Y)$ identical as well as the mapping from the latent representation z and the image \mathbf{x} to the segmentation results as shown in **Fig. 2(b)**. Then diversified segmentation results are generated by sampling from the latent space z . We can remark generation methods as:

165 *Remark 3.3* (Generation method). Generation method learns a latent representation z as well as the
 166 mapping from the image \mathbf{x} and latent representation z to segmentation results, *i.e.*, $Y = f(\mathbf{x}, z)$.

167 Since generation methods do not consider the expert annotators, they are struggling to generate
 168 personalized segmentation results.

169 Personalization methods aim to generate personalized segmentation results mimicking the corre-
 170 sponding expert annotators. They learn a conditional segmentation by incorporating the expert an-
 171 notators into the training process as shown in **Fig. 2(c)**. We can remark the personalization method
 172 as:

173 *Remark 3.4* (Personalization method). Personalization method learns a conditional segmentation by
 174 incorporating the expert annotators into the training process, *i.e.*, $\mathbf{y}_r = f_r(\mathbf{x})$, $r \in \mathcal{R}$.

175 However, personalization methods typically hard-code expert annotators, restricting them to gen-
 176 erating personalized segmentation results that merely replicate individual annotations, without pro-
 177 ducing diverse segmentation. Moreover, these methods aim to learn a one-to-one correspondence
 178 between the input image \mathbf{x} and the expert annotation \mathbf{y}_r , ignoring variations in the annotator’s per-
 179 sonal preferences.

180 Due to the limitations of existing methods either generating diverse segmentation that lacks expert
 181 specificity or producing personalized outputs that merely replicate individual annotators. We take the
 182 variability of expert annotators and the uncertainty of ambiguous boundaries into account as shown
 183 in **Fig. 2(d)**. We reformulate multi-rater medical image segmentation as a probabilistic modeling
 184 problem that captures the joint distributions of experts, annotations, and medical images as follows:

185 **Definition 3.5** (Probabilistic modeling of multi-rater medical image segmentation). Probabilistic
 186 modeling of multi-rater medical image segmentation aims to model the joint distribution of experts,
 187 annotations, and medical images, *i.e.*, $p(Y, \mathbf{x}, \mathcal{R})$.

188 Then the diversity and personalization can be defined as follows:

189 **Definition 3.6** (Diversity). Diversity in multi-rater medical image segmentation refers to the dissim-
 190 ilarity among samples from the distribution of segmentation given the image, *i.e.*, $p(\hat{Y}|\mathbf{x})$, where \hat{Y}
 191 indicates the generated segmentation.

192 **Definition 3.7** (Personalization). Personalization in multi-rater medical image segmentation refers
 193 to the consistency between the ground truth $p(\mathbf{y}_r|X, r)$ and predicted segmentation $p(\hat{\mathbf{y}}_r|X, r)$ given
 194 the image and the specific annotation from the expert r .

202 4 METHODOLOGY

203 To model the joint distribution of experts, annotations, and medical images $p(Y, \mathbf{x}, \mathcal{R})$, we propose a
 204 probabilistic modeling framework, ProSeg, that can generate both diverse and personalized segmen-
 205 tation results for multi-rater medical image segmentation. Generally, ProSeg introduces two latent
 206 variables, $\tau = (\tau_1, \tau_2, \dots, \tau_N)$ and $Z = (z_1, z_2, \dots, z_N)$, to model the subjective variations among
 207 expert annotators and the ambiguity in medical scans, respectively. The conditional probabilistic
 208 distributions of both variables are obtained through variational inference.

211 4.1 PROBABILISTIC MODELING OF MULTI-RATER MEDICAL IMAGE SEGMENTATION

212 We model the joint distribution of experts, annotations, and medical images $p(Y, \mathbf{x}, \mathcal{R})$ as a proba-
 213 bilistic graphical model (PGM) as shown in Fig. 2(d). The PGM consists of two parts: the observed
 214 expert annotators \mathcal{R} , annotations Y , and medical images X , as well as the latent variables τ and
 215 Z . Since one image corresponds to multiple expert annotations, we introduce the latent variable τ

Figure 3: Model architecture of deep variational inference for multi-rater segmentation. ProSeg consists of image decoders $p(\mathbf{x}|z_i)$, image encoders $p(z_i|\mathbf{x})$, class embedding $q(\tau|\mathcal{R})$, classifier $p(\mathcal{R}|\tau)$, and the segmentation predictor $p(\mathbf{y}_{r_i}|\tau_i, z_i)$.

to model the subjective variations among expert annotators, which is only related to the annotations Y and the expert annotators \mathcal{R} . We also introduce the latent variable Z to model the ambiguity in medical scans, which is only related to the medical images \mathbf{x} and the annotations Y . The joint distribution $p(Y, \mathbf{x}, \mathcal{R}, \tau, Z)$ can be denoted as follows:

$$p(Y, \mathbf{x}, \mathcal{R}, \tau, Z) = p(Y, \mathbf{x}, \mathcal{R}|\tau, Z)p(\tau, Z). \quad (1)$$

The joint distribution $p(Y, \mathbf{x}, \mathcal{R})$ can be derived as the marginalization over the two latent variables, τ and Z , as follows:

$$p(Y, \mathbf{x}, \mathcal{R}) = \iint p(Y, \mathbf{x}, \mathcal{R}|\tau, Z)p(\tau, Z)d\tau dZ. \quad (2)$$

According to the chain rule of probability, we can factorize the conditional distribution $p(Y, \mathbf{x}, \mathcal{R}|\tau, Z)$ into two parts as follows:

$$p(Y, \mathbf{x}, \mathcal{R}|\tau, Z) = p(Y|\mathbf{x}, \mathcal{R}, \tau, Z)p(\mathbf{x}, \mathcal{R}|\tau, Z). \quad (3)$$

For the first part $p(Y|\mathbf{x}, \mathcal{R}, \tau, Z)$, since the annotations Y are only related to the latent variables τ and Z in our modeling, we can simplify the conditional distribution $p(Y|\mathbf{x}, \mathcal{R}, \tau, Z)$ as $p(Y|\tau, Z)$. Given the annotators \mathcal{R} are independently annotated images, we can denote the conditional distribution $p(Y|\tau, Z)$ as the product of $p(\mathbf{y}_{r_i}|\tau_i, z_i)$ as follows:

$$p(Y|\tau, Z) = \prod_{i=1}^N p(\mathbf{y}_{r_i}|\tau_i, z_i). \quad (4)$$

More details can be found in the Appendix B.2.

For the second part, $p(\mathbf{x}, \mathcal{R}|\tau, Z)$, we can further factorize the conditional distribution according to the chain rule of probability as follows:

$$p(\mathbf{x}, \mathcal{R}|\tau, Z) = p(\mathbf{x}|\mathcal{R}, \tau, Z)p(\mathcal{R}|\tau, Z). \quad (5)$$

Since the medical image \mathbf{x} is only related to the latent variables Z in our modeling, we can simplify the conditional distribution $p(\mathbf{x}|\mathcal{R}, \tau, Z)$ as $p(\mathbf{x}|Z)$. We further express $p(\mathbf{x}|Z)$ as the product of the conditional distributions, $p(\mathbf{x}|z_i)$, since one image corresponds to multiple understandings of experts and thus multiple independent annotations. Similarly, we can simplify the conditional distribution $p(\mathcal{R}|\tau, Z)$ as $p(\mathcal{R}|\tau)$, since the expert annotators \mathcal{R} are only related to the latent variable τ in our modeling. Due to the independency nature of expert annotators, we can express $p(\mathcal{R}|\tau)$ as the product of the conditional distributions, $p(r_i|\tau_i)$. Then the conditional distribution $p(\mathbf{x}, \mathcal{R}|\tau, Z)$ can be converted to:

$$p(\mathbf{x}, \mathcal{R}|\tau, Z) = \prod_{i=1}^N p(\mathbf{x}|z_i)p(r_i|\tau_i). \quad (6)$$

We have unfolded the generation process as defined in Eq. 3 by incorporating the generative distributions $p(\mathbf{x}|z_i)$, $p(\mathbf{y}_{r_i}|z_i)$, and $p(r_i|\tau_i)$. Inversely, we model the variational distribution of z_i given \mathbf{x} , denoted as $q(z_i|\mathbf{x})$, and the variational distribution of τ given \mathcal{R} , denoted as $q(\tau|\mathcal{R})$, to approximate the posterior distributions of z_i given \mathbf{x} and τ given \mathcal{R} , respectively. Since the variational

270 distributions $q(\mathbf{z}_i|\mathbf{x})$ and $q(\tau|\mathcal{R})$ are unknown, we can estimate them by the variational inference.
 271 To achieve that, we introduce a Gaussian prior for Z , *i.e.*, $p(Z) = \prod_{i=1}^N p(\mathbf{z}_i) = \prod_{i=1}^N \mathcal{N}(0, I)$,
 272 and a Dirichlet prior for τ , *i.e.*, $p(\tau) = \prod_{i=1}^N p(\tau_i) = \prod_{i=1}^N \text{Dir}(\alpha_0)$, where $\alpha_0 = \mathbf{1} \in \mathbb{R}^N$ is the
 273 concentration hyperparameter with each element to be one.
 274

275 Finally, to learn the joint distribution $p(Y, \mathbf{x}, \mathcal{R})$, we can maximize the ELBO of the evidence,
 276 $\ln p(Y, \mathbf{x}, \mathcal{R})$, which is equivalent to minimizing the negative observation log-likelihood as well
 277 as the KL divergence between the prior and posterior distributions of Z and τ as follows:
 278

$$-\mathbb{E}_{q(Z|\mathbf{x}), q(\tau|\mathcal{R})} [\ln p(Y, \mathbf{x}, \mathcal{R}|Z, \tau)] + \text{KL}(q(Z|\mathbf{x})||p(Z)) + \text{KL}(q(\tau|\mathcal{R})||p(\tau)). \quad (7)$$

280 4.2 MODEL ARCHITECTURE

281 With the probabilistic modeling of multi-rater medical image segmentation above, we refactor
 282 the problem of learning the joint distribution $p(Y, \mathbf{x}, \mathcal{R})$ into learning the distribution of $p(\mathbf{x}|\mathbf{z}_i)$,
 283 $p(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i)$, $p(\mathcal{R}|\tau)$, $q(\mathbf{z}_i|\mathbf{x})$, and $q(\tau|\mathcal{R})$. We model these probabilities with neural networks as
 284 shown in Fig. 3. The model consists of five modules, including the image encoder, image decoder,
 285 class embedding, classifier, and segmentation predictor. We infer the distributions $p(\mathbf{x}|\mathbf{z}_i)$ and $q(\mathbf{z}_i|\mathbf{x})$
 286 with the image decoders $p_{\theta_i}(\mathbf{x}|\mathbf{z}_i)$ and image encoders $q_{\phi_i}(\mathbf{z}_i|\mathbf{x})$. The distributions $p(\mathcal{R}|\tau)$ and
 287 $q(\tau|\mathcal{R})$ are learned with the class embedding $q_{\phi_\tau}(\tau|\mathcal{R})$ and classifier $p_{\theta_\tau}(\mathcal{R}|\tau)$. The distribution
 288 $p(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i)$ is estimated with the segmentation predictor $p_{\theta_Y}(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i)$. It is worth noting that we
 289 use a single segmentation predictor instead of multiple ones.

290 To train the neural networks, we minimize the loss in equation 7. For the negative log-likelihood
 291 (NLE), we can denote the loss as the reconstruction loss of image, the classification of expert annotators,
 292 and the segmentation loss as follows:
 293

$$\mathcal{L}_{\text{NLE}}(\Phi, \Theta; Y, \mathbf{x}, \mathcal{R}) = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{class}} + \mathcal{L}_{\text{seg}} = \mathbb{E}[d(\hat{\mathbf{x}}, \mathbf{x})] + \mathbb{E}[\mathcal{R} \log \hat{\mathcal{R}}] + \mathbb{E}[Y \log \hat{Y}], \quad (8)$$

294 where, $\Phi = \{\phi_1, \dots, \phi_N, \phi_\tau\}$, $\Theta = \{\theta_1, \dots, \theta_N, \theta_\tau, \theta_Y\}$, $\hat{\mathbf{x}}$, $\hat{\mathcal{R}}$, and \hat{Y} are the prediction of images,
 295 expert annotators, and annotations, respectively, and the expectations are over the variational
 296 distributions $q_{\phi_i}(\mathbf{z}_i|\mathbf{x})$ and $q_{\phi_\tau}(\tau|\mathcal{R})$. In the reconstruction loss $\mathcal{L}_{\text{recon}}$, $d(\cdot, \cdot)$ denotes the mean
 297 squared error between the predicted image and the ground truth image. The classification loss $\mathcal{L}_{\text{class}}$
 298 is the cross-entropy loss between the predicted expert annotators and the ground truth expert annotators.
 299 The segmentation loss \mathcal{L}_{seg} is the cross-entropy loss between the predicted annotations and the
 300 ground truth annotations. More details can be found in the Appendix. B.3.
 301

302 For the distance between the prior and posterior distributions of Z and τ , we can denote the loss as
 303 the following Kullback-Leibler divergence:
 304

$$\mathcal{L}_{\text{KL}}(\Phi; \mathbf{x}, \mathcal{R}) = \text{KL}(q_\Phi(Z|\mathbf{x})||p(Z)) + \text{KL}(q_{\phi_\tau}(\tau|\mathcal{R})||p(\tau))$$

305 Finally, we train our model by minimizing the empirical loss on the training dataset \mathcal{D} as follows:
 306

$$\mathcal{L}(\Phi, \Theta; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{|\mathcal{D}|} \left[\mathcal{L}_{\text{NLE}}(\Phi, \Theta; Y^{(i)}, \mathbf{x}^{(i)}, \mathcal{R}^{(i)}) + \mathcal{L}_{\text{KL}}(\Phi; \mathbf{x}^{(i)}, \mathcal{R}^{(i)}) \right]. \quad (9)$$

310 4.3 GENERATION

311 To generate the segmentation results \hat{Y} , we can sample from the latent variables Z and τ as follows:
 312

$$p(\hat{\mathbf{y}}_{r_i}|\mathbf{x}, r_i) = p_{\theta_Y}(\hat{\mathbf{y}}_{r_i}|\tau_i, \mathbf{z}_i)q_{\phi_\tau}(\tau_i|r_i)q_{\phi_i}(\mathbf{z}_i|\mathbf{x}). \quad (10)$$

313 For personalized segmentation results, we can specify the expert annotator $r \in \mathcal{R}$ to generate the
 314 corresponding segmentation results while the segmentation diversity is maintained by sampling from
 315 the latent representation $q_{\phi_i}(\mathbf{z}_i|\mathbf{x})$, which indicates the ambiguous boundaries of medical images.
 316

317 For more diverse segmentation results, we can sample from the prior distribution of τ_* , *i.e.*, $p(\tau_*) =$
 318 $\text{Dir}(\alpha_*)$, to generate the segmentation results $\hat{\mathbf{y}}$, which indicates the subjective variations among
 319 expert annotators as follows:
 320

$$p(\hat{\mathbf{y}}_*|\mathbf{x}) = p_{\theta_Y}(\hat{\mathbf{y}}_*|\tau_*, \mathbf{z}_i)p(\tau_*)q_{\phi_i}(\mathbf{z}_i|\mathbf{x}), \quad (11)$$

321 where i denotes the class of a sample τ_* and is identified with the classifier $p_{\theta_r}(\mathcal{R}|\tau_*)$. Note that,
 322 being different from the τ_i in equation 10 which is personalized by the expert r_i , the class of τ_* is
 323 uncertain, resulting in random expert annotators and thus more diverse segmentations.

324

5 EXPERIMENTS

325

5.1 SETUP

326 **Dataset.** We evaluate our ProSeg on two medical image segmentation datasets: the nasopharyngeal carcinoma (**NPC**) (Wu et al., 2024) dataset and the lung nodule dataset (**LIDC-IDRI**) (Armato III et al., 2011). **LIDC-IDRI** dataset (Armato III et al., 2011) contains 1609 Computed Tomography (CT) images of 214 subjects with lung nodules, each image is provided with four expert annotations. Although twelve expert annotators are involved in the annotation, we rank the four given annotations by their segmentation area and assign them to four virtual annotators to simulate the consistent preference of the annotators following previous works (Wu et al., 2024; Zhang et al., 2020). Then the four virtual annotators are used as the expert annotators in the experiments and their preferencea are more consistent for all the images. Finally, following Wu et al. (2024), four-fold cross-validation is conducted on the dataset, where we split the data based on the patient ID to reduce bias in results arising from the similarity between adjacent lung nodule slices. **NPC** (Wu et al., 2024) is a more challenging dataset, where the expert annotators are not assigned according to the ranking but four real radiologists, *i.e.*, the preference of the annotators is more diverse and varies. NPC contains Magnetic Resonance Imaging (MRI) images of 120 subjects with nasopharyngeal carcinoma, where each image is annotated by four different expert annotators. Since one MRI image consists of multiple slices, we split the dataset according to subjects into 80 for training, 20 for validation and 20 for testing, which results in 5817 training slices, 1398 validation slices, and 1126 testing slices. More details for data preprocessing can be found in Appendix. C.1.1

345 **Evaluation metrics.** We employ four metrics to evaluate the performance of our ProSeg, including
 346 **Generalized Energy Distance (GED)** and **soft Dice score** D_{soft} for diversity, as well as **match**
 347 **Dice score** D_{match} and **maximum Dice score** D_{max} for personalization. **GED** (Bellemare et al.,
 348 2017; Kohl et al., 2018) measures the diversity of the generated segmentation, which contains three
 349 parts: the difference between generated segments d_{pp} , the difference between generation and ground
 350 truth d_{pa} , and the difference between ground truths d_{aa} , *i.e.*, $GED = 2d_{pa} - d_{pp} - d_{aa}$. The lower
 351 GED score indicates the higher diversity of the generated segmentation. **Soft Dice score** D_{soft}
 352 (Wang et al., 2023; Ji et al., 2021) measures the consistency between the annotations and generated
 353 segmentation, which is the mean Dice score between the average annotations and average predictions
 354 over a set of thresholds. **Maximum Dice score** D_{max} measures the maximum overlap between the
 355 predicted and ground truth segmentation. In contrast, **Match Dice score** D_{match} calculates the
 356 overlap between the predicted and ground truth segmentation with a constraint of one-to-one match
 357 (Wu et al., 2024). More details can be found in Appendix. C.1.2.

358 **Compared approaches.** We mainly compare our ProSeg with generation methods (Probabilistic
 359 U-Net (Kohl et al., 2018), D-persona (stage I) (Wu et al., 2024)) and personalized methods
 360 (CM-Global (Tanno et al., 2019), CM-Pixel (Zhang et al., 2020), TAB (Liao et al., 2023), Pionono
 361 (Schmidt et al., 2023), and D-persona (stage II) (Wu et al., 2024)). Besides, we also provide the
 362 results of U-Net trained on each expert annotator’s annotations as the baseline.

363

5.2 EXPERIMENTAL RESULTS

364 First, we demonstrate the effectiveness of our ProSeg on the LIDC-IDRI dataset for both diversified
 365 and personalized medical image segmentation. Then, we conduct experiments on the more chal-
 366 lenging NPC dataset, where the preference of the expert annotators varies more, to demonstrate the
 367 effectiveness of our ProSeg in a more practical setting.

368

5.2.1 EVALUATION ON LIDC-IDRI

369 Table. 1 reports the performance of the different methods in terms of diversity, personalization,
 370 and personalized segmentation. Compared to generative methods, our ProSeg consistently achieves
 371 the best diversity performance with the lowest GED (0.1152) and the highest soft Dice score D_{soft}
 372 (91.53%), which demonstrates its ability to generate a wide range of meaningful segmentation
 373 variations that can significantly improve diversity while maintaining high-quality segmentation. In terms
 374 of personalization performance, the D_{max} of ProSeg reaches 91.03%, as it is able to effectively cap-
 375 ture expert-specific segmentation patterns in the latent space. In terms of personalized segmentation

378 Table 1: Diversity and personalization on LIDC-IDRI dataset of individually trained U-Nets (Top),
 379 generation-based models (Middle), and personalized segmentation models (Bottom). The best re-
 380 sults are highlighted in bold. #50 denotes the number of samples. I and II denote the stage.

Method	Diversity Performance		Personalization (%)		Personalized Segmentation Performance (%)				
	$GED \downarrow$	$D_{soft} \uparrow (\%)$	$D_{max} \uparrow$	$D_{match} \uparrow$	$D_{A1} \uparrow$	$D_{A2} \uparrow$	$D_{A3} \uparrow$	$D_{A4} \uparrow$	$D_{mean} \uparrow$
U-Net (A_1)	0.3062	86.59			87.80	87.47	85.49	80.67	85.36
U-Net (A_2)	0.2459	88.43			87.16	89.08	88.59	85.15	87.50
U-Net (A_3)	0.2436	88.20	N/A		85.29	88.48	89.40	87.20	87.59
U-Net (A_4)	0.2962	85.83			80.80	85.48	88.22	88.90	85.85
Prob. U-Net (#50)	0.2168	88.80	88.87	88.81					
D-Persona (I, #50)	0.1358	90.45	91.37	91.33					N/A
ProSeg (prior #50)	0.1077	91.62	91.46	91.43					
CM-Global	0.2432	88.53	87.51	87.51	86.13	88.76	88.99	86.18	87.51
CM-Pixel	0.2407	88.64	87.72	87.72	85.99	88.81	89.31	86.77	87.72
TAB	0.2322	86.35	87.11	86.08	85.00	86.35	86.77	85.77	85.97
Pionono	0.1502	90.00	90.10	88.97	87.94	89.11	89.55	88.76	88.84
D-Persona (II)	0.1444	90.31	90.38	89.17	88.54	89.50	90.03	88.60	89.17
ProSeg	0.1152	91.53	91.03	90.25	89.49	90.27	91.01	90.23	90.25

395 accuracy, ProSeg achieves state-of-the-art (SOTA) performance with the highest average dice sim-
 396 ilarity ($D_{mean} = 90.25\%$) and consistently strong performance across annotators ($D_{A1} = 89.49\%$,
 397 $D_{A2} = 90.27\%$, $D_{A3} = 91.01\%$, $D_{A4} = 90.23\%$). Besides, by sampling the prior distribution of
 398 $q(\tau)$, our ProSeg (prior) achieves a better GED score, since more expert preferences are sampled. In
 399 summary, ProSeg achieves a better balance between diversity and personalization, ensuring that the
 400 generated segments are both aligned with experts and diverse.

5.2.2 EVALUATION ON NPC

404 We evaluated ProSeg’s performance on the NPC dataset, where expert annotators’ preferences vary
 405 more and segmentation is more challenging. As shown in Table. 3, ProSeg achieves superior per-
 406 formance in both diversity and personalization compared to existing methods. Specifically, as the diver-
 407 sity performance shown in columns 2-3, ProSeg achieves the lowest GED and highest D_{soft} scores
 408 among personalization methods, with an average improvement of 20.71% and 1.79% over previous
 409 SOTA methods, respectively. For personalization performance in columns 4-5, ProSeg achieves the
 410 highest D_{max} (83.24%) and D_{match} (82.13%) scores, outperforming all other baselines.

411 Although the performance of ProSeg on GED scores is similar to that of previous SOTA generation
 412 methods, ProSeg is a better model that generates reliable and diverse segmentations for practical use,
 413 as we give the following explanations. First, ProSeg achieves the highest D_{soft} score, indicating
 414 that ProSeg generates segmentations that are consistent with the average annotations. Then, to
 415 better understand the GED score, we further analyze the d_{pp} , d_{pa} , and d_{aa} scores of ProSeg and D-
 416 Persona. We find that ProSeg outperforms D-Persona on d_{pa} (0.3482 V.S. 0.3648), which indicates
 417 that the segments generated by ProSeg match the ground truth better than D-Persona. Although
 418 ProSeg performs worse than D-Persona on d_{pp} (0.2212 V.S. 0.1830), which indicates that ProSeg
 419 generates less diverse segmentations than D-Persona. The better performance of ProSeg on d_{pa} and
 420 D_{soft} indicates that ProSeg generates reliable segmentations that closely match the ground truth.
 421 More visual results can be found at Appendix. D.3.

5.3 ABLATION STUDY

424 We perform an ablation study to analyze the
 425 contributions of the two latent space compo-
 426 nents in ProSeg. Both the latent variables τ and
 427 Z are crucial for achieving high performance in
 428 multi-rater medical image segmentation tasks
 429 as shown in Table. 2. Without the latent space
 430 τ , the performance of ProSeg drops since the
 431 subjective variations among expert annotators are not modeled. Similarly, without the latent space
 Z , the performance of ProSeg also drops since the ambiguity in medical scans is not captured.

Method	Diversity		Personalization (%)	
	$GED \downarrow$	$D_{soft} \uparrow (\%)$	$D_{max} \uparrow$	$D_{match} \uparrow$
	0.3639	80.58	79.77	79.69
✓	0.3091	82.10	81.19	80.98
	✓	0.2566	83.33	81.92
✓	✓	0.2272	84.24	82.36
				82.07

Table 2: Ablation study on two latent spaces.

432 Table 3: Diversity and personalization performance on NPC dataset of individually trained U-Nets
 433 (Top), generation-based models (Middle), and personalized segmentation models (Bottom). The
 434 best results are highlighted in bold. #50 denotes the number of samples. I and II denote the stage.

Method	Diversity Performance		Personalization (%)		Personalized Segmentation Performance (%)				
	$GED \downarrow$	$D_{soft} \uparrow (\%)$	$D_{max} \uparrow$	$D_{match} \uparrow$	$D_{A1} \uparrow$	$D_{A2} \uparrow$	$D_{A3} \uparrow$	$D_{A4} \uparrow$	$D_{mean} \uparrow$
U-Net (A_1)	0.4531	76.48			85.93	72.09	72.11	75.79	76.48
U-Net (A_2)	0.4636	77.10			79.51	77.10	74.10	74.13	76.21
U-Net (A_3)	0.5057	75.40	N/A		76.13	75.91	77.38	74.47	75.97
U-Net (A_4)	0.5606	71.17			78.79	71.05	70.80	74.33	73.74
Prob. U-Net (#50)	0.3614	80.94	82.42	79.95					
D-Persona (I, #50)	0.2133	83.24	81.52	80.25					N/A
ProSeg (prior #50)	0.2182	84.36	83.28	82.43					
CM-Global	0.3755	80.69	79.62	79.62	85.53	77.34	77.04	79.58	79.62
CM-Pixel	0.3678	80.92	79.86	79.86	85.09	77.08	77.37	79.91	79.86
TAB	0.3159	81.84	80.88	80.64	85.63	77.76	78.80	80.36	80.64
Pionono	0.3309	81.65	80.59	80.42	85.44	77.84	77.62	80.77	80.42
D-Persona (II)	0.2866	82.45	81.37	80.96	85.92	78.23	79.45	80.23	80.96
ProSeg	0.2272	84.24	82.36	82.07	87.48	79.39	80.66	80.77	82.07

6 DISCUSSION

452 **Why does ProSeg perform better? Compared to Generation-Based Methods.** Existing
 453 generation-based segmentation methods aim to generate diverse segmentation results by learning
 454 a latent space. However, they fail to capture expert-specific characteristics, leading to uncontrolled
 455 diversity that does not align with individual annotators. In contrast, ProSeg explicitly models
 456 expert variations using the latent variable τ , allowing it to generate diverse yet expert-specific seg-
 457 mentation results. **Compared to Personalization Methods.** Personalization methods can produce
 458 expert-specific segmentation results but lack diversity. These methods typically overfit individual
 459 annotations, making it difficult to capture the inherent uncertainty in medical images. ProSeg over-
 460 comes this limitation by introducing the latent variable Z , ensuring that segmentation results are
 461 both expert-aligned and diverse. **Compared to Two-Stage Methods.** Recent two-stage methods at-
 462 tempt to balance diversity and personalization by separating these objectives into two distinct phases.
 463 However, this approach lacks a cohesive probabilistic framework, leading to potential inconsis-
 464 tencies. ProSeg unifies both objectives within a single probabilistic model, achieving better synergy
 465 between diversity and personalization.

466 **Performance gap between two datasets** The performance gap is primarily caused by the variation
 467 in the personal preferences of the experts. The variation within each expert is greater on the NPC
 468 dataset than on the LIDC dataset, as evidenced by dataset statistics, which makes it hard to train
 469 a U-Net. The ProSeg improvement relative to U-Net trained individually is more pronounced on
 470 the NPC dataset than on the LIDC-IDRI dataset (3.39% V.S. 1.45%). This indicates that ProSeg is
 471 more effective in capturing expert-specific characteristics on the NPC dataset, where the personal
 472 preferences of the experts are more diverse.

7 CONCLUSION

473 To tackle the problem of multi-rater medical image segmentation, we propose a probabilistic model-
 474 ing framework, ProSeg, that generates both diverse and personalized segmentation results. ProSeg
 475 models the joint distribution of experts, annotations, and medical images using two latent variables,
 476 τ and Z , to capture expert-specific characteristics and image ambiguity. Our experiments on the
 477 LIDC-IDRI and NPC datasets demonstrate that ProSeg outperforms existing methods in terms of
 478 diversity and personalization, achieving state-of-the-art performance in multi-rater medical image
 479 segmentation. Our ablation study further confirms the importance of the latent variables τ and Z
 480 in achieving high performance. Applying ProSeg to other medical image segmentation tasks and
 481 exploring the potential of our probabilistic modeling framework in other domains are promising di-
 482 rections for future research. For the limitation, although this work can be extended to other tasks
 483 beyond medical image segmentation, this paper only focuses on medical images.

486 REPRODUCIBILITY STATEMENT
487

488 We have made extensive efforts to ensure the reproducibility of our work. Detailed dataset de-
489 scriptions are provided in App. C.1.1, training configurations and hyperparameters are reported in
490 App. C.2, and method details in App. B. Upon acceptance, we will release our models, together
491 with training and inference code, to facilitate replication and further research.

492
493 REFERENCES
494

495 Samuel G Armato III, Geoffrey McLennan, Luc Bidaut, Michael F McNitt-Gray, Charles R Meyer,
496 Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Henschke, Eric A Hoffman, et al.
497 The lung image database consortium (lidc) and image database resource initiative (idri): a com-
498 pleted reference database of lung nodules on ct scans. *Medical Physics*, 38(2):915–931, 2011.

499 Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
500 Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein gradi-
501 ents. *arXiv preprint arXiv:1705.10743*, 2017.

502 Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L Cuzzocreo, Elizabeth Magrath, Adrian Gher-
503 man, Julia Button, James Nguyen, Ferran Prados, Carole H Sudre, et al. Longitudinal multiple
504 sclerosis lesion segmentation: resource and challenge. *NeuroImage*, 148:77–102, 2017.

505 Fan Fu, Jianyong Wei, Miao Zhang, Fan Yu, Yueling Xiao, Dongdong Rong, Yi Shan, Yan Li,
506 Cheng Zhao, Fangzhou Liao, et al. Rapid vessel segmentation and reconstruction of head and
507 neck angiograms using 3d convolutional neural network. *Nature Communications*, 11(1):4829,
508 2020.

509 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
510 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
511 PMLR, 2016.

512 Shangqi Gao and Xiahai Zhuang. Bayesian image super-resolution with deep modeling of image
513 statistics. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(2):1405–1423,
514 2022.

515 Shangqi Gao, Hangqi Zhou, Yibo Gao, and Xiahai Zhuang. Bayeseg: Bayesian modeling for med-
516 ical image segmentation with interpretable generalizability. *Medical Image Analysis*, 89:102889,
517 2023.

518 Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Land-
519 man, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation.
520 In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 574–
521 584. IEEE, 2022.

522 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnun-
523 et: a self-configuring method for deep learning-based biomedical image segmentation. *Nature
524 Methods*, 18(2):203–211, 2021.

525 Wei Ji, Shuang Yu, Junde Wu, Kai Ma, Cheng Bian, Qi Bi, Jingjing Li, Hanruo Liu, Li Cheng, and
526 Yefeng Zheng. Learning calibrated medical image segmentation via multi-rater agreement mod-
527 eling. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
528 pp. 12341–12351. IEEE, 2021.

529 Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

530 Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R Ledsam,
531 Klaus Maier-Hein, SM Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A probabilistic
532 u-net for segmentation of ambiguous images. *Advances in neural information processing systems*,
533 31, 2018.

534 Rongjian Li, Tao Zeng, Hanchuan Peng, and Shuiwang Ji. Deep learning segmentation of optical
535 microscopy images improves 3-d neuron reconstruction. *IEEE transactions on medical imaging*,
536 36(7):1533–1541, 2017.

540 Zehui Liao, Shishuai Hu, Yutong Xie, and Yong Xia. Transformer-based annotation bias-aware medical image segmentation. In *International conference on medical image computing and computer-assisted intervention*, pp. 24–34. Springer, 2023.

541

542

543 Xiangde Luo, Wenjun Liao, Yuan He, Fan Tang, Mengwan Wu, Yuanyuan Shen, Hui Huang, Tao Song, Kang Li, Shichuan Zhang, et al. Deep learning-based accurate delineation of primary gross tumor volume of nasopharyngeal carcinoma on heterogeneous magnetic resonance imaging: A large-scale and multi-center study. *Radiotherapy and Oncology*, 180:109480, 2023.

544

545

546

547

548 Thibault Marin, Yue Zhuo, Rita Maria Lahoud, Fei Tian, Xiaoyue Ma, Fangxu Xing, Maryam Motabbed, Xiaofeng Liu, Kira Grogg, Nadya Shusharina, et al. Deep learning-based gtv contouring modeling inter-and intra-observer variability in sarcomas. *Radiotherapy and Oncology*, 167:269–276, 2022.

549

550

551

552 Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, et al. The multimodal brain tumor image segmentation benchmark (brats). *IEEE transactions on medical imaging*, 34(10):1993–2024, 2014.

553

554

555

556 Aimon Rahman, Jeya Maria Jose Valanarasu, Ilker Hacihaliloglu, and Vishal M Patel. Ambiguous medical image segmentation using diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11536–11546, 2023.

557

558

559

560 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *International conference on machine learning*, pp. 1278–1286. PMLR, 2014.

561

562

563 Arne Schmidt, Pablo Morales-Alvarez, and Rafael Molina. Probabilistic modeling of inter-and intra-observer variability in medical image segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 21097–21106. IEEE, 2023.

564

565

566 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):148–175, 2015.

567

568

569

570 Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C Alexander, and Nathan Silberman. Learning from noisy labels by regularized estimation of annotator confusion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11244–11253. IEEE, 2019.

571

572

573

574 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

575

576

577 Lin Wang, Xiufen Ye, Lie Ju, Wanji He, Donghao Zhang, Xin Wang, Yelin Huang, Wei Feng, Kaimin Song, and Zongyuan Ge. Medical matting: Medical image segmentation with uncertainty from the matting perspective. *Computers in Biology and Medicine*, 158:106714, 2023.

578

579

580 Simon K Warfield, Kelly H Zou, and William M Wells. Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. *IEEE transactions on medical imaging*, 23(7):903–921, 2004.

581

582

583 Yicheng Wu, Zongyuan Ge, Donghao Zhang, Minfeng Xu, Lei Zhang, Yong Xia, and Jianfei Cai. Mutual consistency learning for semi-supervised medical image segmentation. *Medical Image Analysis*, 81:102530, 2022.

584

585

586 Yicheng Wu, Zhonghua Wu, Hengcan Shi, Bjoern Picker, Winston Chong, and Jianfei Cai. Coact-seg: Learning from heterogeneous data for new multiple sclerosis lesion segmentation. In *International conference on medical image computing and computer-assisted intervention*, pp. 3–13. Springer, 2023.

587

588

589

590 Yicheng Wu, Xiangde Luo, Zhe Xu, Xiaoqing Guo, Lie Ju, Zongyuan Ge, Wenjun Liao, and Jianfei Cai. Diversified and personalized multi-rater medical image segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11470–11479. IEEE, 2024.

594 Le Zhang, Ryutaro Tanno, Mou-Cheng Xu, Chen Jin, Joseph Jacob, Olga Cicarrelli, Frederik
 595 Barkhof, and Daniel Alexander. Disentangling human error from ground truth in segmentation of
 596 medical images. *Advances in Neural Information Processing Systems*, 33:15750–15762, 2020.
 597

598 **A APPENDIX**

600 **B METHOD DETAILS**

601 **B.1 NOTATIONS**

605 Table 4: Summary of mathematical notions and corresponding notations.

Notation	Notion
Lowercase letter	Scalar (e.g., a)
Bold lowercase letter	Vector (e.g., \mathbf{a})
Capital letter	Matrix (e.g., A)
$\mathbf{x}, \hat{\mathbf{x}} \in \mathbb{R}^{h \times w}$	Image, Generated Image
$\mathbf{y}_r, \hat{\mathbf{y}}_r \in \mathbb{R}^{d \times K}$	Expert-specific ground-truth annotation; predicted annotation
$Y, \hat{Y} \in \mathbb{R}^{d \times K \times N}$	Multi-rater ensemble annotations; Generated annotations
$\tau \in \mathbb{R}^{B \times N \times 1 \times 1}$	Latent variable for modeling subjective variants among experts
$z \in \mathbb{R}^{B \times C \times d}$	Latent variable for ambiguity of medical images
$\mathcal{L}(\cdot); \mathcal{L}_{\text{NLE}}(\cdot); \mathcal{L}_{\text{KL}}(\cdot)$	Expected loss; negative log-likelihood loss; KL loss
$p(\cdot \cdot), p_{\theta}(\cdot \cdot)$	Posterior distribution, parameterized by θ
$q(\cdot \cdot), q_{\phi}(\cdot \cdot)$	Variational distribution, parameterized by ϕ
$p(\mathbf{x} z_i); q(z_i \mathbf{x})$	Distributions w.r.t. Images decoders;encoders
$p(\mathcal{R} \tau); q(\tau \mathcal{R})$	Distributions w.r.t. class embedding; classifier
$p(\mathbf{y}_{r_i} \tau_i, z_i)$	Distributions w.r.t. segmentation predictor
$\mathcal{N}(0, I); \text{Dir}(\alpha_0)$	Gaussian Distribution; Dirichlet distribution parameterized by α_0
$\mathcal{D}; \mathcal{D} $	Dataset, the size of a dataset
$\Phi; \Theta$	The sets of DNN parameters
$h \times w \rightarrow d; r$	Image size; expert variable

624 We also provide a notation table for a more clear understanding of our methods as shown in Table. 4.

625 **B.2 DERIVATION OF EQ. 4**

626 The Eq. 4 in the main text as follows is derived based on: (1) The chain rule of probability. (2)
 627 Conditional independence: Y_i depends only on Z_i and τ_i . (3) Mixture model structure, where τ_i
 628 acts as a latent selection variable.

$$632 p(Y|\mathbf{x}, \mathcal{R}, \tau, Z) = \prod_{i=1}^N p(\mathbf{y}_{r_i}|\tau_i, z_i).$$

633 1. The chain rule of probability: from the chain rule, we can write the joint conditional prob-
 634 ability of Y given τ and Z as Eq. 12. Since each \mathbf{y}_{r_i} is conditionally independent given z_i
 635 and τ_i , we can factorize the joint distribution as Eq. 13.

$$636 p(Y|\tau, Z) = p(\mathbf{y}_{r_1}, \mathbf{y}_{r_2}, \dots, \mathbf{y}_{r_N}|\tau, Z) \quad (12)$$

$$641 p(Y|\tau, Z) = \prod_{i=1}^N p(\mathbf{y}_{r_i}|Z, \tau) \quad (13)$$

642 2. Local Markov Assumption: To further simplify the factorization, we assume that each \mathbf{y}_i
 643 only depends on its local variables z_i and τ_i as Eq. 14. This is a common assumption in
 644 mixture models, where each data point is generated from a single component of the mixture.
 645 Thus, applying this to the previous equation, we get Eq. 15.

$$646 p(\mathbf{y}_i|Z, \tau) = p(\mathbf{y}_i|z_i, \tau_i) \quad (14)$$

648
649
650
651
652
653
654
655

$$p(Y|\tau, Z) = \prod_{i=1}^N p(\mathbf{y}_{r_i}|\mathbf{z}_i, \tau_i) \quad (15)$$

B.3 NEGATIVE LOG-LIKELIHOOD

The negative log-likelihood (NLL) is defined as the sum of the reconstruction loss of the image, the classification of the expert annotators, and the segmentation loss as follows:

656 $\mathcal{L}_{\text{NLL}}(\Phi, \Theta; Y, \mathbf{x}, \mathcal{R}) = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{class}} + \mathcal{L}_{\text{seg}} = \mathbb{E}[d(\hat{\mathbf{x}}, \mathbf{x})] + \mathbb{E}[\mathcal{R} \log \hat{\mathcal{R}}] + \mathbb{E}[Y \log \hat{Y}], \quad (16)$
657

658 where, $\Phi = \{\phi_1, \dots, \phi_N, \phi_\tau\}$, $\Theta = \{\theta_1, \dots, \theta_N, \theta_\tau, \theta_Y\}$, $\hat{\mathbf{x}}$, $\hat{\mathcal{R}}$, and \hat{Y} are the prediction of images, expert annotators, and annotations, respectively, and the expectations are over the variational distributions $q_{\phi_i}(\mathbf{z}_i|\mathbf{x})$ and $q_{\phi_\tau}(\tau|\mathcal{R})$. In the reconstruction loss $\mathcal{L}_{\text{recon}}$, $d(\cdot, \cdot)$ denotes the mean squared error between the predicted image and the ground truth image. The classification loss $\mathcal{L}_{\text{class}}$ is the cross-entropy loss between the predicted expert annotators and the ground truth expert annotators. The segmentation loss \mathcal{L}_{seg} is the cross-entropy loss between the predicted annotations and the ground truth annotations.

659 Here we give a detailed explanation of the NLL loss in Eq. 8. The $p(Y, \mathbf{x}, \mathcal{R}|Z, \tau)$ is the joint
660 distribution of the annotations, images, and expert annotators given the latent variables Z and τ . We
661 can factorize the joint distribution as follows:

662 $p(Y, \mathbf{x}, \mathcal{R}|Z, \tau) = p(Y|Z, \tau)p(\mathbf{x}|Z)p(\mathcal{R}|\tau) \quad (17)$
663

664 $= \prod_{i=1}^N p(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i) \prod_{i=1}^N p(\mathbf{x}|\mathbf{z}_i)p(r_i|\tau_i) \quad (18)$
665

666 Taking the logarithm and negating it, we have:

667 $-\ln p(Y, \mathbf{x}, \mathcal{R}|Z, \tau) = -\sum_{i=1}^N \ln p(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i) - \sum_{i=1}^N \ln p(\mathbf{x}|\mathbf{z}_i) - \sum_{i=1}^N \ln p(r_i|\tau_i). \quad (19)$
668

669 where $p(\mathbf{x}|\mathbf{z}_i)$ corresponds to the reconstruction loss $\mathcal{L}_{\text{recon}}$, which measures the error between the
670 predicted image $\hat{\mathbf{x}}$ and the real image \mathbf{x} . $p(\mathbf{y}_{r_i}|\tau_i, \mathbf{z}_i)$ Corresponds to segmentation loss \mathcal{L}_{seg} , which
671 measures the error between the predicted segmentation \hat{Y} and the real segmentation Y . $p(r_i|\tau_i)$
672 corresponds to the classification loss $\mathcal{L}_{\text{class}}$, which measures the error between the predicted expert
673 labeling $\hat{\mathcal{R}}$ and the real expert labeling \mathcal{R} . Finally, we have the NLL loss as Eq. 8.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

C.1.1 DATASET

689 The input images from both the NPC and LIDC-IDRI datasets are center-cropped to a fixed size of
690 128×128 . For NPC, we apply normalization to achieve zero mean and unit variance. To enhance
691 training diversity, random flips, rotations, and noise perturbations are introduced as augmentation
692 techniques. For LIDC-IDRI, we adopt the preprocessing strategy proposed by Wang et al. (2023)
693 and employ standard flip and rotation operations for data augmentation.

694 The distribution of the rank of the annotations in the NPC datasets is shown in Fig. 4. The rank dis-
695 tribution of the NPC dataset is more diverse than that of the LIDC-IDRI dataset, which indicates that
696 the NPC dataset is more challenging due to the diverse preferences of expert annotators, especially
697 in the test dataset. For the LIDC-IDRI dataset, the rank distribution is consistent since we assign
698 four virtual annotators according to the annotation area rank.

699 We also calculated the similarity of the annotations in the NPC test dataset between the expert
700 annotators as shown in Table. 5. The distance is calculated by averaging the (1-IoU) over all slices.
701 The distance matrix shows that the expert annotators have diverse preferences, which is consistent
702 with the rank distribution in Fig. 4.

Table 5: Distance matrix of expert annotations in the NPC test dataset.

	Expert 1	Expert 2	Expert 3	Expert 4
Expert 1	0.0000	0.6686	0.6696	0.6388
Expert 2	0.6686	0.0000	0.6449	0.6650
Expert 3	0.6696	0.6449	0.0000	0.6663
Expert 4	0.6388	0.6650	0.6663	0.0000

Figure 4: Expert annotator rank distribution of test (second row) and train (first row) datasets, where rank is obtained according to their annotation area.

C.1.2 METRICS

Experimental Metrics The four metrics used in the experiments are defined as follows:

- Generalized Energy Distance (*GED*) Bellemare et al. (2017); Kohl et al. (2018) as Eq. 20: *GED* is used to measure the prediction diversity. A lower *GED* indicates greater dispersion and variability in the segmentation results.

$$GED = \frac{2}{|Y||\hat{Y}|} \sum_{y \in Y} \sum_{\hat{y} \in \hat{Y}} [d(y, \hat{y})] - \frac{1}{|\hat{Y}||\hat{Y}|} \sum_{\hat{y} \in \hat{Y}} \sum_{\hat{y}' \in \hat{Y}} [d(\hat{y}, \hat{y}')] - \frac{1}{|Y||Y|} \sum_{y \in Y} \sum_{y' \in Y} [d(y, y')] \quad (20)$$

where Y and \hat{Y} are the annotations and predicted segments, respectively. d denotes the distance function $d(a, b) = 1 - IoU(a, b)$. $|\cdot|$ indicates the number of elements in the set.

- Soft Dice Score (D_{soft}) Wang et al. (2023); Ji et al. (2021): D_{soft} is used to evaluate the differences between the soft predictions and soft annotations. It is calculated by averaging the Dice scores over multiple thresholds as Eq. 21:

$$D_{soft} = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} Dice([\mathbf{y}_{soft} > \gamma_i], [\hat{\mathbf{y}}_{soft} > \gamma_i]), \quad (21)$$

where γ is a threshold selected from the set $\{0.1, 0.3, 0.5, 0.7, 0.9\}$ with $T = 5$, $\mathbf{y}_{soft} = \frac{1}{|Y_i|} \sum_{y \in Y_i} \mathbf{y}$, and $\hat{\mathbf{y}}_{soft} = \frac{1}{|\hat{Y}_i|} \sum_{\hat{y} \in \hat{Y}_i} \hat{\mathbf{y}}$

- Following Wu et al. (2024), Dice Max (D_{max}) and Dice Match (D_{match}): D_{max} quantifies the optimal overlap between Y and \hat{Y} , while D_{match} further takes the one-to-one match from prediction to the expert annotator into account. Here, we give an example from Wu et al. (2024) to explain the two metrics. As shown in Fig. 5, D_{max} averages the maximum scores of individual columns, while D_{match} further constrains a one-to-one matching between the prediction and annotation sets. Here, $D_{max} = \{0.832, 0.842, 0.861, 0.863\}$ and $D_{match} = \{0.832, 0.842, 0.841, 0.863\}$.

	Annotations			
	r_1	r_2	r_3	r_4
Predictions	0.811	0.801	<u>0.841</u>	0.831
	0.821	0.823	0.801	0.811
	0.832	0.836	0.861	0.841
	0.826	0.822	0.819	0.863
	0.828	0.842	0.812	0.810

Figure 5: Example of D_{max} and D_{match} calculation in a given 4×5 Dice matrix.

Random distance to two experts We define the distance between experts as the IoU distance as follows:

$$d_{IoU}(S_1, S_2) = 1 - \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} \quad (22)$$

where $|S_1 \cap S_2|$ is the area of the intersection of S_1 and S_2 , and $|S_1 \cup S_2|$ is the area of the union of S_1 and S_2 . In Figure 1, we calculated the distance to two random experts for each slice in the NPC test dataset. The distance is calculated by averaging the (1-IoU) over all slices. For personalization methods, we take the four predictions from each expert. For the generation methods, we randomly take four experts as the determined experts. In one generation, we randomly select two experts and calculate the distance to them.

C.2 MODEL DETAILS

We implement our ProSeg using PyTorch and all our experiments are conducted on a computing cluster with 8 GPUs of NVIDIA GeForce RTX 4090 24GB and CPUs of AMD EPYC 7763 64-Core of 3.52GHz. All the inferences are conducted on a single GPU of NVIDIA GeForce RTX 4090 24GB. The image encoder and decoder are implemented with a U-Net architecture, while the class embedding and classifier are implemented with a fully connected neural network. The segmentation predictor is implemented with a convolutional neural network. The model is trained with the Adam optimizer with a learning rate of $1e - 4$ and a batch size of 12. The model is trained for 100 epochs with early stopping based on the validation loss. The latent space Z and τ are set to $128 * 128$ and 8, respectively. The concentration parameter α is set to 1.0. The model is trained with the negative log-likelihood loss and the Kullback-Leibler divergence loss. The model is evaluated on the test dataset with the metrics described in the previous section.

C.3 RESOURCE REQUIREMENTS

We have included a detailed comparison of computational complexity and training efficiency in the table below. As shown, **ProSeg** achieves a good balance in memory usage and inference/training time compared to other methods. This demonstrates its practicality for deployment in real-world scenarios.

Method	Train Memory (MB)	Train Time (s)	Infer Memory (MB)	Infer Time (s)
CM-Global	402.06	10.39	201.41	0.23
CM-Pixel	404.16	15.52	201.74	0.26
Pionono	410.71	25.11	202.42	1.07
D-Persona (I)	471.22	22.75	916.54	2.57
D-Persona (II)	407.29	19.95	241.91	0.99
ProSeg	411.32	17.51	202.42	1.05

Table 6: Comparison of training and inference efficiency across different methods.

810 D ADDITIONAL RESULTS 811

812 We provide more quantitative and visual results here for a better explanation of the performance
813 comparison.
814

815 Table 7: Performance of U-Net models on the NPC test dataset.
816

817 Model	$D_{A1} \uparrow$	$D_{A2} \uparrow$	$D_{A3} \uparrow$	$D_{A4} \uparrow$	$D_{mean} \uparrow$
818 U-Net (A_1)	85.93	72.09	72.11	75.79	76.48
819 U-Net (A_2)	79.51	77.10	74.10	74.13	76.21
820 U-Net (A_3)	76.13	75.91	77.38	74.47	75.97
821 U-Net (A_4)	78.79	71.05	70.80	74.33	73.74

822 Table 8: Distance of experts in the NPC test dataset.
823

	A_1	A_2	A_3	A_4
A_1	0.0000	0.6686	0.6696	0.6388
A_2	0.6686	0.0000	0.6449	0.6650
A_3	0.6696	0.6449	0.0000	0.6663
A_4	0.6388	0.6650	0.6663	0.0000

830 D.1 RESULTS DETAILS 831

832 **Performance of U-Net trained on each expert annotator’s annotations.** We provide the per-
833 formance of U-Net trained on each expert annotator’s annotations as the baseline. The results are
834 shown in Table. 3. Here, we give an explanation for their performance variations. We have two
835 findings by comparing their performance and distance as shown in Table. 8:
836

- 837 1. The distance between expert annotations is consistent with the learned U-Net (each col-
838 umn). When the distance between the annotations of two experts is closer, their perfor-
839 mance is more similar on one test set. For the test set of expert A_3 , A_4 is more different
840 with A_3 than A_2 (0.6663(A_4) V.S. 0.6449(A_2)). Therefore, the U-Net trained on A_2 per-
841 forms better than that trained on A_4 on the test set of A_3 (70.80(A_4) V.S. 74.10(A_2)).
842
- 843 2. Training a U-Net to segment small target is harder than big targets. As shown in Table. 4,
844 the segmentation area of A_4 is smaller than the others, thus it performs much worse than
845 the others.
846

847 Table 9: Decomposed GED , including d_{pp} , d_{pa} , and d_{aa} .
848

849 Method	$GED \downarrow$	$d_{pp} \uparrow$	$d_{pa} \downarrow$	$d_{aa} (Constant)$
850 Prob. U-Net	0.3614	0.0075	0.3320	0.2951
851 D-Persona (I)	0.2133	0.2212	0.3648	0.2951
852 ProSeg (prior)	0.2182	0.1865	0.3499	0.2951
853 CM-Global	0.3755	0.0000	0.3353	0.2951
854 CM-Pixel	0.3678	0.0000	0.3314	0.2951
855 TAB	0.3159	0.0578	0.3344	0.2951
856 Pionono	0.3309	0.0317	0.3289	0.2951
857 D-Persona (II)	0.2866	0.0913	0.3365	0.2951
858 ProSeg	0.2272	0.1739	0.3482	0.2951

859 D.2 QUANTITATIVE RESULTS 860

861 **GED score comparison.** For a better understanding of the GED score of all methods, we provide
862 the decomposed GED score of all methods in Table. 3. The GED score is decomposed into d_{pp} ,
863 d_{pa} , and d_{aa} , which indicates the diversity of the generated segmentations, the difference between
864 the generated segmentations and the ground truth, and the difference between the ground truths,

864 respectively. As shown in Table 9. GED balances the diversity of the generated segmentations and
 865 the consistency with the ground truth. ProSeg achieves the highest d_{pp} score among personalization
 866 methods, which indicates that ProSeg generates diverse segmentations. Although ProSeg performs
 867 worse than previous personalization methods on d_{pa} , there is only a small difference. Both the
 868 high d_{pp} score and relatively low d_{pa} scores indicate that ProSeg generates both diverse and reliable
 869 segmentations.

870
 871 **statistical significance testing** Compared to D-Persona(II) on NPC dataset, ProSeg obtained bet-
 872 ter performance on all the metrics, especially significantly better on GED ($p=1e-6$), D_{soft} ($p=1e-5$),
 873 D_{max} ($p=0.026$), D_{match} ($p=0.006$), D_{A1} ($p=0.044$), and D_{mean} ($p=0.006$) with $p < 0.05$. On the
 874 LIDC-IDRI dataset, ProSeg also obtained better performance on all the metrics, especially signifi-
 875 cantly better on GED ($p=5e-6$), D_{soft} ($p=0.036$), D_{match} ($p=0.046$), and D_{A4} ($p=0.021$) with p
 876 < 0.05. Compared to the other methods, i.e., Pionono, TAB, CM-Pixel, and CM-Global, ProSeg
 877 achieved better performance on all the metrics ($p < 0.05$).

878 D.3 VISUAL RESULTS

895 Figure 6: Class embedding distribution

896
 897 **Dirichlet distribution of Expert.** We randomly sample 300 samples from the posterior distribution
 898 of $p(\tau|r)$ for each expert. Then we use tsne (Van der Maaten & Hinton, 2008) to project the
 899 8-dimension sample into 2-dimension for visualization as shown in Fig. 6. The class embedding of
 900 ProSeg trained on both datasets can be identified clearly, which indicates that the experts are dif-
 901 ferent with respect to their preferences. Since some of the preferences of these experts are similar,
 902 some of the embeddings are mixed. By comparing Fig 6a with Fig. 6b. We have the following find-
 903 ings: (1) The width of distribution on the LIDC dataset is larger than that on the NPC dataset, which
 904 indicates that the ProSeg trained on the LIDC dataset can generate more diverse segmentation. (2)
 905 The diversity is also demonstrated in Table. 1 and Table. 3, where the GED score for ProSeg trained
 906 on LIDC dataset is 0.1152, while on NPC dataset is 0.2272. (3) the distribution of each class for
 907 NPC is more centralized. This is because the expert annotator in the NPC dataset is the real expert,
 908 while the expert annotators in the LIDC dataset are virtual experts, which is obtained by assigning
 909 12 real experts to 4 virtual experts by their segmentation area ranking for each image. In addition,
 910 the four categories in the NPC dataset are relatively closer because their preferences overlap.

911
 912 **Distance to two random experts.** For a clearer understanding of the distance between two random
 913 experts, we provide more visual results as shown in Fig. 7. The results are (a) the average distance
 914 to two random experts for each objective in the NPC test dataset of all methods (b) the distance to
 915 two random experts for each objective in the NPC test dataset of generation methods, and (c) the
 916 distance to two random experts for each objective in the NPC test dataset of personalization method.
 917 Fig. 7(a) shows that our ProSeg is best in diversity and personalization. Fig. 7(b) shows that the prior
 918 sampling of our ProSeg is better than other generation methods. Fig. 7(c) shows that ProSeg is better

918 than other personalization methods. All these results indicate that ProSeg is the closest method to
 919 the gold standard.
 920

Figure 7: Performance on multi-rater medical image segmentation

938 **Distance between two experts.** For each pair of experts, we also calculate their distance. The
 939 distribution is shown in Fig. 8. The distance distribution of the Gold standard and our ProSeg are
 940 the most similar. By sampling the prior distribution of $p(\tau)$, i.e., ProSeg (prior), the width of the
 941 distance distribution is greater than ProSeg. Compared with other methods, the distance distribution
 942 of our ProSeg is most similar to the Gold standard.

Figure 8: Distribution of pair distance between two experts.

955 **Visual comparison of segmentation results.** We provide visual comparisons of the segmentation
 956 results of all methods on the NPC dataset in Fig. 9 and Fig. 10, where different colors indicate the
 957 segmentation is obtained by different expert annotators. The segmentation results of ProSeg are
 958 more diverse and personalized than those of other methods. The segmentation results of ProSeg are
 959 more consistent with the ground truth while maintaining diversity among the generated segmentations.
 960 The results demonstrate that ProSeg effectively captures expert-specific characteristics and
 961 generates diverse segmentation results. For some methods, the segmentation from all the experts
 962 is the same, which means the diversity is poor. In Fig. 6b, the second row shows the segmentation
 963 from our ProSeg, the third row shows the segmentation from the DPpersonal (stage 1) and the
 964 fourth row shows the segmentation from the DPpersonal (stage 2). For the second image, in the gold
 965 standard, three experts give segmentation containing two separate parts. Our ProSeg captures the
 966 character, while other models can hardly capture this difference, and generation methods can not tell
 967 which expert gives the two-part segmentation as shown in the figure that the color of the two-part
 968 segmentation is different from the Gold standard.

1010
1011 Figure 9: Visual results of segmentation on NPC dataset. Each row from the top to bottom indicates
1012 the Gold standard, ProSeg, DPersona (stage 1), DPersona (stage 2), and CM global.
1013

1014 E THE USE OF LARGE LANGUAGE MODELS (LLMs)

1015 We use LLMs (GPT-5.0 and Gemini 2.5 pro) to polish our writing and check our grammar only.
1016

1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072 Figure 10: Visual results of segmentation on NPC dataset. Each row from the top to bottom indicates
1073 the Gold standard, CM pixel, Pionono, Probabilistic U-Net, and TAB.
1074
1075
1076
1077
1078
1079

Figure 11: Visual results of segmentation on LIDC-IDRI dataset. Each row from the top to bottom indicates the Gold standard, ProSeg, ProSeg (prior), CM global, and CM pixel.

Figure 12: Visual results of segmentation on LIDC-IDRI dataset. Each row from the top to bottom indicates the Gold standard, ProSeg, Prob. U-Net, DProna (stage 1), and DProna (stage 2).