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Abstract

The prevalent Observation-Oriented modeling paradigm in machine learning, including Al,
inherently views “time” as a singular, linear timeline, rather than as computational dimen-
sions. Specifically, it requires identifying observational variables before modeling relations,
limiting access to dynamical temporal features and overlooking the multi-dimensional tem-
poral feature space. These limitations introduce inherent bias, affecting the robustness and
generalizability of structural causal Al models and contributing to AI Alignment issues.

This study examines these limitations uniquely through a dimensionality lens and presents
a new Relation-Oriented paradigm. Inspired by the relation-centric nature of human cog-
nition, this paradigm aims to enable interpretable Artificial General Intelligence (AGI) de-
velopment grounded in human knowledge. As its methodological counterpart, the proposed
relation-defined representation learning is substantiated by extensive efficacy experiments.

1 Introduction

The prevailing modeling paradigm rules that observed variables (and outcomes) are the premise of building
relationships. Model variables are often estimated by their observational values with an independent and
identical distribution (i.i.d.) setting. Back in the 1890s, Picard-Lindelof theorem introduced a logical timeline
t to record observational timestamps, establishing the paradigm z;11 = f(z:) to depict variable X’s time
evolution. Since then, this Observation-Oriented principle has become our learning convention, where
temporal dimensional computing is equated to counting {¢,¢ + 1} unit, a predetermined constant time lag.

For a relationship X — Y, the model can be in form yii.,, = f(x¢), or yerm = f({x:}), where {z;} =
{z1,..., 24, T441,..., T} Tepresents a time sequence of X within a certain length T, and a predetermined
time progress m from X to Y. Regardless of its form, the outcome Y is strictly observational with a specified
timestamp, leaving all potentially significant dynamics of the Y object entirely managed by f(-). However,
whether the selected function f(-) is linear or nonlinear only influences the dimensionality of RY, where
X € R?, while the time evolution from ¢ to t +m for the Y object remains invariably linear.

Such a linearity on the temporal dimension may be sufficient in the past, but not in the present, given the
current technological advancements in data collection and Artificial Intelligence (AI) methods. Exploring
nonlinear distributions on temporal dimension(s) is gradually becoming essential, calling for a new modeling
paradigm [Scholkopf] (2021)), which does not rest on the conventional i.i.d.-assumed observations, but can
treat relative timelines, i.e., potentially multiple t-axes, as distinct computational dimensions.

This study aims to fundamentally reveal the inherent deficiency of the current Observation-Oriented modeling
paradigm (Chapter I: Sections 2-4), and accordingly propose the new Relation-Oriented one as desired,
along with feasibility validations (Chapter II: Sections 5-7). Particularly, the linear absolute timeline ¢ that
we conventionally use inherently fails to capture dynamics of causal effects within the multi-dimensional
temporal feature space (see subsection. This limitation leads to biases, resulting in AI models misaligned
with our cognitive understanding |Christian| (2020) and challenging to generalize [Scholkopf] (2021]).

In this paper, we interpret the “relationship” modeling through a novel dimensionality framework (in Figure
, offering a unique perspective. The remainder of this section aims to lay the groundwork. In Chapter I, we
will inspect causal learnings with respect to the temporal dimensional distributions, highlighting the key role
of relations. Subsequently, Chapter II will concentrate on the proposed relation-defined representation
learning method, which embodies the advocated Relation-Oriented modeling paradigm.
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1.1 Manifestation of Al Misalighment

AT has displayed capabilities surpassing humans in observational learning tasks, such as generating images,
Go gaming (in a single absolute timeline), etc, but may appear “unintelligent” in comprehending some
knowledge humans find intuitive. For instance, Al-created personas on social media can have realistic faces
but barely with the presence of hands, due to Al treating them as arbitrary assortments of finger-like items.

Moreover, when it comes to time evolution, causal reasoning presents a substantial challenge for Al. De-
spite valuable contributions from traditional causal learning methods Wood| (2015); Vukovi¢| (2022)); Ombadil
(2020)), and the rise of neural network applications tackling large-scale causal questions [Luo et al| (2020),

limitations in model generalizability persist |Scholkopf| (2021)). Accordingly, our causal model applications are
often context-specific, and AI’s nonlinear learning capability remains constrained on the temporal dimension.

The questions “How to utilize Al in causality” and “How to simulate reasonable hands” may seemly pertain
to specific domains such as causal inference and computer vision. However, they fundamentally converge
toward the broader challenge of Al Alignment, encapsulated by the essential question: “Why some relations

in knowledge are unseen to AI?”, which is increasingly critical to address for today (2020)).

1.2 Relations in Hyper-Dimension

Consider a pairwise relationship comprised of three elements: two observable objects, and a relation con-
necting them, which comes from our knowledge. The two objects can be solely observational (e.g., images,
spatial coordinates of a quadrotor, etc.), or either observational-temporal (e.g., trends of stocks, a quadrotor’s
movement in one hour, etc.). Interestingly, the “relation” has to be unobservable to make this relationship
meaningful for machine learning, distinguished from mere statistical dependencies.

This principle was initially introduced in the form of Common Cause Dawid| (1979); [Scholkopf (2021)),
suggesting that any nontrivial conditional independence between two observables requires a third, mutual
cause (i.e., our unobservable “relation”). Take the relationship “Bob has a son named Jim” as an example.
The father-son relation is unobservable information that exists in our knowledge, which can also be seen
as the common cause that makes their connection unique rather than any random pairing of “Bob” and
“Jim”. Given sufficient observed social activities, Al may deduce this pair of “Bob” and “Jim” have a special
connection, but that does not equate to discerning the father-son relation between them.

Put simply, the existence of unobservables makes our relationship modeling informative. In other words,
the information contained by the model stems from our knowledge, rather than direct observations. Let’s
denote the model as Y = f(X;60) with 0 indicating the function parameter in demand. Then, in the context
of modeling, the term “relation” can be represented by 6.

Temporal Space
Unobservable
Hyper-Dimensional Linear Distribution
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Figure 1: The knowledge space split by dimensionality types: Observational, Temporal, Hyper-Dimension.

Hence, from a dimensionality perspective, a relationship in modeling is interpretable as a joint distribution
across multiple dimensions, with modeling objects existing on observational-temporal dimensions, and their
relation, the modeling target, manifesting as an unseen distribution in a hyper-dimension. Figure [l cat-
egorizes our knowledge-storing cognitive space into three sections accordingly, with the hyper-dimensional
space representing the aggregate of all unobservable relations in our knowledge. Current narrow Al, lim-
ited by the Observation-Oriented principle, can overlook crucial temporal features and hinder its ability to
autonomously learn causal relations within this space, potentially impeding progress towards realizing AGI.
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1.3 Observational and Temporal Spaces

Presently, most machine learning models primarily work within the observational space, maybe adhering to a
single absolute timeline. For example, Convolutional Neural Networks (CNNs) recognize pixel associations; a
quadrotor’s movements are identifiable within three spatial dimensions; and Large Language Models (LLMs)
operate in semantic space along a logical timeline representing word order. Applications similar to the latter
two, in alignment with the Picard-Lindelof theorem, utilize absolute timestamp ¢ to depict time evolution,
commonly referred to as “spatial-temporal” analysis |Alkon| (1988]); [Turner| (1990)); |Andrienko| (2003]).

Equating the “temporal dimension” to a singular ¢-timeline has become conventional Wes| (2023), however,
it seems to be a common misunderstanding. From a modeling viewpoint, timestamp values are not distinct
from other observational attributes. In our comprehension of causal knowledge, multiple relative timelines
can coexist within a complex causal structure, each representing different causal effects (see Section [| for
additional insights). Thus, we classify the absolute t-timeline as a dimension within the observational space,
addressing the knowledge-aligned temporal distributions in a separate space as shown in Figure [I}

As initially discussed, solely relying on ¢-timeline allows for capturing only temporally linear relationships,
yielding outcomes with static causal effects while excluding their dynamical aspects found in temporal
nonlinearity (see subsection for further discussions). Consider the example “rain leads to wet floors”,
both objects, the cause “rain” and the effect “wet floors”, are status snapshotted at specific timestamps,
thus viewed as static. In contrast, the effects such as “floors becoming progressively wetter” are considered
dynamical due to the temporally significant patterns. More importantly, the presence of relative timelines
in our knowledge can collectively form a multi-dimensional space, representing temporal features. Neglected
nonlinear dynamics, combined with overlooked multiple timelines, can result in inherent temporal bias (see
subsection for details) and compromise causal models’ generalizability (see subsection [4.2)). Presently,
the advent of large Al-based model applications has exacerbated this inherent misalignment.

In this paper, we use the term “feature” to indicate the potential variable that fully represents the distribution
of interest in any dimension. Additionally, the observational-temporal joint space may also be referred to as
“observable data space”, in contrast to the “latent feature space”.

1.4 Hyper-Dimensional Space

Like regular dimensions, joint distributions exist on hyper-dimensions but remain undetected due to their
unobservable nature. Some unseen relations, although not targeted in the modeling process, can significantly
influence our models. Consider joint relations (f,v) € R connecting observables X and Y, where R" denotes
the hyper-dimensional space. While the relationship model Y = f(X;#0) aims to model 6 using given X and
Y, the unseen 1 plays a crucial role - It can necessitate the model’s generalizability across various scenarios,
and also may contribute to a misalignment between the model and our knowledge comprehension.

For example, when examining how family income levels (i.e., X) influence (i.e., §) grocery shopping frequen-
cies (i.e., ), underlying cultural factors (i.e., ¢) may play a role, such that established model Y = f(X;0)
proves practically useful only when conditioned on a specific country (i.e., a particular ¢ value). Accordingly,
there are two levels for the objective relation: the global-level 8 without a 1 value, and the local-level § with
a specified 1 value. Model generalizability can be viewed as the ability to cross these levels, allowing the
learned lower-level relationships to inform higher-level learnings [Scholkopf] (2021)). Broadly, this also signifies
the ability to individualize established models from higher to lower levels for different 1) values.

For clarity, we term such unseen relation 1 as unobservable hierarchy, which, while external to the modeling
target 6, remains vital for f(-). Such hierarchies are common in learning tasks and hold various meanings in
different applications. For instance, they may signify levels of granularity (e.g., population vs. individual),
as illustrated in subsection [2:2] or denote decision-making dependencies, as seen in subsection

These hidden relations, while unobservable to Al, exist within our knowledge. Accordingly, their absence
may lead to our current Observation-Oriented models misaligned with our anticipated understanding. While
this absence can often be resolved when the modeling objects are purely observational (refer to subsection
, it becomes a noticeable inherent deficiency under the current paradigm when critical temporal dynamics
are involved (refer to subsections [2.2 and [2.3).
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Chapter I: Deficiency of Current Observation-Oriented Paradigm

Human intelligence is inherently relation-centric, with relations serving as indices pointing to mental repre-
sentations , facilitating understanding of observational and temporal objects. This nature creates
a fundamental misalignment with the prevailing modeling paradigm, which prioritizes observational objects
as variables and outcomes. Depending on the application, this discrepancy can result in noticeable Al Align-
ment issues , ineffective use of causal knowledge in large Al-based models ,
or challenges with model generalizability in traditional causal learning .

This chapter explores the influences of hidden relations under the current paradigm (Section , re-evaluates
causal learning in light of often-overlooked critical temporal features (Section , and highlights the multi-
dimensionality of the temporal feature space, along with the inherent biases it introduces (Section @)

2 Impact of Unobservable Hierarchy

Unobservable hierarchies indicate hidden relations, vital but separate from the modeling objective. For tasks
solely involving observational learning, such information absence might be resolved by leveraging knowledge
to enhance modeling (subsection . However, when it comes to temporally significant causal learning,
these hierarchies may lead to the loss of dynamical features in the temporal dimension (subsection ,
presenting a substantial challenge to conventional causal inference methods (subsection .

2.1 On Solely Observational Learning

(a) Al-generated faces accompanied with hands (b) How human understand images of hands

Figure 2: A comparison of Al-generated and human-sketched hand images. Al processes observable features
simultaneously, thus treating hands as arbitrary mixtures of finger-like items. The process is hierarchical for
humans, indexed through relations, where higher-level recognition relies on lower-level conclusions.

Figure (a) showcases Al-created hands with faithful color but unrealistic shapes, while humans can easily
recognize a plausible hand from simple grayscale sketches in (b). Indeed, we rapidly make decisions according
to different relations in our knowledge, hierarchically from lower to higher levels: I identifies fingers through
knuckles and nails; IT determines hand gestures through finger positions; ITI retrieves the gesture’s meaning
from memory. This intuitive hierarchy is unobservable, existing in our cognitions only. To Al, or similarly, to
some extraterrestrial intelligent life without our knowledge, the hands in Figure a) may seem reasonable.

In purely observational learning tasks, such hierarchies might not always pose significant issues. If features
at different levels do not significantly overlap, Al may successfully “distinguish” them. For example, Al
can generate convincing faces as the appearance of eyes strongly indicates facial angle, negating the need to
recognize “eyes” from “faces”, while various similar-looking hand gestures can create confusion. However, Al
can learn hidden knowledge through methods like reinforcement learning [Sutton & Barto| (2018)), guided by
human feedback. For instance, human approval of five-fingered hands may lead AI to autonomously identify
fingers, based on comprehensively captured observational features at each level.

2.2  On Temporally Significant Learning

Figure a) illustrates an example from health informatics, depicting the causal effects of action do(A) on
B, with ¢ indicating the elapsed days. For simplicity, assume the patient’s hidden personal characteristics
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linearly influence M 4’s release, i.e., uniformly accelerate or decelerate its effective progress. The red and
blue curves in (a) are individualized, shaped by two levels of dynamical features on the temporal dimension:
1) the standard population-level effect sequence with a length of 30, and 2) the individual-level progress
speed. The modeling objective is to estimate level 1) dynamic, as the clinical effectiveness evaluation of M 4.

A = Dose of Medication M, do(A) = Event “A changes from 0 to 1” B = Measured Blood Lipid

Daily Effect 1 : |l !
.
ode(BA) } ‘I/ Specify the after-30-days i Jvidual Level
on | . . | o eVe\ \ndivi -
|« | Correlations for all patients | Popu;‘a‘i’:r: Feature
Causal Kffect! 3
D102 D29 D30
t t t
d
- , The standar
0 Day 120 Days 130 Days |40 Days  imelinet
i ys | yS | y (# of Days) 30th Day
(a) Observational Time Sequences (b) Complete Dynamical Features

Figure 3: Medication M4 treats high blood lipid, with do(A) denoting its initial use. It is given that the
population-level effect takes about 30 days to fully release (¢ = 30 at the elbow), depicted by the black curve
in (a). Patient P; achieves this effect curve elbow in 20 days, while P; takes 40 days.

Conventionally, the medical effect of M 4’s is estimated by averaging the performances of all patients after
30 days, resulting in a correlation model Byi30 = f(do(A¢)). This model captures only the static feature
By 30, the final step of level 1) dynamics, neglecting the preceding 29 steps. These steps are highlighted in
Figure 3]s complete feature vector, which is disentangled by hierarchical levels. Due to the lack of nonlinear
modeling ability for effect objects, employing a sequence of length 30 to represent effects (e.g., in a Granger
causality model) can, at best, capture level 1) sequence, but exclude further dynamical feature levels.

Dynamical causal effects, prevalent in applications like epidemic progression, economic fluctuations, and
strategic decision-making, often occur within different granularity levels. Group-specific learning [Fuller et al |
methodologies are commonly used to address this, essentially equivalent to a manual specification of
the value of ¢ (see subsection [L.4).

2.3 The Elusive Hidden-Confounder
Correlation Model By, 309 = f(do(4;)) do(A) « E = {do(A) = E;,do(4) * Ej, ...} Patient ID = {i, ], ... }

do(A) do(A) do(A) *E Sequences Sequencgs

f(do(4)) ® individual-Leve! ?
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et e + (5]
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Characteristics @ --------- B Relation M ID
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(a) DAG with Hidden Confounder (b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)

Figure 4: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of the sequential data.

For patients P; and P;, the population-level estimated effect By 3¢ is biased. To counter this individual-level
bias and improve model interpretability, statistical causal inference incorporates the “hidden confounder”
concept into Directed Acyclic Graphs (DAG), representing the concealed ¢ as node E in Figure 4| (a).
However, it does not necessitate collecting additional data for E, leading to an illogical assertion: “The
model bias stems from unknown factors we don’t intend to explore.” This strategy compensates for the
overlooked level 2) dynamics in causal models. Due to the observational learning essence, such observable
dynamical features are explained through a hidden observational variable E.
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As illustrated in Figure b), the hidden composite cause do(A) x E' does not offer a modelable relationship -
While introducing E' may enhance human understanding, it unnecessarily improves the model. Conversely,
the Relation-Oriented approach treats relations as indices, empowering Al to autonomously extract obser-
vational and temporal representations using any observed identifier, like patient ID. These representations,
disentangled per the desired knowledge-derived hierarchy, enhance model generalizability.

3 Causality on Temporal Dimension

Causality research acts as a gateway into the temporal dimension, going beyond the observational space.
However, the current causal learning models, formulated as y;y,,, = f(x¢) for causality X — Y with m as a
predetermined time progression, do not fully integrate ¢ as a computational dimension.

Under the prevailing Observation-Oriented paradigm, the objects - cause on X and effect on Y - must be
pre-identified prior to formulating the relation function f. While it remains feasible to assign a sequence of X
to encompass dynamics for the cause, identifying the exact start and end timestamps for the effect becomes
problematic. Consequently, traditional causal inference typically treats effects as solely observational, with
static temporal aspects determined by predefined m. When the underlying effects have dynamical signifi-
cance, selecting an appropriate value for m to capture the most relevant snapshot becomes challenging. This
tdentifiability difficulty is further magnified when multiple levels of dynamics are present in effects.

Indeed, integrating the concept of temporal distribution could greatly streamline causal inference theories,
making associated ideas more intuitive. For instance, when we acquire Counterfactuals Pearl (2009), we
are essentially capturing temporal distributions in response to conditional queries. Also, as demonstrated in
the prior section, fully capturing the observed dynamics across all hierarchical levels within the model could
potentially eliminate the need for hidden confounders.

Next, we begin by redefining the notion of causal models concerning the temporal dimension in Section
[3:1] then delve into existing methodologies in Section [3.2] focusing on their capacity to capture temporal
distributions, with a particular exploration of the essence of do-calculus. Section [3.3] discusses inherent
limitations of the dominant Observation-Oriented causal model paradigm.

3.1 Redefined Causality Modeling

Traditional causal inference heavily emphasizes interpreting models, such as discerning the causal directions,
to distinguish them from mere correlations. In essence, the temporal-evolving aspects that set causality apart
from correlation are mainly evident in interpretations, rather than directly within the modeling framework.

From a modeling perspective, once the domain is defined, the learning process does not consider the temporal
significance behind the dimensions, including the timestamp attribute. Thus, it is understandable that the
traditional paradigm leans heavily on interpretation. With this in mind, we differentiate causality from
correlation in the modeling context by integrating distributions along the temporal dimension.

Theorem 1. Causality vs. Correlation in the modeling context.
e Causality is the relationship between observational-temporal features, which can be dynamical.
e Correlation is the relationship between features not dynamical.

A causality X — Y can be divided into two parts: 1) the informative relation connecting X and Y, crucial for
modeling, and 2) the causal direction, i.e., the roles of cause and effect, mainly significant in interpretation.
Specifically, for model selection, we can employ Y = f(X;60) to predict the effect on Y, and, conversely,
utilize X = ¢g(Y;4) to deduce the cause X given Y. Both parameters, § and v, are derived from the joint
probability P(X,Y") without imposing modeling restrictions.

In practice, the causal direction is often predetermined for models. One reason is the importance of aligning
with our intuitive understanding of temporal progression. Moreover, the prevailing causal model paradigm
displays an imbalanced capacity for capturing dynamical features between the cause X and the effect Y. For
example, in Figure 4] inverse modeling of do(A4) = f({B}) through RNNs, given a sufficiently long sequence
{B¢} = {Bi+1, ..., Bitao}, might fully capture dynamics of B and negate the need for a hidden confounder.
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Within the suggested Relation-Oriented approach, we can utilize relations to accurately identify the effect’s
observational-temporal features and fully extract their representations. As a result, the modeling function f
is relieved from encapsulating temporal facets. The differentiation between causality and correlation becomes
a matter of connected features, rather than the nature of the relational model.

3.2 Learning Temporal Distributions

Numerous methods are dedicated to capturing the dynamical features of the cause alone, such as autore-
gressive models Hyvarinen et al.|(2010) and RNNs Xu et al.| (2020)), both employing the modeling formate
Yeem = f{z}) with {z:} = {x1,..., 2, 2441, ..., 27}. Meanwhile, Granger causality [Maziarz (2015), a
method widely recognized in economics, employs a sequence for the effect that exhibits significant temporal
patterns, in the formate {y,} = f({z:}), where ¢ and 7 signifying two separate timelines.

Yet, using a sequence does not guarantee capturing dynamics. The distinction between “a sequence of static
variables” and “a dynamical variable” hinges on whether the nonlinear mutual relationships among these
variables can be captured. For autoregressive, if the selected model is linear, then {z;} remains a static
sequence. Conversely, RNNs can harness the nonlinearity of {z;}, enabling them to encapsulate dynamics
even within multiple levels. In Granger causality, the effect sequence {y,} must be observationally identified
before modeling, making it typically a static sequence. At best, it can capture a single-level dynamic with
the right parameter setting, e.g., referring to Figure b), a 30-length average sequence may capture level 1).

A more universal approach to represent temporal distributions is do-calculus Pearl| (2012); Huang & Valtorta,
(2012). Instead of specifying time sequences, it takes the identifiable temporal events as modeling objects to
conduct elementary calculus. The do(-) format flexibly modulates temporal features for the cause. However,
such a differential-calculus essence also introduces elevated complexity. Here, we reinterpret its three core
rules from an integral-calculus perspective, aiming for a more intuitive comprehension.

For the time sequence {z;} = {z1,...,z7}, let do(x;) = {x;, z141} indicate the occurrence of an instan-
taneous event do(x) at time ¢t. Time lag At between {¢,t + 1} is sufficiently small to make this event
identifiable, such that do(z:)’s interventional effect can be depicted as a function of the resultant distribu-
tion at t + 1. Conversely, the effect provoked by static x; snapshot is called observational effect. Then, the
observational-temporal distribution of the cause X € R can be formulated as below:

Given X — Y | Z, where X = (X,t) € R™! encompass the temporal dimension, we have
(do(x¢) = 1) | do(zt),  Observational only (Rule 1)

N _/T do(y) -y dt with (¢ =1) | do(z), Inte'rventionc%l only (Rule 2)
0 (do(xt) = 0) | do(z:), No interventional (Rule 3)
otherwise Associated observational and interventional
T T—1
The effect of X can be derived as f(X) = / I (do(xt) -xt) dt = Z(yt+1 —Yt) =Yr — Yo
0 t=0

Within the graphical system {X,Y,Z}, the rules of do-calculus tackle three specific scenarios (notably,
a specifiable do(x;) - ¢ pertains to Rule 2), where conditional independence is maintained between the
observational and interventional effects. However, these rules bypass more generalized cases.

Utilizing the do(+) format, we can also represent observational-temporal distributions of Y as Y = (Y, 1), by
incorporating an additional timeline 7. However, in the Observation-Oriented paradigm, identifiable events
for ) still necessitate our prior specifications. In contrast, the proposed Relation-Oriented approach can
autonomously construct Y via relation-indexing.

3.3 Limitation of Current Causal Model Paradigm

Our innate understanding of causality aligns with Theorem 1. Yet, confining causal models to the observa-
tional space can lead to potential misalignments between these models and our intuitive knowledge. We have
categorized causal modeling into four scenarios shown in Figure o} Depending on whether the relationship
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is already in knowledge, the modeling queries can be divided into causal discovery, which seeks new insights,
and causal learning, which leverages knowledge to model causality. Further, these applications can be cate-
gorized based on the dynamical significance of the effects. For instance, the causality “raining — wet floor”
includes only static temporal features, which is logically a causality but not distinguishable from correlation
once modeled. We explore these scenarios from two perspectives: the relation connecting features, critical
for modeling, and the causal direction, essential for interpretation.

Modeled Relation Modeled Causal Direction
Include Significant No Significant ]
. . Observational Only. . . .
Dynamical Features Dynamical Features . - Observational Information Determined.
o Undiscovered Dynamics covered - -
by Faithfulness Assumption. Not Logical Causal Meaningful.
Causal Relationship still e Observational Only. Observational Information Determined.
Discovery Unknown Aligned with Knowledge. Maybe Logical Causal Meaningful.
. . Knowledge Determined.
Relationshi
Causal R I dp e Unmodeled Dynamics covered K ledge Determined
Learning in Knowledge by Hidden Confounders or nowledge Determined.
Sufficiency Assumption.
Causal Modeling 0 Knowledge Determined. Knowledge Determined.

Figure 5: An overview of the current Observation-Oriented causal model paradigm. On the left, the rectangle
means all logical causal relationships, while its potentially modelable scope is blue-circled.

(1) Modeled Relation

Traditional causal inference has made notable advancements in “downgrading” dynamical temporal features
to be observationally accessible. For instance, do-calculus explores independence conditions on the temporal
dimension. For overlooked dynamical features of the effect, if existing knowledge can suggest its potential
cause, creating a hidden confounder can enhance comprehension; if not, these dynamics may be dismissed
based on the causal Sufficiency assumption, potentially leading to subsequent challenges.

On the other hand, causal discovery mainly scans the observational space to explore dependencies. As a
result, if the underlying causality does not encompass significant dynamics, causal discovery can be effective.
However, if such dynamics exist, they largely go undetected. This potential gap may be negated under the
causal Faithfulness assumption suggesting that observed variables fully represent the causal reality.

(2) Modeled Causal Direction

Consider observed variables X and Y in a graphical system, with specified models Y = f(X;6) and X =
g(Y;1). Based on observations, the discovered causal direction between X and Y is determined by the
likelihoods of estimated parameters 6 and 1/3 Given the joint distribution P(X,Y), one would prefer X — Y
if £(d) > L()). Now, let Z(#) be a simplified form of Zx y (0), the Fisher information, representing the
amount of information contained by P(X,Y) about unknown 6. Assume p(-) to be the probability density
function; then, in this context, [ « P(z;0)dr remains constant. So, we have

7(6) = Bl( g torp(X.Y:0))* | 6] = [ [ (5 logpta:0) ot s O)dady

= a/ (889 log p(y; x,0))*p(y; x,0)dy + B = aZy|x(0) + B, with «, 3 constants.

Thus, § = argmaxP(Y | X, 0) = arg min Zy | x (#) = argmin Z(#), and L(0 )) o 1/Z(0).
0 0 0

Subsequently, the likelihoods of the estimated parameters 6 and zZAJ depend on the amount of information,
Z(6) and Z(). That means the learned directionality between X and Y essentially indicates how much
their specified distributions are reflected in the data, with the more dominant one deemed the “cause”. It
presumes that the cause is more comprehensively captured in the observations than the effect by default.
Due to restricted data collection techniques, such a presumption was justifiable in past decades. But in the
present era, assuming such discovered directions to have logical causal meaning is no longer appropriate.
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4 The Overlooked Temporal Space

Data is commonly stored in matrices, with time series data incorporating an extra attribute for the times-
tamps, which forms a logical timeline to reflect the absolute time evolution in reality. Traditionally, modeling
has relied on this timeline to determine the chronological order of all potential events. However, our intuitive
understanding of time is far more complex than this singular, simplified absolute timeline.

Consider an analogy where ants dwell on a two-dimensional plane of a floor. If these ants were to construct
models, they might use the nearest tree as a reference to specify the elevation in their two-dimensional models.
By modeling, they observe an increased disruption at the tree’s mid-level, which indicates a higher chance of
encountering children. However, since they fail to comprehend humans as three-dimensional beings, instead
of interpreting this phenomenon in a new dimension “height”, they solely relate it to the tree’s mid-level. If
they migrate to a different tree with a varying height, where mid-level no longer presents a risk, they might
conclude that human behavior is too complex to model effectively. Similarly, when modeling time series, we
usually discount the dimension “time” as the single absolute timeline, which has become our “tree”.

Our understanding allows for the simultaneous existence of multiple logical timelines. If one is designated as
the absolute timeline, the remaining ones can be viewed as relative timelines, each representing distinctive
temporal events, which can be interconnected via specific relationships. In such Relation-Oriented perspec-
tive, like, during a causal inference analysis, the temporal dimension contains numerous possible logical
timelines that we could choose to construct any necessary scenarios. However, once we enter a modeling
context, like, using Al to model the time series along a single timeline, the temporal significance no longer
exists, but only a regular dimension containing timestamp values, indistinguishable from other observational
attributes. Metaphorically, if we consider the observational space for Al modeling as Schrédinger’s box and
our interest is the “cat” within, our task is to accurately construct the box, giving adequate consideration
to all potential logical timelines, to ensure the “cat” remains reasonable upon unveiling.

Theorem 2. The term Temporal Dimension encompasses all potential logical timelines, not just a
singular one. Consequently, a Temporal Space is defined as the space built by chosen timeline axes.

Fundamentally, as three-dimensional beings, we are limited from truly understanding temporal dimension-
ality. As the term “space” typically evokes a three-dimensional conception, the notion of “temporal space”
might seem odd for a four-dimensional creature. Like ants can use trees as references without the need to
fully comprehend the third dimension, we rely on logical timelines to interpret the fourth. At this juncture,
our mission is to recognize the potential “forest” beyond the present single “tree”.

This section will demonstrate how the single-timeline-based timestamp specification operation, rooted in the
Observation-Oriented paradigm, inherently biases modeling and hinders model generalizability. Then we
will summarize advancements and challenges on our journey towards realizing causal knowledge-aligned Al.

4.1 Inherent Temporal Bias Scheme

Modeling event identification typically relies on timestamps derived from a singular timeline in time series
data. In structural causal models (SCMs), this can induce inherent temporal biases, limiting our capacity
to leverage AIl’s potential in the temporal dimension. This issue becomes more acute in large-scale causal
relationships, where more logical timelines may be hidden.

To better ascribe this issue, we improve the causal DAG (directed acyclic graph) [Pearl (2009)) as follows: 1)
incorporating (potentially multiple) logical timelines as axes into the DAG space, and 2) defining edges along
timeline axes to be vectors with meaningful lengths indicating the timespans of causal effects. For example,
the single-timeline scenario in Figure [3] has the new DAG depicted in Figure [6[b), with (a) showing the
traditional one as a comparison. The edge do(A) — B in Figure @(a) represents the population-level effect
only, thus necessities a hidden confounder to explain the individual-level diversities, while in Figure @(b),

—
they can be explicitly represented by varying lengths of do(A) B.

Consider an expanded two-timeline scenario in Figure a), where A shorthandly represents do(A). Apart
from its primary effect on B, A also indirectly influences B through its side effect on another vital sign, C,
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depicted as edges ﬁ and C@ . For simplicity, assume the timespan for ﬁ is 10 days for all patients, with
the individual-level diversity confined to timeline Tx alone. In conventional single-timeline causal modeling,
the SCM function would be B39 = f(A¢, Cit10). Let’s assume f(A¢, Ciy19) is implemented using RNNs,
which can accurately depict the individual-level final effects of A on B for any patient.

The confounding relationship over nodes { A, B, C'} forms a triangle across timelines T'x and Ty - such shape
geometrically holds for any hierarchical level relationship. For patients P; and P;, the individualization
process is to “stretch” this triangle along T'x by different ratios, which is a homographic linear transformation
in this space. However, as illustrated in Figure 7| (b) and (c), for either P; or P;, equating the outcome of f
to be Bii3g violates the causal Markov condition necessary for reasonable SCMs.

do(A)s P; is 1/3 Faster P; is 1/3 Slower
1

do(A)
(b)

|

! |

(a) the Unobserved {
Characteristics ¢---------=

Timeline of Days
of Patient E = {E;, Ej, ...}

[
|
|
|
; . . ;
et .. |t+20 [t+30 | t+40

Figure 6: (a) Traditional Causal DAG introducing hidden E. (b) Improved DAG: the standard black vector
signifies the population-level effect, while the individual-level ones are represented by its different scaling.

(a) Valid Individualization = Linear Transformation (b) Biiso # f(As Crr10) () Btyso # f (At Crr10)
Timeline
i IR C
Ty c ! | | t+10 | | Cei10 | |
| | | | : :
_______ ' Timeline ' ' !
A B, B! B| Ty R A, Biizo)  Biido ¢ Biizol  Bilao
"o '20 '30 ' 40 ! ' ' ! T

Figure 7: (a) A two-timeline DAG space, where a valid individualization presents a linear transformation.
(b)(c) Violations of the Markov condition for the prevailing SCM with confounding dynamics across timelines.

Notably, in this specific case, the violation may not cause significant issues for AT models like RNNs. Given
the independence of dynamics on T and Ty, the SCM can be formulated as Byyzo = f1(A:) + f2(Cit10),
suggesting that the cross-timeline confounding can be broken down into two single-timeline issues. However,
making assumptions such as independence or non-confounding is unrealistic. Since each cause-and-effect
pair might possess its unique logical timeline, these inherent temporal biases can accumulate exponentially,
significantly impacting the robustness of causal models, irrespective of our model selections.

Theorem 3. The inherent temporal bias may occur in SCM if it contains: 1) Confounding dynamical
temporal features across Multiple logical timelines, and 2) Unobservable hierarchy.

It is interesting to notice that most of the successful causal applications instinctively avoid one of the two
factors: confounding or multi-timeline. Statistical causal models can facilitate de-confounding as a pre-
processing, e.g., the backdoor adjustment [Pearl| (2009)). For AI models, most of the achievements do not
potentially involve relative timelines, e.g., the large language model (LLM) in a semantic space, where the
phrases are ordered consistently along a single logical timeline.

Unlike AT’s black-box nature, causal inference essentially takes a Relation-Oriented viewpoint. Nevertheless,
in its context, the inherent temporal biases are difficult to recognize, as they often intermingle with the
modeling biases resulting from the statistically unsolvable nonlinearity. They have similar manifestations,
and both can be addressed by de-confounding. Consider Figure @(a), the linearly modeled population-level
effect mismatches with individuals P; and P;, which may not be distinguishable from the mismatching that
occurs in Figure[7b)(c), caused by dynamics across multi-timelines.

10
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4.2 Inherent Impact on SCM Generalizability

Unobservable hierarchies imply different scenarios with identical core relationships. Traditional SCMs typi-
cally require pre-specified event timestamps for modeling, neglecting multiple underlying timelines. It affects
not only model robustness but also hinders the generalizability of established SCMs across varied scenarios.

Predict the Risk of T2D T2D: Type Il Diabetes Statin: Medicine to Reduce LDL
7-1 LDL: Blood Lipid BP: Blood Pressure
T t-1 -1 r
N
2 o LS A C NOT A FB.O._CQ
© -
£ . 2 ] S
=142 S St
£ £
2 =
“ A BI = i B [ 42 H X
o N B C
~ 0 {J_}_f______r’——’v;m B t+2 43
Timeline < o Statin DL T2D - Statin  LDL  T2D BP - . Statn LDL T2D BP
Ty = Variables

Figure 8 An exemplified 3D observational-temporal DAG space, with specified SCM, B’ = f(A,C,S) , to
evaluate Statin’s medical effect on reducing the risk of T2D, including two logical timelines 7y and 7z. On
Ty, the step At from ¢ to (¢t + 1) allows A and C to fully influence B, while the step A7 on 7z, from (7 + 1)
to (7 + 2), let medicine S completely release its effect to progress from A to A’.

Consider the practical scenario depicted in Figure|8] Here, At and AT represent actual time spans. Yet, the
crux is not on determining their exact values, but on realizing their intended causal relationship: As each unit
of Statin’s effect is delivered on LDL via SA’, it immediately impacts T2D through A’B’. Simultaneously,
the next unit effect begins generation. This dual action runs concurrently until S is fully administered. At
B’, the ultimate aim of this process is to evaluate the total cumulative influence stemming from S.

— = —— — —

Given the relationship SB’ = SA’ + A'B’, specifying the SB’ time span (i.e., half of the AB’ time span)
inherently sets the At : A7 ratio, defining the ASB’ triangle’s shape in this DAG space. While the estimated
mean effect at B’ might be precise for the present population, the preset At : A7 ratio’s universality is
questionable, potentially constraining the established SCM’s generalizability.

4.3 Toward Causal Knowledge-Aligned Al

In pursuit of causally interpretable Al, our modeling techniques expand beyond the purely observational to
encompass temporal dimensions, as summarized in Figure[J] The present challenge is ensuring the generaliz-
ability of structural models across the temporal space. Acknowledging its multi-dimensional nature is critical
to preventing inherent biases that render Al systems uninterpretable. Manually discerning underlying logical
timelines for observables is impractical. Thus, it may have been time for us to consider the new paradigm.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning [Pearl et al.| (2000); [Peters et al.| (2017)). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies [Dawid| (1979); |Geiger & Pearl| (1993)), providing a basis for effectively uncovering
the underlying structures in graphical models [Peters et al.| (2014)).

Graphical causal models relying on conditional dependencies to construct Bayesian networks (BNs) often
operate in observational space and neglect temporal aspects, reducing their causal relevance [Scheines| (1997)).
Causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) |Glymour et al. (2019); Elwert| (2013), can address counterfactual queries [Scholkopfl (2021), with
respect to temporal distributions by leveraging prior knowledge, to construct causal DAGs accordingly.

State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions [Zheng et al.| (2018} |2020)); [Lachapelle et al. (2019), undoubtedly enable

11
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highly efficient solutions, especially for large-scale problems. However, larger question scales indicate more
underlying logical timelines, which may lead to snowballing temporal biases. It can be evident from the
limited successful applications of incorporating DAG structure into network architectures |Luo et al.| (2020));

Ma/ (2018]), e.g., neural architecture search (NAS).

Handle @
Model Principle Cause Connection & Direction Effect Unobservable P .
. Dynamics
Hierarchy
Mechanistic or Observational- Observational-
Physical Y=71x:0) Temporal X = (X, t) by Knowledge Temporal Y = (Y, t) Yes Yes
Relation-Oriented R Observational- Learn Representation Observational-
Structural Model Given P(X,Y) & X - Y Temporal X = (X, t) U=f(X;0) Temporal § = (7, ¢) Yes Yes
Structural Causal GivenP(X,Y)& X - Y Observational Connected via 6 Observational and 5 5
Learning Y=f(X;0) Sequence {X;} X = Y by Knowledge Static Y; ' '
Graphical Causal Given P(X,Y) . Connected via 6 ) N
Discovery Find L(Y|X; 0) > L(X|Y; 0) Observational X X — Y by Observed Info Observational ¥ ' No
ComrAr;ZZe(.;ause Given P(X,Y|Z) Observational X Connected via Z Observational Y ? No
hid [;\;(t)zglnven Given P(X,Y) Observational X None Observational Y No No

Figure 9: Simple Taxonomy of Models (Adapted in part of Table 1 in[Scholkopf| (2021)), from more knowledge-
driven (top in purple) to more data-driven (bottom in green). Notations: § = parameter derived from joint
or conditional distribution, (X,t) = augment ¢-dimension, “?” = depending on practice.

Scholkopf (Scholkopf] (2021)) summarized three key challenges impeding causal Al applications to achieving
generalizable success: 1) limited model robustness, 2) insufficient model reusability, and 3) inability to handle
data heterogeneity (caused by unobservable hierarchies in knowledge). Notably, all these challenges can be
attributed to the timestamp specification required by Observation-Oriented structural models.

On the other side, physical models, which explicitly integrate temporal dimensions in computation, and are
able to establish abstract concepts through relations, may provide insights into these challenges. We believe
that the Relation-Oriented approach can help bridge the gap between observational and temporal spaces.

Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter begins by formulating the factorizations to achieve hierarchical disentanglement in the latent
space. Then, we explore the proposed relation-defined representation methodology as an embodiment of the
Relation-Oriented paradigm. Lastly, we validate its efficacy through comprehensive experiments.

5 Hierarchical Disentanglement in Latent Space

Given an observational variable X € R? we denote its time sequence of length T as {z:} = {z1,...,z¢_1,
Ty, Tii1,...,op}. Our goal is to construct a latent feature space R for two specific purposes: 1) Fully
represent the observational-temporal features of X = (X, ¢) € R4*+1. 2) Hierarchically disentangle X’s repre-
sentation according to relations in knowledge. Consequently, the established system realizes the reusability
of models at any hierarchical level by indexing through the corresponding relations.

For Y = (Y, 7) € R**! if the relationship X — ) identifies certain features of }’s distribution, the proposed
relation-defined representation learning aims to extract the representation Y as determined by the relation
with X. Moreover, the resulting Y should be reusable in developing subsequent levels of )’s representations,
thereby facilitating the generalizability of the relationship model for X — ). For instance, in a graphical
system {X, ), Z} with relationship X — Y «+ Z, Y can be viewed as in a two-level hierarchy. The first
level is defined by X — Y and the second by (X, Z) — Y, where the second level enhances the first by
incorporating an additional data stream from Z.

12
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5.1 Factorize Observational-Temporal Hierarchy

Let X = (X1,...,Xy) € RY, and assume X = (X, t) € R¥! has an n-level hierarchy. Define ©; as the i-th
level component of X in the observable data space, and its counterpart in the latent feature space RY as 6;.
The representation function f; facilitates the transformation from R?*! to R%: for the i-th level, considering
all prior lower-level features as attributes. 6; is a vector in R”, with its significant value residing in a subset of

the L dimensions, denoted as R, forming the disentanglement {RZ1,... R ... RI»}. Then, we obtain:
X =)0, where ©; = fi(6;; ©1,...,0,_1) with ©; € R*"" and ¢; € R** C R* (1)
i=1

To illustrate an observational hierarchy, refer to Figure (b). Let #; € R1, 0, € RP2 and 03 € R represent
the three levels of features, with each subspace being mutually exclusive. That is, L = L1 + Lo + L3. The
combined vector (6, 60s,603) € R represent the whole image. In correspondence, ©1, O,, and O3 are full-
scale images, each presenting unique content. For instance, ©; highlights the details of the fingers, whereas
©1 + O3 expands to showcase the entire hand.

In the context of an observational-temporal hierarchy, the component ©; € R¥! can be expressed as the
original time sequence {0;}; = {6;, € R? | t; = 1,...,T}. Consequently, we obtain a set of relative logical
timelines {t1,...,%;,...,¢,} which, in contrast to the absolute timeline ¢, are each uniquely determined by
the relationship at their respective levels. However, in the observable data space, the i-th level observational-
temporal feature, represented as the sum ©; + ...+ O;, still maintains its timestamp attribute along t.

5.2 Factorize Hierarchy of Relationship

Given a set of n-level hierarchical representation functions for X', denoted by F () = { fi (9,) [i=1,..., n},
our goal is to define n relationship functions, collectively termed G, such that Y = G(X) exhibits an n-level
hierarchy. Each i-th level relationship function is ¢;(X; ¢;), where @; is its parameter. Then, we have:

n

G(Xx) = Zgi(X;%‘) = Zgi(@i§90i) = Zgi(9i§ O1,...,0i_1,¢;) =Y (2)

i=1 =1

The i-th level relation-defined representation for ) is g¢;(6;; p;) considering the features of the preceding
(i — 1) levels of X. This relationship can be portrayed as the augmented feature vector (6;, ;) in latent
space R, Using ¥x and ¥y to distinguish the collective hierarchical representations for X and ) respectively,
the overall relationship from X to Y becomes ¥y = (Jx, ), where ¢ = {¢1,...,9n}. The term (Vx, )
represents the pairwise augmentations between collections ¥x and (.

6 Relation-Defined Representation Methodology

ReEconstiractea,
DAlAISPACE

Causal Knowledge | _ Traditional Aﬂenerated/Simulated/lmputed...
(e.g., DAGs) B Causal Models '\ Observations
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Causal|Model ‘I Relation-Defined
Generalization/Individualization 'l Representations

Latent =eature
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Decoding
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Time Series Data

Dataispace
>PaCe

Figure 10: Framework of using relation-defined representations to enhance traditional models.

By extracting relation-defined representations, we facilitate the construction of causally interpretable Al
systems in the latent feature space, adaptable to various scenarios (i.e., generalization or individualization).

13



Under review as submission to TMLR

Figure[10]illustrates how this approach encapsulates AIl’s black-box nature within the latent space, managing
human-indecipherable feature representations while simultaneously enhancing traditional models by refining
observations, such as simulating counterfactual effects.

This section introduces a specialized autoencoder architecture crucial for implementing this approach, out-
lines the method for hierarchical representation disentanglement in constructing graphical models, and
presents a causal discovery algorithm for the latent feature space.

6.1 Invertible Autoencoder for Higher-Dimensional Representation

Autoencoders are generally used for dimensionality reduction, often aligning all observational variables as
data attributes for this purpose in structural modeling [Wang et al.| (2016). However, our objective diverges.
We aim to model individual relationships to disentangle variables’ representations and simultaneously “stack”
them to form a DAG within the latent space, R”. This space must be large enough to accommodate potential
relationships in the form of ¥y = (Jx, ¢). This poses a substantial technical challenge, as we need to achieve
higher-dimensional representation extraction for individual variables.

Corollary 1. For a given graph G and a data matrix X, which is column-augmented by all obser-
vational attributes and timestamps of variables in GG, the dimensionality L of the latent space must
be at least as large as rank(X) to adequately represent G.

Corollary 1 stems from the notion that the autoencoder-learned R is spanned by X’s top principal com-
ponents, often referred to in Principal Component Analysis (PCA) [Baldi & Hornik| (1989); [Plaut| (2018);
Wang et al.| (2016). Hypothetically, reducing L below rank(X) may yield a less adequate but causally more
significant latent space through better alignment |Jain et al. (2021]) (further exploration is needed). In this
study, we will set aside discussions on the boundaries of dimensionality. Our experiments feature 10 variables
with dimensions 1 to 5 (Table , and we empirically fine-tune and reduce L from 64 to 16.

Fully Relu
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Figure 11: Invertible autoencoder architecture for extracting higher-dimensional representations.

Figure [L1] depicts the proposed autoencoder architecture, featured by the symmetrical Encrypt and Decrypt
layers. Encrypt amplifies the input vector z by extracting its higher-order associative features; conversely,
Decrypt symmetrically reduces dimensionality and restores 7 to its original form. To ensure reconstruction
accuracy, the invertibility of these operations is naturally required.

Figure |11] illustrates a double-wise associative feature expansion, where each pair of two digits from T are
encoded to form a new digit, by associating with a randomized constant Key, which is created by the encoder
and mirrored by the decoder. A double-wise expansion on @ € R generates a (d—1)(d—1) length vector. By
using multiple Keys and augmenting the derived vectors, 7 can have a significantly extended dimensionality.

The four differently patterned blue squares represent the vectors expanded by four distinct Keys, with the
grid patterns indicating their “signatures”. Each square visualizes a (d—1)(d—1) length vector (not signifying
a 2-dimensional vector). In a similar way, higher-order extensions, such as triple-wise ones across every three
digits, can also be employed by appropriately adapting Keys.

14



Under review as submission to TMLR

Output X Output y

(yj - t(yi)) ® exp(—s(¥i)) Likelinood |__Decrypt_] Likelihood

@ @ L —
Output X P(x[h) t:iD,eﬁ!)de:r =reeaies P(ylv)
e a ior P(h) Prior P(v)
Encrypt @ Prior

© (&) LDecryet posterior /_Encode \ / Encode \ posrerior
Input X (s) P P(vly)
xj ® exp(s(xi)) +t(x) o @ Input X Input y
Figure 12: Encrypt (left) and Decrypt (right). Figure 13: Relationship model architecture.

Figure depicts the encryption and decryption processes used to expand a digit pair (x;,x;), where i # j €
1,...,d. The encryption function fy(z;,z;) = z; ® exp(s(x;)) + t(x;) is defined by two specific elementary
functions, s(-) and ¢(-). The parameter 6, serving as a Key, consists of their respective weights, 8 = (ws, wy).

Specifically, the encryption of (x;, ;) transforms z; into a new digit y; using z; as a selected attribute. The
decryption process symmetrically employs the inverse function f, ! defined as (y; — t(y:)) ® exp(—s(yi))-
Notably, this approach sidesteps the need to calculate s~! or 71, allowing s(-) and ¢(-) to be flexibly specified
as needed for nonlinear transformations. This design is inspired by the pioneering work of [Dinh et al.| (2016))
on invertible neural network layers that utilize bijective functions.

By collectively representing all fy functions as F(X;¥), where ¥ encompasses all parameters, the Encrypt
and Decrypt layers can be denoted as Y = F(X;9) and X = F~1(Y;9), respectively. The source code for
both Encrypt and Decrypt is provided E|, along with a comprehensive experimental demo.

6.2 Stacking Hierarchical Representations to form SCM

Consider a causal system comprising three variables {X,), Z}, each with corresponding representations
{H,V,K} € R initially extracted by three separate autoencoders. Figure illustrates the process of
linking H and V to model the relationship X — Y. Additionally, Figure [I4] depicts how two modeled
relationships related to ) are stacked to form a hierarchically disentangled representation.

Consider instances x and y for the relationship X — ), which are represented as h and v in R, To estimate
the latent dependency P(v|h), we use an RNN, as shown in Figure to explicitly include the temporal
features of h. For the time being, we allow V to autonomously capture any potential dynamics, with the
expectation of future refinements. Each iteration of the learning process involves three optimizations:

1. Optimizing encoder P(h|x), RNN model P(v|h), and decoder P(y|v) to reconstruct x — y relation.
2. Fine-tuning encoder P(v]y) and decoder P(y|v) to accurately represent y.
3. Fine-tuning encoder P(h|z) and decoder P(z|h) to accurately represent x.

Throughout the learning, h and v values are iteratively refined to minimize their distance in R*, and RNN
acts as a bridge to traverse this distance, thereby informatively modeling the relation = — y.

Figure presents two stacking scenarios for ) within the {X, ), Z} system, according to different causal
directions. Given the established X — ) relationship in REL , the left-side architecture completes X — ) + Z
structure, while the right-side caters to X — Y — Z. By stacking an additional representation layer,
hierarchical disentanglement is formed, allowing for various input-output combinations (denoted as —) based
on practical needs. For instance, in the left-side setup, P(v|h) — P(«) signifies the X — Y relationship,
while P(alk) suggests Z — Y. On the right side, P(v) — P(f|k) indicates the J — Z relationship with )
as input; conversely, P(v|h) — P(f|k) signifies the causal chain X — Y — Z.

Thttps://github.com/kflijia/bijective_ crossing functions/blob/main/code_ bicross_ extracter.py
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Causal relationships of known edges can be sequentially stacked using existing causal DAGs in domain
knowledge. Additionally, this approach aids in discovering causal structures within the latent space by
identifying potential relationships among the initial variable representations.

(a) Stacking XY with ZV (b) Stacking XY with YZ

Output y Output y

Likelihood Likelihood
P(yla)

P(y1B)
Prior P(a) Effect Prior P(3)

Effect
P(Blk)

P(alk)
Prior Effect Prior
Effect l—»
P(v|h) P() P(v|h) P(v)
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P(vly) P(vly)
Input y Input y

Figure 14: Architecutres of the relation-defined hierarchical disentanglement.

6.3 Causal Discovery in Latent Space

Algorithm 1 outlines the heuristic procedure for identifying edges among the initial variable representations.
We use Kullback-Leibler Divergence (KLD) as a metric to evaluate the strength of causal relationships.
Specifically, as depicted in Figure KLD evaluates the similarity between the RNN output P(v|h) and
the prior P(v). Lower KLD values indicate stronger causal relationships due to closer alignment with the
ground truth. Although Mean Squared Error (MSE) is a common evaluation metric, its susceptibility to
data variances Reisach et al. (2021)); [Kaiser & Sipos| (2021) led us to prefer KLD, using MSE as a secondary
measure. In the graphical representation context, we refer to variables A and B in the edge A — B as the
cause node and result node, respectively.

Algorithm 1: Latent Space Causal Discovery

Result: ordered edges set E = {e1,...,en}
E={}; Nr ={no | no € N, Parent(ng) = 9} ;

Whilﬁ ]_VI}}; N do G = (N,E) | graph G consists of N and £
for ne N do N the set of nodes
for p € Parent(n) do E the set of edges
if n Q_NR and p € Np then Ng the set of reachable nodes
;_ ()i B =1k E the list of discovered edges
or r € Nr do .
if r € Parent(n) and r # p then K(ﬁ, n) KLD metric of effect 8 —n
B=puUr B the cause nodes
dend n the result node
en . .
5. — K(BUp,n) — K(B,n); Oc KLD Gain of candidate edge e
A =AUSd; A= {6} the set {d.} for e
end n,p,r notations of nodes
end e,0 notations of edges
end
o = argmine(de | e € A);
E=EUoc; Ngr=NgrUng;

end

Figure illustrates the causal structure discovery process in latent space over four steps. Two edges, (e;
and e3), are sequentially selected, with e; setting node B as the starting point for e3. In step 3, edge ey
from A to C' is deselected and reassessed due to the new edge eg altering C’s existing causal conditions. The
final DAG represents the resulting causal structure.
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Figure 15: An example of causal discovery in the latent space.

7 Efficacy Validation Experiments

The experiments aim to validate the efficacy of the relation-defined representation learning method in three
areas: 1) extracting higher-dimensional representations with the proposed autoencoder architecture, 2) hi-
erarchically establishing relation-defined representations, and 3) discovering DAG structure in latent space.
A full demonstration of the experiments conducted in this study is available online ﬂ

We use a synthetic hydrology dataset for our experiments, a common resource in the field of hydrology. The
task focuses on predicting streamflow based on observed environmental conditions like temperature and pre-
cipitation. The application of relation-defined representation learning aims to create a streamflow prediction
model that is generalizable across various watersheds. While these watersheds share a fundamental hydro-
logical scheme governed by physical rules, they may exhibit unique features due to unobserved conditions
such as economic development and land use. Current models based on physical knowledge, however, often
lack the flexibility to fully capture multiple levels of dynamical temporal features across these watersheds.

In fact, to evaluate model robustness and generalizability, health informatics data would be optimal due to
their complex confounding dynamics across multiple timelines. However, empirical constraints prevented us
from accessing such data for this study. For insights into inherent temporal bias, we refer readers to previous

work (2020).

ID Variable Name Explanation
A | Environmental set | Wind Speed, Humidity, Temperature
B Environmental set Il | Temperature, Solar Radiation, Precipitation
e
1t tier causality C | Evapotranspiration Evaporation and transpiration
D | Snowpack The winter frozen water in the ice form
nd i H
2 tier causallty E Soil Water Soil moisture in vadose zone
3rd tier causality F Aquifer Groundwater storage
G | Surface Runoff Flowing water over the land surface
H Lateral Vadose zone flow
| Baseflow Groundwater discharge
J Streamflow Sensors recorded outputs

Figure 16: Hydrological causal DAG: routine tiers organized by descending causal strength.

7.1 Hydrology Dataset

In hydrology, deep learning, particularly RNN models, has gained favor for extracting observational rep-
resentations and predicting streamflow |Goodwell et al| (2020); Kratzert| (2018). For our experiments, we
employ the Soil and Water Assessment Tool (SWAT), a comprehensive system grounded in physical modules,
to generate dynamically significant hydrological time series. We focus on a simulation of the Root River
Headwater watershed in Southeast Minnesota, covering 60 consecutive virtual years with daily updates.

Figure [16] displays the causal DAG employed by SWAT, complete with node descriptions. The hierarchy of
hydrological routines is color-coded based on their contribution to output streamflow. Surface runoff (1st
tier) significantly impacts rapid streamflow peaks, followed by lateral flow (2nd tier). Baseflow dynamics (3rd
tier) have a subtler influence. Our causal discovery experiments aim to reveal these underlying relationships
from the observed data.

2https://github.com/kflijia/bijective_ crossing functions.git
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Table 1: Statistics of variable attributes and performances of the variable representation test.

Variable | Dim | Mean Std Min Max | Non-Zero Rate% | RMSE on Scaled | RMSE on Unscaled | BCE of Mask

A 5 1.8513 | 1.5496 | -3.3557 | 7.6809 | 87.54 0.093 0.871 0.095

B 4 0.7687 | 1.1353 | -3.3557 | 5.9710 | 64.52 0.076 0.678 1.132

C 2 1.0342 | 1.0025 | 0.0 6.2145 | 94.42 0.037 0.089 0.428

D 3 0.0458 | 0.2005 | 0.0 5.2434 | 11.40 0.015 0.679 0.445

E 2 3.1449 | 1.0000 | 0.0285 | 5.0916 | 100 0.058 3.343 0.643

F 4 0.3922 | 0.8962 | 0.0 8.6122 | 59.08 0.326 7.178 2.045

G 4 0.7180 | 1.1064 | 0.0 8.2551 | 47.87 0.045 0.81 1.327

H 4 0.7344 | 1.0193 | 0.0 7.6350 | 49.93 0.045 0.009 1.345

I 3 0.1432 | 0.6137 | 0.0 8.3880 | 21.66 0.035 0.009 1.672

J 1 0.0410 | 0.2000 | 0.0 7.8903 | 21.75 0.007 0.098 1.088

Table 2: Brief summary of the latent space causal discovery test.

Edge | A»C | B»D | C—»D | C—»G | D—»G | G=J | D»H | H=»J | BE E—G | E-H C—E | E»F F—=I | I-»J | DI
KLD | 7.63 8.51 10.14 | 11.60 | 27.87 | 5.29 25.19 15.93 | 37.07 ‘ 39.13 | 39.88 ‘ 46.58 | 53.68 ‘ 45.64 | 17.41 | 75.57
Gain | 7.63 8.51 1.135 | 11.60 | 2.454 | 5.29 25.19 | 0.209 | 37.07 -5.91 | -3.29 2.677 | 53.68 45.64 | 0.028 | 3.384

7.2 Higher-Dimensional Variable Representation Test

In this test, we have a total of ten variables (or nodes), each requiring a separate autoencoder for initializing a
higher-dimensional representation. Table[l]lists the statistics of their post-scaled (i.e., normalized) attributes,
as well as their autoencoders’ reconstruction accuracies. Accuracy is assessed in the root mean square error
(RMSE), where a lower RMSE indicates higher accuracy for both scaled and unscaled data.

The task is challenging due to the limited dimensionality of the ten variables - maxing out at just 5 dimensions
and the target node, J, having just one attribute. To mitigate this, we duplicate their columns to a consistent
12 dimensions and add 12 dummy variables for months, resulting in a 24-dimensional input. A double-wise
extension amplifies this to 576 dimensions, from which a 16-dimensional representation is extracted via the
autoencoder. Another issue is the presence of meaningful zero-values, such as node D (Snowpack in winter),
which contributes numerous zeros in other seasons and is closely linked to node E (Soil Water). We tackle
this by adding non-zero indicator variables, called masks, evaluated via binary cross-entropy (BCE).

Despite challenges, RMSE values ranging from 0.01 to 0.09 indicate success, except for node F' (the Aquifer).
Given that aquifer research is still emerging (i.e., the 3rd tier baseflow routine), it is likely that node F' in
this synthetic dataset may better represent noise than meaningful data.

7.3 Hierarchical Relation-Defined Representations Test

Table [3] presents the results of the relation-defined representation learning. We use the term “single-effect”
to describe the accuracy of a specific result node when reconstructed from a single cause node (e.g., B — D
and C' — D), and “full-effect” for the accuracy when all its cause nodes are stacked (e.g., BC — D). To
provide context, we also include baseline performance scores based on the initial variable representations.
During the relation learning process, the result node serves two purposes: it maintains its own accurate
representation (as per optimization no.2 in and helps reconstruct the relationship (as per optimization
no.1l). Both aspects are evaluated in Table

The KLD metrics in Table [3|indicate the strength of learned causality, with a lower value signifying stronger.
For instance, node J’s minimal KLD values suggest a significant effect caused by nodes G (Surface Runoff),
H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting variable I using D
and F is challenging. For nodes D, E, and J, the “full-effect” are moderate compared to their “single-effect”
scores, suggesting a lack of informative associations among the cause nodes. In contrast, for nodes G and H,
lower “full-effect” KLD values imply capturing meaningful associative effects through hierarchical stacking.
The KLD metric also reveals the most contributive cause node to the result node. For example, the proximity
of the C' — G strength to CDE — G suggests that C' is the primary contributor to this causal relationship.

Figure showcases reconstructed time series, for the result nodes J, GG, and I, in the same synthetic year
to provide a straightforward overview of the hierarchical representation performances. Here, black dots
represent the ground truth; the blue line indicates reconstruction via the initial variable representation, and
the “full-effect” representation generates the red line. In addition to RMSE, we also employ the Nash—Sutcliffe
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Figure 17: Reconstructed time series, via hierarchically stacked relation-defined representations.

model efficiency coefficient (NSE) as an accuracy metric, commonly used in hydrological predictions. The
NSE ranges from -oo to 1, with values closer to 1 indicating higher accuracy.

The initial variable representation closely aligns with the ground truth, as shown in Figure [I7] attesting to
the efficacy of our proposed autoencoder architecture. As expected, the “full-effect” performs better than
the “single-effect” for each result node. Node J exhibits the best prediction, whereas node I presents a
challenge. For node G, causality from C proves to be significantly stronger than the other two, D and E.

One may observe via the demo that our experiments do not show smooth information flows along successive
long causal chains. Since RNNs are designed primarily for capturing the dynamics of causes rather than
the effects, relying on them to autonomously construct dynamical representations of the effects might prove
unreliable. It underscores a significant opportunity for enhancing effectiveness by improving the architecture.

7.4 Latent Space Causal Discovery Test

The discovery test initiates with source nodes A and B and proceeds to identify potential edges, culminating
in the target node J. Candidate edges are selected based on their contributions to the overall KLD sum (less
gain is better). Table |§| shows the order in which existing edges are discovered, along with the corresponding
KLD sums and gains after each edge is included. Color-coding in the cells corresponds to Figure[I6] indicating
tiers of causal routines. The arrangement underscores the efficacy of this latent space discovery approach.

A comprehensive list of candidate edges evaluated in each discovery round is provided in Table[d]in Appendix
A. For comparative purposes, we also performed a 10-fold cross-validation using the conventional FGES
discovery method; those results are available in Table [f]in Appendix A.
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Table 3: Performances of the relation-defined representations, sorted by the result node.

Vari.a})le Representation Vériable Represent&lxtion kel Besaos mueion
Result (Initial) (in Relation Learning)
Node RMSE BCE | Cause RMSE BCE RMSE BCE KLD
on Scaled | on Unscaled Mask Node | on Scaled | on Unscaled Mask | % Scaled | on Unscaled Mask (in latent
Values Values Values Values Values Values space)
C 0.037 0.089 0428 | A 0.0295 0.0616 0.4278 | 0.1747 0.3334 0.4278 | 7.6353
BC 0.0350 1.0179 0.1355 | 0.0509 1.7059 0.1285 | 9.6502
D 0.015 0.679 0.445 | B 0.0341 1.0361 0.1693 | 0.0516 1.7737 0.1925 | 8.5147
C 0.0331 0.9818 0.3404 | 0.0512 1.7265 0.3667 | 10.149
BC 0.4612 26.605 0.6427 | 0.7827 45.149 0.6427 | 39.750
E 0.058 3.343 0.643 | B 0.6428 37.076 0.6427 | 0.8209 47.353 0.6427 | 37.072
C 0.5212 30.065 1.2854 | 0.7939 45.791 1.2854 | 46.587
F 0.326 7.178 2.045 | E 0.4334 8.3807 3.0895 | 0.4509 5.9553 3.0895 | 53.680
CDE | 0.0538 0.9598 0.0878 | 0.1719 3.5736 0.1340 | 8.1360
C 0.1057 1.4219 0.1078 | 0.2996 4.6278 0.1362 | 11.601
& 0-045 081 1.827 D 0.1773 3.6083 0.1842 | 0.4112 8.0841 0.2228 | 27.879
E 0.1949 4.7124 0.1482 | 0.5564 10.852 0.1877 | 39.133
DE 0.0889 0.0099 2.5980 | 0.3564 0.0096 2.5980 | 21.905
H 0.045 0.009 1.345 | D 0.0878 0.0104 0.0911 | 0.4301 0.0095 0.0911 | 25.198
E 0.1162 0.0105 0.1482 | 0.5168 0.0097 3.8514 | 39.886
DF 0.0600 0.0103 3.4493 | 0.1158 0.0099 3.4493 | 49.033
I 0.035 0.009 1.672 | D 0.1212 0.0108 3.0048 | 0.2073 0.0108 3.0048 | 75.577
F 0.0540 0.0102 3.4493 | 0.0948 0.0098 3.4493 | 45.648
GHI 0.0052 0.0742 0.2593 | 0.0090 0.1269 0.2937 | 5.5300
G 0.0077 0.1085 0.4009 | 0.0099 0.1390 0.4375 | 5.2924
J 0-007 0098 1.088 H 0.0159 0.2239 0.4584 | 0.0393 0.5520 0.4938 | 15.930
1 0.0308 0.4328 0.3818 | 0.0397 0.5564 0.3954 | 17.410

8 Conclusions

Motivated by the issue of Al misalignment, we explore the inherent limitation of the prevalent Observation-
Oriented paradigm and introduce a new Relation-Oriented one, complemented by the practical approach of
relation-defined representation learning, and validate its efficacy through experimentations.

This research introduces a dimensionality framework for understanding relationship learning, offering new,
intuitive insights into causal inference and highlighting restrictions of the current paradigm. Observation-
Oriented typically requires pre-identification of modeling objects (and events) before defining relations, which
confines models to solely observational space, limiting their access to significant dynamical temporal features.
Further, by relying on a single, absolute timeline to pre-specify timestamps, it neglects the multi-dimensional
nature of temporal space, compromising the robustness and generalizability of structural causal models.

Fundamentally, human cognition prioritizes relations over observational objects. Through navigating the
intricate network of relationships within unobservable, hyper-dimensional space, we’ve established knowledge
systems centered around relations. This insight gave rise to the Relation-Oriented paradigm, aimed at
constructing knowledge-aligned Al systems that are causally interpretable.

While implementing relation-defined representation learning, we faced significant challenges, including de-
signing an invertible autoencoder for higher-dimensional representation. Nevertheless, thorough experiments
have affirmed the feasibility of the proposed methodology. Al alignment is never a question with a simple
answer but calls for interdisciplinary efforts |Christian| (2020). Through this work, we aim to contribute to
developing more genuine Al and provide a foundation for future advancements.
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