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Abstract

Obtaining uncertainty estimates for deep neural network predictions is a particularly in-
teresting problem for safety-critical applications. In addition, uncertainty estimation for
compressed neural networks is a problem that is well-suited to real-world applications. At
the same time, the combination of uncertainty estimation with parameter pruning is far
from being well understood. In this work, we present a study on the influence of parameter
pruning on the uncertainty estimation of a deep neural network for image classification.
We compress two popular image classification networks with five pruning approaches and
investigate the uncertainty estimation next to the standard accuracy metric after pruning.
To measure the uncertainty performance, we propose a new version of the Area Under the
Sparsification Error (AUSE) for image classification and additionally evaluate using the
excepted calibration error (ECE). We study the influence of pruning on the standard uncer-
tainty estimation methods maximum softmax probability, Monte Carlo dropout, and deep
ensembles using two datasets, namely CIFAR-100 and ImageNet. The analysis shows that
pruning affects, besides the class prediction, also the uncertainty estimation performance of
a neural network in a negative manner. In general, the uncertainty estimation performance
decreases with an increasing pruning sparsity, similar to the class prediction. Noticeably, in
some special cases, the pruning can improve the neural network’s uncertainty estimation.
Our code will be published after acceptance.

1 Introduction

Deep neural networks have made significant progress in computer vision (He et al., 2016; Rudolph et al.,
2022; Simonyan & Zisserman, 2015; Bouazizi et al., 2022). Additionally, their execution time remains low,
thanks to model compression, making them suitable for real-world applications. However, the deployment
of such algorithms in safety-critical applications, such as automated driving (Hawke et al., 2020; Wiederer
et al., 2020), robotics (Jang et al., 2022), and medical image analysis (Dawoud et al., 2021), raises questions
regarding the lack of reliability measures for the predictions. In particular, uncertainty measures enable
the removal of erroneous model predictions, but most current state-of-the-art approaches only provide the
prediction. Importantly, the impact of model compression on uncertainty estimates has rarely been explored
in the past.

Two common methods for compressing neural networks are parameter pruning and parameter quantization.
Parameter pruning, reduces the number of the neural network parameters by eliminating redundant and
insignificant ones, results in decreased hardware requirements (Li et al., 2017; Liu et al., 2017; Lin et al.,
2020; Ding et al., 2021). Parameter quantization decreases the bit-width of the model’s weights to enable
efficient inference (Défossez et al., 2022). Although previous research (Ferianc et al., 2021) has addressed
the impact of quantization on uncertainty estimation, no study has yet examined this issue in the context
of parameter pruning. While, the pruning effect on the model’s predictive performance is well-studied in
the community (Li et al., 2017; Lin et al., 2020; Ding et al., 2021) and even the increased robustness of
the pruned neural network is proven in literature (Li et al., 2023), the effect of pruning on the uncertainty
estimates remains unexplored.
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Our work investigates the effect of parameter pruning on uncertainty estimation. We consider the task
of image recognition with deep neural networks that additionally provide uncertainty estimates. Several
parameter pruning approaches are combined with different uncertainty estimation techniques. We then eval-
uate not only the predictive class output, but also the uncertainty measures. We perform our extensive
evaluation on two image classification benchmarks, namely the CIFAR-100 (Krizhevsky et al., 2009) and the
large-scale dataset ImageNet (Deng et al., 2009), using different standard neural network architectures. In
particular, the models are pruned using random pruning, L1 pruning (Li et al., 2017), Batch Normalization
pruning (Liu et al., 2017), HRank pruning (Lin et al., 2020), and ResRep pruning (Ding et al., 2021). In
addition, we explore the impact of pruning on the uncertainty performance of maximum softmax probability
(MSP) (Hendrycks & Gimpel, 2017), bootstrapped ensembles (Lakshminarayanan et al., 2017), and Monte
Carlo (MC) dropout (Gal & Ghahramani, 2015). We introduce the Area Under the Sparsification Error
(AUSE) metric, based on optical flow metric (Ilg et al., 2018) to quantify the uncertainty performance. Next
to the proposed evaluation with the AUSE metric, the excepted calibration error (ECE) (Naeini et al., 2015)
is used as a standard metric to evaluate classification problems. The experiments prove that pruning a
neural network not only affects its class prediction but also negatively impacts the uncertainty estimation.
In general, with an increasing pruning sparsity, both the uncertainty estimation and class prediction perfor-
mance of the neural network decrease. However, there are some cases where pruning can improve the neural
network’s uncertainty estimation performance.

Our study makes three main contributions. First, we investigate the impact of pruning on uncertainty
prediction in deep neural networks, a problem that has not yet been explored. To this end, we provide
a comprehensive analysis of two common neural network architectures, five pruning techniques, and three
uncertainty estimation methods on two image classification datasets. Secondly, we present the Area Under the
Sparsification Error (AUSE) metric as an uncertainty measure for image classification to quantify uncertainty
prediction. We evaluate the capability of the pruned models to predict uncertainties using the introduced
metric. Thirdly, the exploration of the excepted calibration error (ECE) and the AUSE indicates that pruning
may enhance the calibration and uncertainty estimation of the neural network, depending on the architecture
and uncertainty estimation approach. In hindsight, we formulate our claim that model pruning affects the
model performance along with the uncertainty estimation. We validate our claims with our experimental
analysis, provided in Section 6 of this paper.

2 Related Work

2.1 Parameter Pruning

Parameter pruning removes unimportant or redundant parameters of a neural network to lower resource
consumption during inference. A distinction is made between unstructured pruning methods, which remove
individual weights (Han et al., 2015) or groups of weights (Wen et al., 2016) and structured pruning methods
that discard entire network channels (Liu et al., 2017; Lin et al., 2020; Liu et al., 2021). We focus on structured
pruning because unstructured pruning leads to sparse weights, and the execution of sparse weights requires
special hardware and software. Simple pruning approaches rely only on the network’s internal knowledge
and use the L1-norm of the model parameters (Li et al., 2017) or the Batch Normalization (Ioffe & Szegedy,
2015) parameters (Liu et al., 2017; 2021) to measure the channel’s importance. Liu et al. (Liu et al., 2017)
determine the channels to prune with the Batch Normalization’s scaling weights, and GFBS (Liu et al., 2021)
expands this by using the Batch Normalization weights together with a Taylor expansion. Instead of the
Taylor expansion, You et al. (You et al., 2022) use a spline interpretation of the neural network to define the
parameters to prune. At the same time, other methods rely not only on internal knowledge but also consider
the input data’s effect (Lin et al., 2020; Duan et al., 2022). Lin et al. (Lin et al., 2020) use the matrix rank of
the activation’s output feature maps to determine the channel’s importance. Due to the parameter reduction,
some knowledge gets lost during pruning which can be recovered with fine-tuning. In some approaches, all
parameters are pruned at once, and at the end, one fine-tuning step is performed (Li et al., 2017; Liu
et al., 2017), or the network is pruned layer-wise with intermediate fine-tuning steps (Lin et al., 2020). To
prevent knowledge reduction, ResRep (Ding et al., 2021) categorizes the channels during fine-tuning with
the help of additional layers in remembering and forgetting parts and removes the forgetting parts without
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a performance drop. While the former methods all require training data for fine-tuning, DFNP (Tang et al.,
2021) and DFBF (Holzbock et al., 2023) work with synthetic training data, and iSparse (Garg & Candan,
2020) prunes without the necessity of fine-tuning. The application of most pruning approaches is limited to
a specific task and architecture. To solve this, DFBF (Holzbock et al., 2023) proposes a method applicable
to various computer vision tasks, and DepGraph (Fang et al., 2023) is able to prune different neural network
architectures whitout an adaption of the pruning algorithm. Existing methods only consider the prediction
performance of the pruned models. Nevertheless, the influence of pruning on uncertainty estimates has not
been considered. Therefore, the focus of our work is the performance of various pruning approaches on
uncertainty estimation.

2.2 Uncertainty Estimation

Uncertainty in deep neural networks arises from uncertainty inherent in the data (aleatoric) or uncertainty
due to a lack of knowledge, which is reducible with additional training data (epistemic) (Kendall & Gal, 2017).
Empirical approaches (Lakshminarayanan et al., 2017; Gal & Ghahramani, 2015; Huang et al., 2017) place a
distribution over the model weights and use the resulting output mean and variance to estimate the epistemic
uncertainty. Bootstrapped ensembles (Lakshminarayanan et al., 2017) approximate the weight distribution
by training multiple models with different initialization, whereas Snapshot ensembles (Huang et al., 2017)
leverage cyclic learning rate scheduling to reduce the training effort. On the other hand, MC dropout (Gal
& Ghahramani, 2015) applies dropout (Srivastava et al., 2014) during inference at different network layers
to approximate the weight distribution. Instead of sampling the epistemic uncertainty, DEUP (Lahlou
et al., 2023) defines it based on the aleatoric uncertainty and the generalization error. Another method
for epistemic uncertainty estimation uses the reconstruction error between the original input image and
the reconstructed image (Hornauer et al., 2023). Predictive approaches (Hendrycks & Gimpel, 2017; Nix
& Weigend, 1994) assume a prior distribution over the model output. The built-in MSP (Hendrycks &
Gimpel, 2017) is a simple predictive approach that targets the aleatoric uncertainty in image classification.
Other predictive methods, in contrast, assume a Gaussian (Nix & Weigend, 1994) or evidential (Amini
et al., 2020) output distribution that is used as a loss function for optimization, which is not applicable to
classification. Mukhoti et al. (Mukhoti et al., 2021) address both types of uncertainty in one framework by
combining the softmax probability with the Gaussian Mixture Model of the feature density. Other works
target uncertainty estimation for high-dimensional tasks like monocular depth estimation (Poggi et al., 2020;
Hornauer & Belagiannis, 2022), optical flow estimation (Ilg et al., 2018), semantic segmentation (Kendall
et al., 2017; Kendall & Gal, 2017), or trajectory prediction (Wiederer et al., 2023). While several uncertainty
estimation approaches have been proposed in recent years and the impact of quantization on uncertainty
estimation has been evaluated (Ferianc et al., 2021), the influence of pruning on uncertainty quantification
has not yet been studied. The crucial difference is that quantization lowers the computational effort by
reducing the bit-width, and pruning removes entire parameters.

3 Background Concepts

This section gives an overview of the applied pruning and uncertainty methods, which are later combined to
investigate the effect of pruning on uncertainty estimation.

3.1 Parameter Pruning

Pruning aims to reduce neural network parameters while retaining the model’s performance. We use five
pruning approaches to investigate the effect of pruning algorithms on the uncertainty estimation of a neural
network. In the following, we give an overview of the utilized pruning algorithms, namely Random Pruning,
L1 Pruning (Li et al., 2017), Batch Normalization Pruning (Liu et al., 2017), HRank Pruning (Lin et al.,
2020), and ResRep Pruning (Ding et al., 2021).

Pruning Definition Given the trained deep neural network f(·), with parameters θ and N different layers,
we focus on channel pruning, where output channels are removed from the network layers. To prune a single
convolution, we consider the convolutional layer zn = Convn(zn−1, Wn, bn), where n ∈ [1, · · · , N ] is the
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number of the actual layer. The input zn−1 ∈ RCin×wn×hn is the output of the previous convolution or the
network input x, and the output feature map is zn ∈ RCout×wn+1×hn+1 , where wn and hn are the width
and height, respectively. Cin defines the number of input channels and Cout the number of output channels.
The internal parameters of the convolution consist of the weight Wn ∈ RCout×Cin×k×k with the kernel size
k and the optional bias bn ∈ RCout . The convolution’s weight Wn can be divided into the output channels
Cn,c ∈ RCin×k×k with c ∈ 1, . . . , Cout.

Pruning aims to remove output channels of a convolution to reach a predefined model sparsity s, e.g., for a
sparsity s = 0.2, we delete 20% of the channels. To specify the channels to prune, we define a sparsity vector
vn ∈ {0, 1}Cout for convolution convn, such that the following condition is fulfilled

1 − 1
cout

Cout∑
c=1

vn(c) = s. (1)

The pruning methods differ in the way the sparsity vector vn is determined. The output channel Cn,c of
convolution Convn corresponding to a 0-entry in the sparsity vector vn is removed during pruning. The
compressed weight Wn,r ∈ RCout,r×Cin×k×k contains only the channels with a 1-entry in the sparsity vector
vn and has a reduced number of output channels Cout,r. Besides the weights, the bias must also be adapted,
and the values corresponding to the 0-entries in vn are deleted to obtain the new bias bn,r ∈ RCout,r .
The reduction of the output channels of Convn also entails an adaption of the input channels of Convn+1.
Thus, the input channels of Convn+1 that correspond to the 0-entries of vn are deleted, and the new weight
Wn+1 ∈ RCout×Cin,r×k×k with the reduced number of input channels Cin,r is obtained.

Due to the pruning, the neural network forgets some of its knowledge. Therefore, a fine-tuning step is
performed after all layers in the network are pruned. In the fine-tuning step, the original training images are
used to update the reduced neural network parameters with backpropagation. In the following, we present
different methods to define the sparsity vector vn.

Random Pruning The easiest way to remove parameters from a neural network is to remove them
randomly without considering their importance. For the random pruning, we randomly set values in the
sparsity vector vn to 0. The only claim that has to be fulfilled is Equation 1. The randomly defined sparsity
vector vn is used in the pruning to remove the channels corresponding to a 0-entry in the vector and keep
them corresponding to a 1-entry, as described in the general pruning definition. All convolutions in a neural
network are pruned with a unique sparsity vector vn.

L1 Pruning In random pruning, parameters with essential knowledge can be removed unintentionally,
which results in a higher performance loss during pruning and more expensive fine-tuning afterward. To
overcome this issue, the L1 pruning (Li et al., 2017) identifies unimportant parameters according to the
L1-norm. For all channels Cn,c of weight tensor Wn, a sensitivity measure Sn,c is calculated by

Sn,c =
Cin∑
i=1

k∑
j1=1

k∑
j2=1

Cn,c(i, j1, j2), (2)

where k is the size of the squared kernel and Cin the number of input channels. The sparsity vector vn

is extracted from the sensitivities Sn ∈ RCout that contains the channel sensitivities Sn,c. For the smallest
sensitivities, the corresponding value in the sparsity vector is set to 0 to fulfill the condition from Equation 1.
This is based on the assumption that small weights correspond to weak activation functions, which have less
influence on the final result.

Batch Normalization Pruning If a Batch Normalization (Ioffe & Szegedy, 2015) layer follows the con-
volution, an alternative to the L1 pruning is Batch Normalization pruning (Liu et al., 2017). In the Batch
Normalization, the output feature map of the convolution zn is normalized as follows:

z̃n = zn − E[zn]√
Var[zn] + ϵ

γ + β, (3)
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where γ is a scaling factor, β is an offset, ϵ is a small factor to prevent zero division, and E[zn] stands for the
expected mean of the input data with the variance Var[zn]. The neural network learns the importance of the
channels using the parameter γ during training. Like in L1 Pruning, the assumption is that weak activation
functions influence less the overall network performance. Therefore, a small γ indicates less important
channels. We convert γ to the sparsity vector vn by setting small γ-values in vn to 0.

HRank Pruning HRank (Lin et al., 2020) is a pruning method that determines the importance of a chan-
nel not only by the model’s internal knowledge but also by considering the input data’s influence. Therefore,
the output feature map zn produced by the weight Wn that should be pruned is investigated. For each
channel cf ∈ 1, . . . , Cout of the features zn, the matrix rank is calculated with Single Value Decomposition
and is averaged over a mini-batch of images. HRank shows that the usage of a mini-batch is sufficient
because the rank of each channel only has a low variance between the images. The rank vector that contains
the average rank for each channel can be converted into the sparsity vector vn. Therefore, the value in the
sparsity vector vn is set to 0 for a small rank, otherwise to 1. The assumption is made that if a feature map
has many linear dependent rows, it has less knowledge and can be removed.

ResRep Pruning Unlike the other pruning methods, ResRep (Ding et al., 2021) does not prune the model
first and then fine-tune it; instead, it performs the pruning during the fine-tuning step. ResRep prunes the
channels over several epochs during fine-tuning and transfers the knowledge from the pruned channels to
others. Therefore, extra layers are added after the Batch Normalization, so-called compactors. These are
initialized with the identity matrix so that the performance of the modified network is the same as for the
original model. During training, the compactor weights for channels with less information are pushed to
zero, so these channels can be pruned afterward without performance loss. The compactor’s weights are
pushed to zero, wherefore the gradients Gc are calculated as follows

Gc = ∂L
∂Cc

vn,c + λ
Cc

||Cc||E
, (4)

where λ is a weighting factor. Gc is influenced by the standard task loss L (e.g., cross-entropy loss) and the
Euclidean norm over the corresponding channel weights Cc. The parameter vn,c is entry c of mask vn that is
set to 0 if the channel should be pruned, else to 1. In the beginning, all values in vn are set to 1, and during
training, the values for channels with small weights in the compactor are set to 0 until the desired sparsity
is reached. If the corresponding value vc is 1, both loss terms compete against each other. Setting vn to 0
for the channels to be pruned helps to speed up the pruning, as the Euclidean norm loss does not compete
with the standard loss while pushing the compactor weights to zero. After this procedure, the channels with
a 0-entry in vn can be pruned without further fine-tuning.

3.2 Uncertainty Estimation

We examine the effect of pruning on three uncertainty methods, namely the maximum softmax probability
(MSP) (Hendrycks & Gimpel, 2017), Monte Carlo (MC) dropout (Gal & Ghahramani, 2015), and boot-
strapped ensembles (Lakshminarayanan et al., 2017). Next, we shortly present each method.

Maximum Softmax Probability The softmax function normalizes the neural network’s output logits
zN into a probability distribution, where all values are in the range [0, 1] and sum up to 1. N refers to the
last network layer. The definition of the softmax can be expressed for vector zN with C elements, one for
each class, as follows:

σ(zN )j = exp(zN,j)∑C
i=1 exp(zN,i)

, j = 1, . . . , C. (5)

The overall network output ŷ is the re-scaled logits σ(zN ). In image classification, the predicted class is
determined by the index of the element with the maximum value in σ(zN ). The MSP (Hendrycks & Gimpel,
2017) is an easy way to assess the uncertainty of a neural network for classification. Here, the softmax value
of the predicted class is used to determine the uncertainty u = 1 − max(σ(zN )). A lower uncertainty value
means a higher probability that the predicted class is correct. By implication, a high value indicates a high
uncertainty.
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Bootstrapped Ensembles Another way to calculate the model’s uncertainty is bootstrapped ensem-
bles (Lakshminarayanan et al., 2017). This approach relies on the output of M neural networks fm(·) with
m ∈ {1, . . . , M} to estimate the uncertainty as the variance over the M predictions. Each of the M models is
trained with the same dataset and architecture but a different initialization as a starting point. Furthermore,
the order of the data samples during the training is shuffled. These two techniques introduce randomness in
the training whereby the predictions of the M neural networks are expected to be equal for data observed
during training and differ for data not included in the training. The overall prediction for a data sample x
is calculated as the mean µ and the variance σ2 over the M networks by

µ(x) = 1
M

M∑
m=1

fm(x), σ2(x) = 1
M

M∑
m=1

(fm(x) − µ(x))2. (6)

The mean’s softmax σ(µ(x)) depicts the overall network output ŷ, and the index of the maximum entry
from σ(µ(x)) is used as the class prediction. The class prediction’s entry of the variance σ2(x) is associated
with the uncertainty u, where a high variance represents a high uncertainty.

Monte Carlo Dropout A main drawback in bootstrapped ensembles is the high training effort due
to the M independently trained neural networks. To prevent the training of multiple neural networks
and approximate Bayesian neural networks, MC dropout (Gal & Ghahramani, 2015) applies the dropout
layer (Srivastava et al., 2014) to bring randomness into the M predictions. Therefore, the dropout layer
is not only activated during training but also during inference. Because of the activated dropout during
inference, the predictions of M forward runs differ, and the mean µ(x) and variance σ2(x) can be calculated
according to Equation 6. As in bootstrapped ensembles, the mean’s softmax determines the network output
ŷ that is used to predict the class, and the variance is associated with the uncertainty u.

4 Problem Formulation

Consider the neural network f(·) that is parameterized by θ and predicts the probability distribution ŷ =
f(x, θ) for the input image x ∈ R3×w×h with width w and height h. The network is trained on the
training set D = {xi, yi}|D|

i=1, which contains the RGB images x with the corresponding labels y, where y
defines the one-hot class label y ∈ {0, 1}C for a C-category classification problem, such that

∑C
i=1 y(i) = 1.

When pruning (Section 3.1) is applied to the neural network f(·), it affects the model’s parameters θ and,
therefore, its prediction ŷ. After pruning, we obtain the pruned neural network fp(·) with the reduced
parameter set θp. We then use well-established uncertainty estimation approaches (Section 3.2) for obtaining
the uncertainty estimate u ∈ R next to the class prediction ŷ. The pruning impacts not only the neural
networks class prediction ŷ but also the uncertainty estimate u. Because of that, we investigate the influence
of channel pruning on the neural network’s classification performance as well as on the uncertainty estimation
performance. To quantify the quality of the uncertainty estimation, a metric for the uncertainty of an image
classification neural network is presented in the next section.

5 Proposed Uncertainty Metric

The effect of pruning on uncertainty estimation is examined with three different evaluation metrics, namely
the accuracy, the expected calibration error (ECE) (Naeini et al., 2015), and the Area Under the Sparsification
Error (AUSE) (Ilg et al., 2018). The metrics assess the pruned model’s performance regarding the predicted
class and the uncertainty prediction. The accuracy evaluates if the neural network predicts the correct
class label for the input image and is therefore used for the classification evaluation. The ECE assesses the
calibration of the classification neural network, i.e., it checks how well the predicted uncertainty matches
the true uncertainty. The uncertainty range is divided into equal-spaced bins, and the predictions are sorted
into the bins to calculate the ECE. For each bin, the mean predicted uncertainty and the true uncertainty
are determined. The ECE is the weighted absolute difference between both values over all bins.

The AUSE metric was first introduced for the uncertainty evaluation in the regression task optical flow
estimation (Ilg et al., 2018) to determine if the predicted uncertainty corresponds with the true uncertainty.
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(a) AUSE for optical flow estimation (b) AUSE for image classification

Figure 1: The AUSE (light red area) is defined as the area under the sparsification error (red). The
sparsification error is the difference between the oracle curve (blue) and the sparsification curve (green).
The x-axis represents the percentage of removed test set samples, and the y-axis shows the error with the
corresponding error metric.

As a base for the AUSE, the oracle and actual sparsification plots are determined, represented in Fig. 1a
as a blue and green curve, respectively. In optical flow estimation, the pixels with the highest uncertainty
are removed step by step from the test set to generate the sparsification plot. This means that a pre-
defined fraction of pixels with the currently highest uncertainty is removed, and the error metric is re-
calculated to get the value of the sparsification plot for the remaining data. This is done until all pixels
are removed from the test set. The error metric used in optical flow estimation is the average endpoint
error. If the uncertainty corresponds with the true error, the sparsification plot decreases when removing the
uncertain pixels. Removing the pixels with the true uncertainty, e.g., the prediction error, leads to the oracle
sparsification plot, which determines the lower limit (blue curve in Fig 1a). In contrast, the sparsification plot
decreases slower with the predicted uncertainty because of non-optimal predictions and is called the actual
sparsification plot (green curve in Fig 1a). The red curve in Fig. 1a represents the difference between the
two curves and the area under the sparsification error curve (represented in light red in Fig. 1a) determines
the AUSE.

We use the AUSE not for uncertainty estimation in a regression task, like optical flow estimation, but for
uncertainty evaluation in image classification. Instead of removing pixels during the evaluation, we remove
the images with the highest classification uncertainty. Furthermore, as an error metric, we do not use the
average endpoint error as in optical flow estimation but the classification error in percentage. An example plot
of the AUSE for image classification is presented in Fig. 1b. The predicted uncertainty in image classification
is the uncertainty of the predicted class, whereas the true uncertainty is the uncertainty of the ground truth
image class. An algorithm is presented in Appendix D for a deeper understanding of the AUSE calculation
for image classification.

6 Analysis of Pruning Effects on Uncertainty Estimation

We conduct an extensive evaluation to show the influence of pruning on the different uncertainty estimation
approaches for image classification. Therefore, we combine the pruning methods from Section 3.1 with
the uncertainty methods from Section 3.2. This concatenation is presented visually in Appendix A. First,
we describe the experimental setup, including datasets, implementation details, and metrics. After the
experimental setup, we present our results.

6.1 Experimental Setup

Datasets Our experiments use the small-scale dataset CIFAR-100 (Krizhevsky et al., 2009) and the large-
scale dataset ImageNet (Deng et al., 2009). The CIFAR-100 dataset contains 50000 images for training and
10000 for evaluation while having 100 classes. The image resolution in the CIFAR-100 dataset is 32 × 32
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pixels. ImageNet has 1000 classes and consists of over 1.2 million training images and 50000 validation images
with a resolution of 224 × 224 pixels. The evaluation of the CIFAR-100 dataset is done on the corresponding
test set, while we use the validation set for ImageNet.

Implementation Details In the case of the CIFAR-100 dataset, we use the ResNet18 (He et al., 2016) and
VGG19 (Simonyan & Zisserman, 2015) architectures, while we limit ourselves to ResNet18 for ImageNet.
Before pruning the models, we train each model with the chosen uncertainty method. This leads to one
model for MSP, one for MC dropout with dropout activated during training, and M different models for
bootstrapped ensembles, where we choose M = 5. We include a dropout layer after each block with the
dropout probability set to 0.2 for MC dropout in ResNet18. In VGG19, we add the dropout layer before the
channel upsampling. In order to measure uncertainty using MC dropout, five forward runs are performed. We
vary the initialization, and the training data order between the training runs for bootstrapped ensembles.
For random pruning, L1 pruning, Batch Normalization pruning, and HRank pruning, we directly prune
all layers and perform one fine-tuning step at the end with 150 epochs for CIFAR-100 and 45 epochs for
ImageNet. The pruning in ResRep is conducted during the fine-tuning, which is performed 180 epochs for
both datasets. Pruning ResNet in one step enables the pruning of all layers, while during step-wise pruning,
like in ResRep, only layers unaffected by the skip connections can be pruned. This is caused by the mismatch
of the dimensions after the skip-connection during step-wise pruning. For all pruning techniques, we prune
the models for the CIFAR-100 dataset with the sparsities 0.2, 0.4, 0.6, and 0.8. For ImageNet, we select the
sparsities 0.2 and 0.6. We provide further implementation details in Appendix B.

Metrics Consistent with pruning literature for image classification (Li et al., 2017; Liu et al., 2017; Lin
et al., 2020; Ding et al., 2021), we report the model’s prediction performance with the accuracy in percentage.
We use the Area Under the Sparsification Error (AUSE) adapted for image classification to quantify the
uncertainty performance, as presented in Sec. 5. Furthermore, we apply the expected calibration error
(ECE) (Naeini et al., 2015) to determine the calibration quality of the pruned models. Therefore, we
normalize the uncertainty prediction of MC dropout and bootstrapped ensembles into the range [0, 1].

6.2 Experimental Results

In the following, we present the results for the different datasets and architectures. In the Figures 2, 3,
and 4 the AUSE is shown in the left part (Subfigures (a)-(c)), while the ECE is plotted in the right part
(Subfigures (d)-(f)). The x-axis of the plots refers to the AUSE or the ECE metric, and the y-axis to the
accuracy of the classification performance. The different colors represent the five pruning methods, while
the size of the marker correlates with the pruning sparsity, i.e., small markers stand for low pruning rates
and large markers for high pruning rates. Additionally, the model size of the different pruning approaches
and sparsities is given in Appendix C. Furthermore, we provide plots for the AUSE, ECE, and the accuracy
over the sparsity and tables with accurate values for both architectures in Appendix E and F.

CIFAR-100 The outcomes of the experiments on CIFAR-100 for the ResNet18 architecture are presented
in Figure 2 and for the VGG19 architecture in Figure 3. The results of the ResNet18 model show that for
all uncertainty and pruning methods, the AUSE, like the accuracy, decreases when increasing the pruning
sparsity. A comparison of the pruning methods reveals that all pruning methods, except ResRep pruning,
have similar degradation of AUSE and accuracy for all uncertainty methods. In the case of the MSP
uncertainty, the ResRep approach behaves similarly to the other pruning methods for low pruning rates but
decreases more with higher pruning rates. For bootstrapped ensembles and MC dropout, the degradation
of the uncertainty measure for ResRep pruning is faster. The degeneration of the accuracy near to random
with MC dropout during ResRep pruning with a pruning sparsity of 0.8 can be explained by the fact that
the model converges slower with the inserted dropout layer than without this layer, and we keep the training
epochs constant. The main difference between the performance of the uncertainty methods is in the absolute
AUSE values. Here, each uncertainty method starts with a different performance before the pruning and
worsens to different degrees.

Besides the AUSE, we use the ECE to evaluate the pruning’s influence on the uncertainty prediction perfor-
mance and show the accuracy over the ECE in the right part of Figures 2 and 3. The results for the ResNet18
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Figure 2: CIFAR-100 results for ResNet18 with the AUSE in (a)-(c) and with the ECE in (d)-(f). The
accuracy is plotted over the AUSE or ECE for the three uncertainty methods MSP, bootstrapped ensembles,
and MC dropout. The marker size displays the pruning sparsities, i.e., small markers denote low and large
markers high pruning rates.
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Figure 3: CIFAR-100 results for VGG19 with the AUSE in (a)-(c) and with the ECE in (d)-(f). The accuracy
is plotted over the AUSE or ECE for the three uncertainty methods MSP, bootstrapped ensembles, and MC
dropout. The marker size displays the pruning sparsities, i.e., small markers denote low and large markers
high pruning rates.
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model are presented in Figure 2. As for the AUSE, the curves proceed similarly within each uncertainty
method for the random, L1, BN, and HRank pruning. The course of the ResRep pruning is also similar, but
the values differ from the other methods. Furthermore, the ECE worsens during the pruning and improves
at a sparsity of 0.8 for the MSP. In contrast, the other uncertainty methods (bootstrapped ensembles and
MC dropout) decreases the ECE for each pruning sparsity. A ResRep-specific detail is that the accuracy
drops quickly with a pruning sparsity of 0.8. The performance of VGG19 trained on CIFAR-100 is presented
in Figure 3. The overall findings for VGG19 are comparable to the results from ResNet18. The AUSE and
accuracy become worse with higher pruning rates. For the MSP, the AUSE for VGG19 is higher than for
ResNet18, while the uncertainty of the unpruned model is lower for the other uncertainty methods. Notably,
for the MSP, the pruning sparsities 0.2, 0.4, and 0.6 have a better uncertainty performance (AUSE) than the
original model, and only the performance of sparsity 0.8 is worse than the performance of the original model.
Furthermore, the performance of ResRep drops with the pruning sparsity 0.2 but stays constant after the
drop for the following sparsities.

The right image side of Figure 3 shows the ECE results with the VGG19 backbone. The ECE behaves equally
for the random, L1, BN, and HRank pruning method. The MSP improves the neural network calibration
for higher pruning sparsities, as the ECE shows, but the accuracy diminishes with the higher sparsities.
Using bootstrapped ensembles or MC dropout decreases the ECE with a higher pruning rate. In contrast to
these four pruning methods, the ECE performance of the ResRep pruning is more constant over all pruning
sparsities.

ImageNet To prove that our findings are not only valid for small-scale datasets, we evaluate the effect
of the pruning methods on the uncertainty prediction for ImageNet. We show the AUSE results of this
experiment performed with ResNet18 on the left side of Figure 4. The general finding is that the AUSE
and the accuracy decrease with a higher pruning sparsity, following the conclusion made for the CIFAR-100
dataset. Compared to the small-scale dataset, the overall values for the AUSE are higher, which means that
the uncertainty prediction worsens. As emerged on the CIFAR-100 dataset, the evaluation on ImageNet
confirms that the AUSE and accuracy are correlated, i.e., a lower accuracy also leads to a lower AUSE.
There is little variance between the pruning methods on ImageNet, and all curves show a similar behavior.
An exception to this is ResRep, which has a superior performance compared to the others but also leads to
slightly more parameters after pruning (see Appendix C). ResRep also proves that better accuracy leads to
an improved AUSE prediction. For bootstrapped ensembles, the model pruned with a sparsity of 0.2 is even
better than the unpruned baseline. Further, in Figure 4c, we can see that with a sparsity of 0.6, the dropout
layer removes too much information, leading to a decreased accuracy.

The ECE presents further insights into the influence of pruning on the neural network’s uncertainty pre-
diction, which we show on the right side in Figure 4. The behavior of the ECE for the MSP, the boot-
strapped ensembles, and the MC dropout uncertainty methods is comparable with the CIFAR-100 dataset
for ResNet18. The accuracy, as well as the ECE, decreases with a higher pruning sparsity. An exception is
the ResRep pruning combined with bootstrapped ensembles, where the accuracy improves for a pruning rate
of 0.2. Furthermore, the ResRep pruning diminishes the accuracy and the ECE less than the other pruning
methods. This could be caused by the higher number of parameters after the ResRep pruning.

7 Conclusion

In this work, we evaluate the influence of pruning on the uncertainty estimation of a neural network for image
classification and, therefore, combine different uncertainty estimation approaches with pruning methods. We
conduct our experiments on CIFAR-100 and ImageNet with the ResNet18 and VGG19 architectures. For
the uncertainty quantification, we propose the Area Under the Sparsification Error (AUSE) metric for image
classification and apply the excepted calibration error (ECE). The evaluation’s main findings are that pruning
affects the class prediction and the uncertainty estimation in a negative way. Furthermore, the tested pruning
methods influence the uncertainty estimation methods similarly. Improving the pruning approach w.r.t the
accuracy leads to a better uncertainty estimation. Finally, the pruning’S influence on the MSP is smaller
than on the other uncertainty approaches, and for VGG19, small pruning sparsities improve the AUSE. A
more detailed look at the ECE shows that pruning can enhance model calibration when using the MSP.
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Figure 4: ImageNet results for ResNet18 with the AUSE in (a)-(c) and with the ECE in (d)-(f). The accuracy
is plotted over the AUSE or ECE for the three uncertainty methods MSP, bootstrapped ensembles, and MC
dropout. The marker size displays the pruning sparsities, i.e., small markers denote low and large markers
high pruning rates.
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A Pruning and Uncertainty Method Combination

Fig. 5 illustrates the combination of the pruning methods with the three uncertainty techniques MSP,
bootstrapped ensembles, and MC dropout.
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Figure 5: The image shows how we combine the pruning methods with the uncertainty estimation techniques.
In the maximum softmax probability (MSP), we use the index of the maximum value as class prediction and
its value as an uncertainty measure. The different colors of the layers in bootstrapped ensembles define the
different parameter sets. In dropout, the white squares in the layers depict the omitted parameters by the
activated dropout. For bootstrapped ensembles and MC dropout, we calculate the mean and variance and
use the index of the maximum as the predicted class and the variance as an uncertainty measure.

B Implementation Details

In the following, we explain in detail what code we use as a base for our experiments. On the CIFAR100
dataset, we train ResNet18 He et al. (2016) and VGG19 Simonyan & Zisserman (2015), where we build
on the public implementation of pytorch-cifar1. As a base for the training of the ResNet18 on ImageNet,
we use the official Pytorch example2. In both cases, we re-use the training hyperparameters from the base
code for fine-tuning. We implement random pruning, L1 pruning Li et al. (2017), and Batch Normalization
pruning Liu et al. (2017) according to their papers. For HRank pruning3 and ResRep pruning4, we use their
official code as a base. To determine the maximum softmax probability, we normalize the output logits of
the last network layer with a standard softmax. MC dropout Gal & Ghahramani (2015) and bootstrapped
ensembles Lakshminarayanan et al. (2017) are built on the description of their papers.

C Neural Network Size

The evaluation of the model size is presented in Table 1 for the ResNet18 and VGG19 architecture. For both
architectures, the model size for Random pruning, L1 Pruning, Batch Normalization Pruning, and HRank
Pruning is the same, while the number of parameters differs for the ResRep pruning. The identical amount of
parameters is caused by the fact that the removal of the parameters is equivalent, and only the rule diverges
which parameters are removed. The higher amount of parameters in VGG models pruned with ResRep

1https://github.com/kuangliu/pytorch-cifar
2https://github.com/pytorch/examples/blob/7ec911c46c00ac98d3adfd996ee2a011bbb9fdba/imagenet/main.py
3https://github.com/lmbxmu/HRank
4https://github.com/DingXiaoH/ResRep
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stems from the channel pruning definition of ResRep. In the other pruning methods, the same percentual
amount of channels is pruned in each layer. In contrast, in ResRep, the amount of pruned channels can
differ between layers and have only to fulfill the sparsity over the whole neural network. Additionally, in
ResNet18 models, the skip connections in the ResNet architecture hinder the pruning of the layers before the
skip connection in the step-by-step pruning procedure, which increases the remaining parameters in ResRep
pruning.

Table 1: Number of parameters multiplied by 1e6 for different sparsities (0.0, 0.2, 0.4, 0.6, 0.8) for the
ResNet18 and VGG19 model.

Model Method/Sparsity 0.0 0.2 0.4 0.6 0.8

ResNet18
Random, L1, Batch
Norm, HRank Pruning 11.17 7.18 4.05 1.80 0.46

ResRep Pruning 11.17 8.05 5.44 3.29 1.71

VGG19
Random, L1, Batch
Norm, HRank Pruning 20.04 12.86 7.26 3.22 0.82

ResRep Pruning 20.04 12.41 7.35 3.78 3.36

D Uncertainty Metric Algorithm

Further insights into the AUSE calculation are given in Alg. 1, where the input is the predicted softmax
probabilities ŷ for all classes C of T test set samples and the ground truth label y for all T test set samples.
In the case of the sparsification curve, the predicted uncertainty is utilized as the uncertainty measure, which
is the predicted class probability subtracted from one, as shown in Alg. 1, Line 13. This means, for example,
that if a sample is classified with a probability of 0.8 as a car, the predicted uncertainty is 0.2. The oracle
sparsification curve uses the true error as uncertainty, defined by calculating the error for the ground truth
class as shown in Alg. 1, Line 14. It can be distinguished between correct and miss-classified samples when
determining the true error. The true error is equal to the predicted uncertainty for correct classified samples,
e.g., 0.2 for our example with the car. Whereas for a miss-classified sample, the predicted uncertainty of
the true class is used. If the true class has a probability of 0.15 and is truck instead of car, the true error
is 0.85. A perfect uncertainty prediction results in equal graphs for the sparsification curve and the oracle
sparsification curve, which leads to an area between both curves equal to zero. Therefore, lower AUSE values
represent a better uncertainty performance. The AUSE is calculated in Alg. 1, Line 17 as the area under
the curve (AUC) between both curves.
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Algorithm 1: Overview of the calculation of the AUSE.
Input: predicted (mean) softmax probabilities ŷ ∈ RN×C , ground truth labels y ∈ RN

Output: AUSE metric
1 def error(p, y, s):
2 ys, ps = y[s], p[s] // Mask uncertain samples
3 a = sum(ps==ys)

len(ys)
4 return 1 − a

5

6 def curve(u, p, y):
7 T = [foreach q ∈ range(0, 100, 2) do percentileq(u)] // Get thresholds for percentiles
8 S = [foreach t ∈ T do u >= t] // Generate percentile subsets
9 C = [foreach s ∈ S do error(p, y, s)] // Calculate error for each percentile

10 return C

11

12 p = argmax(ŷ, dim = 1) // Generate predicted classes
13 upred = 1 − max(ŷ, dim = 1) // Generate predicted uncertainty
14 utrue = 1 − ŷ[:, y] // Generate true uncertainty
15 Cpred = curve(upred, p, y) // Get predicted curve
16 Ctrue = curve(utrue, p, y) // Get true curve
17 AUSE = AUC(Cpred − Ctrue) // Calculate Area Under the Curve

E CIFAR100

In the paper, we present in the figures for CIFAR100 the accuracy plotted over the AUSE and the ECE
metric. Additionally, we show in the appendix the AUSE, ECE, and accuracy over the sparsity in Figure 6.
The results for ResNet18 are displayed on the left side and for VGG19 on the right side. The overall effect
is that the accuracy and the AUSE get worse with a higher pruning sparsity, whereas the ECE improves in
some cases. As displayed for ResNet18, the accuracy for the maximum softmax probability and MC dropout
behaves similarly. For the bootstrapped ensemble, the accuracy is higher than for the other approaches.
Also, the AUSE is the best for the maximum softmax probability, followed by bootstrapped ensembles and
MC dropout. For VGG19, the behavior of the different pruning and uncertainty methods is similar to that
for ResNet18. Comparing the ECE of both architectures shows that pruning imporves the ECE for VGG19
but not for ResNet18. For the MSP, the ECE gets worse for ResNet18 and enhances for VGG19. A more
detailed look is provided as pure numbers for the AUSE in Table 2 for the ResNet18 architecture and in
Table 3 for the VGG19 architecture. The numbers for the ECE are given in Table 4 for ResNet18 and for
VGG19 in Table 5.
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(c) ResNet18, ECE
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Figure 6: CIFAR100 results for ResNet18 on the left side and VGG19 on the right side with the accuracy
(Subfigure 6a and 6d), the AUSE (Subfigure 6b and 6e), and the ECE (Subfigure 6c and 6f). The pruning
sparsities refer to the number of pruned layers.
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Table 2: CIFAR100 results for ResNet18 with the accuracy and AUSE metric (accuracy/AUSE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
AUSE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.4 0.6 0.8

Random Softmax 77.97/0.319 75.19/0.357 73.73/0.372 71.68/0.434 66.77/0.555

Pruning Ensemble 81.34/1.898 79.48/2.038 78.45/2.042 76.66/2.155 72.63/2.564
MC Dropout 78.31/2.375 75.49/2.561 74.04/2.622 71.88/2.765 65.85/3.300

L1 Softmax 77.97/0.319 76.53/0.342 74.53/0.372 71.52/0.439 66.86/0.527

Pruning Ensemble 81.34/1.898 79.94/1.954 79.06/2.010 77.79/2.110 73.27/2.552
MC Dropout 78.31/2.375 76.22/2.503 74.49/2.542 72.07/2.765 67.15/3.156

Batch Softmax 77.97/0.319 75.49/0.359 74.06/0.375 71.07/0.453 66.29/0.557
Norm Ensemble 81.34/1.898 79.60/2.035 78.76/2.046 77.87/2.051 73.42/2.525
Pruning MC Dropout 78.31/2.375 76.11/2.530 74.40/2.637 72.00/2.802 66.92/3.125

HRank Softmax 77.97/0.319 75.64/0.355 74.66/0.382 72.09/0.425 66.56/0.581

Pruning Ensemble 81.34/1.898 79.68/2.029 79.18/2.022 77.95/1.975 73.46/2.533
MC Dropout 78.31/2.375 76.22/2.470 74.60/2.615 72.33/2.800 67.26/3.100

ResRep Softmax 77.96/0.319 76.05/0.348 74.63/0.369 71.38/0.481 12.14/1.588

Pruning Ensemble 81.34/1.898 80.21/2.129 79.53/2.144 77.95/2.372 58.38/4.891
MC Dropout 78.31/2.375 76.90/2.547 74.58/2.747 71.37/2.926 01.54/0.504

Table 3: CIFAR100 results for VGG19 with the accuracy and AUSE metric (accuracy/AUSE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
AUSE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.4 0.6 0.8

Random Softmax 72.61/0.600 70.35/0.524 68.54/0.565 65.01/0.559 58.51/0.689

Pruning Ensemble 78.45/0.516 77.05/0.716 74.92/1.143 72.20/1.584 64.78/2.791
MC Dropout 72.08/1.205 71.36/1.384 67.84/1.842 64.17/2.378 57.35/3.088

L1 Softmax 72.61/0.600 70.71/0.579 67.91/0.522 65.18/0.567 55.36/0.713

Pruning Ensemble 78.45/0.516 76.93/0.734 74.91/1.228 71.66/1.659 64.60/2.661
MC Dropout 72.08/1.205 70.07/1.507 68.03/1.916 65.33/2.299 57.52/3.153

Batch Softmax 72.61/0.600 70.05/0.592 67.65/0.521 64.85/0.547 58.16/0.698
Norm Ensemble 78.45/0.516 76.22/0.745 74.66/1.134 72.02/1.636 63.62/2.863
Pruning MC Dropout 72.08/1.205 70.25/1.414 67.94/1.835 65.33/2.323 57.50/3.166

HRank Softmax 72.61/0.600 71.61/0.502 69.48/0.600 66.89/0.555 60.47/0.653

Pruning Ensemble 78.45/0.516 77.34/0.711 76.23/0.897 73.33/1.596 66.10/2.607
MC Dropout 72.08/1.205 70.79/1.386 70.14/1.626 65.32/2.281 58.87/3.090

ResRep Softmax 72.61/0.600 66.56/0.599 66.55/0.630 67.05/0.601 67.10/0.589

Pruning Ensemble 78.45/0.516 75.39/1.221 75.50/1.190 75.53/1.177 75.53/1.177
MC Dropout 72.08/1.205 65.12/2.017 66.44/1.819 65.30/1.932 66.63/1.875
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Table 4: CIFAR100 results for ResNet18 with the accuracy and ECE metric (accuracy/ECE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
ECE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.4 0.6 0.8

Random Softmax 77.96/0.491 75.17/0.791 73.73/1.039 71.70/1.146 66.74/0.949

Pruning Ensemble 81.34/1.199 79.47/1.433 78.45/1.402 76.68/1.480 72.63/2.024
MC Dropout 78.31/1.575 75.49/1.772 74.04/1.868 71.88/2.100 65.85/2.705

L1 Softmax 77.96/0.491 76.53/0.683 74.53/0.959 71.84/1.192 66.86/1.007

Pruning Ensemble 81.34/1.199 79.93/1.265 79.07/1.300 77.79/1.348 73.72/1.759
MC Dropout 78.31/1.575 76.22/1.696 74.49/1.783 72.07/2.078 67.15/2.689

Batch Softmax 77.96/0.491 75.51/0.757 74.05/0.952 71.05/1.208 66.29/0.992
Norm Ensemble 81.34/1.199 79.60/1.361 78.76/1.337 77.84/1.434 73.40/1.697
Pruning MC Dropout 78.31/1.575 76.11/1.701 74.40/1.934 72.00/1.986 66.92/2.376

HRank Softmax 77.96/0.491 75.67/0.753 74.65/0.924 72.09/1.167 66.56/0.906

Pruning Ensemble 81.34/1.199 79.68/1.340 79.14/1.340 77.95/1.481 73.45/1.826
MC Dropout 78.31/1.575 76.22/1.685 74.60/1.894 72.33/2.000 67.26/2.337

ResRep Softmax 77.96/0.491 76.05/1.552 74.63/1.626 71.38/1.805 12.14/0.727

Pruning Ensemble 81.34/1.199 80.21/1.333 79.53/1.428 77.95/1.538 58.38/3.597
MC Dropout 78.31/1.575 76.90/1.737 74.58/1.928 71.37/2.098 01.54/8.779

Table 5: CIFAR100 results for VGG19 with the accuracy and ECE metric (accuracy/ECE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
ECE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.4 0.6 0.8

Random Softmax 72.61/1.827 70.35/1.842 68.54/1.740 65.01/1.359 58.51/0.736

Pruning Ensemble 78.46/1.487 77.04/1.525 74.90/1.635 72.22/1.941 64.77/2.601
MC Dropout 72.08/2.221 71.36/2.443 67.84/2.627 64.17/3.161 57.35/3.614

L1 Softmax 72.61/1.827 70.71/1.756 67.91/1.612 65.18/1.286 55.36/0.598

Pruning Ensemble 78.46/1.487 76.93/1.533 74.92/1.659 71.67/1.953 64.60/2.571
MC Dropout 72.08/2.221 70.07/2.744 68.03/2.810 65.33/3.083 57.52/3.787

Batch Softmax 72.61/1.827 70.05/1.794 67.65/1.711 64.85/1.333 58.16/0.807
Norm Ensemble 78.46/1.487 76.22/1.546 74.66/1.578 72.01/1.928 63.63/3.032
Pruning MC Dropout 72.08/2.221 70.25/2.484 67.94/2.702 65.33/2.777 57.50/3.442

HRank Softmax 72.61/1.827 71.61/1.739 69.48/1.724 66.89/1.461 60.47/0.772

Pruning Ensemble 78.46/1.487 77.34/1.509 76.23/1.343 73.32/1.593 66.10/2.538
MC Dropout 72.08/2.221 70.79/2.383 70.14/2.501 65.32/2.930 58.87/3.378

ResRep Softmax 72.61/1.827 66.56/2.021 66.55/2.156 67.05/2.158 67.10/2.076

Pruning Ensemble 78.46/1.487 75.39/1.477 75.50/1.734 75.53/1.583 75.53/1.583
MC Dropout 72.08/2.221 65.12/3.013 66.44/2.830 65.30/2.900 66.63/2.875
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F ImageNet

For the large-scale evaluation on ImageNet, we provide additional information in Figure 7, Table 6, and
Table 7. The accuracy, AUSE, and ECE over the sparsity are shown in Figure 7. It can be seen in
Subfigure 7a that the accuracy drops for MC dropout with a pruning sparsity of 0.6 to around 20%. This
could be due to the slower convergence when using dropout layers during training. The huge gap between
the MC dropout accuracy and the accuracies of the other uncertainty methods also reflects in the ECE,
where MC dropout also gives the worst performance. In contrast, the performance of the MC dropout’s
AUSE is comparable with those of bootstrapped ensembles. Furthermore, we can see that the MSP has the
best results for the AUSE and the ECE, whereas the ECE for the MC dropout improves with higher pruning
rates for BN pruning. Detailed values for the AUSE are given in Table 6 and for the ECE in Table 7.
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Figure 7: ImageNet results for ResNet18 with the accuracy (Subfigure 7a), the AUSE (Subfigure 7b), and
the ECE (Subfigure 7c). The pruning sparsities refer to the number of pruned layers.
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Table 6: ImageNet results for ResNet18 with the accuracy and AUSE metric (accuracy/AUSE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
AUSE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.6

Random Softmax 69.76/0.468 66.27/0.526 55.76/0.700

Pruning Ensemble 73.24/2.773 69.44/3.018 60.18/3.523
MC Dropout 69.16/3.082 62.69/3.443 27.52/3.833

L1 Softmax 69.76/0.468 67.11/0.502 55.99/0.696

Pruning Ensemble 73.24/2.773 70.24/2.985 60.55/3.502
MC Dropout 69.16/3.082 64.88/3.315 21.38/3.563

Batch Softmax 69.76/0.468 65.97/0.526 55.94/0.708
Norm Ensemble 73.24/2.773 69.28/3.052 58.49/3.715
Pruning MC Dropout 69.12/3.091 62.63/3.468 11.52/2.630

HRank Softmax 69.76/0.468 66.63/0.513 55.99/0.699

Pruning Ensemble 73.24/2.774 70.12/3.000 60.47/3.524
MC Dropout 69.16/3.082 63.14/3.451 27.78/3.901

ResRep Softmax 69.76/0.468 69.88/0.464 65.82/0.532

Pruning Ensemble 73.24/2.774 73.92/2.675 70.29/2.939
MC Dropout 69.16/3.082 69.79/3.041 64.05/3.449

Table 7: ImageNet results for ResNet18 with the accuracy and ECE metric (accuracy/ECE). The pruning
sparsities refer to the number of pruned layers, and the pruned models are fine-tuned with 150 epochs. The
ECE metric is scaled by 1e−1.

Pruning Uncertainty Sparsities
Method Method 0.0 0.2 0.6

Random Softmax 69.76/0.142 66.27/0.168 55.77/0.250

Pruning Ensemble 73.24/2.099 69.43/2.414 60.17/3.119
MC Dropout 69.05/2.342 62.72/2.872 27.40/6.462

L1 Softmax 69.76/0.142 67.12/0.125 56.00/0.249

Pruning Ensemble 73.24/2.099 70.24/2.303 60.54/3.122
MC Dropout 69.05/2.342 64.82/2.687 21.28/7.152

Batch Softmax 69.76/0.142 65.98/0.152 55.93/0.272
Norm Ensemble 73.24/2.099 69.28/2.443 58.48/3.701
Pruning MC Dropout 69.05/2.342 62.57/2.852 11.64/8.187

HRank Softmax 69.76/0.142 66.63/0.136 55.99/0.274

Pruning Ensemble 73.24/2.099 70.12/2.288 60.47/3.225
MC Dropout 69.05/2.342 63.18/2.974 27.79/6.511

ResRep Softmax 69.76/0.142 69.88/0.405 65.82/0.205

Pruning Ensemble 73.24/2.099 73.92/2.151 70.29/2.382
MC Dropout 69.05/2.342 69.84/2.332 63.95/3.009
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